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1 Introduction

1.1 History

The massless sector of the oriented, bosonic, closed string consists of the graviton (metric),

“axion” or “notoph” (2-form gauge field), and dilaton. The T-duality symmetry of the D-

dimensional theory with d compactified dimensions is O(d,d), over the integers for the full

string theory but over the reals for the massless sector. The string theory, of course, lives in

D=26, but the massless theory we are studying exists for all values of D. Duality transforms

the (D−d)-dimensional scalars resulting from dimensional reduction of the metric and 2-

form, but leaves invariant the dilaton, when defined as a scalar density. This is the usual

treatment of T-duality when winding modes are ignored and dimensional reduction is

described in the language of Killing vectors that imply the independence of the background

from the d compact coordinates.

This O(d,d) can be represented on these scalars in terms of a nonlinear σ-model for the

coset O(d,d)/O(d)×O(d) [7]. But this approach can be generalized [10–12] in a way that:

a) requires no dimensional reduction,

b) includes the full set of massless fields,

c) includes all gauge invariances,

d) defines covariant derivatives (connections, torsions, curvatures, Bianchi identi-

ties), and

e) manifests a full O(D,D) symmetry on the fields, gauge invariances, and action.

This procedure doubles the coordinates on which all fields depend. The reduction

to D dimensions is achieved by a set of constraints that preserves the manifest O(D,D),

but any solution of the constraints “spontaneously breaks” this symmetry down to the

usual O(D−1,1) Lorentz symmetry, reproducing the standard D-dimensional fields, gauge

invariances, and action. The O(d,d) can then be restored manifestly by compactification,

which weakens the constraints.

The left- and right-handed worldsheet currents (affine Lie algebra) form the defining

representation of this O(D,D). Through coupling quadratically to these currents, the metric

and 2-form combine to form the coset O(D,D)/O(D−1,1)2. The action can be expressed

in a manifestly O(D,D) covariant form in terms of this field and the dilaton, which acts as

the spacetime integration measure.

In more recent developments [14] the construction of such a double field theory was

based on closed string field theory [15, 16]. This work identified the constraints mentioned

above as the strong version of the L0 − L̄0 = 0 level-matching condition of closed string

fields. In its standard and seemingly unavoidable (weak) form, it applies to all fields and

gauge parameters. In the strong version, which demands that all products of fields are also

killed by L0− L̄0, it provides the reduction to D dimensions. While the construction could

be carried to cubic order in fluctuations without imposing the strong constraint, the full
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construction became tractable only once this constraint is imposed. In this case the string

field gauge algebra is governed by the bracket anticipated in [11]: the C-bracket, which was

shown [17] to be the duality-covariantized version of the Courant bracket of generalized

geometry. This suggested the possibility of a compact explicit form of the doubled action

in terms of the generalized metric HMN and the duality invariant dilaton, a construction

provided in [18]. The simplicity of the action allows quick confirmation that any solution

of the strong constraint gives precisely the two-derivative action for the massless sector of

closed string theory. An alternative form of the action in terms of the field Eij = (g + b)ij
was given earlier in [19].

There is also a compelling generalization of Riemannian geometry for this duality-

covariant framework. A complete formulation has been given in [11] in a frame-like formal-

ism, including torsions, curvatures (Riemann tensor), differential Bianchi identities, and

a discussion of the ambiguity of some Lorentz connections and curvatures. In [20] this

formalism has been related to the double field theory actions of [18, 19] and to a metric-

like formulation. The metric-like approach has been examined in more detail in [24, 25]

(in a “semi-covariant” approach that truncates connections) and in [21]. The fully “in-

variant” formulation in [23] provides a unifying framework for the metric- and frame-like

formalisms. This includes an index-free definition of the torsion and Riemann tensor, a

complete algebraic Bianchi identity with torsion, and a discussion of the absence of an

uncontracted differential Bianchi identity. This geometry is related to (and an extension

of) the “generalized geometry” of Hitchin and Gualtieri [26–28].

Formulations including the coupling to vector multiplets, relevant for heterotic and

type I strings, were also given in [11, 12] and worked out in the generalized metric for-

mulation in [30]. The N = 1 supersymmetric form is contained in the superspace results

of [11, 12] and was worked out independently in explicit component form in [34]. (See

also [35] for supersymmetric double field theory without vector multiplets.) The Ramond-

Ramond sector of type-II superstrings is given in [31, 32], and its supersymmetric extension

in [33].

Double field theory formulations where the strong constraint is somewhat relaxed have

been given for massive IIA supergravity in [29], for flux compactifications in [37, 38], and

explored in some generality in [39, 40]. See also [41, 42] for the geometric role of non-

geometric fluxes in double field theory. Global aspects of double field theory are discussed

in [22] where a formula for large gauge transformations was proposed and examined in

detail. There are numerous other developments in double field theory and the closely

related M-theory (see [43–45]); for a recent review with further references see [46].

One of the most intriguing features of the theory is the absence of a satisfactory

duality-covariant generalized Riemann tensor. In the geometric formalism the covariant

constraints do not suffice to determine all components of the connections in terms of phys-

ical fields, resulting in a Riemann tensor with some undetermined components. In fact,

the undetermined components of the generalized Riemann tensor are such that this tensor

encodes nothing more than the Ricci curvature and scalar curvature [11, 21, 23].

It has been known for some time that α′ corrections to the massless effective field

theory preserve the T-duality symmetry of the two-derivative action [47]. This has been
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verified explicitly in [48] to first order in α′ in a reduction down to just one dimension.

The α′ corrections to the action of bosonic closed strings include Riemann-squared terms.

In the absence of a duality-covariant Riemann tensor, it has been hard to imagine how

one could describe α′ corrections in a manifestly duality invariant way. For example, it

was seen in [21] that certain structures in Riemann-squared cannot be written in terms

of the generalized metric. This lack of a suitable duality-covariant Riemann tensor is a

clear indication that some symmetries of the theory must receive α′ corrections. While the

one-dimensional results of [48] suggest that gauge symmetries could be corrected, the more

accepted viewpoint has been that α′ corrections to the T-duality transformations are re-

quired. These, however, have been hard to determine, even for the case of compactifications

over a single circle and to first order in α′ [49].

On the other hand, the string field theory based analysis [14] is by construction duality

covariant (although background dependent), suggesting again that duality need not be

corrected. It was noted in [23], moreover, that the gauge symmetry brackets calculated

to lowest order in derivatives in [14] receive computable α′ corrections. These corrections

have been determined, appear to agree with the results to be presented here, and will be

considered elsewhere as supporting evidence for the connection to string theory. It was

simpler, however, to approach the construction by extending the current algebra methods

developed in [10–12] and this is what we will do in this paper.

1.2 Outline and summary

In this paper the main technical tool is a modified worldsheet theory that amounts to

a certain consistent truncation of string theory. We will have D+D bosonic worldsheet

fields XM (M = 1, 2, . . . , 2D) of one handedness, instead of the familiar fields Xi(z) and

Xi(z̄), with i = 1, . . . , D. In this formulation there is a chirality condition setting momenta

equal to z-derivatives of coordinates: PM = X ′M ≡ ZM . There is also a constraint —

the strong constraint — that must be satisfied by the functions of XM that are used to

describe background fields. These fields and their products must be annihilated by the

differential operator ηMN∂M∂N , where ∂M = ∂/∂XM and η is the O(D,D) metric. This

simplified version of the string truncates the α′ corrections of the full string theory, which

is evident from the fact that all operator products terminate. We will see this as we obtain

the equations of motion for the background fields. Analysis indicates that this truncation

duplicates string theory to cubic order in fields.

In this paper we use the quantum mechanical approach to string theory, not the quan-

tum field theory approach. Hence “quantum” in this context will always refer to the JWKB

approximation in orders of α′. Our main goal, of course, is the construction of a classical

double field theory, a space-time field theory which includes α′ corrections to the two-

derivative theory. Perhaps this double field theory is the string field theory that results

from the modified worldsheet theory.

We extend the current algebra methods of [10–12] to a full-fledged discussion of the

worldsheet conformal field theory, including propagators

〈XM (z1)X
N (z2)〉 = ηMN ln(z1 − z2) , (1.1)
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and the associated operator product expansions in section 2. Note the appearance in the

above right-hand side of the O(D,D) metric, at the place where the familiar theory uses

the space-time metric. A major simplification is that the strong constraint implies that

there are no singular terms in the operator product A(X)B(X) of any two X-dependent

fields. In this world-sheet theory we consider explicitly three kinds of operators: scalars f ,

vectors V , and tensors T

f = f(X)

V = V M (X)ZM

T =
1

2
TMN (X)ZMZN − 1

2
(T̂MZM )′.

(1.2)

The above are operators of conformal weight zero, one, and two, respectively. The tensor

requires the two terms shown for the closure of the algebra of operator products. We refer

to them as the two-index component and the one-index component (or pseudovector part)

of the tensor.

We find it useful to treat operator products systematically in section 3. Given two

operators O1 and O2, the product O1 ◦w O2, with w ≥ 0 an integer, is an operator of

weight w that appears in the operator product of O1(z1)O2(z2) as follows

O1(1)O2(2) =
∞∑

w=0

1

(z12)w1+w2−w
(O1 ◦w O2)(2) . (1.3)

Here and in the following we use the short-hand notation z1 ≡ 1, etc. The product O1◦0O2

is a scalar and will be written as the inner product 〈O1|O2〉. We examine various infinite

classes of identities satisfied by these products. In general the products do not have definite

symmetry properties, but there are symmetry relations.

Vector operators Ξ = ξM (X)ZM generate gauge transformations (section 4). The com-

ponents ξM (X) of the operator comprise D+D gauge parameters ξi and ξ̃i. The operator

product expansion Ξ1(z1)Ξ2(z2) of two such vector operators, with parameters ξM1 and

ξM2 , defines fundamental structures of the theory. We get the inner product 〈Ξ1|Ξ2〉 as the
residue of the second-order pole. This is a symmetric, bilinear scalar operator that takes

the form

〈Ξ1|Ξ2〉 = ξM1 ξN2 ηMN − (∂NξM1 )(∂MξN2 ) . (1.4)

The first term is familiar from the classical theory and the second term is the α′ correction,

arising from a quantum contribution in the OPE. Since we do not write explicitly α′

factors, corrections are recognized by the increased number of space-time derivatives. We

get a vector operator [Ξ1,Ξ2]C as the residue of the first-order pole. Its components take

the form

[Ξ1,Ξ2]
M
C

= ξN[1 ∂NξM2] − 1

2
ξK1

↔
∂Mξ2K +

1

2
(∂KξL1 )

↔
∂M (∂Lξ

K
2 ) . (1.5)

(In this paper we use the (anti)symmetrization convention [ab] = ab − ba, and A
↔
∂B =

A∂B − (∂A)B.) The first term on the right-hand side is the Lie bracket of vector fields.
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Together with the next term it defines the “classical” C -bracket, the duality covariantized

version of the Courant bracket of generalized geometry. The last term, with three deriva-

tives, is the new nontrivial correction. The strong constraint implies that no higher deriva-

tive correction to the bracket can be written that is, as required, linear in each of the gauge

parameters. This correction is therefore unique. Moreover, the bracket is fully consistent:

its Jacobiator is a trivial gauge parameter, just as it was for the classical C bracket. A

trivial gauge parameter does not generate gauge transformations and takes the form of

the z-derivative f ′ of a scalar operator f . The quantum C-bracket given above defines the

algebra of gauge transformations in the theory we construct here.

Associated to Courant structures of generalized geometry there are Dorfman structures

that are often more convenient. For us, C-type operators have D-type counterparts. Amus-

ingly, C operators arise by presenting the operator product expansion symmetrically in z1
and z2, while their D counterparts arise by presenting the expansion with operators based

at z2. The vector operator [Ξ1,Ξ2]D is the quantum D bracket, whose classical version is

the duality covariantized Dorfman bracket.

Very nontrivially, the above corrections do not vanish upon reduction from D+D to D

dimensions, as done by setting ∂̃i derivatives to zero. For the inner product we get

〈Ξ1|Ξ2〉 = ξi1ξ̃2i + ξi2ξ̃1i − ∂iξ
j
1 ∂jξ

i
2 . (1.6)

The last term is the quantum correction. For the C bracket the vector part is not corrected,

but the one-form part is:

([Ξ1,Ξ2]C )i = . . . +
1

2
(∂kξ

ℓ
1)

↔
∂ i(∂ℓξ

k
2 ) , (1.7)

where the dots denote the contributions from the “classical terms”. Therefore our results

go beyond generalized geometry in that the familiar inner product and the Courant bracket

are deformed.

Gauge transformations δξO of any operator O are defined by the commutator δξO =[∫
Ξ ,O

]
, and are readily evaluated with the use of operator products. For a vector operator

V , for example,

δξV
M = ξP∂PV

M + (∂MξP − ∂P ξ
M )V P − (∂M∂KξL)∂LV

K . (1.8)

The last term is the quantum correction. In D dimensions, the quantum correction vanishes

for the transformation δξV
i of a vector but does not vanish for the transformation δξVi

of the one-form (see (4.44)). In mathematical language this represents a deformation of

generalized Lie derivatives.

With the gauge structure defined, the fields of the theory are introduced using a pair of

tensor operators. We start with 1
2Z

2 ≡ 1
2η

MNZMZN , the analog of the Virasoro operator

Tσ that in the undoubled flat-space theory is proportional to X ′iPi. We then introduce in

section 5 the dilaton in a tensor S defined to be

S ≡ 1

2
(Z2 − φ′′) . (1.9)
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The second term is consistent with the general form in (1.2) since φ′′ = (ZM∂Mφ)′ (recall

Z = X ′). This dilaton improvement is needed for consistency of gauge transformations.

As it turns out, the gauge transformation of the dilaton receives no quantum corrections

(see (5.5)).

The products also satisfy useful distributive type identities. Products of the dilaton-

based tensor S with a tensor T lead to convenient definitions

S ◦0 T =
1

2
trT , S ◦1 T = divT . (1.10)

The trace of a tensor is a scalar with leading term ηMNTMN . The divergence of a tensor

is a vector with leading term ∂NTMN . Both have nontrivial α′ contributions that can be

seen in (5.17).

A second tensor operator T is used in section 6 to introduce the gravitational fields,

metric and two-form. This operator is the analog of the Virasoro operator Tτ that in the

undoubled flat-space theory is proportional to (Pi)
2 + (X ′i)2. In toroidal backgrounds,

this operator is a quadratic form on currents with the generalized metric used to contract

indices. In our formulation we start with a double metric MMN that will turn out to be

related but not equal to the generalized metric HMN . While off-shell the latter squares to

one, the former is unconstrained. The tensor operator T takes the form

T ≡ 1

2
MMNZMZN − 1

2
(M̂MZM )′ . (1.11)

The second term, needed for consistency with gauge transformations, contains a field M̂M ,

to be determined in terms of the double metric and the dilaton. The gauge transformation

of the double metric MMN receives α′ and α′2 corrections (see (6.39)).

Having introduced the dilaton and the double metric on the weight-two tensor opera-

tors S and T , we make the usual assumption that the equations of motion of these fields

are the conditions that S and T form the Virasoro algebra:

S(1)S(2) = D

z412
+

2S(2)
z212

+
S ′(2)

z12
+ finite ,

S(1)T (2) =
2T (2)

z212
+

T ′(2)

z12
+ finite ,

T (1)T (2) =
D

z412
+

2S(2)
z212

+
S ′(2)

z12
+ finite .

