
Double Window Optimisation for Constant Time Visual SLAM

Hauke Strasdata Andrew J. Davisona J.M.M. Montielb Kurt Konoligec

aDepartment of Computing,

Imperial College London, UK

{strasdat,ajd}@doc.ic.ac.uk

bInstituto de Investigacion en

Ingeniera de Aragon (I3A),

Universidad de Zaragoza, Spain

josemari@unizar.es

cWillow Garage Inc,

Menlo Park, USA

konolige@willowgarage.com

Abstract

We present a novel and general optimisation framework

for visual SLAM, which scales for both local, highly accu-

rate reconstruction and large-scale motion with long loop

closures. We take a two-level approach that combines accu-

rate pose-point constraints in the primary region of interest

with a stabilising periphery of pose-pose soft constraints.

Our algorithm automatically builds a suitable connected

graph of keyposes and constraints, dynamically selects in-

ner and outer window membership and optimises both si-

multaneously. We demonstrate in extensive simulation ex-

periments that our method approaches the accuracy of off-

line bundle adjustment while maintaining constant-time op-

eration, even in the hard case of very loopy monocular cam-

era motion. Furthermore, we present a set of real experi-

ments for various types of visual sensor and motion, includ-

ing large scale SLAM with both monocular and stereo cam-

eras, loopy local browsing with either monocular or RGB-D

cameras, and dense RGB-D object model building.

1. Introduction

Visual systems for mapping and localising in an environ-

ment are a key technology for many real-world applications,

such as automatic driving service robotics, augmented re-

ality and object modeling. There are two general purposes

that map-making serves: accurate localization within a local

area for tasks such as obstacle avoidance or object manipu-

lation; and global connection information for longer-range

navigational planning. One proposal for how maps could

work in both cases is to consider them as manifolds; that is,

locally Euclidean but globally topological [4].

Current work in visual mapping (VSLAM) has concen-

trated on either locally accurate reconstruction (e.g. PTAM

[6]), or large-scale reconstruction with infrequent loop clo-

sures, typically in outdoor spaces and not in real time

[8, 17]. In this paper, we present a system for real-time

visual mapping that scales appropriately from small, accu-

rate mapping of immediate space, to the rapid exploration

of larger areas necessary for long-range planning. Our sys-

tem borrows from the idea of a manifold, with two types

of constraints. Within the local area of the current pose, an

inner window of frames and points are bundle adjusted to

give an accurate metric representation. This inner window

is connected to a set of softer frame-frame constraints, the

outer window, that constitute the larger graph of space.

Our approach is related to relative bundle adjustment

(RBA) [16], which encodes constraints in local coordinate

systems, and never attempts a global reconstruction. RBA

has the desirable property that loop closures of both large

and medium loops have effects that dissipate quickly in the

graph, leading to constant-time updating. However, RBA

does not enforce metric consistency within its optimisation

window, and therefore it remains unclear how RBA could

deal with loopy motion in a local area (as in Figure 3) with-

out degrading in accuracy. In our system, bundle adjust-

ment in the local area assures an accurate solution. Our

algorithm automatically builds a suitable connected graph

of keyframes and constraints, dynamically selects inner and

outer window membership, and optimises both. Therefore,

our approach shares similarities with the real-time stereo

SLAM framework of Lim et al. [11] who alternate BA in

a local window with global segment optimisation. In con-

trast to this, we minimise the error in both windows simul-

taneously using a common cost term, allow constant-time

performance by restricting the size of the outer window,

and also cover monocular SLAM. We demonstrate in ex-

tensive simulation experiments that our method approaches

the accuracy of off-line bundle adjustment while maintain-

ing constant-time operation, even in the hard case of very

loopy monocular camera motion.

In the rest of the paper, we discuss further related work,

and provide some insights into the difficulties of constant-

time optimization using current techniques. We then present

our scalable optimization technique using a double win-

dow approach, and show how it works for both stereo and

monocular cameras. To validate the approach, we present

real-world experiments for various types of visual sensors

and motion, for both monocular and binocular devices.

