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1 Introduction

Abelian T-duality, the invariance of string theory when the radius of an S in target space
is inverted, has long served as a catalyst for theoretical developments. Given its prominent
role, a long standing challenge has been to establish T-duality in more general contexts for
instance when the target space admits a non-Abelian group of isometries [1]. Two decades
ago, in a remarkable sequence of works [2, 3] by Kliméik and Severa it was shown that in
special circumstances one may even relax the imposition of an isometry in target space and
still retain a notion of T-duality called Poisson-Lie (PL) duality.

Some caution should be exercised here; whilst the maps between non-linear sigma-
models induced by non-Abelian [4] or more generally PL T-dualities [2, 3, 5, 6] are canonical
transformations of the classical phase space, it is hard in general to establish them as fully
fledged quantum equivalences. Indeed in a generic context one should not expect to have
control of either o/ or g, effects. Optimistically one might suggest that these “dualities”
constitute a map from a CFT to a new CFT’ for which modular invariance may necessitate
the inclusion of extra twisted sectors. The partition sums of these theories need not match.
This viewpoint dates back to [7] and was recently shown to be the case in a simple SU(2)
non-Abelian T-dualisation [8].

Nonetheless these generalised “dualities” (and henceforth we drop the quotation marks)
retain utility as solution generating techniques within supergravity and continue then to
hold interest for their potential application to holography. Non-Abelian T-duality for in-
stance can be used to construct novel examples of holographic spacetimes (see e.g. [9-11]
for early works in this direction and [12] for the field theoretic interpretation). Poisson-Lie
T-duality at first sight appears to concern rather complicated looking spacetimes. However
this complexity can in some cases be illusory. In fact a class of integrable models, known
variously as n-deformations or Yang-Baxter sigma-models, introduced by Kliméik [13] some
years ago constitute exemplars of PL. T-dualisable theories. A significant amount of ac-
tivity has followed from the introduction of the integrable n-deformation of the AdSsxS®
spacetime [14, 15]. A further development has been integrable A-deformations [16, 17| of
(potentially gauged) WZW-models which are related to n-type deformations [18-20] via a
Poisson-Lie duality transformation combined with an analytic continuation of certain Euler
angles and couplings.

From the worldsheet perspective such generalised dualities can be rendered manifest
in a doubled formalism much like that of Abelian T-duality introduced in [21, 22]. In
these approaches one considers a sigma-model whose target space has double the number
of dimensions. Half of the coordinates describing this doubled space can be eliminated to
recover a standard sigma-model.! When this reduction can be done in multiple ways we
recover T-dual related descriptions.

This philosophy was extended to generalised T-dualities in the original works [2, 3]
as well as in [26]. Other recent interesting works in this direction include [27, 28]. The

!This reduction requires the imposition of a chirality constraint which is a delicate matter quantum
mechanically and in [21, 22] it is achieved at the expense of manifest Lorentz invariance, other alternatives
based on gauging e.g. [23—-25] may prove more amenable to a quantum treatment.



doubled space is equipped with the familiar generalised metric and O(D, D) invariant inner-
product and is further required to be a group manifold, ID,and so comes equipped with a
canonical three-form. A useful presentation of the doubled worldsheet is provided by the
first order formalism now coined £-models [29], first introduced in [3] and developed in [30].
PL dualisable sigma models, as well as - and A- and - deformations are all examples of
theories that can be extracted from £-models.

Abelian T-duality has an elegant target space duality symmetric formulation known
as Double Field Theory (DFT) [31]. Since a worldsheet doubled formalism is available
for generalised T-dualities one would hope for a similar understanding at the level of the
target space. The first clues here come from studying the one-loop S-functions of the
worldsheet theory [32, 33]. In [32] it was pointed out that the S-function for the gener-
alised metric corresponds to the scalar equation of motion of a gauged supergravity with
the structure constants of the doubled target space providing the embedding tensor. In
DFT the way such gauged supergravities arise is by performing a Scherk-Schwarz reduc-
tion [34-40]. Thus what one requires is a precise formulation of DFT on the group manifold
D. DFTwyzw [41-43] provides exactly such an approach and the study of its relation to
Poisson-Lie T-duality was initiated [44].