(1.12)

Remarkably, the operator product SS (first line) works out automatically without imposing

any condition on the dilaton. This is required, since the dilaton equation of motion involves

the double metric, which does not appear in S. For the ST operator product (second line)

the terms on the right-hand side appear as expected, but the vanishing of the quartic and

cubic poles give nontrivial conditions. In the notation of (1.10) these correspond to

tr T = 0 and div T = 0 . (1.13)

The first equation is the α′-corrected equation of motion of the dilaton. The second equa-

tion determines the auxiliary field M̂M in terms of double metric and the dilaton. For the
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T T operator product (third line), we prove that the only nontrivial conditions are getting

a constant quartic pole and the correct value for the quadratic pole. In terms of products,

〈T |T 〉 = constant , T ◦2 T = 2S . (1.14)

The second condition is a tensor equation and its two-index part is the double metric

equation of motion. In terms of the matrix MMN it takes the form M2 = 1+2V , where V
is quadratic in M and contains from two up to six derivatives. While the generalized metric

squares to the identity, the double metric squares to the identity plus higher derivatives

terms. We view this as a most significant departure from the classical theory, forced by α′

corrections. We prove that the first equation in (1.14) as well as the one-index part of the

second equation are redundant.

The construction of the action is done in terms of the tensor operators S and T ,

with the latter constrained to have zero divergence. These operators encode the double

metric MMN and the dilaton. We examine the properties of divergence-free tensors and

introduce an “overline” projector that acting on a weight-two tensor T gives a tensor T

with divT = 0. Using this projection we define a ⋆-product mapping into 2-tensors such

that T1 ⋆ T2 = T2 ⋆ T1 is divergenceless. We are then able to write a manifestly gauge

invariant and O(D,D) invariant action

S =

∫
eφ
[
〈T |S〉 − 1

6
〈T |T ⋆ T 〉

]
. (1.15)

This action is cubic in the double metric (with no quadratic term!) and contains up to six

derivatives. We show by variation that the expected equations of motion arise. This uses

a key property of the star product: the complete symmetry of
∫
eφ〈T 1|T 2 ⋆ T 3〉 under the

exchange of any pair of T ’s. The dilaton equation of motion also emerges correctly, but

takes a bit more effort since dilaton variations affect the overline projection and thus δφT
is not divergence free.

We work out explicitly the above action in section 7, including all terms with up to

two derivatives and confirm that the generalized metric form of the two-derivative action

emerges. This reassuring confirmation provides an explicit test for many of our formulae.

The above action almost certainly encodes Riemann-squared and Riemann-cubed correc-

tions to the two-derivative action, but we will leave a direct verification of this for future

work. For sure, we have constructed a completely consistent and exactly gauge invariant

α′-deformation of the low-energy effective action. The action contains bounded powers of

α′, at least when written in terms of the gravitational variable M and the dilaton. It thus

seems unlikely that this is the full string effective field theory of the massless sector. We

believe, instead, that this theory is a consistent truncation of string theory in which some

of the stringy non-locality has been eliminated.

Our paper concludes with some perspectives on the results and discussion of

open questions.
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2 Doubled conformal field theory

2.1 Double dimensions

We first describe the construction in double dimensions, then show how it reduces to the

usual D dimensions. We introduce the gauge-invariant constant metric ηMN of O(D,D),

which we use implicitly to raise/lower and contract O(D,D) indices M,N . We also have

2D chiral fields XM (z) representing the doubled coordinates. Then the D+D dimensional

formalism is described by the constraints

Halving: strong: (∂MA)(∂MB) = ∂M∂MA = 0 ,

chirality: PM = X ′M ≡ ZM ⇒ A(X)′ = ZM∂MA .
(2.1)

The first line is the duality-invariant strong constraint on fields or gauge parameters A,B,

which are by definition functions of XM . The constraint states that they, as well as their

products, must be annihilated by ∂M∂M . The chirality condition halves the number of

oscillators in the theory by setting PM , the canonical conjugate to XM , equal to X ′
M . This

current is denoted as ZM and appears each time we take z-derivatives (denoted by prime)

of X-dependent operators.

We will also have Virasoro operators S and T that must have zero expectation values

on physical states:

“Virasoro”: S :
1

2
Z2 +O(α′) = 0

T :
1

2
MMN (X)ZMZN +O(α′) = 0 .

(2.2)

The explicit construction of these operators will be discussed later, and only leading terms

have been shown above. The background field M is the double metric, an extension of the

generalized metric, and will play an important role in our theory. It should be emphasized

that neither the strong constraint nor the chirality condition acquire α′ corrections.

We use the Hamiltonian formalism: the above constraints can be imposed at fixed

τ (but will be preserved at all τ). The halving constraints will be used immediately for

reduction to the usual D X’s. The Virasoro constraints will have the usual interpretation in

D dimensions, but not in D+D: because of the chirality constraint, only half of the energy-

momentum tensor should survive, yet we still impose two sets of similar constraints.

(Note that by “chiral”, as referring to the XM , we mean left-handed only, i.e., no

“antichiral”. Chiral bosons were described in Lagrangian language in [1, 6]. In nonunitary

gauges, such actions can be reduced to the usual φ φ [1] or to φ∂σ(∂σ−∂τ )φ [5], resulting in

a second nonchiral set of modes that must be removed as usual by the first-class constraints

implied by the original gauge invariance, which must be preserved by the interactions.

Bosons of both chiralities, D left + D right, were used in [8, 9], but T-duality was considered

only for constant backgrounds, i.e., d = D, and thus all fields were compactification scalars.)

As will be elaborated in section 4, gauge transformations of an operator T (inducing

the transformation of the fields contained in T ) are to be computed by the commutator

δξT = [
∫
Ξ, T ], Ξ = ξM (X)ZM , (2.3)

– 9 –
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where ξM are the gauge parameters. (Here “
∫
” means “

∫
dz/2πi”. This is essentially an

integral over all σ for constant τ . In radial quantization it’s an integral enclosing the origin.

We’ll use “
∮
” for closed contours not enclosing the origin.)

In previous work the focus was on equal-“time” (τ) commutation relations and only

Poisson brackets were used. Here we find it convenient to introduce operator products,

and therefore time dependence. We therefore choose the Hamiltonian

H =

∫
dσ S =

∫
dσ

1

2
Z2 . (2.4)

We’ll see later that the quantum corrections to S are a total derivative, so H has no correc-

tions. This Hamiltonian is background independent, thus very different from the familiar

background-dependent D-dimensional Hamiltonian. We also have the equal-τ commuta-

tion relations

[ZM (τ, σ1) , Z
N (τ, σ2)] = −i ηMNδ′(σ2 − σ1) . (2.5)

The Heisenberg equation of motion for the operators ZM then takes the form

i∂τZ
M (τ, σ) =

[
ZM (τ, σ) , H

]
= i ∂σZ

M (τ, σ) (2.6)

so that ZM is a chiral field:

(∂σ − ∂τ )Z
M = 0 . (2.7)

The XM are thus chiral fields as well. We therefore have the propagator (back in the

complex plane)

〈XM (1)XN (2)〉 = ηMN ln z12 , (2.8)

where z12 = z1 − z2. An α′ is needed on the right-hand side for proper dimensions. For

simplicity, however, we will set α′ = 1. Note that the sign of α′ is arbitrary: we can

freely replace η → −η, since it’s the indefinite metric of O(D,D) anyway. From the above

propagator and the identification of Z with X ′ follow the operator products

ZM (1)ZN (2) =
1

z212
ηMN + finite ,

ZM (1)A(X(2)) =
1

z12
∂MA(2) + finite .

(2.9)

A remarkable simplification occurs due to the strong constraint: There are no singular

terms in the OPE of fields. Indeed, on general grounds

A(1)B(2) = : A(1)e
←

∂M 〈XM (1)XN (2)〉 ∂NB(2) : , (2.10)

as seen, e.g., by Fourier transformation of the fields

A(X(1)) ≡
∫

dk1e
ik1·X(1)Ã(k1), B(X(2)) ≡

∫
dk2e

ik2·X(2)B̃(k2) , (2.11)

and using the identity

eik1·X(1)eik2·X(2) = : eik1·X(1)eik2·X(2) : e−k1Mk2N 〈XM (1)XN (2)〉 . (2.12)
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Using the propagator (2.8) and then the strong constraint, (2.10) gives

A(1)B(2) = : A(1)e
←

∂M ln(z12) ∂MB(2) : = : A(1)B(2) : (2.13)

The result is conceptually clear: the propagator couples coordinates to their duals and

strongly constrained fields never depend on both a coordinate and its dual. Since X’s

without derivatives occur only as arguments of fields, it follows from (2.13) that no explicit

(ln z)’s will appear in our contractions. This situation is similar to the treatment of the

twistor superstring formalism for N=4 super Yang-Mills as a closed string with chiral

worldsheet fields [13]. There the absence of ln’s corresponds to the fact that the theory

describes only particles and not true strings.

2.2 Halving

For reduction to D dimensions, we use the strong constraint to reduce the dependence of

fields to half the coordinates, thus essentially eliminating half the zero-modes. (For this

paper we do not compactify, so these constraints eliminate winding modes.) We then use

the chirality constraint to eliminate half the oscillator modes: writing the metric as

ηMN =

(
0 δnm
δmn 0

)
, (2.14)

in terms of the usual D-valued spacetime indices m, we have

chirality: ZM → (X ′m, Pm)

strong: XM → (Xm, 0)
(2.15)

where the latter refers to the arguments of fields, the only place X doesn’t appear as Z.

Solving the halving constraints in terms of the usual D coordinates, the Virasoro constraints

can then be recognized as the usual (in Hamiltonian formalism).

With the above conditions, we have H =
∫
dσX ′mPm and the associated action SH in

Hamiltonian form is given by

SH =

∫
d2σPm(∂τ − ∂σ)X

m , (2.16)

whose counterpart in Lagrangian language has the singular form

SL ∼ lim
ǫ→0

1

ǫ

∫
d2σ

1

2
[(∂τ − ∂σ)X]2 . (2.17)

Using the worldsheet metric, the usual string action in D dimensions (without dilaton)

takes the Hamiltonian form

SH ∼
∫

d2σ

(
ẊmPm −

√−g

g11

1

2
MMNZMZN − g01

g11

1

2
Z2

)
. (2.18)

Then the action (2.16) corresponds to the singular gauge
√−g

g11
= 0 ,

g01
g11

= 1 , (2.19)

a fact that may eventually be used to explain that the theory is some kind of α′ truncation

of the full string theory (as stated at the end of the introduction).
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3 Differential double geometry

3.1 Operators and contour integrals

Although we will focus in the following sections on operators of lower conformal weight, we

provide here a general pedagogical discussion, relating the different applications and their

future use. We thus consider general operators consisting of functions of X (evaluated

at some value of z), carrying arbitrary numbers of (D+D)-valued indices, all contracted

with Z’s and their z-derivatives. We define the conformal weight “w” of such an operator

(eigenvalue of “w̃”) as the number of Z’s plus the number of primes (′):

w̃(Z) = w̃(′) = 1, w̃(X) = 0 . (3.1)

Any of the operators to be considered has definite weight, but may consist of general linear

combinations of terms of that weight, which differ by how that weight comes from Z’s

vs. primes. (This definition of weight agrees with the conformal field theory definition of

weight when operators are on-shell.) The lowest weight operators, which play a central

role in the rest of this paper, are

w = 0, scalars: f = f(X) ,

w = 1, vectors: V = V M (X)ZM ,

w = 2, tensors: T =
1

2
TMN (X)ZMZN − 1

2
(T̂MZM )′ .

(3.2)

(In oscillator language, these correspond to 1, a†1, and (a†1)
2 ⊕ a†2, respectively.)

We now examine identities for commutators that follow directly from consideration of

contour integrals for operator products. The basic identity is that the commutator of an

integrated operator (over all σ for fixed τ) with another operator equals the integral of the

former over a contour enclosing the latter in the operator product:

[
∫
A,B(1)] =

∮

1
d2A(2)B(1) , (3.3)

where A and B are arbitrary operators, expressed in terms of the currents Z and functions

of X (fields). In the following sections we’ll examine relevant special cases; for now we look

at general properties.

The charge
∫
A generates symmetry transformations δA on “covariant” operators B as

δAB = [
∫
A,B] , (3.4)

for symmetry parameters and fields appearing as functions in the operators A and B, re-

spectively. As always, symmetry transformations define a Lie derivative: in particular,

in the case of quantum mechanics the representation of the Lie derivative/infinitesimal

symmetry transformation on a field (denoted by δA) can be obtained by an operator com-

mutator (with the field represented by an operator B). Of course, the operator B must
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contain enough terms so that these transformations close on the fields contained therein,

and the operators A must contain enough terms so that their algebra closes.

In the following sections we will evaluate operator products for the relevant fields. We

will focus on two particular symmetries, to be analyzed in detail in the following sections:

1) When the symmetry parameter is an O(D,D) vector, multiplying a single current

Z, it describes “gauge” symmetries, specifically those that reduce to D-dimensional

coordinate transformations and the gauge transformations of the 2-form field [10].

2) When the parameter is a symmetric second-rank O(D,D) tensor, multiplying two

currents Z, it describes worldsheet conformal (coordinate) transformations. It is

then natural to multiply the second rank tensor by a single (scalar) world sheet

parameter λ(z).

3.2 Bilinear operator products

In this section we will introduce families of bilinear (quadratic) products of operators

starting from the operator product expansion of two operators. Consider operators O1 and

O2 of weights w1 and w2 respectively:

w1 = w̃(O1), w2 = w̃(O2) . (3.5)

Their OPE is now written as

O1(1)O2(2) =

w1+w2∑

w=−∞

1

zw12
(O1 ◦w1+w2−w O2)(2) . (3.6)

The above expansion defines products ◦w with w an integer greater than or equal to zero.

The subscript on the product indicates the weight of the operator, independently of the

weights of O1 and O2:

w̃(O1 ◦w O2) = w . (3.7)

Note that the expansion in conformal weight is associated with the change in power of z, as

follows from Taylor expansion and the propagators of the previous section. We can write

the above OPE as

O1(1)O2(2) =
∞∑

w=0

1

(z12)w1+w2−w
(O1 ◦w O2)(2)

=
1

(z12)w1+w2
O1 ◦0 O2(2) +

1

(z12)w1+w2−1
O1 ◦1 O2(2) + . . .

(3.8)

In practice, the explicit forms of all these products are evaluated by use of the free prop-

agators introduced in the previous section, the various terms coming from the possible

combinations and permutations of these propagators.

Of particular interest is the scalar product ◦0 of weight zero, which we write as

a bracket:

〈O1|O2〉 ≡ O1 ◦0 O2 . (3.9)
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Note that this product is defined even when the operators have different weight. In an

explicit computation, the leading term in α′ contracts as many indices on the fields as

possible with η’s, the rest with derivatives:

O =
1

wO!
OM1...MwOZM1

· · ·ZMwO
+ . . .

⇒ 〈O>|O<〉 =
1

w<!(w> − w<)!
(O>)

M1...Mw>∂M1
· · · ∂Mw>−w<

(O<)Mw>−w<+1...Mw>
+ . . .

(3.10)

where > and < refer to the higher and lower weights.

The products satisfy a couple of useful identities associated with differentiation:

derivative: O′
1 ◦w O2 = (w − w1 − w2)O1 ◦w O2 ,

(O1 ◦w O2)
′ = O′

1 ◦w+1 O2 +O1 ◦w+1 O′
2 .

(3.11)

The first follows by differentiating (3.6) or (3.8) with respect to z1 and recalling that

w̃(O′) = w̃(O) + 1. The second follows by differentiation with respect to z2 and use of the

first identity.

Since all our operators are Grassmann even we have the equality O1(1)O2(2) =

O2(2)O1(1) of operator products, and therefore the products satisfy certain symmetry

properties. For the weight zero product, it follows from (3.8) that

〈O1|O2〉 = (−1)w1+w2〈O2|O1〉 . (3.12)

More systematically, we can compare OPE’s about z1 and about z2 using Taylor expansion

with the relation z1 = z2 + z12. The result is that the symmetry property of the products

takes the form

symmetry: O2 ◦w O1 = (−1)w1+w2−we−LO1 ◦w O2 , (3.13)

where we have defined a (linear) operator L that acts on products to give products:

L(O1 ◦w O2) ≡ (O1 ◦w−1 O2)
′ . (3.14)

The right-hand side is indeed a sum of products because of the second derivative identity.