2. Optimisation for Visual SLAM

Full bundle adjustment in VSLAM, while improving

rapidly in absolute computational time [5, 7], still suffers

from linear to cubic time in the number of variables (de-

pending on particulars of the system), thus limiting its use

in large-scale operation. For example, PTAM [6] runs full

bundle adjustment in a background thread, which limits its

scale to small workspaces. Our design goal is to have the

same accuracy as PTAM in small workspaces while also

scaling much better than full BA in handling rapid explo-

ration. There are three main techniques that have been used

in the past to tackle this issue:

• Active windows

• Relative representations

• Pose-pose reduction

Active Windows In order to achieve constant-time op-

eration in a visual SLAM system, it is common practise

to dynamically define a sub-set MA of all M keyframes

as the ‘active window’ A over which to apply optimisa-

tion. In visual odometry/sliding window BA frameworks

designed for exploration, the active window will often con-

sist of the MA most recently captured frames. In general,

keyframes are fixed at the boundary of the active window,

and all those keyframes with co-visible points are typically

included [13].

Fixing keyframes works well in exploratory situations

with large but few loops (see Figure 1(a)). However,

for a loopy camera motion (Figure 1(b)), the number of

keyframes at the boundary is relatively large with respect

to the total number of keyframes within the active window,

and fixing them hampers convergence.

Relative Representations Relative Bundle Adjustment

(RBA) [16] uses a relative representation for frame and

point variables. Since the global position of the frames is

not computed, it must be recovered from the relative vari-

ables, and involves significant computation. However, Sib-

ley et al. [16] argue that there is usually no need for full

reconstruction, and this argument aligns with our notion of

a manifold, in which metric reconstruction occurs only in

a local region. To work in constant time, RBA makes the

active window assumption.

RBA is equivalent to BA if the network of relative con-

straints forms a tree. Thus, it works especially well on ex-

ploratory scenarios where there are no cycles within the ac-

tive window (Figure 1(a)). However, the accuracy of RBA

(a) Exploration & loop closure (b) Loopy browsing

Figure 1. Active windows. Keyframes within the active window

are red (filled); keyframes at the boundary are blue (dark, unfilled);

inactive keyframes are grey (light, unfilled). In (a), the camera

performs exploration around a loop. The active window has two

open ends. In (b), there is very loopy browsing motion. Here, the

boundary of the active window consists of many keyframes.

degrades if there are many loops, as it does not enforce the

condition that constraints around the loop add up to identity.

Pose-graph Optimisation Instead of bundle adjusting all

frames and points, the points can be marginalised out to

yield constraints between the frames, for both stereo [8]

and monocular systems [18]. The resultant system is an

approximation, because binary links between frames do not

fully encode the nonlinear connections between frames and

points. Pose graphs do not reduce the computational com-

plexity of the problem, since (again depending on the par-

ticulars of the graph) they have linear to cubic complexity.

3. Preliminaries

Before going on to present our new solution, we briefly

define notation for the standard systems models we use

throughout.

3.1. Camera poses

For stereo SLAM, we represent camera poses T as mem-

bers of the Lie group SE(3), which consists of a 3 × 3 ro-

tation matrix R and a translation 3-vector t. In order to

deal with scale drift, we represent the camera poses T for

monocular SLAM using the Lie group of similarity trans-

formations Sim(3) [18]:

T =

[

sR t

O1×3 1

]

(1)

Here, the additional parameter s represents the local scale.

We use the following convention: An absolute pose Ti

describes the transformation from the world frame into the

camera frame i. A relative pose Tij between two camera

frames i and j is defined as Tij := Ti · T
−1
j .

3.2. Monocular and Stereo Camera Models

For monocular SLAM, we use the standard pinhole cam-

era model:

ẑm(Ti,xk) =

(

f1
y1

y3

+ p1

f2
y2

y3

+ p2

)

with y := Ti · xk, (2)

where f is the focal length and p the principal point.

In binocular SLAM, each observation zb is a 3-vector,

where the first two components ul, vl are the pixel mea-

surements in the left camera (reference frame). The third

component ur is the row measurement in the right camera

frame. Thus, we get the following prediction function:

ẑb(Ti,x) =

(

ẑm(Ti,xk)

f1
y1−b

y3

+ p1

)

with y := Ti ·xk , (3)

where b is the baseline. We assume all images are undis-

torted and rectified thanks to prior calibration.