This manuscript will continue the development of generalised T-dualities and integrable
deformations within DFT. Specifically we will show how the type II extension of DFTwzw
provides an immediate set of criteria that extends the structure of £-models to the R/R and
dilaton sector. In the case where this £-model describes a PL T-dualisable NS sector, this
gives rise to criteria that must be obeyed for a full type II supergravity background to be
PL T-dualisable. We shall describe backgrounds for which these criteria hold as being PL
symmetric. DFTwzw makes this symmetry manifest and thereby significantly simplifies
their analysis. For example, instead of having to cope with difficult, coupled PDEs, the
field equations become algebraic.

A pivotal element in our discussion will be a generalised frame field on the spacetime
which allows us to connect the fields on the doubled space with the conventional type II
supergravity fields. In this work we will follow a technique suggested in [45] to construct
a set of O(D, D) valued generalised frame fields that furnish the algebra of D via the
generalised Lie derivative. In the cases we are most interested in, and that includes 7n-,
M- and (-deformations as well as all PL dualisable models, this construction is carried out
explicitly making use of the group theoretic quantities on D and its coset M = D/ H by
a maximal isotropic subgroup H. Our discussion will be predominantly local in nature,
however where this construction can be extended globally this provides an understanding
of £-models as examples of generalised parallelizable spaces [46, 47].

The n- and some [-deformations are governed by modified type II field equa-
tions [48-50]. Modified type II requires a Killing vector, I, and a one form, Z, in addition
to the bosonic field content known from standard type II supergravity. Connections to
DFT and ExFT of modified supergravity are discussed in [51, 52], here we show that they
also arise from DFTwzw if the subgroup H is non-unimodular. In [53-55] an open string
interpretation of such I modified supergravities and integrable deformations was given. We
will illustrate these ideas with a number of specific examples. They emphasis how exploit-



ing PL symmetry can make challenging calculations in integral deformations much easier
and vindicate the combination of DFT techniques and integrable deformations.

The paper is organised as follows: in section 2 we review £-models and how the A- and
n-deformations fit into this framework. In section 3, we develop further the implementa-
tion of Poisson-Lie T-duality in Double Field Theory [44] to show how the R/R-sector of
(modified-) SUGRA can be elegantly extracted. After a short reminder of DFTwzw, we
prove how for a group admitting a maximally isotropic subgroup H together with some
additional conditions there exists a generalised frame field solving the section condition of
DFT. Then in section 4 we discuss how the DFT manifest implementation of Poisson-Lie
T-duality can be extended to the R/R-sector and dilaton. In the last section 5 we apply
the formalism to integrable deformations and provide some explicit examples of how the
R/R-sector can be extracted for e.g. AdS3 x S® backgrounds. The goal of section 5 there is
not to present novel backgrounds but to demonstrate the efficacy of the approach proposed
in the paper. We conclude with a brief discussion of some of the outstanding challenges as
we see them. The presentation is complemented with a number of technical appendices.

Note added. Whilst this manuscript was in its very final stages of preparation we re-
ceived a preprint [56] from math.DG that overlaps with some of the conclusions of this
paper, albeit cast in the language of Courant Algebroids rather than DF Tyyzw.

2 £-models: Poisson-Lie duality and integrable theories

To make this article self-contained, let us begin by reviewing the basic features of £-models
before describing the specialisation to Poisson-Lie T-duality and integrable deformations.

Our starting point? is a real Lie algebra d of even dimension, dimd = 2D, equipped
with non-degenerate, ad-invariant, symmetric inner-product (-, -)) that we assume to be of
split-signature. Letting T4 be a basis of generators for 0, we shall write

(T4, Tp)l =Fap®Tc, (Ta Tp)=nap. (2.1)

We denote the components of the matrix inverse of 745 as n# and we will raise and lower
indices with this.