One can then verify that the iterated action of this operator gives

(L)w′(O1 ◦w O2) ≡ (O1 ◦w−w′ O2)
(w′) , and ◦w = 0 forw < 0 . (3.15)

The superscript (w′) means z-differentiation w′ times. We have, for example

O2 ◦2 O1 = (−1)w1+w2

(
O1 ◦2 O2 − (O1 ◦1 O2)

′ +
1

2
(O1 ◦0 O2)

′′

)
. (3.16)

We say that this product has exchange parity (−1)w1+w2 , up to z-derivatives.

For higher-weight products, it is useful to define truly symmetric products. This can

be done by explicit symmetrization or antisymmetrization, as appropriate, and modified
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further by adding lower-weight products of the same exchange symmetry, acted by z-

derivatives to raise the weight. Since ◦1, like ◦0, does not include lower-weight products of

the same symmetry, their definitions are unambiguous:

O1 •0 O2 ≡ O1 ◦0 O2 = 〈O1|O2〉 ,

O1 •1 O2 ≡
1

2
[O1 ◦1 O2 − (−1)w1+w2O2 ◦1 O1] .

(3.17)

For the rest, several alternative possibilites suggest themselves:

(1) O1(1)O2(2) =

w1+w2∑

w=−∞

1

zw12
(O1 •w1+w2−w O2)

1

2
((1) + (2)) ,

(2) O1(1)O2(2) =

w1+w2∑

w=−∞

1

zw12
(O1 •w1+w2−w O2)

(
1

2
(z1 + z2)

)
,

(3) O1 •w O2 ≡
1

2
[O1 ◦w O2 + (−1)w1+w2−wO2 ◦w O1] ,

(3.18)

where we use the notation

O 1

2
((1) + (2)) ≡ 1

2
(O(z1) +O(z2)) . (3.19)

All of these have definite exchange symmetry and satisfy a derivative identity

O1 •w O2 = (−1)w1+w2−wO2 •w O1 ,

(O1 •w O2)
′ = O′

1 •w+1 O2 +O1 •w+1 O′
2 .

(3.20)

Moreover, the three versions agree with the definitions of •0 and •1 in (3.17). The ◦
products can be expressed in terms of the • products as follows:

O1 ◦ O2 =

[
1 + tanh

(
1

2
L
)]

f(L)O1 • O2 , (3.21)

where f(L) = f(−L) and f(0) = 1. The function f takes the following forms for our three

cases:

(1) f(L) = cosh2
1

2
L

(2) f(L) = cosh
1

2
L

(3) f(L) = 1 ,

(3.22)

as easily verified by Taylor expansion about z2. All these (anti)symmetrized products differ

from the asymmetric ones only by total z-derivative terms, which play an auxiliary role.

A particularly convenient choice of them will lead to a unique symmetric product, the

star-product ⋆, defined with the help of the dilaton in section 6.2.

In the following we will make extensive use of the symmetry and derivative identi-

ties (3.13) and (3.11), usually without reference, except for a few early examples and some
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exceptional cases. This should be obvious: for any expression A′ ◦B we use the derivative

identity to remove the prime; for any expression where we wish to reorder a product we

use the symmetry identity. For convenient reference, we have collected the most frequently

used identities in the appendix.

The operator product expansion in terms of ◦ products can be used to evaluate com-

mutators, such as [
∫
λO1,O2]. Here λ(z) is a worldsheet parameter that depends on z, but

not on X(z), so it does not contribute propagators. We then find

[∫
λO1,O2

]
=

w1+w2∑

w=1

1

(w − 1)!
λ(w−1)O1 ◦w1+w2−w O2 , (3.23)

where the integration around the position z2 of the second operator picks out just the

singular part of the operator product. In here we used the integration identity

∮

z2

dz1
2πi

1

zn+1
12

A(z1) =
1

n!
A(n)(z2) , n ≥ 0 . (3.24)

For example, we have

∮

z2

dz1
2πi

1

z312
2A(z1) = A′′(z2) = (ZM∂MA)′ = (ZM )′∂MA+ ZM (∂MA)′

= Z ′M∂MA+ ZMZN∂N∂MA .

(3.25)

3.3 Cubic relations

Although we have used operator product expansions in place of commutators, commuta-

tors are equivalent to just the singular parts of OPE’s. However, OPE’s of more than

two operators can be unwieldy. In particular, Jacobi identities are easier than associativ-

ity identities, which require keeping finite terms after the first product, contributing to

infinite sums.

Two important identities are the distributivity identity

distributivity: [
∫
A,B(1)C(2)] = [

∫
A,B(1)]C(2) +B(1)[

∫
A,C(2)] , (3.26)

which follows from
[∫

A,B(1)C(2)

]
=

∮

1,2
d3A(3)B(1)C(2)

=

∮

1
d3A(3)B(1)C(2) +

∮

2
d3A(3)B(1)C(2)

=
[∫

A,B(1)
]
C(2) +B(1)

[∫
A,C(2)

]
,

(3.27)

and the Jacobi identity

Jacobi: [
∫
A[1, [

∫
A2], B]] = [[

∫
A1,

∫
A2], B] , (3.28)

which follows from distributivity upon integrating B(1) about z2.
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The distributivity identity proves the symmetry invariance of field equations, since we

will derive the field equations through preservation of the Virasoro operator algebra. The

Jacobi identity proves the closure of the symmetry transformations of the background fields

we will introduce below:

[
∫
A1,

∫
A2] =

∫
A12 ⇒ [δA1

, δA2
] = −δA12

. (3.29)

The explicit action of δA on various fields, and the explicit form of A12 in terms of A1 and

A2, as evaluated by the above operator commutators, is a subject of the following sections.

We can derive various identities for these infinite classes of products by applying these

identities, and expanding in powers of z, including the implicit ones now appearing as

derivatives on λ. For the distributivity identity, which we write as

[
∫
λO1,O2O3]−O2[

∫
λO1,O3] = [

∫
λO1,O2]O3 , (3.30)

we find

[
∫
λO1,O2O3] =

w2+w3∑

w=−∞

∑
wi−w∑

w′=1

1

zw
λ(w′−1)

(w′ − 1)!
O1 ◦ŵ (O2 ◦w2+w3−w O3)

O2[
∫
λO1,O3] =

w1+w3∑

w′=1

∑
wi−w′∑

w=−∞

1

zw
λ(w′−1)

(w′ − 1)!
O2 ◦ŵ (O1 ◦w1+w3−w′ O3)

[
∫
λO1,O2]O3 =

∞∑

w′′=0

w1+w2+w′′∑

w′=w′′+1

(
w′ − 1

w′′

)∑
wi−w′∑

w=−∞

1

zw
λ(w′−1)

(w′ − 1)!

× (O1 ◦w1+w2+w′′−w′ O2) ◦ŵ O3 ,

(3.31)

where z = z23, all operators and λ’s are evaluated at z3, and

ŵ ≡
∑

wi − w − w′,
∑

wi = w1 + w2 + w3 . (3.32)

(For the last line in (3.31) the third sum arises because we need to Taylor expand λ(2)

about z3.)

We then compare terms of fixed order w and w′ in derivatives of λ and powers of z.

Paying attention to the limits of summation we find

O1 ◦ŵ (O2 ◦w2+w3−w O3)−O2 ◦ŵ (O1 ◦w1+w3−w′ O3)

=
w′∑

w′′=1

(
w′− 1

w′′− 1

)
(O1 ◦w1+w2−w′′ O2) ◦ŵ O3 (3.33)

where always

−∞ ≤ w + w′ ≤
∑

wi, 1 ≤ w′ , (3.34)

which means that we get identities for any w satisfying

w ≤ −1 +
∑

wi = wmax . (3.35)
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We get one identity for w = wmax, two identities for w = wmax − 1, three identities for

w = wmax − 2 and so forth and so on.

For Jacobi, we examine

[
∫
λ1O1, [

∫
λ2O2,O3]]− [

∫
λ2O2, [

∫
λ1O1,O3]] = [[

∫
λ1O1,

∫
λ2O2],O3] . (3.36)

The manipulations and results are almost the same as for distributivity, only now only

singular terms contribute, so

1 ≤ w, 1 ≤ w′ , (3.37)

and things are antisymmetric in w and w′ (when 1’s and 2’s are switched). The result is the

same as for distributivity, except for the restriction on the lower limit of w to singular terms.

4 Vector gauge symmetry

In this section we will examine the quantum corrections to generalized brackets and (Lie)

derivatives introduced in previous papers for the gauge symmetries. We begin by consid-

ering general properties of current algebra that should generalize to other string models.

For the vector operator

Ξ(z) = ξM (X(z))ZM (z) , (4.1)

with gauge parameter ξM (X), we define the gauge transformation δξB of the arbitrary

operator B of weight w̃(B) by

δξB ≡ [
∫
Ξ, B] = Ξ ◦B B , ◦B ≡ ◦w̃(B) . (4.2)

The equality after the definition follows by using (3.6) for Ξ and B:

Ξ(1)B(2) = regular +
1

z12
(Ξ ◦B B)(2) +

1

z212
(Ξ ◦B−1 B)(2) + . . . . (4.3)

The gauge transformation δξ vanishes if the gauge parameter is “gauge for gauge”, ξM =

∂Mζ, since ∫
Ξ =

∫
ZM∂Mζ =

∫
ζ ′ = 0 . (4.4)

It is a fundamental property that all products ◦ are gauge covariant:

δξ(A ◦w B) = (δξA) ◦w B +A ◦w (δξB) . (4.5)

This follows from the distributive identity

[
∫
Ξ, A(1)B(2)] = [

∫
Ξ, A](1)B(2) +A(1)[

∫
Ξ, B](2) , (4.6)

and use of (3.6) for each term to find

[
∫
Ξ, A ◦w B] = [

∫
Ξ, A] ◦w B +A ◦w [

∫
Ξ, B] , (4.7)

which is equivalent to (4.5). Taking a z-derivative is also a covariant operation,

δξ(A
′) = (δξA)

′ , (4.8)
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as we check using the derivative identities:

(Ξ ◦A A)′ = Ξ′ ◦A+1 A+ Ξ ◦A+1 A
′ = 0 + Ξ ◦A′ A′ . (4.9)

All versions of • products are also gauge covariant: they are built from ◦ products and

z-derivatives of ◦ products. So is the L operator, in the sense that δξL = L δξ holds when

acting on (sums of) bilinear products of operators.

In the following we will discuss the operator product of currents that give us inner

brackets, C and D brackets, and outer products, all of them with α′ corrections. They will

be evaluated explicitly, and the C bracket Jacobiator will be shown to be a trivial vector.

We also evaluate the gauge transformations of scalars, vectors, and tensors.

4.1 Inner and outer products, brackets

The key ingredients for the theory we are to construct arise in a simple manner from the

OPE expansion Ξ1(1)Ξ2(2) of two currents Ξ1 = ξM1 ZM and Ξ2 = ξM2 ZM . Indeed, the

operators in this expansion define the inner product, the various brackets, and a set of

useful products.

The brackets in generalized geometry come in Courant and Dorfman varieties. Their

double field theory versions, without α′ corrections, are the C bracket of [11] and the

D-bracket [17]. The C bracket when restricted from D+D dimensions to D dimensions

becomes the Courant bracket [17]. Similarly, upon reduction, the D bracket becomes the

Dorfman bracket.

The C and D varieties of brackets arise by doing the OPE of two currents in slightly

different ways. In the C case the normal ordered operators are averaged over the two

points, while in the D case the operators are located at the position of the second current.

In the following, the “quantum” contributions to the OPE give the α′ corrected brackets,

as well as corrected inner products and other products. We call these the new brackets

and products. Upon reduction to D dimensions they give new versions of the Courant and

Dorfman brackets, as well as a new inner product.

We thus have two forms of the OPE:

Ξ1(1)Ξ2(2) ≡
[

1

z212
〈Ξ1|Ξ2〉+

1

z12
[Ξ1,Ξ2]C+ : Ξ1Ξ2 :C

]
1

2
((1) + (2)) +O(z12) ,

Ξ1(1)Ξ2(2) ≡
[

1

z212
〈Ξ1|Ξ2〉+

1

z12
[Ξ1,Ξ2]D+ : Ξ1Ξ2 :D

]
(2) +O(z12) .

(4.10)

In our previous notation, we thus have

[V1, V2]D ≡ V1 ◦1 V2, [V1, V2]C ≡ V1 •1 V2, : V1V2 :D≡ V1 ◦2 V2, : V1V2 :C≡ V1 •2 V2 ,

(4.11)

as well as the previously defined 〈|〉 ≡ ◦0 = •0, where we have made a particular choice of

the ambiguous •2.
The two above expansions are simply related by

A
1

2
((1) + (2)) =

(
A+

1

2
z12A

′ +
1

4
z212A

′′

)
(2) +O(z312) , (4.12)
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and thus the inner product, at the second-order pole, is the same for the two, while the

other terms are related by

[Ξ1,Ξ2]D = [Ξ1,Ξ2]C +
1

2
〈Ξ1|Ξ2〉′

: Ξ1Ξ2 :D = : Ξ1Ξ2 :C +
1

2
[Ξ1,Ξ2]

′
D .

(4.13)

The C form is more useful for symmetry: clearly

〈Ξ1|Ξ2〉 = 〈Ξ2|Ξ1〉, [Ξ1,Ξ2]C = −[Ξ2,Ξ1]C , : Ξ1Ξ2 :C=: Ξ2Ξ1 :C . (4.14)

The D bracket, as opposed to the C bracket, is not antisymmetric in its inputs. One readily

sees that the C bracket is obtained by antisymmetrization of the D bracket

[Ξ1,Ξ2]C ≡ 1

2
[Ξ[1,Ξ2]]D . (4.15)

The brackets can be also viewed as current algebra commutators. For example, consider

the single commutator [
∫
Ξ1,Ξ2]. We can use the OPE in (4.10) to see that this selects the

D bracket

[
∫
Ξ1,Ξ2] = [Ξ1,Ξ2]D = [Ξ1,Ξ2]

M
D
ZM . (4.16)

Clearly the D-bracket then defines a distributive “D-derivative”,

[
∫
Ξ3,Ξ1(1)Ξ2(2)] = [

∫
Ξ3,Ξ1(1)]Ξ2(2) + Ξ1(1)[

∫
Ξ3,Ξ2(2)] , (4.17)

as follows from the distributivity identity of the previous subsection. This is a special case

of the distributivity of the Lie derivative/gauge transformation δξ.

Of course, the algebra of integrated currents, and thus gauge transformations, closes.

We can now express this algebra in terms of the new brackets: from (4.16)

[
∫
Ξ1,
∫
Ξ2] =

∫
[Ξ1,Ξ2]D =

∫
[Ξ1,Ξ2]C , (4.18)

using the fact that the 2 brackets differ only by a total derivative. We can thus identify

[
∫
Ξ1,
∫
Ξ2] =

∫
Ξ12 ⇒ Ξ12 = [Ξ1,Ξ2]C , (4.19)

without loss of generality, so that Ξ12 preserves the antisymmetry of
∫
Ξ12. This defines

the algebra of gauge transformations:

[δξ1 , δξ2 ] = −[δξ2 , δξ1 ] = −δξ12 , ξM12 = [Ξ1,Ξ2]
M
C

. (4.20)

All these objects will be computed explicitly in the following subsection.
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4.2 Evaluation

We now evaluate the OPE of two currents for the theory under consideration. The possible

contractions give:

Ξ1(1)Ξ2(2) = : ξM1 (1)ZM (1)ξN2 (2)ZN (2)

+ ξM1 (1)〈ZM (1)ξN2 (2)〉ZN (2) + ξM2 (2)〈ZM (2)ξN1 (1)〉ZN (1)

+ ξM1 (1)ξN2 (2)〈ZM (1)ZN (2)〉+ 〈ZM (2)ξN1 (1)〉〈ZN (1)ξM2 (2)〉 : .
(4.21)

The last term, with a double contraction, is the quantum correction. Using (2.9) to evaluate

the above contractions we find

Ξ1(1)Ξ2(2) = : (ξM1 ZM )(1)(ξN2 ZN )(2)

+
1

z12

(
ξM1 (1) (∂MξN2 ZN )(2)− ξM2 (2) (∂MξN1 ZN )(1)

)

+
1

z212

(
ξM1 (1)ξ2M (2)− ∂MξN1 (1) ∂NξM2 (2)

)
: .