4. Double Window Optimisation Framework

In this section, we introduce our scalable back-end for

visual SLAM. For an example, we will concentrate on

stereo SLAM. In Section 6, we explain how this framework

is extended to monocular SLAM — including appropriate

treatment of scale drift in constant time.

4.1. Overview

In order to achieve scalable, usually constant-time per-

formance, we apply an active window scheme. The nov-

elty of our framework is the fact that we use a double win-

dow approach. An inner window of point-pose constraints

(i.e. bundle adjustment) is supported by an outer window of

pose-pose constraints (i.e. pose graph optimisation). Pose-

pose constraints are defined by covisiblity [12]. Two poses

are connected to each other, if they share enough common

features. Unlike some previous approaches which apply BA

and pose-graph optimisation alternately [18, 11], we cou-

ple the point-pose constraints and the pose-pose constraints

within a single optimisation framework. While the inner

window serves to model the local area as accurately as pos-

sible, the pose-graph in the outer window acts to stabilise

the periphery. The soft constraints of the periphery con-

trast with fixed keyframes within a (relative) BA approach,

which are hard constraints.

4.2. The SLAM Graph Structure

The SLAM graph consists of a set of keyframe vertices

V , a set of 3D points P , and a set of relative edges E . Each

keyframe vertex Vi saves its absolute pose Ti, remembers

which points xk ∈ P are visible from Ti and also saves all

corresponding observations zik. An edge Eij between two

pose vertices Vi and Vj has a covisibility weight wij , which

(a) Inner and outer window (b) Occlusion handling

Figure 2. Illustrations of the Double Window Optimization (DWO)

framework.

is the number of points which are visible both in Vi and Vj .

Also, an edge is marked as being marginalised or not. If it

is marginalised it also stores the relative pose constraint Tij
between Ti and Tj . Otherwise, the relative pose is implicitly

defined as Tij = Ti · T
−1
j . A sample graph is visualized

in Figure 2(a). At all times, there is exactly one reference

keyframe Vref .

4.3. Optimisation and Marginalisation

To construct the double-window structure, we start from

the reference keyframe Vref, and perform a uniform-cost

search over the neighbours of Vref, in such a way that the

neighbour with the highest covisibility weight wij is se-

lected first. This is in contrast to Lim et al. [11] who de-

fine the cost in the graph using the geodesic distance. The

first M1 keyframes are considered as being part of the in-

ner window W1, whereas the following M2 keyframes are

members of the outer window W2 (typically M1 << M2).

All points visible from the inner window are included in the

optimisation. Thus, all frames in the inner window W1, and

some frames in the outer window W2 are connected with

point-pose constraints zik to the set of points as is usually

done in BA. In addition, all frames in the outer window are

connected to their local neighbours using pose-pose con-

straints Tji as done in pose-graph optimisation. This results

in the following cost function:

χ2 =
∑

zik

(zik − ẑ(Ti,xk))
2 +

∑

Tj,i

υ⊤
jiΛTji

υji (4)

Here, υji := logSE(3)(Tji · Ti · T
−1
j) is the relative pose

error in the tangent space of SE(3) and ΛTji
is the precision

matrix of the binary constraint Tji. Instead of estimating

this uncertainty accurately using proper marginalisation [8],

we suggest to approximate ΛTji
coarsely:

ΛTji
= wij

[

λ2
transI3×3 O3×3

O3×3 λ2
rotI3×3

]

. (5)

While the rotational component λrot is a constant, the trans-

lational λtrans component should ideally be proportional to

the parallax of Tji — the translation tji normalised by the

average scene depth. This efficient approximation of ΛTji

leads to very accurate results (see Section 7.1). Further-

more, we were not able to reproduce significantly better re-

sults using proper marginalisation instead. We believe the

reason for this is twofold: On the one hand, turning BA into

a binary pose graph is an approximation per se, because the

marginalisation of a landmark visible in N frames should

ideally lead to an hyper-edge with (N − 1)6 DoF. On the

other hand, the pose-pose network we use embodies a cov-

isibility graph with typically many inter-connections (such

as in Figure 3). We believe that the accuracy supported by

this structure overwhelms the approximation due to use of

diagonal precision matrices.