The £-model is a dynamical system that can be conveniently parametrised by a set of
algebra-valued maps j = j4 Ty : Sl — 9 obeying the classical current algebra

{ja(0),iB(0")}p.B. = Fap®jc(0)5(0 — o) + napd'(c — '), (2.2)
with dynamics determined by the Hamiltonian
1 . .
Hun = § dofi(o). £((0))). (23)

Here £(T4) = E4P Tp, the eponymous operator, is an idempotent involution of 0 that is
self-adjoint with respect to (-,-). We can parametrise £ in terms of a generalised metric,
H, as

EaB =Hacn®, Hap=Hpa, Hacn“PHpp=nap. (2.4)

2A guide to notation, conventions and some algebra terminology can be found in appendix A.



We will be interested in the case, and assume it henceforth, that 9 admits a maximally
isotropic subalgebra 6 C 0. Then the £-model can be reduced to a conventional non-
linear sigma-model whose target space is the coset M = D/ H where D, H are the groups
corresponding to respectively 9, h. To fix notation we let Ty = (T“,T u) where T are
generators of h and T}, are the remaining generators whose span we denote €. In this basis
the inner-product can be taken to be

0 0%
= ) 2.5
NAB <5ab 0 > ( )

It is important to stress that in the decomposition 0 = 6 @ £ we place no requirement on
¢, that is to say in general D/ H is neither a group manifold itself nor a symmetric space
however the examples we shall be most interested in here will indeed be of this type.

The non-linear sigma-model that follows from the &£-model is described by an
action [3, 29]3

Spyis = FSwawlm] = © [ dodr(P(m™10,m).m™0_m), (26)

1 1
Swzw|[m] = oy /dad7‘<(m_18+m,m_18m)> + %r/ (m™Ydm, [m " dm, m~ dm]) .
Mg

(2.7)

Here we have parametrised a group element on D as g(X') = B(a?g)m(x’) where X! =
(a?g,xi) are local coordinates on ID such that z:, i = 1...D, are local coordinates on
Hc D and 2%, i=1...d, are local coordinates that parametrise the coset. The first term
in eq. (2.6) denotes the WZW action on DD, defined with the inner-product (-, -)), evaluated
on the coset representative m. The second term, whose coefficient is —2 times that of the
kinetic term of the WZW model, is defined with a projector obeying [29]

mP=b, KerP=(1+ady & ad, ). (2.8)

2.1 Poisson-Lie models

Let us now discuss the special case where 9 is a Drinfel'd double ie. 9 = h @ b with
both b.,b maximally isotropic subalgebras. This is the setting of Poisson-Lie T-duality. In
this case we can identify the coset with the Lie group manifold D/ H = H and so in the
action eq. (2.6) the representative m(x) can be considered an element of the group H.
Since m~tdm is valued in b, which is an isotropic with respect to (-,-), the WZW part
of the action eq. (2.6) is identically zero and what remains can be cast in the form of a
sigma-model:

S

1 - 1 . ,
D/ = /d20 s (Ey' + H)abl ! = = [ &% (G(z) — B(x))ij0sz'0_27,  (2.9)

s s

3Here we restore an overall normalisation %, which depending on the specific properties of JD/fI, may
require a quantisation in order to define the WZ term unambiguously in a path integral.



in which m~10xm = €4 T, = €% 0+2'T, are the light cone components of the left-invariant
one-forms pulled back to the worldsheet and the normalisation is s = k~1. Later we shall
also require the right-invariant one-forms dxmm™"! = viTy, = v%0+2T, together with the
vector fields e, = €,0; and v, = v',0; that generate respectively right and left actions.
The matrix II is derived from the adjoint action:

ady, Ty = mTam™ ' = MyBTg, 1% = M*M°,. (2.10)