(4.22)

As we will see, the second line will contribute to the usual Lie bracket/commutator. A

contribution from the first term on the third line modifies it to the classical C- or D-bracket.

A contribution from the last term gives the quantum correction. We will use the following

expansion of a normal-ordered product of operators

A(z1)B(z2) =

[
AB − 1

2
z12A

↔
∂B − 1

2
z212A

′B′ +O(z312)

]
1

2
((1) + (2)) . (4.23)

(As usual, normal ordering is assumed for operators evaluated at the same point.) Here

the z derivative
↔
∂ is defined to act as A

↔
∂B ≡ AB′ − A′B. We now use this equation to

expand the right-hand side of (4.22) and we obtain a result that can be put in the form of

the top equation in (4.10).

The residue of the second order pole defines a new symmetric inner product given by

Inner product: 〈Ξ1|Ξ2〉 = ξM1 ξN2 ηMN − (∂NξM1 )(∂MξN2 ) . (4.24)

The first term is the familiar one and the second is the α′ correction, arising from a quantum

contribution in the OPE. This correction vanishes if any of the ξ’s is trivial (ξM = ∂Mχ)

and the whole inner product vanishes if both ξ’s are trivial. Equivalently, 〈A′|B′〉 = 0,

recalling that (A′)M = ∂MA. Using the strong constraint, the new inner product can also

be written as

〈Ξ1|Ξ2〉 = ξM1 ξN2 ηMN +
1

2
KMN

1 K2MN , (4.25)

where KMN is the “field strength” of the gauge parameter:

KMN ≡ ∂[MξN ] ≡ ∂MξN − ∂NξM . (4.26)

Reducing to D dimensions by setting ∂̃i derivatives to zero gives, with (ξ̃1i, ξ
i
1) and

(ξ̃2i, ξ
i
2) the one-form and vector components of ξM1 and ξM2 , respectively:

〈Ξ1|Ξ2〉 = ξi1ξ̃2i + ξi2ξ̃1i − ∂iξ
j
1 ∂jξ

i
2 . (4.27)

The last term is the quantum correction.
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The first-order pole contains the corrected C-bracket, a skew bracket that we write

compactly as:

[Ξ1,Ξ2]C = [Ξ1,Ξ2]L − 1

2
〈Ξ1|

↔
∂ |Ξ2〉 . (4.28)

Here
↔
∂ translates as ∂ = ZM∂M , the bracket [, ]

L
is the commutator/Lie bracket

[Ξ1,Ξ2]L ≡ (ξN[1 ∂NξM2] )ZM , (4.29)

and the correction to the C-bracket is produced by the correction of the inner product.

More explicitly the above formula reads

C bracket: [Ξ1,Ξ2]
M
C

= ξN[1 ∂NξM2] − 1

2
ξK1

↔
∂Mξ2K +

1

2
(∂KξL1 )

↔
∂M (∂Lξ

K
2 ) . (4.30)

The last term, with three derivatives, is the new correction.

Upon reduction from D+D to D dimensions the vector part of the bracket is not

corrected, but the one-form part is

([Ξ1,Ξ2]C )
i = ξk[1∂kξ

i
2] ,

([Ξ1,Ξ2]C )i = ξk[1∂kξ̃2]i +
1

2

(
ξk1

↔
∂ iξ̃2k + ξ̃1k

↔
∂ iξ

k
2

)
+

1

2
(∂kξ

ℓ
1)

↔
∂ i(∂ℓξ

k
2 ) .

(4.31)

The last term with three derivatives is the quantum correction.

Finally, the regular term in the OPE defines a tensor operator of weight two. The

two-index part defines an outer (“star” ∗) product constructed from the two ξ’s. The one-

index part defines a product (♭), built from the two ξ’s as well. As will be explained in

the next section, the two-index part defines a tensor by itself, but the one-index part does

not. Thus the (♭) product, which enters the tensor as total derivative, is less interesting.

We have

: Ξ1Ξ2 :C= Ξ1 ∗ Ξ2 − (Ξ1♭Ξ2)
′
C
. (4.32)

Both products are symmetric, a property they inherit from the OPE,

Ξ1 ∗ Ξ2 = Ξ2 ∗ Ξ1 , (Ξ1 ♭Ξ2)C = (Ξ2 ♭Ξ1)C . (4.33)

Explicitly,

Outer product: Ξ1 ∗ Ξ2 ≡1

2

[
ξM(1 ξN2) + ∂P ξ

(M
(1 ∂N)ξ2)P − 1

2
∂MξP(1 ∂

Nξ2)P

+
1

2
∂M∂P ξQ(1 ∂

N∂Qξ2)P

]
ZMZN .

(4.34)

We also give the ♭-product for completeness:

(Ξ1 ♭Ξ2)C ≡ 1

2
ξK(1∂KξM2) ZM . (4.35)

Being bilinear and symmetric, these two products (as well as the inner product) can

be written in terms of squares. For example,

Ξ1 ∗ Ξ2 =
1

2
[(Ξ1 + Ξ2) ∗ (Ξ1 + Ξ2)− Ξ1 ∗ Ξ1 − Ξ2 ∗ Ξ2] , (4.36)
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so we need only define that:

Ξ ∗ Ξ = [ξMξN + ∂P ξ(M ∂N)ξP − 1

2
∂MξP∂NξP +

1

2
∂M∂P ξQ ∂N∂QξP ]ZMZN . (4.37)

We now turn to the D form of the OPE. Using the relation to the C form,

[Ξ1,Ξ2]D = [Ξ1,Ξ2]C +
1

2
〈Ξ1|Ξ2〉′ = [Ξ1,Ξ2]L + 〈Ξ2|∂|Ξ1〉 . (4.38)

In components,

D bracket: [Ξ1,Ξ2]
M
D

= ξK[1 ∂KξM2] + ∂MξK1 ξ2K − ∂M∂KξL1 ∂Lξ
K
2 . (4.39)

Since the extra term in : Ξ1Ξ2 :D is a total derivative, “ ⋆ ” is unchanged, but we have

a different bilinear, symmetric, auxiliary product:

: Ξ1Ξ2 :D≡ Ξ1 ∗ Ξ2 − (Ξ1♭Ξ2)
′
D
, (4.40)

where

(Ξ1♭Ξ2)D = (Ξ1♭Ξ2)C − 1

2
[Ξ1,Ξ2]D . (4.41)

In components

(Ξ1♭Ξ2)D ≡
[
ξK2 ∂KξM1 − 1

2
∂MξK1 ξ2K +

1

2
∂M∂KξL1 ∂Lξ

K
2

]
ZM . (4.42)

As for any gauge transformation, one can view the D bracket as defining a (generalized)

Lie derivative. For a current V = V MZM

LξV ≡ [Ξ, V ]
D

→ LξV
M = ξP∂PV

M + (∂MξP − ∂P ξ
M )V P − ∂M∂KξL ∂LV

K ,

(4.43)

where the last term is the α′ correction to the generalized Lie derivative introduced in [11].

Upon reduction to D dimensions, the Lie derivative of a vector receives no correction but

the Lie derivative of a one-form does

(LξV )i = ξk∂kV
i − V k∂kξ

i

(LξV )i = ξk∂kVi + ∂iξ
p Vp + (∂iξ̃p − ∂pξ̃i)V

p − ∂i∂kξ
p∂pV

k .
(4.44)

The last term on the second line is the correction.

4.3 Jacobiator and N-tensor

The C-bracket, while antisymmetric, is not a Lie bracket, since it does not satisfy a

Jacobi identity. The failure to satisfy a Jacobi identity is measured by the Jacobiator

JC(Ξ1,Ξ2,Ξ3) defined by

JC(Ξ1,Ξ2,Ξ3) ≡ [ [Ξ1,Ξ2]C ,Ξ3]C + [ [Ξ2,Ξ3]C ,Ξ1]C + [ [Ξ3,Ξ1]C ,Ξ2]C

= −
(
[Ξ1, [Ξ2,Ξ3]C ]C + [Ξ2, [Ξ3,Ξ1]C ]C + [Ξ3, [Ξ1,Ξ2]C ]C

)

= − 1

2
[Ξ[1, [Ξ2,Ξ3]]C ]C ,

(4.45)
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where the antisymmetrization on the last line is over the three indices, making the Jacobi-

ator manifestly antisymmetric on the three currents Ξ1,Ξ2,Ξ3. In this section we calculate

this Jacobiator. As it turns out, the above C-Jacobiator is actually proportional to the

D-Jacobiator, defined by

JD(Ξ1,Ξ2,Ξ3) ≡ −1

2
[Ξ[1, [Ξ2,Ξ3]]D ]D . (4.46)

While the D bracket is not antisymmetric, the above Jacobiator is.

To motivate the answer for this calculation let us consider the rewriting:

[Ξ[1, [Ξ2,Ξ3]]D ]D = [
∫
Ξ[1, [

∫
Ξ2,Ξ3]]] . (4.47)

The right-hand side is a current that when integrated must give zero since

[
∫
Ξ[1, [

∫
Ξ2,
∫
Ξ3]]] = 0 trivially. Therefore this current must be a total derivative of a

scalar N built from the three currents

[Ξ[1, [Ξ2,Ξ3]]D ]D = 4N ′ = 4ZM∂MN , (4.48)

where the coefficient was adjusted for later convenience. Note that the nontriviality of the

Jacobiator does not imply the violation of the usual type of Jacobi identities for operator

commutators, where the same operators appear in all terms, in contrast to the right-hand

side of (4.47), where the choice of currents to be integrated varies from term to term.

JC and JD can be calculated conveniently at the same time. We first relate JC to

JD. Using twice the fact that the C-bracket is the antisymmetric part of the D-bracket

(see (4.15)), we find:

[Ξ[1, [Ξ2,Ξ3]]C ]C = [Ξ[1, [Ξ2,Ξ3]]D]C =
1

2
([Ξ[1, [Ξ2,Ξ3]]D]D − [[Ξ[1,Ξ2]D,Ξ3]]D) . (4.49)

Then using the distributivity (4.17) of the D-bracket

[Ξ[1, [Ξ2,Ξ3]]D]D = [[Ξ[1,Ξ2]D,Ξ3]]D + [Ξ[2, [Ξ1,Ξ3]]D]D

⇒ [[Ξ[1,Ξ2]D,Ξ3]]D = 2 [Ξ[1, [Ξ2,Ξ3]]D]D ,
(4.50)

a curious relation, since the (+2) would be replaced by a (−1) for an antisymmetric bracket

(it shows that similar looking definitions of the D Jacobiator can be quite different). Back

in (4.49) we find the anticipated relation between Jacobiators

[Ξ[1, [Ξ2,Ξ3]]C ]C = −1

2
[Ξ[1, [Ξ2,Ξ3]]D]D ⇒ JC = −1

2
JD . (4.51)

We then again express the C-Jacobiator in terms of the D-Jacobiator using (4.15) for the

inner C-bracket and the first of (4.13) for the outer C bracket:

[Ξ[1, [Ξ2,Ξ3]]C ]C = [Ξ[1, [Ξ2,Ξ3]]D]C = [Ξ[1, [Ξ2,Ξ3]]D]D − 1

2
〈Ξ[1|[Ξ2,Ξ3]]D〉′ . (4.52)

Again, using (4.15) we can replace the D by a C inside the inner product, so that we

have found

− 2JC = −2JD − 1

2
〈Ξ[1|[Ξ2,Ξ3]]C〉′ ⇒ JC = JD +

1

4
〈[Ξ[1,Ξ2]C |Ξ3]〉′ . (4.53)
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It follows from this equation and (4.51) that

JC(Ξ1,Ξ2,Ξ3) =
1

12
〈[Ξ[1,Ξ2]C |Ξ3]〉′ = N ′ , (4.54)

where N can be written as

N(Ξ1,Ξ2,Ξ3) =
1

6

(
〈[Ξ1,Ξ2]C |Ξ3〉+ 〈[Ξ2,Ξ3]C |Ξ1〉+ 〈[Ξ3,Ξ1]C |Ξ2〉

)
. (4.55)

This result takes exactly the same form as that classical C-bracket Jacobiator [17], the only

change is that now we use the α′ corrected brackets and inner product. More explicitly,

N = −1

8

(
ξM[1 ξ

N
2 K3]MN + ξM[1 K

NP
2 ∂MK3]NP +

2

3
K[1M

NK2N
PK3]P

M
)
. (4.56)

Note also that JD = −2N ′ and that is consistent with (4.48). The N-tensor was introduced

in [11] as a field strength. In D dimensions, it reduces to the Nijenhuis tensor, that appears

in the computation of the Jacobiator for the Courant bracket.

4.4 Gauge transformations

We have already seen examples of the three different kinds of covariant operators listed

in (3.2): scalars, vectors, and tensors. The gauge transformations of the first two have

already been treated:

δξf = ξM∂Mf ,

δξV
M ≡ [Ξ, V ]M

D
= ξP∂PV

M + (∂MξP − ∂P ξ
M )V P − ∂M∂KξL ∂LV

K .
(4.57)

For the tensor we have δξT = [
∫
Ξ , T ] which means that

1

2
(δξT

MN )ZMZN − 1

2

(
(δξT̂

M )ZM

)′
=
[ ∫

Ξ ,
1

2
TMNZMZN − 1

2
(T̂MZM

)′ ]
. (4.58)

The computation of the first contribution on the right-hand side gives

[
∫
Ξ , TZZ ] = (δξT

MN )ZMZN − [(∆ξT̂
M )ZM ]′ , (4.59)

where the gauge transformation of the two index tensor gets determined to be

δξT
MN = ξP∂PT

MN + (∂MξP − ∂P ξ
M )TPN + (∂NξP − ∂P ξ

N )TMP

− 1

2

[
∂NTQ

P∂P∂
[QξM ] + 2 ∂QT

KM∂N∂KξQ + (M ↔ N)
]

− 1

4
∂K∂(MTPQ ∂N)∂P∂Qξ

K ,

(4.60)

and the extra piece, showing the necessity of the pseudovector part, is found to be

∆ξT̂
M = −TPQ∂

P∂[QξM ] − 1

2
∂KTPQ∂M∂P∂Qξ

K . (4.61)

The second contribution on the right-hand side of (4.58) gives

[
∫
Ξ , (T̂Z)′] = [

∫
Ξ , T̂Z]′ =

(
[Ξ, T̂ ]M

D
ZM

)′
, (4.62)
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where [Ξ, T̂ ]
D
is the transformation the pseudovector T̂ would have if it were a true vector.

All in all we have

δξT̂
M = [Ξ, T̂ ]M

D
+∆ξT̂

M , (4.63)

and therefore

δξT̂
M = [Ξ , T̂ ]M

D
− TPQ∂

P∂[QξM ] − 1

2
∂KTPQ ∂M∂P∂Qξ

K . (4.64)

This completes our determination of the gauge transformation of the tensor T . Note

that : VW : is a particular case of tensor T . Also, δξT
MN depends only on TMN while

δξT̂
M depends both on T̂M and TMN . This means that TMN and (TMN , T̂M ) are both

representations, but T̂M by itself is not. T is “not fully reducible”, as e.g., the adjoint

representation of the Poincaré group.

5 Dilaton and double volume

In this section we introduce and study the Virasoro tensor operator S that involves the

dilaton field. Virasoro operators are tensor operators that generate conformal symmetries.