Double window optimisation is performed by minimis-

ing the sum of squared error χ2 with respect to all poses

Ti ∈ W1 ∪ W2 in the double window and all correspond-

ing points xk. First and second order sparsity is taken into

account, and the optimisation is performed using a efficient

state-of-the-art sparse graph optimizer g2o [9]. During op-

timisation, we do not define a fixed origin, since fixing a

keyframe as the global origin can seriously degrade con-

vergence if the selected keyframe is badly localized rela-

tive to its neighbours. Instead, we let the damping factor of

Levenberg-Marquardt takes care of the gauge freedom [5].

Before joint optimisation, we make sure that all pose and

point parameters are well initialised. A pose which was

optimised previously is considered as a good initial guess.

Otherwise the pose Tj might be substantially wrong and

need to be realigned to its local neighbourhood. Starting

from the reference pose Tref, we initialise

Tj = πja · Tref (6)

along the path of relative pose constraints πja. In order to

make sure that the points are triangulated well, we perform

a few iterations of structure-only optimisation, which can

be done very efficiently since the point locations are inde-

pendent given the poses. Instead of anchoring the 3D points

with respect to a keyframe [16, 11], we express them sim-

ply in a global coordinate frame, and thus can avoid a point

management overhead.

4.4. Candidate Points Set for Tracking

For pose tracking, we seek to detect a set of 3D points

in the current image. The camera pose is then estimated by

minimising the reprojection error between the detected fea-

tures and the point reprojections. In PTAM, all 3D points

in the map are potential candidates for tracking. However,

this does not scale very well with the number of points in

the map. In most large-scale/visual odometry-based SLAM

frameworks, points from the last m keyframes are consid-

ered.

In our framework, we select points which are visi-

ble from the local neighbourhood around the reference

keyframe Vref. The local neighbourhood N1 consists of all

keyframes Vi connected to Vref including itself:

N1 := {Vi : Eref,i ∈ E} ∪ {Vref}. (7)

All points visible from these frames are considered as po-

tential candidates for tracking. As in PTAM [6], a point is

only used for tracking if its reprojection lies within the cur-

rent image boundaries, it is not too far or too close, and is

not seen from a too different viewing angle compared to its

initial observation.

Apart from scalability, selecting points using the lo-

cal neighbourhood of frames has another advantage over

PTAM’s approach: it implicitly takes care of occlusion (see

Figure 2(b)). Points which are occluded in the current frame

are probably not visible from nearby frames either.

4.5. Adding New Keyframes

Occasionally, the current video frame is added as a new

keyframe Vi to the graph. For all keyframes vj in the graph

which share at least θ (typically θ being 15 to 30) covisible

points with the current frame, we include an edge Eji, mark

it as unmarginialized and assign a correpsonding covisibil-

ity weight wji. Finally, the new keyframe Vi is chosen to be

the new reference keyframe Vref := Vi.

5. Loop Closures

We distinguish between two types of loop closures. The

first type is local loop closures which can still be detected

metrically. The second type is large loop closures which

are detected using appearance-based loop closure detection

techniques.

5.1. Metric Loop Closure

Checking for metric loop closures is done by searching

for 3D points in the reference keyframe Vref which are not

visible from its neighbourhood N1 (see Eq. 7). First, we

determine a larger neighbourhood N2 around Vref using

uniform-cost search (as described in Section 4.3). Then, we

construct a set A of potential loop closure points by select-

ing points which are visible in N2, but not in N1. If enough

of those points are found in the current frame, we minimise

their reprojection error wrt. a common pose Tloop using ro-

bust refinement, starting from Tref as the initial guess. Af-

terwards, we prune all points from A whose reprojection

exceeds a threshold (e.g. one pixel).