The D? constant parameters in Ey = G — By are related to those of the generalised metric
introduced in eq. (2.4) in the standard way

Gy! ~Gy'By
= . 2.11
fas <B()G01 Gy — BoGalBo ( )

In general the target space metric corresponding to the sigma model eq. (2.9) is unappetis-
ing and lacking isometry however it has a rather special algebraic structure. Although the
currents J, corresponding to left action on H are not conserved in the usual sense they do
obey a non-commutative conservation law

Opdo +O_Joy = F*dyy Jo (2.12)

in which we emphasise that the structure constants appearing on the right hand side are
those of the b. In terms of the target space data, E;; = Gj;j — B;j, this places a requirement
that

Ly, Eyj = —Ft,é* el (B By . (2.13)

This condition on the target space is referred to as a Poisson-Lie symmetry.*

At this stage we make an important observation; using the curved space G;; and B;;
that define the sigma model eq. (2.9) we may define a coordinate dependent O(D, D)
generalised metric

~ G' -G'B
Hijle) = (BG—l G- BG_lB) - (2.14)
1J

A tedious but straightforward calculation reveals that

~

H;ij(z) = EAj(2)HapE” j(2), (2.15)

A B B
BA () = 10 e 0 _ A v~ T 0 (2.16)
) \ooe) o B\ o v . '

The hats on the indices and frame fields are introduced to emphasize dependence only on

where

the coordinates x* and not on the “dual” T3, i.e. 9; = (0,0;) — in the terminology of DF'T

4Taking a further Lie derivative of this relation invokes an integrability condition, namely that viewed
as a map h — h A b the structure constants F’, are required to define a one-cocycle obeying the co-Jacobi
identity. As explained in the appendix B, this property can be understood as the infinitesimal version of
H being a Poisson-Lie group, giving justification for the name.



we have picked a solution to the section condition. Notice also that the frame fields are
(coordinate dependent) elements of O(D, D).

Of course we could swap the réle of the two subgroups. If instead we parametrize
g(X) = m(z)h(z) we can reduce to a theory on the coset M= D/H =~ H. In that case
we find the Poisson-Lie T-dual theory to eq. (2.9) given by an action

Spyi = — / Poeey (By+ 1) Py =— [@Po(@-Bo.ao s,  (217)
s s ! J
where m10.m = 61,7 = éagﬁiicﬂ:a and II defined via the adjoint action. An important
feature is that the two PL sigma-models are related by a canonical transformation [2, 3, 5, 6]
at the classical level which can be derived from a generating functional

F = jq{dae(gz,x), (2.18)

in which 6 is the pull back of a one form to S! whose form is known only implicitly. However
an elegant expression can be given for its derivative [6]

w=df =201l Néy+ (O ) gpe® A e’ — (O T, A, O=id—III. (2.19)

2.2 Integrable deformations

An application of £-models is to provide a universal description of two superficial distinct
classes of integrable deformations known as 7- and A-deformed theories [29]. Let us review
some salient features of these deformations which we shall return to in some detail later.

2.2.1 mn-deformation

In its simplest form the 7-model is a deformation of the principal chiral model on a group
manifold G defined in terms of an operator R, an endomorphism of g obeying the modified
classical Yang-Baxter equation

[RX,RY] - R([RX,Y]+ [X,RY]) = -?[X,Y], VX,Y egqg, (2.20)

where ¢ € {—1,0,1}. We require that R be skew-symmetric with respect to the Cartan-

Killing form (t,, tp) = Kaqp = —Qh% Jac foa€ with [ta, ty] = fap°te with {t,} the generators of g.
The n-deformation corresponds to taking the choice ¢*> = —1 with R acting to swap

positive and negative roots and as zero on the Cartan and is defined by the action

S, = it /d2o<v+, (1=nR) " v_). (2.21)

™

This theory is of particular interest since it preserves the integrability [57] of the principal
chiral model (at least classically).” What may not be immediately obvious is that this is