This kind of symmetry transformations takes the form discussed earlier in (3.4) and the

following paragraphs. Thus associated with a tensor operator T we have the operator

Λ(1) = λ(1)T (1) = λ(z1)
1

2
[TMN (X)ZMZN − (T̂MZM )′](z1) , (5.1)

obtained by multiplying the tensor by a world sheet parameter λ(z). The corresponding

symmetry transformation δλB of any operator B is defined by the commutator

δλB = [
∫
Λ, B] . (5.2)

The closure of this symmetry algebra, with one or more tensors involved, is quite nontrivial

and requires conditions that can be interpreted as field equations for the components of

the tensor operators. This will be the subject of the next section, where we introduce a

second Virasoro operator T that encodes the gravitational variables of the theory.

5.1 Virasoro operator S

As mentioned earlier, the worldsheet Hamiltonian is given by
∫

1
2Z

2. The two-dimensional

energy-momentum tensor 1
2Z

2 can have a total-derivative “improvement term”. Such a

term is implied by the coupling of the dilaton to the worldsheet curvature and is propor-

tional to ∂2
±φ [2–4]. We therefore take the tensor operator S to be given by

S ≡ 1

2
(Z2 − φ′′) ⇒ TMN = ηMN , T̂M = ∂Mφ , (5.3)

where we indicated the tensor components to the right.

The gauge transformations calculated in the previous section allow us to determine

the dilaton gauge transformation. We see from (4.60) that our choice TMN = ηMN is
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consistent as the right-hand side of that equation vanishes for such TMN . Equation (4.64)

then gives us

δξ(∂
Mφ) = ∂M (δξφ) = [ Ξ, ∂φ ]M

D
+ ηPQ∂

P∂MξQ

= ξK∂K∂Mφ+ ∂MξK∂Kφ+ ∂M (∂ · ξ)
= ∂M (ξK∂Kφ+ ∂ · ξ) ,

(5.4)

where we used (4.43). We then conclude that

δξφ = ξ · ∂φ+ ∂ · ξ , (5.5)

unmodified from the classical result. This means that eφ transforms as the “volume ele-

ment” (measure) for spacetime integration. For example, as in conventional gravity, it can

be used to define the divergence of a vector without using a metric. We’ll see next that

this also allows T to be reduced by fixing T̂ in terms of TMN .

(We have dropped a constant that can be added to the right-hand side of (5.5), given

that only the derivative of the gauge transformation is determined. The associated trans-

formation δφ = γ, with constant γ and independent of Ξ, leaves field equations invariant

but scales the action through the eφ factor in the measure, showing that dilaton shifts

change the coupling constant.)

Without the dilaton improvement term the following OPE holds for the operator 1
2Z

2:

1

2
Z2(1)

1

2
Z2(2) =

D

z412
+

Z2(2)

z212
+

(12Z
2)′(2)

z12
+ finite . (5.6)

Using this result, some additional calculation (with repeated use of the strong constraint)

gives the remarkable fact that the OPE of the improved operators S is exactly the same:

S(1)S(2) = D

z412
+

2S(2)
z212

+
S ′(2)

z12
+ finite . (5.7)

Next we consider products S(1)O(2), expanded about z2, for arbitrary operators O.

We first note that the least singular terms, 1/z12 and 1/z212, are completely classical: they

are determined from terms with a single propagator contracting with 1
2Z

2. If we used

two propagators contracting with 1
2Z

2 this leaves no z1 dependence except in the z12’s, so

nothing to expand about z2. But then the only term less singular than 1/z312 is killed by

the strong constraint. For the φ′′ term, we contract φ, Taylor expand about z2, and take

the ∂2
1 from ∂2

1φ(1) to act last. This gives terms of the form

∂2
1

[
1

zn12
(∂M . . . ∂Nφ)(1)OM...N (2)

]

= ∂2
1

[
1

zn12
(∂M . . . ∂Nφ)OM...N (2) +

1

zn−1
12

(∂M . . . ∂Nφ)′(2)OM...N (2) + . . .

]
.

(5.8)

But ∂2
1 on any negative power of z will yield terms at least as singular as 1/z3. This is

true for any number of propagators: φ has no classical contribution to the 1/z12 and 1/z212
terms either. We then have

1

2
Z2(1)O(2) = . . .+

wO O(2)

(z12)2
+

O′(2)

z12
+ finite , (5.9)
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which imply

S ◦wO+1 O = O′, S ◦wO O = wOO . (5.10)

For the two next least divergent terms we make the definitions of the quantum generaliza-

tions of the trace and divergence:

div(O) ≡ S ◦wO−1 O,
1

2
tr(O) ≡ S ◦wO−2 O . (5.11)

The divergence lowers the weight by one, the trace lowers the weight by two. We can

apply the derivative identities to the above general expressions for S◦ . For the latter cases
we find

tr (O′) = (trO)′ + 6divO ,

div (O′) = (divO)′ + 2wOO ,
(5.12)

while the ◦wO+1 identity is trivial and the ◦wO identity shows that the expression for ◦wO+1

is implied by that for ◦wO .
For the tensor T the trace gives a scalar. For the vector V the divergence gives a scalar

and the trace gives zero. For the scalar f both the trace and the divergence give zero. Thus

trV = tr f = div f = 0 . (5.13)

The derivative identities then specialize:

tr(V ′) = 6 divV

div(V ′) = 2V + (divV )′

div(f ′) = 0 .

(5.14)

We can write these products collectively as the OPE

S(1)O(2) = finite +
1

z12
O′ +

1

z212
wOO +

1

z312
div(O) +

1

z412

1

2
tr(O) + . . . , (5.15)

so that conformal transformations take the form

[∫
λS,O

]
= λO′ + wOλ

′O +
1

2
λ′′div(O) +

1

12
λ′′′tr(O) + . . . , (5.16)

where the first two terms are the usual (free, “on-shell”) universal terms.

Straightforward calculation gives the covariants

trT = ηMNTMN − 3(TMN∂M∂Nφ+ ∂ · T̂ + T̂ · ∂φ) ,

(divT )M = ∂NTMN + TMN∂Nφ− 1

2
TNP∂N∂P∂

Mφ− T̂M − 1

2
∂M (∂ · T̂ + T̂ · ∂φ) ,

divV = ∂ · V + V · ∂φ ,

(5.17)

as well as the trivial cases

tr (S) = 2D, div (S) = 0 . (5.18)
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This explicit expression for the “divergence” of a vector also identifies eφ as the integration

measure, taking the place of “
√−g ”:

divV = e−φ∂ · (eφV ) . (5.19)

The case of a trivial tensor is of some interest. Such tensor is the z derivative of a vector

operator V :

T = V ′ = (ZMV M )′ ⇒ T̂M = −2V M , TMN = 0 . (5.20)

5.2 Projection to divergence free tensors

Before introduction of the dilaton, we found that operators of w > 1 were not fully re-

ducible. We’ll see now a further reduction, the separation of the “divergence” and “diver-

genceless” pieces. In the case of weight-two tensors T , this allows us to treat TMN and

T̂M separately.

We therefore look for a solution to the constraint divO = 0 by projecting out the div

piece of O. The solution is not unique; we look for a solution by taking z-derivatives of

iterated divergences

O =

(
wO∑

n=0

cnAn

)
O, AnO ≡ (divnO)(n) . (5.21)

Here, for example A2O = (div divO)′′ and A0O = O. Note that the sum can be taken to

∞ since div vanishes on a scalar. Using the div (O′) identity, we find by induction

divAn = Andiv + 2
(
nwO − n(n+ 1)

2

)
An−1div . (5.22)

This allows the constraint to be solved as (using recursion or differential equation)

O = O = g(A)O, g(x) =

wO∑

n=0

[2(wO − 1)− n]!

n![2(wO − 1)]!
(−x)n . (5.23)

These polynomials are essentially the Neumann polynomials, or the leading terms in the

modified Bessel functions of the second kind:

4

(a+ 1)!
xa/2+1Oa+1(2

√
x) =

[(a+1)/2]∑

n=0

(a− n)!

n!a!
xn

2

a!
x(a+1)/2Ka+1(2

√
x) =

a∑

n=0

(a− n)!

n!a!
xn + . . .

(5.24)

Similarly,

An∂z = ∂zAn + 2

(
nwO′ −

n(n− 1)

2

)
∂zAn−1 , (5.25)

implies

O′ = 0 . (5.26)
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The result is that for arbitrary-weight operators (except vectors, wO = 1) we can ini-

tially ignore all total z-derivative terms, as they will be fixed in terms of the rest by the

operation.

In particular, this applies to all products O1 ◦w O2 for w > 1. This means we can

replace all “•” products defined previously by a new product with nicer properties: from

the symmetry condition on ◦, we see that automatically (anti)symmetrizes it,

O1 •w O2 ≡ O1 ◦w O2 = (−1)w1+w2−wO2 •w O1 . (5.27)

We then define the Div operation through the following relation

O ≡ O − 1

2(wO − 1)
(Div (O))′ , (5.28)

which implies that

Div (O′) = 2wOO, Div (O) = 0 , (5.29)

as well as

DivO = h(A)divO, h(x) =

2wO−3∑

n=0

[(2wO − 3)− n]!

(n+ 1)!(2wO − 3)!
(−x)n . (5.30)

Note that h(A) is an invertible finite polynomial. This means that div determines Div,

and vice versa. In particular,

divO = 0 ⇔ DivO = 0 (5.31)

so the two constraints are freely interchangeable. The advantage of Div over div is that on

O′, div gives 2wOO+(divO)′, while Div gives simply the first term. This allows DivO = 0

to be more easily solved than divO = 0, although the solution is the same.

In particular,

T = T − 1

2
(DivT )′, DivT = divT − 1

2
(div2T )′ , (5.32)

so that

T = T − 1

2
(divT )′ +

1

4
(div2 T )′′ . (5.33)

Thus, since the terms subtracted affect only the pseudovector part

T
MN

= TMN . (5.34)

Using the explicit expressions for the divergence of a tensor and of a vector we find

(DivT )M =− T̂M + (∂NTMN + TMN∂Nφ)− 1

2
TNP∂N∂P∂

Mφ

− 1

2
∂M{∂N∂PT

NP + TNP [∂N∂Pφ+ (∂Nφ)(∂Pφ)]} .
(5.35)
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The expression for T̂ is equal to the value of T̂ for which DivT = 0. From the above

equation we get

DivT = 0 ⇒ T̂M = GM (TMN , φ) , (5.36)

where we have introduced the vector function

GM (TMN , φ) ≡ (∂NTMN + TMN∂Nφ)− 1

2
TNP∂N∂P∂

Mφ

− 1

2
∂M{∂N∂PT

NP + TNP [∂N∂Pφ+ (∂Nφ)(∂Pφ)]} .
(5.37)

The tensor T is thus given by

T =
1

2
TMNZMZN − 1

2
[GM (TMN, φ)ZM ]′ . (5.38)

Note that the pseudovector part T̂M of T has dropped out of T , while appearing in DivT

in the simplest nontrivial way. The divergenceless tensor T has a pseudovector part but it

is determined in terms of TMN and the dilaton through the function G.

Another useful evaluated expression is

tr(T ) = trT − 3 div2T

= ηMNTMN − 3 [TMN∂Mφ∂Nφ+ ∂M (∂NTMN + 2TMN∂Nφ)] .
(5.39)

We also have the trivial case

DivS = 0 ⇒ S = S . (5.40)

6 Double metric

Having studied the properties of the tensor operator S encoding the dilaton background,

we now introduce the second Virasoro (tensor) operator T that encodes the gravitational

background. We take, in full generality

TMN = MMN , T̂M = M̂M ⇒ T =
1

2
[MMNZMZN − (M̂MZM )′] . (6.1)

In here the field MMN will be called the double metric. Nothing is assumed about it to

begin. The field M̂M is an additional degree of freedom that will eventually get determined

in terms of the double metric and the dilaton.

6.1 Field equations

The field equations for MMN ,M̂M , and the dilaton appear as enforcement of the Virasoro

algebra for the operators S and T . Since only singular terms contribute to commutators,

we look at the table of products T ◦w T only for w ≤ 3. The Virasoro algebra requires:




w = 0 1 2 3

S ◦w S = D 0 2S S ′

S ◦w T = 0 0 2T T ′

T ◦w T = D 0 2S S ′


 (6.2)
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(Note that ◦2 is a quantum generalization of the anticommutator when applied to tensors

T : e.g., S ◦2 T = 2T .) Ghost contributions, which we don’t discuss in this paper, would

cancel the 〈S|S〉 and 〈T |T 〉 terms. The ghosts are not necessary for the classical field

theory we are building, presumably because they do not couple to the background. The

SS equations are satisfied off shell, as discussed earlier. The ST equations for ◦3 and ◦2
also hold off-shell (see (5.10)). The ones for ◦1 and ◦0 are, respectively,

div(T ) = 0 : M̂M

tr (T ) = 0 : φ .
(6.3)

The first equation fixes M̂M = GM (MMN, φ), as defined in (5.36). The second equation

can be viewed as the dilaton field equation. Let us now consider the T T equations. By

the symmetry identity, T ◦3 T and T ◦1 T are derivatives of T ◦2 T and T ◦0 T , so only the

latter are relevant. The ◦2 condition T ◦2 T = 2S gives two equations and the ◦0 condition

just one:

(T ◦2 T )MN = 2ηMN : MMN ,

(T ◦2 T )M = 2∂Mφ : redundant,

〈T |T 〉 = D : redundant.

(6.4)

The first is a nontrivial equation for the field MMN ; the last two are redundant to the first

and those in (6.3), as we now show.

We first reorganize a bit the equations above. Since div T = 0 we have T = T . We

can then let T → T everywhere thus taking care of the first equation in (6.3). Note also

that the vanishing of any tensor T is equivalent to the vanishing of T and the vanishing of

divT (or alternatively, the vanishing of T and DivT ). We do this with the T ◦2 T = 2S
equation, recalling that S = S. We then have

tr (T ) = 0 : φ ,

T ◦2 T = 2S : MMN ,

div (T ◦2 T ) = 0 : redundant,

〈T |T 〉 = D : redundant.

(6.5)

Consider again the distributivity identities, now for O1 = S,O2 = T1,O3 = T2, so

wi = 2, and also w = 2, but ŵ = 0 or 1. Then

S ◦ŵ (T1 ◦2 T2)− T1 ◦ŵ (S ◦ŵ T2) =
4−ŵ∑

w′′=1

(
3− ŵ

w′′ − 1

)
(S ◦4−w′′ T1) ◦ŵ T2 . (6.6)

Using the S◦ and derivative identities,

tr(T1 ◦2 T2) = T1 ◦0 (trT2) + (trT1) ◦0 T2 + 6 (divT1) ◦0 T2 + 4 〈T1|T2〉 ,

div(T1 ◦2 T2) = T1 ◦1 (divT2) + (divT1) ◦1 T2 + T1 ◦1 T2 .

(6.7)
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Noting that T ◦1 T = 1
2〈T |T 〉′ (symmetry identity) and setting T1 = T2 = T , we get

tr (T ◦2 T ) = 2〈trT |T 〉+ 4〈T |T 〉 ,

div (T ◦2 T ) =
1

2
〈T |T 〉′ .

(6.8)

The first can be re-expressed using (5.39) and the second, to find

tr
(
T ◦2 T

)
= 2〈trT |T 〉+ 4〈T |T 〉 . (6.9)

Substituting T for T and applying the M and φ field equations, the last two

equations become

div (T ◦2 T ) =
1

2
〈T |T 〉′ ,

4D = 4〈T |T 〉 ,
(6.10)

proving, as we wanted, that the last two equations in (6.5) are redundant.

6.2 ⋆ product

In this subsection we consider a number of properties that will allow us to write an action

and vary it to determine its field equations. A useful star-product will be introduced. This

product yields weight-two divergence-free tensors. It is also symmetric, and together with

the inner product defines a scalar that is totally symmetric in its three tensor inputs.