Now, for each keyframe Vi ∈ N2\N1 we check how

many points in A are also visible in Vi. If there are θ or

more co-visible points between Vi and Vref, we have de-

tected a metric loop closure, and we include a new edge

Eref,i. This edge is marked as being marginalised, and the

corresponding pose constraint Tref,i is set:

Tref,i := Tloop · T
−1
i . (8)

Spiral Inner window Inner & outer Constant time

Figure 3. Spiral simulation scenario

Note that if Tloop 6= Tref, the residual υref,i =
log(Tref,iTrefT

−1
i) might be large, something which will be

resolved in the next optimisation step (Section 4.3).

5.2. Large­scale Loop Closure

Candidates for large loop closures can be efficiently de-

tected using appearance information only [2, 14]. These

methods will detect a potential loop closure between the ref-

erence keyframe Vref and and an older frame Vi. The loop

closure can be efficiently verified using a 3-point RANSAC

scheme. Given a set of three 3D-3D corresponences, a rela-

tive pose Ti,ref is uniquely defined [3]. If more than θ inliers

are found, the loop closure is accepted and an edge Eref,i

is added the the graph. The matched 3D point pairs are

merged into single points.

6. Extension to Monocular SLAM

In monocular SLAM there is a scale ambiguity. For BA,

this has no particular consequences apart from the fact that

the overall gauge freedom increases from 6 DoF to 7 DoF.

However, in pose graph optimisation more care has to be

taken. It can be shown that 6 DoF pose-pose constraints

are not sufficient to correct for scale drift. Instead, 7 DoF

pose constraints can be used to correct for rotational, trans-

lational and scale drift [18].

Since significant scale drift only occurs along large

loops, and we are interested in a constant-time treatment

of scale drift, we apply the following heuristic. The abso-

lute poses Ti as well as the relative poses Tij are members

of Sim(3) instead of SE(3). However, the scale parameter

s remains fixed most of the time. When a new keyframe is

added to the graph, the corresponding scale is set to s = 1.

There is only one case when a scale s 6= 1 is introduced: at

large-scale, appearance-based loop closures (Section 5.2).

Here, 3-point RANSAC recovers the rigid-body transfor-

mation SE(3) and the corresponding scale s [3]. This scale

change gets propagated once poses are reinitialised using

Eq. 6.

7. Experiments

7.1. Simulation Experiments

The main motivation for our double-window optimisa-

tion (DWO) approach is that it can deal with different mo-

tion patterns. In particular, it can smoothly handle both very

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

in
n
e
r

w
in

d
o
w

frame number

BA
cDWO

cDWO (fixed outer window)

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

w
h
o
le

 g
ra

p
h

frame number

 1.5

 2

 2.5

 3

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
wBA

cDWO
gDWO

(a) relative translation error, stereo

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 50 100 150 200 250 300 350 400 450 500

n
u
m

b
e
r

o
f
..
.

frame number

Frame edges
Point edges

Frames
Points

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

c
o
s
t
in

 s

BA
cDWO
gDWO

 2

 4

 6

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

w
h
o
le

 g
ra

p
h

frame number

 3.5

 4

 4.5

 5

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
wBA

cDWO
DWO

(b) computational cost (c) error, monocular

Figure 4. Spiral simulation experiment. The plot shows averages

over ten Monte Carlo trials.

loopy local motion and large scale exploration. We evaluate

a combination of both of these in our first set of Monte-

Carlo simulation experiments. Here the camera moves in

a spiral (see Figure 3), and the trajectory consists of 500

keyframes. We assume a stereo camera model with focal

length of 300, a baseline of 5cm, a resolution of 640× 480,

Gaussian image noise of one pixels and perfect data associa-

tion. We compare BA over all frames to our double-window

optimisation. Both methods are implemented using the ef-

ficient state-of-the-art sparse graph optimizer g2o [9] and

executed on a single core of an Intel(R) Core(TM) i7 960

desktop computer.

For each keyframe, we perform three iterations of joint

structure and motion optimisation (BA or DWO). We ap-

ply two variants of the double window optimisation. The

first variant (cDWO) is made to have strictly constant-time

operation by restricting the inner window to 15 frames and

the outer window to 50. In the second variant (gDWO) the

outer window covers all remaining 485 frames and therefore

allows global metric mapping.