°In actuality, integrability of theory in eq. (2.21) is ensured for any value of ¢* € {—1,0,1} [58, 59] and
the case of ¢ = 0 is of relevance in describing e.g. TsT deformations [60, 61].



an example of a model admitting Poisson-Lie T-duality and thus an £-model. Indeed the
action (2.21) can be brought into PL form of eq. (2.9) with the identification

I{ab

(Eo—l)ab _ T _ Rab, I — Rab _ D[g]aCRCdD[gfl]db’ g = ]'%71 = tn, (2‘22)

in which we have defined R(t,) = R.’t, and adgt, = gtag™! = Dlg]."ty for g € G, and

@ To understand the £-model corresponding to this sigma-model,

raised indices with
one needs to identify the corresponding double 0 and idempotent operator £. Note that

eq. (2.20) ensures that the bracket

obeys the Jacobi identity and thus defines a second Lie-algebra we call gr. It is a standard
result that @ = g + gr can be identified with the complexification @ = g© which, when
viewed as a real Lie algebra with elements Z = X +¢Y, X,Y € g, can be equipped with an
inner-product given by the imaginary part of the Cartan-Killing form. Under the Iwasawa
decomposition @ = g€ = g+ (a+n) both g and b = a+n are maximal isotropic subalgebras.
Finally the operator £ is given by [29]

5:Z%%(n—nil)Z—%(n+n*1)ZT.

2.2.2 A-deformations

Appearing at first sight to be a rather different class of integrable models, A-deformations
can be thought of as a re-summed marginally relevant current-current perturbation of a
WZW-model on a group manifold G. The A-deformed WZW model is specified by the
action [16]

k L .
SA:kSsz[g]+7r/d2J<5+gg Lt —ad,) g g) (2.24)

Here we use the WZW action for a group element g € G as in eq. (2.6) but with the
inner-product simply given by the Cartan-Killing form, x = (-, ). In addition to the metric
and B-field obtained from the above action, the construction of the A-deformed theory [16]
requires a Gaussian elimination of fields which when perfomed in a path integral gives rise

to a dilaton .
b\ = ¢o — 5 logdet(1 — Aady-1), (2.25)

in which ¢g is constant. The A-deformation can be recast into an £-model for which
0 = g @ g, whose elements are a pair {X, Y}, equipped with an inner-product

({ X0, Y1}, {Xo, Yo} ) = (X3, Xp) — (11, Y2) (2.26)

With this inner-product it is clear that the diagonally embedded G is a subgroup and a
maximal isotropic. However the anti-diagonal, whilst being the complementary isotropic,
is not a subgroup. The specification of the £-model is completed by defining

1+ \? 2\
EA{X Y} W{Xv Y} - W{Y; -X}, (2.27)



from which a flat space generalised metric can be obtained via eq. (2.4). The metric and B-
field of the A-model can be obtained by dressing this generalised metric with flat (algebra)
indices with an appropriate frame field as in eq. (2.14). The construction of this frame
field is slightly more involved than in the case of the PL model, principally because the
anti-diagonal embedding of G is not a subgroup and we are not dealing with a Drinfel’d
double. This feature is crucial to ensure that the WZ term in eq. (2.6) plays a role. A
second delicate matter is to relate the coset representative m(z), and quantities derived
from it, to those obtained in terms of the group element g(z) defining the A-model. We
shall return to both these points in the sequel.

3 Target space description of £-models

We begin this section by reviewing double field theory on a group manifold, DFTwzw,
which will be our framework to implement £-models. We will then show how the section
condition can be solved by introducing a set of frame fields that further describe the
generalised geometry of M = DD/ H. We will explain how modified supergravity arises out
of this procedure.