The action will take the form
∫
eφL where L is a scalar. As noted earlier, for an

arbitrary vector V integration by parts shows that
∫

eφ divV = 0 . (6.11)

It is convenient to introduce the equivalence symbol ∼ for objects that are the same under

the integral

A ∼ B →
∫

eφA =

∫
eφB . (6.12)

We thus have

divV ∼ 0 . (6.13)

Since tr(V ′) = 6 divV we also have

tr(V ′) ∼ 0 , (6.14)

which states that the trace of a trivial tensor gives no contribution to the action. Since

T = T + V ′ for some V , we also have that

tr(T ) ∼ tr(T ) . (6.15)

We now use the distributive identity (3.33) with O1 = S,O2 = O,O3 = T , and

ŵ = 0, w′ = 3:

div (O ◦1 T ) = 〈divO|T 〉+ 〈O|divT 〉+ (wO − 2)〈O|T 〉 , (6.16)
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where we also used the identifications (A.3). For the cases of the scalar, vector, and tensor,

we get

div(f ◦1 T ) = 〈f |divT 〉 − 2〈f |T 〉 ,
div(V ◦1 T ) = 〈divV |T 〉+ 〈V |divT 〉 − 〈V |T 〉 ,

div(T1 ◦1 T2) = 〈divT1|T2〉+ 〈T1|divT2〉 .
(6.17)

Applied to divergenceless tensors T we have

div(f ◦1 T ) = −2〈f |T 〉 ,
div(V ◦1 T ) = 〈divV |T 〉 − 〈V |T 〉 ,

div(T 1 ◦1 T 2) = 0 .

(6.18)

The first equation implies that

〈T |f〉 ∼ 0 . (6.19)

The second equation, using the first, can be written as

〈V |T 〉 = −div

[
V ◦1 T +

1

2
(divV ) ◦1 T

]
, (6.20)

which implies that 〈T |V 〉 ∼ 0. Thus, all in all,

〈T |f〉 ∼ 0 , 〈T |V 〉 ∼ 0 . (6.21)

Thus divergenceless tensors have the remarkable property that their inner product against

a scalar or a vector are zero under the integral. We now note that the overlap of a projected

tensor T 1 and an unprojected tensor T2 picks up its projected part:

〈T 1|T2〉 = 〈T 1|T 2 + V ′〉 ∼ 〈T 1|T 2〉 , (6.22)

where we used 〈T |V ′〉 = 〈V ′|T 〉 = −3〈V |T 〉 ∼ 0. The overline projection is an orthogo-

nal projection.

We now show that there are two equivalent ways of forming a scalar in order to use it

in the action. From (6.7) we have

tr (T 1 ◦2 T 2) = 〈T (1| trT 2)〉+ 4 〈T 1|T 2〉 . (6.23)

The first term on the right-hand side is equivalent to zero under the integral on account

of (6.19) so that

〈T 1|T 2〉 ∼ 1

4
tr (T 1 ◦2 T 2) . (6.24)

Recall now our definition of symmetric products •w in (5.27). The case w = 2, for

which the output (regardless of the inputs) is a tensor, will be particularly useful. We will

call this product a “star” product: ⋆ ≡ •2. We thus have:

O1 ⋆O2 ≡ O1 ◦2 O2 . (6.25)
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Using this notation and recalling (6.15), we see that (6.24) takes the form

〈T 1|T 2〉 ∼ 1

4
tr (T 1 ⋆ T 2) . (6.26)

To perform the variation of the action we need to show that under the integral 〈T1|T2 ⋆

T3〉 is totally symmetric when div (Ti) = 0. So we look at distributivity identities for three

tensors (wi = 2) with an inner product outside (ŵ = 0) and a ◦2 inside. All these identities

have a term with ◦3 also; the ones with only one such term, appearing with the same

coefficient, (and no ◦4) are those with (w,w′) = (4, 2), (3, 3), (2, 4). The former two are the

simplest; taking their difference, we find

〈T2|T1◦2T3〉−〈T3|T1◦2T2〉 = 〈T2|T1◦1T3〉−〈T3|T1◦1T2〉−〈T1|T2◦1T3〉 +〈T1|〈T2|T3〉〉 . (6.27)

Applying this identity to divergenceless tensors, all terms on the right-hand side are equiv-

alent to zero on account of (6.21) and therefore

〈T 1 |T 2 ◦2 T 3 〉 ∼ 〈T 3 |T 2 ◦2 T 1 〉 . (6.28)

Now note that

T1 ⋆ T2 = T1 ◦2 T2 = T1 ◦2 T2 + V ′ , (6.29)

for some vector V . Since 〈T |V ′ 〉 ∼ 0, replacing ◦2 with ⋆ has no effect on the

above symmetry:

〈T 1 |T 2 ⋆ T 3 〉 ∼ 〈T 3 |T 2 ⋆ T 1 〉 . (6.30)

Since the product ⋆ is symmetric, this shows that 〈T 1 |T 2 ⋆T 3 〉 is totally symmetric. Note

that the form in (6.28) is also totally symmetric because the product ◦2 is symmetric up

to z-derivatives.

As a useful exercise we consider the explicit form of the star product of two pro-

jected tensors:

T 1 ⋆ T 2 = T 1 ◦2 T 2 −
1

2
(div (T 1 ◦2 T 2))

′ +
1

4
(div div (T 1 ◦2 T 2))

′′ . (6.31)

We then note that div(T 1 ◦2 T 2) = T 1 ◦1 T 2, because of (6.7), and that the last term above

drops out by the last of (6.18). As a result, we have the simplified form

T 1 ⋆ T 2 = T 1 ◦2 T 2 −
1

2
(T 1 ◦1 T 2)

′ . (6.32)

When the two tensors are the same, further simplification is possible using the symme-

try property,

T ⋆ T = T ◦2 T − 1

4
〈T |T 〉′′ . (6.33)
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6.3 Action

We use the double metric defined previously,

T =
1

2
[MMNZMZN − (M̂MZM )′] , (6.34)

with the condition that

div T = 0 ⇒ T = T , (6.35)

so that the identities for barred tensors can be used for T . The tensor field T so constrained

is only a function of MMN and the dilaton. This means that M̂M = GM (MMN, φ) is

determined in terms of MMN and the dilaton.

We now claim that the action is given by

S =

∫
eφL, L = 〈T |S − 1

6
T ⋆ T 〉 . (6.36)

Using (6.26) we also have the alternative form, equivalent up to total derivatives

L =
1

2
tr

[
T − 1

12
T ⋆ (T ⋆ T )

]
. (6.37)

This action is gauge invariant because the dilaton provides a measure and L is a gauge

scalar. This is clear by construction since we begin with tensors under gauge transforma-

tions and all our operations are covariant: the products, projections, inner products. The

gauge transformations are simply

δξT = Ξ ◦2 T ,

δξS = Ξ ◦2 S .
(6.38)

The gauge transformed T is divergence free with respect to the divergence operator that

uses the gauge transformed dilaton. The explicit form of the gauge transformations can be

read from (4.60) and (5.5), and for completeness we give them here:

δξMMN = ξP∂PMMN + (∂MξP − ∂P ξ
M )MPN + (∂NξP − ∂P ξ

N )MMP

− 1

2

[
∂MMPQ ∂P (∂Qξ

N − ∂NξQ) + 2 ∂QMKM ∂N∂KξQ + (M ↔ N)
]

− 1

4
∂K∂(MMPQ ∂N)∂P∂Qξ

K ,

δξφ = ξ · ∂φ+ ∂ · ξ .

(6.39)

We now vary the action to derive the equations of motion. Consider first the variation

δM of double metric MMN . The only field to vary is T and δMT is still projected. The

result is

δMS =

∫
eφ〈δMT |S − 1

2
T ⋆ T 〉 , (6.40)

using the total symmetry of
∫
eφ〈T 1|T 2 ⋆ T 3〉. Now note that 〈δT1|T2〉 gives AT2 = 0 for

some operator A of the form

A = I + α′A1 + α′2A2 , (6.41)
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where A1 is second-order in spacetime derivatives and A2 is fourth-order. There are no

higher-order terms because of the strong constraint: derivatives can be contracted only

with the indices on T . (This includes derivatives acting on φ.) For the same reason, A is

easily invertible, also terminating at fourth-order. Thus AT2 = 0 implies T2 = 0. In our

case we have 〈δMT |T2〉, and since the bra is projected, the pseudovector part of T2 drops

out giving us the equation (T2)MN = 0. If the tensor T2 on the ket is itself divergenceless,

then it also follows that T̂2 = 0, and thus simply that T2 = 0. This is the case for us, so

the field equations following from the δM variation is

T ⋆ T = 2S . (6.42)

This implies our OPE field equation (T ◦2 T − 2S)MN = 0, since all products are the same

for the two-index part of the tensor.

Now we consider the φ variation. This is more subtle because the projection uses S,
which contains φ, so the projection itself is varied. Consider an arbitrary tensor T and

its constrained projection T . Using (5.33) we have that the variation of the projection is

not projected

δT = δT − 1

2
(δφdivT )

′ +
1

4
(δφdiv( divT ))

′′ +
1

4
(div(δφdivT ))

′′ . (6.43)

While we could proceed without calculating the doubly primed terms (which will drop

out) it is of interest to obtain a general formula for the variation of the projection. Taking

dilaton variations of the products S ◦ T and S ◦ V one quickly shows that

δφ trT = −6〈δφ|T 〉 , δφ divT = −δφ ◦1 T , δφ divV = 〈V |δφ〉 , (6.44)

giving us

δT = δT +
1

2
(δφ ◦1 T )′ +

1

4

(
〈divT |δφ〉 − div(δφ ◦1 T )

)′′
. (6.45)

Since T̂M drops out of T , and thus from the full variation δT , it is possible to rewrite the

above right-hand side solely in terms of T . For this we note that

δφ ◦1 T = δφ ◦1 T +
1

2
δφ ◦1 (divT )′ −

1

4
δφ ◦1 (div divT )′′ . (6.46)

The last term vanishes by repeated use of the symmetry and derivative identities (f ◦1V ′ =

−〈V |f〉′ which then implies f1 ◦1 f ′′ = 0), and we get

δφ ◦1 T = δφ ◦1 T − 1

2
〈divT |δφ〉′ . (6.47)

Using this identity twice in (6.45) as well as (6.17) we finally find the desired

variation formula:

δT = δT +
1

2
(δφ ◦1 T )′ +

1

2
〈δφ|T 〉′′ . (6.48)

Applied to our divergence free T it reads

δT = δT +
1

2
(δφ ◦1 T )′ +

1

2
〈δφ|T 〉′′ , (6.49)
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The first term is the δM we have already evaluated; we now consider only the latter two

terms that comprise the δφT variation

δφT =
1

2
(δφ ◦1 T )′ +

1

2
〈δφ|T 〉′′ . (6.50)

The action is of the form
∫

eφ〈T 1|T 2〉, T 1 = T , T 2 = S − 1

6
T ⋆ T . (6.51)

From the above variation we see, since 〈V ′|T 〉 = 〈T |V ′〉 ∼ 0 in the integral, that the

variation of the projection operator on T1 or T2 will vanish, as the integral of a total

derivative. (In particular, δS = −1
2(δφ)

′′.) However, T ⋆ T is itself the projection of

T ◦2 T : so we can ignore the projection to get ⋆ from ◦2, but not the projections implicit

in the T ’s inside the product: in fact, these are the only δφ’s that contribute to the action,

other than that of the measure eφ. We thus find

δφS =

∫
eφ
[
(δφ)L− 1

3
〈T |δφT ⋆ T 〉

]
, (6.52)

where we have noted that the variations δφT on bras are total derivatives, and applied the

symmetry of the ⋆ product. The result is then

δφS =

∫
eφ
[
(δφ)L+

1

6
〈T |(δφ ◦1 T ) ⋆ T 〉

]
, (6.53)

where the double derivative term does not contribute because of the derivative identity

f ′′ ◦2 T = 0.

From the distributive identity with O1 = V,O2 = T ,O3 = T , and w = 2, w′ = 3

we find

〈T |V ◦2 T 〉 = 〈V |T ◦2 T 〉 − 2〈T |V ◦1 T 〉 − 2〈T |〈V |T 〉〉 . (6.54)

Because both vectors or scalars contracted with projected tensors are total derivatives

under
∫
eφ, the last two terms in the above right-hand side can be dropped:

〈T |V ◦2 T 〉 ∼ 〈V |T ◦2 T 〉 . (6.55)

Using (6.33) for the above right-hand side, we then have

〈T |V ◦2 T 〉 ∼ 1

4
〈V |〈T |T 〉′′〉 ∼ 1

2
〈V |〈T |T 〉〉 , (6.56)

where the last step used the derivative identity and the symmetry property twice. Applying

this to T = T we get

〈T |V ◦2 T 〉 ∼ 1

2
〈V |〈 T |T 〉〉 . (6.57)

For further simplification, we use the first equation in (6.8), applied to T to get

tr (T ⋆ T ) = 2〈trT |T 〉+ 4〈T |T 〉 . (6.58)
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By the double metric equation of motion, the left hand side is a constant. Under a derivative

we can therefore replace 〈T |T 〉 by −1
2〈trT |T 〉. Indeed, using 〈V |f〉 = V M∂Mf , we see that

〈T |T 〉 appears under a derivative in (6.57) and therefore,

〈T |V ◦2 T 〉 ∼ −1

4
〈V |〈T |tr T 〉〉 . (6.59)

With this result we can return to our variation (6.53), identify V = δφ◦1T and then obtain

δφS =

∫
eφ
[
(δφ)

1

3
trT − 1

24
〈δφ ◦1 T |〈T |tr T 〉〉

]
, (6.60)

where we simplified L by using the double metric equation of motion.

In order to isolate the δφ factor in the second term, we consider another distributive

identity (O1 = S,O2 = f2,O3 = V with ŵ = 0, w = 0, w′ = 3)

div (f2 ◦1 V ) = 〈f2|divV 〉 − 〈f2|V 〉 → 〈V |f2〉 ∼ −〈f2|divV 〉 . (6.61)

Taking now V = f1 ◦1 T and noting that div (f1 ◦1 T ) = −2〈f1|T 〉 (see (6.18)), we have

〈f1 ◦1 T |f2〉 ∼ 2 〈f2 | 〈f1|T 〉〉 . (6.62)

The distributive identity (O1 = f1,O2 = f2,O3 = T with ŵ = 0, w = w′ = 1)

〈f1|f2 ◦1 T 〉 − 〈f2|f1 ◦1 T 〉 = 0 , (6.63)

informs us that the left-hand side of (6.62) is symmetric under the exchange of the two

functions, so that we have

〈f1 ◦1 T |f2〉 ∼ 2 〈f1 | 〈f2|T 〉〉 = 2f1 〈f2|T 〉 , (6.64)

where in the last equality we noted that the inner product of two functions is equal to

their ordinary product (by the strong constraint there are no contractions in the operator

product of two functions). This is our desired result. With the relevant choices of f ’s and

tensor it reads:

〈δφ ◦1 T | 〈T |tr T 〉〉 = 2δφ 〈T |〈T |tr T 〉 〉 . (6.65)

Back to the action variation (6.60), we can finally rewrite the second term with δφ sepa-

rated out:

δφS =
1

3

∫
eφ (δφ)

[
tr T − 1

4
〈T |〈T |tr T 〉 〉

]
. (6.66)

The result is that variation of φ gives an operator of the form I + . . . acting on tr T , so the

φ field equation is the expected tr T = 0.
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6.4 Field equation evaluation

We’ll need some explicit evaluations of operator products of tensors. For two equal tensors

the OPE gives

〈T |T 〉 = 1

2
TPQTPQ − ∂PT

LK∂LTK
P +

1

4
∂P∂QT

KL∂K∂LT
PQ

− 3

2
〈T̂ |T̂ 〉 − 3 ∂P T̂

KTK
P +

3

2
∂P∂QT̂

K∂KTPQ

(T ◦2 T )MN = {T, T}MN − 1

2
∂MTPQ∂NTPQ + TPQ∂P∂QTMN

+ 2 ∂(NTLK ∂LTM)K − 2∂QTM
P∂PTN

Q

+ ∂M∂PT
LK ∂N∂LTK

P − ∂(N∂KTPQ∂P∂QT
K

M)

− 1

4
∂M∂P∂QT

KL ∂N∂K∂LT
PQ

+ T̂K∂KTMN + (∂(N T̂K − ∂K T̂(N )TM)K − ∂(N∂P T̂
K∂KTP

M)

+
1

2
∂P (∂(M T̂Q − ∂QT̂(M )∂N)T

PQ − 1

4
∂(M∂P∂QT̂

K∂N)∂KTPQ ,

(6.67)

where 〈T̂1|T̂2〉 means the inner product of two pseudovectors T̂MZM treated as if they

were vectors.