In order to define an error measure, we have to remember

that our scheme does not have a fixed origin, and therefore

comparing absolute poses is meaningless. Instead we fol-

low the approach of Kümmerle et al. [10] and define a rela-

tive error in terms of the relative differences ∆Tij := TiT
−1
j

between two absolute poses. In particular, we define the

root mean square error (RMSE) over the difference of esti-

mated and true relative translations,

√

√

√

√

1

|E|

∑

Eij∈E

(

∆t
[est]
ij −∆t

[true]
ij

)2

, (9)

with ∆tij being the translational component of ∆Tij . We

analyse the RMSE at three different levels as shown in Fig-

Double loop Start Loop closure End

Figure 5. Double loop simulation scenario: At the start, the most

recent 25 frames lie within the inner window, while the outer win-

dow is dragged behind. At loop closure, the inner window is at the

center, while the outer window extends in both directions.

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
w

frame number

BA
cDWO

 3

 4

 5

 6

 7

R
M

S
E

 i
n
 m

m

in
n
e
r

w
in

d
o
wBA

cDWO
cDWO (fixed)

 2500
 5000
 7500

 10000
 12500
 15000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
..
.

frame number

Frame edges
Point edges

Frames
Points

 0.2
 0.4
 0.6
 0.8

 1

c
o
s
t
in

 s BA
cDWO

(a) Translation error (b) Computational cost

Figure 6. Double loop experiment. The plot shows averages over

ten Monte Carlo trials

ure 4(a). First, we consider the local error within the inner

window (left). One can see that the constant time frame-

work (cDWO) reaches the same accuracy as BA. A second

RMSE is computed at an intermediate level considering er-

rors in both windows (top right). Once the 15th frame is

passed cDWO slightly degrades from BA, but settles down

quickly. Finally, we calculate a global error by consider-

ing all relative constraints (bottom right). Here, gDWO sta-

bilises close to BA, while cDWO is clearly inferior since it

only ensures accuracy within the double window.

Figure4(b) illustrates the computational cost for all three

methods (BA, cDWO, gDWO). The constant computation

times of cDWO can be well understood by studying the

number of frames, points, point-to-frame constraints and

frame-to-frame constraints used within the optimisation

windows (bottom). We performed a comparable simulation

experiment using a monocular camera. The RMSE is con-

verted into scale-invariant version by normalising the trans-

lation vectors ∆tij to length one. The corresponding ac-

curacy plots are shown in Figure 4(c), forming a similar

pattern than for stereo SLAM.

A second set of monocular simulation experiments is

performed in order to demonstrate that our double window

framework can deal with large loops and scale drift in a

constant time fashion. The motion trajectory goes around

a large loop twice as shown in Figure 5. At loop closure,

an average scale drift of 1% is detected. The corresponding

accuracy and cost is shown in Figure 6. Here, we have cho-

sen an inner window size of 30 and an outer window size

of 100. Note that the computational cost of cDWO slightly

increases at loop closure (frame 150), simply because the

number of visible point-to-frame constraints increases as

(a) (b) (c)

(d) (e) (f)

Figure 7. Large-scale loop closure, top view, stereo. See text.

(a) Right before (b) At (c) Right after

large-scale loop closure

Figure 8. Large scale loop closure in stereo SLAM: At loop clo-

sure, the active (red) region expands (b). Right afterwards, metric

loop closures (green) are detected (c).

can be seen in Figure 6(b).

Finally, we adapted cDWO such that all frames in the

outer window are fixed during optimisation. One can

clearly see in Figure 4(a) left and Figure 6(a) top that the

usage of such hard constraints lead to inferior results.

7.2. Real­image experiments

To further evaluate the DWO back-end, we have em-

ployed a range of real-image simulation experiments using

stereo cameras, monocular cameras and an RGB-D cam-

era. The experiments where performed on desktop com-

puter with an Intel(R) Core(TM) 2 Duo CPU with 2.66 GHz

7.2.1 Stereo SLAM

We developed a stereo front-end including the following

steps: First, a disparity image is calculated between the

left/reference frame and the right frame using dense stereo

matching. Second, we perform guided matching on 3D can-

didate points (which are constructed as described in Sec-

tion 4.4). Afterwards, we use guided BRIEF [1] match-

ing between measurements and candidate points seeded at

FAST [15] corners – followed by 3D to 3D robust pose re-

finement to produce an initial pose estimate. Finally, we

perform guided patch matching on image pyramid followed

by a second robust pose refinement step.