Note that the above imply the corresponding results for two different tensors, since for

any bilinear product ⋄ we have

O(1 ⋄ O2) = (O1 +O2) ⋄ (O1 +O2)−O1 ⋄ O1 −O2 ⋄ O2 . (6.68)

In practice, this means to just substitute T1 and T2 for the two T ’s in each term in the

above equations in the two possible ways, then average to get 〈T1|T2〉 and (T1 ◦2 T2)MN .

Note that (T1 ◦2 T2)MN is symmetric under 1 ↔ 2 because the lack of symmetry in T1 ◦2 T2

only affects the pseudovector part.

Our full double-metric field equation (M◦2 M)MN = 2ηMN is therefore

(M2)MN = ηMN +
1

4
∂MMPQ∂NMPQ − 1

2
MPQ∂P∂QMMN

− ∂(NMLK ∂LMM)K + ∂QMM
P∂PMN

Q

− 1

2
∂M∂PMLK ∂N∂LMK

P +
1

2
∂(N∂KMPQ∂P∂QMK

M)

+
1

8
∂M∂P∂QMKL ∂N∂K∂LMPQ

− 1

2
GK∂KMMN − 1

2
(∂(NGK − ∂KG(N )MM)K +

1

2
∂(N∂PG

K∂KMP
M)

− 1

4
∂P (∂(MGQ − ∂QG(M )∂N)MPQ +

1

8
∂(M∂P∂QG

K∂N)∂KMPQ .

(6.69)

where GM = GM (M, φ), as defined in (5.37). While GM has terms with one derivative

and terms with three derivatives, the latter carry the index on a derivative ∂M and cannot
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contribute in the last term. The equation of motion has terms with zero, two, four, and

six derivatives. There cannot be terms with more than six derivatives since the strong

constraint does not allow one to write any such terms.

7 Relation to generalized metric formulation

In this section we will relate our formalism to the generalized metric. In particular, we

confirm that for the two-derivative approximation the field equations reduce to the known

double field theory equations in terms of the generalized metric HMN and the dilaton [18].

We review the H equation and show that it arises from the M field equation. Then we

show that tr(T ) reproduces the generalized curvature scalar R(H, φ), which encodes the

dilaton equation.

7.1 Classical action

Consider the action S =
∫
eφL with L(M) a Lagrangian for an arbitrary matrix MMN ,

whose indices are raised and lowered with ηMN :

L =
1

8
MMN∂MMKL∂NMKL − 1

2
MMN∂NMKL∂LMMK −MMN∂M∂Nφ . (7.1)

If we were to set M equal to the (constrained) generalized metric H, the resulting L is

the simplest form of the double field theory Lagrangian of [18]. This connection requires

the identification

φ = −2 d . (7.2)

Varying with respect to the unconstrained M we find

δMS =

∫
eφδML , δML = δMMNKMN (M) , (7.3)

where

KMN (M) ≡ 1

8
∂MMKL ∂NMKL − 1

4
(∂L + ∂Lφ)(MLK∂KMMN )− ∂M∂Nφ

− 1

4
∂(MMKL ∂LMN)K+

1

4
(∂L + ∂Lφ)(MKL∂(MMN)K+MK

(M∂KML
N)) .

(7.4)

It is convenient to rewrite this expression in terms of the pseudovector part of T ,

GM (M, φ) = ∂LMLK + ∂LφMLK + · · · , (7.5)

leaving out higher-derivative terms in (5.37) that are irrelevant for our present purposes.

One finds

KMN ≡ 1

8
∂MMKL ∂NMKL − 1

4
MLK∂K∂LMMN − 1

4
GK∂KMMN − ∂M∂Nφ

− 1

4
∂(MMKL ∂LMN)K +

1

4
MKL∂(M∂LMN)K +

1

4
∂LM(M

K∂KMN)
L

+
1

4
GK∂(MMN)K +

1

4
MK

(M∂KGN) −
1

2
MK

MML
N∂K∂Lφ .

(7.6)
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It is useful to note that the above variation (7.3) also applies to the equivalent form

L′ of the Lagrangian that yields the same action as L:

L′ = R(M, φ) ≡ 1

8
MMN∂MMKL∂NMKL − 1

2
MMN∂NMKL∂LMMK

− 2MMN∂M∂Nφ− ∂M∂NMMN −MMN∂Mφ∂Nφ− 2∂MMMN∂Nφ .

(7.7)

Note that R(H, φ) is the scalar curvature of [18]. The K(M) above also coincides with

K(H) in [18] (eq. (4.49)), when M is replaced H. Since H is a constrained field, its equation

of motion is not the vanishing of K(H). Rather, the field equation is given by eq. (4.57)

in [18] which, written out explicitly, reads

K(H)−HK(H)H = 0 . (7.8)

Multiplying from the right with H and using H2 = 1 gives

K(H)H−HK(H) = 0 , (7.9)

which is the form of the equation of motion that we will re-derive below.

7.2 Double metric action and field equation

Consider the action

S =

∫
eφL , L =

1

2
tr(T )− 1

6
〈T |T ⋆ T 〉 , (7.10)

to second order in derivatives. The Lagrangian can be easily computed, recalling that the

⋆ product projects onto divergence-free tensors, so that the pseudovector part of a star

product is given by

(T1 ⋆ T2)
M = GM

(
(T1 ◦2 T2)

MN , φ
)
, (7.11)

with the right-hand side defined in (5.37). The term tr(T ) can be evaluated explicitly

from the first equation in (5.17), using the determined expression T̂ M = GM (MMN , φ).

Similarly, the cubic term can be straightforwardly computed from the explicit form of the

inner product and ◦2 given in (6.67). One finds

L =
1

2

[
Tr

(
M− 1

3
M3

)
− 3MMN∂M∂Nφ− 3∂NGN (M)− 3∂NφGN (M)

+
1

12
MMN∂MMPQ∂NMPQ − 1

6
MMNMPQ∂P∂QMMN

− 2

3
MMN∂MMLK∂LMKN +

1

3
MMN∂QMM

P∂PMN
Q +

2

3
∂PMLK∂L(M2)K

P

− 1

6
MMNGK(M)∂KMMN + ∂PG

K(M)(M2)K
P

+GM (M)GM (M2) + ∂PG
K(M2)MK

P

]
. (7.12)
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For brevity we have dropped the dilaton input from G(M, φ) and G(M2, φ). It is now a

straightforward though somewhat tedious calculation to verify that, up to total derivatives,

the corresponding action reads

S =

∫
eφ
[
1

2
ηMN

(
M− 1

3
M3

)

MN

+
1

2
(M2 − 1)MPMP

N∂M∂Nφ

+
1

8
MMN∂MMPQ∂NMPQ − 1

2
MMN∂NMKL∂LMKM −MMN∂M∂Nφ

]
.

(7.13)

Since the last line coincides with (7.1), its variation equals KMN determined in (7.4). Thus,

the total variation with respect to M is given by

0 =
1

2
(η−M2)MN +

1

2
(M2)(M

K∂N)∂Kφ+
1

2
MM

PMN
Q∂P∂Qφ−

1

2
∂M∂Nφ+KMN (M) .

(7.14)

Using the zeroth-order relation M2 = 1 in the second term we find

0 =
1

2
(η −M2)MN +

1

2
MM

PMN
Q∂P∂Qφ+

1

2
∂M∂Nφ+KMN (M) . (7.15)

Let us now show that this equation coming from the double metric action is the T
equation (T ⋆ T )MN = 2 ηMN from the OPE. We rewrite this in matrix notation as

M2 = 1 + 2V(M) → 1

2
(1−M2) + V(M) = 0 . (7.16)

Equation (6.69) allows us to identify the two-derivative part V(2) of V as

V(2)
MN (M) =

1

8
∂MMPQ∂NMPQ − 1

4
MPQ∂P∂QMMN − 1

2
∂(MMKL∂LMN)K

+
1

2
∂QMM

P∂PMN
Q − 1

4
GK∂KMMN − 1

4

(
∂(MGK − ∂KG(M

)
MN)K ,

(7.17)

where only the parts of GK with one derivative are included. Next we have to relate V(2)
MN

to KMN . Using (7.6) we find

V(2)
MN (M) = KMN (M)− 1

4
GK∂(MMN)K − 1

4
∂(NGKMM)K − 1

4
∂(MMKL∂LMN)K

− 1

4
MKL∂L∂(MMN)K + ∂M∂Nφ+

1

2
MK

MML
N∂K∂Lφ . (7.18)

We now use M2 = 1 in the two-derivative terms, which implies in particular

− 1

2
MKL∂MMNK =

1

2
MNK∂MMKL . (7.19)
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Acting here with ∂L implies

−1

2
MKL∂L∂MMNK =

1

2
∂LMLK∂MMNK +

1

2
∂LMNK ∂MMKL +

1

2
MNK∂M∂LMLK

=
1

2
GK∂MMNK − 1

2
∂LφMLK∂MMNK +

1

2
∂MMKL∂LMNK

+
1

2
MNK∂MGK − 1

2
MNK∂M

(
∂LφMLK

)

=
1

2
GK∂MMNK +

1

2
∂MMKL∂LMNK

+
1

2
MNK∂MGK − 1

2
∂M∂Nφ . (7.20)

Using this in (7.18) many terms cancel and we finally get

V(2)
MN (M) = KMN (M) +

1

2
∂M∂Nφ+

1

2
MK

MML
N∂K∂Lφ . (7.21)

Inserting this in (7.16) we obtain

0 =
1

2
(η −M2)MN +KMN (M) +

1

2
∂M∂Nφ+

1

2
MK

MML
N∂K∂Lφ , (7.22)

which is in perfect agreement with (7.15), as we wanted to show.

We will now show that (7.16) implies the equation of motion and the constraint for the

generalized metric H. Indeed, multiplying by M from the left and subtracting the same

equation but multiplied by M from the right we quickly see that

V(M)M−MV(M) = 0 . (7.23)

Next we do an α′ expansion by writing

M = H+ Λ(H) , with H2 = 1 , (7.24)

where Λ(H) is first order in α′, containing two derivatives. To leading order (7.23) gives

V(2)(H)H−HV(2)(H) = 0 . (7.25)

We quickly confirm that the difference in (7.21) between K and V(2) drops out from the

above field equation. Thus,

V(2)(H)H−HV(2)(H) = K(H)H−HK(H) = 0 . (7.26)

The last equality is the field equation (7.9) for H in DFT. We have reproduced it correctly

from the double-metric.

We now determine Λ(H) in (7.24). Using the expansion in (7.16) gives

HΛ(H) + Λ(H)H = 2V(2)(H) . (7.27)

This equation also contains the field equation (7.25): it is obtained by multiplying the

above by H from the left, and subtracting the equation in which we multiply by H from
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the right. On the other hand solving for Λ from (7.27) looks at first sight impossible, since

it would appear to trivialize V(2). But this is not the case if the solution involves the field

equation. Indeed we can take

Λ =
1

2
{H ,V(2)(H)} . (7.28)

Then back on the left-hand side of (7.27) and using H2 = 1 we get

V(2) +HV(2)H = 2V(2) +H [V(2) ,H ] = 2V(2) , (7.29)

where in the last step we used the equation of motion. So we can write,

M(H) = H+
1

2
{H ,V(2)(H) }+O(α′2) . (7.30)

We note that this parameterization of M in terms of H has assumed the equation of motion

for H. It can therefore be used in the form M(H) = H+HV(2).

7.3 Dilaton equation

We now analyze the dilaton equation

tr(T ) = ηMNMMN − 3∂M∂NHMN − 6HMN∂M∂Nφ− 6∂MHMN∂Nφ− 3HMN∂Mφ∂Nφ ,

(7.31)

where we were allowed to replace M = H in the O(α′) term. We will show that, in the

two-derivative approximation, it gives rise to the scalar curvature of double field theory

when written in terms of the generalized metric H, and thus to the usual dilaton equation.

First, we insert (7.28),

ηMNMMN = ηMNΛMN (H) = HMNVMN . (7.32)

The tensor V(2) is given in (7.17),

V(2)
MN =

1

8
∂MHPQ∂NHPQ − 1

4
HPQ∂P∂QHMN − 1

2
∂(MHKL∂LHN)K

+
1

2
∂QHM

P∂PHN
Q − 1

4
GK∂KHMN − 1

4

(
∂(MGK − ∂KG(M

)
HN)K ,

(7.33)

where we replaced everywhere M by H. Thus,

HMNV(2)
MN =

1

8
HMN∂MHKL ∂NHKL − 1

4
HMNHPQ∂P∂QHMN

−HMN∂MHKL∂LHNK +
1

2
HMN∂QHM

P∂PHN
Q .

(7.34)

A few terms dropped out by the constraint on H, in particular all the G terms. Using some

identities following from H2 = 1,

−1

4
HKLHPQ∂K∂LHPQ =

1

4
HKL∂KHPQ∂LHPQ ,

1

2
HPQ∂KHLP ∂LHKQ = −1

2
HPL∂LHKQ ∂KHPQ ,

(7.35)
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one finds

ηMNMMN = HMNV(2)
MN = 3

(
1

8
HMN∂MHPQ∂NHPQ − 1

2
HMN∂MHKL∂LHNK

)
.

(7.36)

Inserting now in (7.31) and re-expressing φ = −2d, we get

tr(T ) = 3

(
1

8
HMN∂MHPQ∂NHPQ − 1

2
HMN∂MHKL∂LHNK − ∂M∂NHMN

+ 4HMN∂M∂Nd+ 4∂MHMN∂Nd− 4HMN∂Md ∂Nd

)

= 3R(H, d) .

(7.37)

Thus, we get exactly the scalar curvature and so the dilaton field equation.

It is also instructive to verify that the equation tr(T ) = 0 follows from the action (7.10)

upon using the T equation — instead of using the first-order solution of that equation. We

thus vary (7.13) with respect to φ, and we are allowed to use M2 = 1 in the two-derivative

terms as a consequence of the T equation. We obtain

1

2
Tr

(
M− 1

3
M3

)
+R(M, φ) = 0 . (7.38)

Inserting now M2 = 1 + 2V(2) this becomes

TrM−MMNV(2)
MN + 3R = 0 . (7.39)

In MMNV(2)
MN we may use M2 = 1, which with (7.34) yields

−MMNV(2)
MN = −3

(
1

8
MMN∂MMPQ∂NMPQ − 1

2
MMN∂NMKL∂LMKM

)
. (7.40)

Back in (7.39) this gives

ηMNMMN − 6MMN∂M∂Nφ− 3∂M∂NMMN − 6∂MMMN∂Nφ− 3MMN∂Mφ∂Nφ = 0 ,

(7.41)

which is exactly the dilaton equation tr(T ) = 0 as following from the OPE.

8 Prospects

This paper provides a different approach to α′ corrections of low-energy string actions.

Traditionally these corrections have been gleaned from the string theory S-matrix, and

then terms are constructed for the low-energy theory that reproduce such S-matrix results.

In this paper α′ corrections are seen as required by a modified gauge structure. They are

predicted, or at least constrained by a symmetry principle. We want to emphasize that

our use of the double field theory approach does not mean that the results are only valid

for compactified theories. The α′ information obtained is background independent.
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α
′-geometry. In string theory α′ corrections are part of the (target space) classical

theory. More precisely, classical closed string field theory includes α′ corrections of all

orders. For the massless sector, the α′ corrections parameterize the way in which the

string theory differs from the two-derivative Einstein action coupled to a two-form and

a dilaton. It therefore has been reasonable to expect that the appropriate geometry of

string theory should be an α′-deformation of Riemannian geometry. The incorporation of

T-duality has forced on us a doubled geometry that can be viewed as a mild extension of

generalized geometry. This is the case even for the two-derivative theory. This geometry

has an inner product, a C-bracket and generalized Lie derivatives, that upon reduction from

D+D to D dimensions give the inner product, the Courant bracket and the Lie derivatives

of generalized geometry. The α′ corrections are nontrivial deformations of the geometry.

The inner product and C-bracket acquire a correction that is in fact linear in α′. Gauge

transformations or generalized Lie derivatives acquire a linear correction for a vector field

and a linear plus quadratic correction for a two-tensor. This is a “complete” deformation:

the bracket is fully consistent (has a trivial Jacobiator) without higher-order corrections,

and the commutator of generalized Lie derivatives gives precisely the Lie derivative along

the C-bracket of the input gauge parameters. We want to emphasize that the C-bracket

does not allow higher-order α′ corrections consistent with linearity in its arguments, so

the correction we have is unique. This indicates that the above represents a first step in

the construction of the α′-geometry. Intriguingly, the corrections to all these structures

do not vanish when reduced from the doubled manifold to D dimensions. Therefore, they

define an apparently unknown deformation of the Courant bracket and other structures in

generalized geometry.

Double metric M. The generalized metric H of the doubled manifold was a duality-

covariant gravitational field variable for the two-derivative theory. Surprisingly, the relevant

OPE’s indicated that the constraint H2 = 1 satisfied by this metric cannot be preserved

when considering α′ corrections. We were thus led to consider a double metric M, an

unconstrained extension of the generalized metric. Just like ordinary metrics, M does

not satisfy an algebraic constraint. But even more is true: we do not need to assume M
is invertible to define the action, yet it is invertible on-shell as a consequence of its field

equation M2 = 1 + . . .. The straightforward emergence of M and the simplicity of the

action suggests thatM is a natural variable for the fundamental description of gravitational

degrees of freedom in string theory.

A new consistent truncation of string theory? We have constructed an α′ defor-

mation of the low-energy effective action. In terms of the gravitational variable M and

the dilaton, the action and field equations contain bounded powers of α′. In terms of

(g, b, φ), the equations of motion and the action presumably contain terms to all orders

in α′. The obvious question is: is this the exact effective action of string theory for the

massless sector? It seems not: the four-point and higher point amplitudes in this theory

are not expected to contain the poles associated with the massive string states. The the-

ory is, however, fully consistent: all α′ dependent gauge symmetries are exact invariances.

This indicates that this theory is a consistent truncation of string theory in which some
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of the stringy non-locality has been eliminated. The higher-derivative contributions that

remain can be perhaps traced to those in the three-closed-string vertex. With a suitable

off-shell definition of the vertex (not the one used in closed string field theory, in fact) the

massless field three-vertices contain only finite number of derivatives (two, four, and six

for the case of three gravitons). The theory we have may be the consistent completion of

such cubic theory.

A new worldsheet theory? We extended double field theory consistently to higher

order(s) in α′. The method is a “complete” result for a system related to the usual string

theory, but employing free, chiral bosons. Further investigation is required to determine

how this chiral string relates to the usual string beyond the classical level. It would be useful

to have a derivation of this theory obtained by gauge fixing of the standard first-quantized

action. Such gauge-fixing would teach us how to introduce ghost fields, which are needed

beyond the classical level discussed in this paper. In this theory the strong constraint

ensures that the OPE of fields is nonsingular. Thus the derivation of the field equations

from conformal invariance is greatly simplified, as compared to the usual calculation of

beta functions [4]. It also suggests a new string field theory based on the BRST operator

for this chiral Virasoro algebra.

Covariant derivatives, torsions, and curvatures. For further clarification of the ge-

ometry, the inclusion of the Lorentz current algebra will allow for true covariant derivatives

in a vielbein formalism (also required for supersymmetry) [36]: α′ corrections to torsions,

curvatures, and local Lorentz transformations will then automatically follow by the same

methods used in this paper. The corresponding expressions should exist in terms of the

generalized metric used here and generalized Christoffel symbols as an extension of the

methods in [23] (eqs. (1.5) and (1.6)). Some components of Riemann would still be unde-

termined, since suitable generalized constraints are still going to fail to fix the connection

completely. But just as in the case of the two-derivative theory, the contractions that give

the scalar curvature may eliminate all undetermined components. If this is so, the action

density would simply be the “scalar curvature” associated with the α′-corrected Riemann.

Relation to conventional field theory. It is of great interest to see how the theory

given here is related to one that has a metric g and a two-form field b with conventional

gauge transformations — of course, by sacrificing manifest T-duality. This assumes that

the α′-deformation of our gauge structures can be trivialized using T-duality violating and

gauge non-covariant field redefinitions. This seems very plausible, but should be investi-

gated. Naively, one may try to identify the conventional fields g and b via the generalized

metric H, as the latter is naturally parametrized in terms of these fields. As noted at the

end of section 7.2, however, writing M in terms of H was only possible on-shell. Therefore,

from this starting point one cannot derive off-shell gauge transformations of g and b, nor

an off-shell action for these fields. Perhaps it will be possible to identify g and b directly as

components of the double metric M, which would also contain a number of auxiliary field

degrees of freedom, but this remains an open question. Some progress may be possible

in a perturbative analysis around a constant background, giving a relation between dou-
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ble metric fluctuations and the (background-dependent) field variables in closed string field

theory. Partial results along these lines have been obtained, and we hope to report on them

in the near future. A related question is the appearance of higher-order curvature terms

in the action. To this end we note that the cubic term of the action is essentially the same

as the most singular (1/z6) term in the OPE of three operators T ’s at three different z’s.

But this is the same calculation that gives the three-point function of the corresponding

vertex operators (the operators minus their vacuum pieces, with the ghosts cancelling the

1/z6). The result of the latter is the cubic pieces of R+R2+R3 (where “R” stands for the

Riemann tensor). Our action is expected to yield the T-duality covariantization of this.

Relation to conventional string theory. We have dealt with genuine string theory,

which is evident from our starting point, where the equations of motion came from the

closure of the Virasoro algebra and the action was written to give such equations of motion.

The formalism, however, allows one to define other gauge invariant terms that could be

added to the action, at the price of changing the field equations and perhaps losing the

connection to string theory. Such alternative actions may be of some interest. On the

other hand, the existence of these higher-derivative gauge-invariant terms could allow the

construction of those α′ contributions that turn the present theory into one that reproduces

the dual amplitudes of string theory.

Other. The action and field equations found here are unusual in that they contain both

dynamics and algebraic constraints from the same field (no Lagrange multipliers or auxiliary

fields). This is similar to the decomposition of gauge fields into gauge, auxiliary, and

dynamical components in a lightcone gauge, but here the decomposition is local and Lorentz

covariant. It would be interesting to see if this new concept can be extended to other

systems. An obvious avenue of extension of the current results is to superstrings, whose

classical treatment was begun in [10–12]. It may also be interesting to consider the inclusion

of higher weight operators describing higher spin fields.
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A Quadratic identities

O2 ◦w O1 = (−1)w1+w2−we−LO1 ◦w O2 (A.1)

O′
1 ◦w O2 = (w − w1 − w2)O1 ◦w O2 ,

(O1 ◦w O2)
′ = O′

1 ◦w+1 O2 +O1 ◦w+1 O′
2 (A.2)
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S ◦wO+1 O = O′

S ◦wO O = wOO

S ◦wO−1 O ≡ div(O)

S ◦wO−2 O ≡ 1

2
tr(O) (A.3)

Examples:

tr (O′) = (trO)′ + 6divO,

div (O′) = (divO)′ + 2wOO (A.4)

trV = tr f =div f = 0 (A.5)

tr(V ′) = 6 divV, div(V ′) = 2V + (divV )′, div(f ′) = 0,

div(f ′′) = 2f ′, tr (f ′′) = 0 (A.6)

B Cubic identities

O1 ◦ŵ (O2 ◦w2+w3−w O3)−O2 ◦ŵ (O1 ◦w1+w3−w′ O3)

=
w′∑

w′′=1

(
w′ − 1

w′′ − 1

)
(O1 ◦w1+w2−w′′ O2) ◦ŵ O3

ŵ + w + w′ = w1 + w2 + w3 , w′ ≥ 1

(B.1)

Examples:

• w1 = w2 = w3 = 2 :

• w = 2, w′ = 4, ŵ = 0

T1 ◦0 (T2 ◦2 T3) = T2 ◦0 (T1 ◦0 T3) + (T1 ◦0 T2) ◦0 T3

+ 3(T1 ◦1 T2) ◦0 T3 + 3(T1 ◦2 T2) ◦0 T3 + (T1 ◦3 T2) ◦0 T3

(B.2)

• w = 2, w′ = 3, ŵ = 1

T1◦1(T2◦2T3) = T2◦1(T1◦1T3)+(T1◦3T2)◦1T3+2(T1◦2T2)◦1T3+(T1◦1T2)◦1T3 (B.3)

The two equations above with the first tensor taken to be S give

1

2
tr(T1 ◦2 T2) =

1

2
T1 ◦0 (trT2) +

1

2
(trT1) ◦0 T2

+ 3 (divT1) ◦0 T2 + 6T1 ◦0 T2 + T ′
1 ◦0 T2

div(T1 ◦2 T2) = T1 ◦1 (divT2) + T ′
1 ◦1 T2 + 4T1 ◦1 T2 + (divT1) ◦1 T2

(B.4)
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• w = 5, w′ = 1

0 = T2 ◦0 (T1 ◦3 T3) + (T1 ◦3 T2) ◦0 T3 (B.5)

• w = 4, w′ = 1

T1 ◦1 (T2 ◦0 T3) = T2 ◦1 (T1 ◦3 T3) + (T1 ◦3 T2) ◦1 T3 (B.6)

• w = 4, w′ = 2

T1 ◦0 (T2 ◦0 T3) = T2 ◦0 (T1 ◦2 T3) + (T1 ◦2 T2) ◦0 T3 + (T1 ◦3 T2) ◦0 T3 (B.7)

• w = 2, w′ = 4

T1 ◦0 (T2 ◦2 T3) =T2 ◦0 (T1 ◦0 T3) + (T1 ◦0 T2) ◦0 T3

+ 3(T1 ◦1 T2) ◦0 T3 + 3(T1 ◦2 T2) ◦0 T3 + (T1 ◦3 T2) ◦0 T3

(B.8)

• w = 3, w′ = 3

T1 ◦0 (T2 ◦1 T3) =T2 ◦0 (T1 ◦1 T3) + (T1 ◦1 T2) ◦0 T3

+ 2(T1 ◦2 T2) ◦0 T3 + (T1 ◦3 T2) ◦0 T3

div(T2 ◦1 T3) =〈T2|div(T3)〉 + 〈div(T2)|T3〉 (B.9)

C Evaluated products

tr(T ) = ηMNTMN − 3(TMN∂M∂Nφ+ ∂ · T̂ + T̂ · ∂φ)

div(T )M = ∂NTMN + TMN∂Nφ− 1

2
TNP∂N∂P∂

Mφ− T̂M − 1

2
∂M (∂ · T̂ + T̂ · ∂φ)

div(V ) = ∂ · V + V · ∂φ (C.1)

〈T |f〉 = 1

2
(TMN∂M∂Nf + T̂M∂Mf)

(T ◦1 f)M = TMN∂Nf +
1

2
(∂MTNP )∂N∂P f

(f ◦1 T )M = − TMN∂Nf +
1

2
TNP∂N∂P∂

Mf +
1

2
∂M (T̂N∂Nf) (C.2)

〈V |T 〉 = − 〈V |T̂ 〉 − TMN∂MVN +
1

2
(∂MTNP )∂N∂PVM

(V ◦1 T )M = TMNVN − 1

2
([V, T̂ ]MD + ∂M 〈V |T̂ 〉) + 1

2
TNP∂N∂PV

M − TNP∂M∂NVP

− (∂NTMP )∂PVN +
1

2
(∂NTPQ)∂M∂P∂QVN (C.3)
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(V ◦2T is in (4.60). Here 〈V |T̂ 〉 means the inner product from treating T̂MZM as if it were

a vector and not a pseudovector.)

T1 •1 T2 =− 1

4
T1

PQ
↔
∂MT2PQ + (T1

LK∂LT2KM − T2
LK∂LT1KM ) +

1

2
∂PT1

LK
↔
∂M∂LT2K

P

+
1

2
(∂KT2

PQ∂P∂QT1
K

M − ∂KT1
PQ∂P∂QT2

K
M )− 1

8
∂P∂QT1

KL
↔
∂M∂K∂LT2

PQ

− 1

2
([T̂1, T̂2]C )M + T̂1

KT2KM − ∂P T̂1
K∂KT2

P
M − ∂M∂P T̂1

KT2K
P − T̂2

KT1KM

+ ∂P T̂2
K∂KT1

P
M + ∂M∂P T̂2

KT1K
P +

1

2
∂P∂QT̂1MT2

PQ

+
1

2
∂M∂P∂QT̂1

K∂KT2
PQ − 1

2
∂P∂QT̂2MT1

PQ − 1

2
∂M∂P∂QT̂2

K∂KT1
PQ

+ ∂M

[
3

4
(∂P T̂1

KT2K
P − ∂P T̂2

KT1K
P )

− 3

8
(∂P∂QT̂1

K∂KT2
PQ − ∂P∂QT̂2

K∂KT1
PQ)

]
(C.4)

D Alternate projection

We consider here a different, tilde projection from operators O to operators Õ. There is

also a different divergence operator D̃iv associated with this projection. Although we do

not have a specific application in mind, this projection is in some ways simpler than the

overline projection.

The operator Õ is defined implicitly by the following relation

(Õ)′ ≡ 1

wO − 1
O ◦wO+1 S . (D.1)

The derivative identity shows that the above implies that

(̃O′) = 0 . (D.2)

We can evaluate Õ in (D.1) by use of the symmetry identity which confirms that the

right-hand side is a z-derivative. We then get

Õ = O +
1

wO − 1

wO∑

w′=1

(−1)w
′

(w′ + 1)!
(S ◦wO−w′ O)(w

′), ˜̃O = Õ (D.3)

For the new divergence we define

D̃iv(O) ≡ 2

wO−1∑

w′=0

(−1)w
′

(w′ + 2)!
(S ◦wO−w′−1 O)(w

′) = div(O)− 1

6
[tr(O)]′ + . . . (D.4)

Õ = O − 1

2(wO − 1)
(D̃ivO)′, D̃iv(Õ) = 0, D̃iv(O′) = 2wOO (D.5)
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In particular,

tr T̃ = trT − 3 div2 T = trT

= ηMNTMN − 3∂M (∂NTMN + 2TMN∂Nφ)− 3TMN∂Mφ∂Nφ

(D̃ivT )M =

[
divT − 1

6
(trT )′

]M

= −T̂M + ∂NTMN − 1

6
∂MηNPTNP + TMN∂Nφ+

1

2
(∂MTNP )∂N∂Pφ

T̃ = T − 1

2
(D̃ivT )′ = T +

1

12
(tr T )′′

=
1

2
TMNZMZN − 1

2

{[
∂NTMN − 1

6
∂MηNPTNP + TMN∂Nφ

+
1

2
(∂MTNP )∂N∂Pφ

]
ZM

}′

(D.6)

We also have the trivial cases

S̃ = S ⇒ tr S̃ = 2D, D̃ivS = 0 . (D.7)

For the variation of an arbitrary projected operator, explicit evaluation yields

δÕ = δ̃O − 1

4(wO − 1)
(O ◦wO−1 δφ)

′ . (D.8)
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