We integrated the stereo front-end with DWO and pre-

formed a large scale SLAM experiment using the New Col-

Start Exploration Loop closure

Figure 9. Monocular large-scale SLAM in constant time (17 FPS)

lege data set1. The estimated trajectory is illustrated in Fig-

ure 7. We have chosen an outer window size large enough

to cover the whole loop. Figure 7(d) and 8(a) illustrate the

situation right before loop closure. At loop closure (Fig-

ure 8(b)), both ends of the graph get connected, and the

visible set of 3D points instantly amplifies. Afterwards

(Figure 8(c)), both rounds of the loop are become inter-

connected using metric loop closure constraints. Also, note

that after the loop closure, the total number of frames ex-

ceeds the size of the double window, so that the outer win-

dow forms a stabilising periphery around the inner win-

dow (Figure 7(e)). The computational performance of the

stereo system is currently near real-time (5-7 FPS). Finally,

by increasing the inner window size to the total number of

frames, full BA can be performed (Figure 7(f)). This com-

putation takes on the order of seconds.

7.2.2 Monocular Camera

Our monocular front-end is largely based on the PTAM

tracker but adapted to the needs of the DWO back-end. 3D

candidate points for tracking are estimated as described in

Section 4.4. Epipolar search for feature initialisation is only

performed between keyframes which are connected with an

edge. In general, all for loops in PTAM which iterate over

all points or all frames are replaced. Instead, sets of points

and frames are accessed along the local connectivity of the

SLAM graph. For the 3-point RANSAC step in appearance-

based loop closure detection, SURF features are employed.

Their depths are estimated using k-nearest neighbour re-

gression [18]. Thus, the depth of a SURF point is calcu-

lated from the average depth of map points with nearby re-

projections.

In the first experiment we demonstrate DWO in com-

bination with the modified PTAM tracker for large scale

monocular SLAM (Figure 9). We have chosen a strictly

constant time setting, such that the inner plus outer win-

dow only covers approximately a quarter of the loop. At

loop closure (Figure 9(d)), a scale change of 6% is detected

and both ends of the graph are attached appropriately. The

whole system runs at 17 FPS — applying the tracker and

the optimisation alternately in a single thread. In a second

monocular experiment, we demonstrate that our back-end

1http://www.robots.ox.ac.uk/NewCollegeData/

(a) Sparse point map (b) Dense 3D model

Figure 11. Loopy browsing motion in office environment, RGB-D

Figure 12. SLAM using a RGB-D camera on a wheeled robot.

Figure 13. Dense object models using RGB-D camera. Bottom

right: Sparse points clouds are used for SLAM. Bottom left: Raw

RGB-D measurements are overlaid to create a dense object model.

can deal with loopy browsing motion (which is the special-

ity of PTAM), but also with rapid exploration (Figure 10).

7.3. RGB­D cameras

Our visual SLAM framework can be also used with

RGB-D cameras that have become popular very recently.

We used a PrimeSensor from PrimeSense which calculates

a dense 3D cloud using structured light and is largely identi-

cal to Microsoft’s Kinect. The PrimeSensor outputs an RGB

image together with a registered 3D point cloud. As a first

step, we transform the 3D point cloud into a disparity image

registered to the RGB image. Thus we can use the RGB-D

camera in the way as any other stereo camera and therefore,

we use the very same front-end as summarised above.

Figure 11 illustrates loopy browsing motion using the

RGB-D camera. The tracking and optimisation solely de-

pend on sparse feature matching (a). However, the dense

point clouds can be registered to the optimised frames and

used to construct a dense environment model cheaply (b).

Also, we attached the RGB-D camera to a wheeled robot

and mapped of an indoor environment (Figure 12),

Finally, we demonstrate how our framework can be used

to create dense object models (see Figure 13). An object

http://www.robots.ox.ac.uk/NewCollegeData/

Figure 10. Loopy browsing motion plus exploration in office environment, monocular

is placed on a turning table and observed by a static RGB-

D camera. We need to create an image mask which only

covers the dense object. First, we remove the background

by rejecting all pixels with a depth greater than a particular

threshold. Secondly, we detect the ground plane and only

accept pixels whose corresponding 3D points are signifi-

cantly above it. Thirdly, the object mask is dilated in order

to make sure that pixels at the object boundary are rejected.

Note that the loop is closed using metric loop closures.

A number of videos are available online which illustrates

our simulation and real-image experiments2.

8. Conclusion

We have presented a novel double window framework

for visual SLAM, which is unique in being able smoothly

to cope with both detailed, loopy browsing, and rapid large-

scale exploration in constant time, attaining the comparable

results to full local bundle adjustment locally. Furthermore,

we provided evidence that the use of soft constraints within

a double window framework is superior to an active win-

dow approach with fixed frames. We have demonstrated

our method with a wide set of informative simulation and

real-image experiments, and hope that it can be adopted in

many general purpose SLAM systems in the near future.

9. Acknowledgements

This research was supported by the European Research

Council Starting Grant 210346, the Spanish MICINN

DPI2009-07130 and EU FP7-ICT-248942 RoboEarth.

References

[1] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: bi-

nary robust independent elementary features. In Proceedings

of the European Conference on Computer Vision (ECCV),

2010. 6

[2] M. Cummins and P. Newman. Highly scalable appearance-

only SLAM — FAB-MAP 2.0. In Proceedings of Robotics:

Science and Systems (RSS), 2009. 5

[3] B. Horn. Closed-form solution of absolute orientation using

unit quaternions. Journal of the Optical Society of America

A, 4(4):629–642, 1987. 5

[4] A. Howard. Multi-robot mapping using manifold representa-

tions. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 1996. 1

2http://www.doc.ic.ac.uk/˜strasdat/iccv2011/

[5] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon.

Pushing the envelope of modern methods for bundle adjust-

ment. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1474–1481,

2010. 2, 4

[6] G. Klein and D. W. Murray. Parallel tracking and map-

ping for small AR workspaces. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2007. 1, 2, 4

[7] K. Konolige. Sparse sparse bundle adjustment. In Pro-

ceedings of the British Machine Vision Conference (BMVC),

2010. 2

[8] K. Konolige and M. Agrawal. FrameSLAM: From bundle

adjustment to real-time visual mapping. IEEE Transactions

on Robotics (T-RO), 24:1066–1077, 2008. 1, 2, 3

[9] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and

W. Burgard. g
2
o: A general framework for graph optimiza-

tion. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2011. 4, 5

[10] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke,

G. Grisetti, C. Stachniss, and A. Kleiner. On measuring

the accuracy of SLAM algorithms. Autonomous Robots,

27(4):387–407, 2009. 5

[11] J. Lim, M. Pollefeys, and J.-M. Frahm. Online environment

mapping. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2011. 1, 3,

4

[12] C. Mei, G. Sibley, and P. Newman. Closing loops without

places. In Proceedings of the IEEE/RSJ Conference on Intel-

ligent Robots and Systems (IROS), pages 3738–3744, 2010.

3

[13] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and

P. Sayd. Real-time localization and 3D reconstruction. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2006. 2

[14] D. Nister and H. Stewenius. Scalable recognition with a vo-

cabulary tree. In Accepted for oral presentation at CVPR

2006, 2006. 5

[15] E. Rosten and T. Drummond. Machine learning for high-

speed corner detection. In Proceedings of the European Con-

ference on Computer Vision (ECCV), 2006. 6

[16] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative

bundle adjustment. In Proceedings of Robotics: Science and

Systems (RSS), 2009. 1, 2, 4

[17] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring photo collections in 3D. In ACM Transactions on

Graphics (SIGGRAPH), 2006. 1

[18] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale

drift-aware large scale monocular SLAM. In Proceedings

of Robotics: Science and Systems (RSS), 2010. 2, 3, 5, 7

http://www.doc.ic.ac.uk/~strasdat/iccv2011/