3.1 A brief review of DFT,,w

We now present a more consolidated target space perspective of the discussion in the
previous section. For this we shall employ the framework of DFTwzw [42]; a specification
of the O(D, D) symmetric double field theory that assumes an underlying group manifold,
D, of dimension 2D. The corresponding algebra ? is as in eq. (2.1), and in particular is
equipped with an ad-invariant inner-product, n, of split signature that will be used to raise
and lower indices.

We introduce a group element, g(X), depending on X!, I = 1...2D, local coordinates
on D and the left-invariant Maurer-Cartan forms g~ 'dg = E4;Ta4dX' from which is
constructed Dy = EA'0y, (with E 4! the inverse transpose of ZEA[) a set of vector fields
generating a right action obeying [D4, D] = Fap®Dc.

The NS/NS sector. The common NS sector of DFTywyzw consists of a generalised
metric HAP, which a priori may depend on all of the X', and a generalised dilaton d. The
dynamics are encoded by a target space action [42],

1 1
Sns = / dQDXeZd(S’HCDVcHABVDHAB — §HABVBHCDVDHAC
1
— 2V AdV g HAB + 4HAPY 4dV pd + 6FACDFBCDHAB> . (3.1)

Here we have introduced a covariant derivative V that acts on a vector density V4 with
weight w as,

1
VaVE =D,VE 4+ gFACBVC —wF,VE. (3.2)

The generalised metric has weight w = 0 whilst the generalised dilaton e~2¢ has w = 1 and
Vad = —%eQdVAe_Qd. The density correction makes use of F'4 = D 4logdet IE.



object | gen.-diffeomorphisms 2D-diffeomorphisms  global O(D, D)
Hap | tensor scalar tensor
V ad | not covariant scalar 1-form
e~24 | scalar density (w=1) scalar density (w=1) invariant
X | spinor scalar density (w=31) spinor
NAp | invariant-tensor invariant-scalar invariant
F45€ | invariant invariant tensor
E4! | invariant vector 1-form
SNs | invariant invariant invariant
Sk /R invariant invariant invariant
D4 | not covariant covariant covariant
V 4 | not covariant covariant covariant

Table 1. Transformation properties of objects under DFTwzw symmetries.

The local symmetries of the action comprise:

1. Generalised diffeomorphisms meditated by the generalised Lie derivative

LVA =PVpVA — VBV + P nepV OV + wVpePva, (3.3)
2. Conventional 2D-diffeomorphisms meditated by the Lie derivative
LeVA =BDpVA —weB FpV A + wDpeBvA. (3.4)

It should be emphasised here that under the conventional 2 D-diffeomorphisms objects with
curved space indices I, J etc. transform tensorially whereas those with algebra indices A, B,
transform as scalars. In particular with respect to this transformation H4p is a scalar and
nap is an invariant (i.e. constant) scalar. See table 1 for further details.

Closure of the local symmetry algebra necessitates that fields and gauge parameters,
and products thereof, can depend on coordinates in only a restricted way. This restriction
is called the section condition and reads

(Dafi —wiFafi) (DA fo —waF4 f5) =0, (3.5)

in which f; and fy indicate any field or combinations of fields with the corresponding
weights w; and wa, respectively. Notionally solving this condition should amount to giving
a splitting of coordinates X! = (Zz,2") in to physical {z'}, on which fields can depend, and
non-physical {Z;} on which fields cannot depend. Once a solution to the section condition
is adopted of course the full conventional 2 D-diffeomorphism symmetry is broken, and all
that survives can in fact be absorbed into the generalised diffeomorphisms.

Having the action (3.1), we can derive the corresponding equations of motion by varying
it with respect to the generalised metric and the generalised dilaton. Doing so, we find [42]

5SNs = / PP Xe 2 poHAP  and dSns = —2 / d*PXe R4, (3.6)



with

1 1
Kag = évAHCDVB”HCD - (Ve = 2(Ved)|HEPV pHap + 2V (4Vpyd
—VuH PV pHp)o + [V — 2(Vpd)] [HOPV (aH gy + HE (aVeHD b))

1
+ EFACDFBCDa (3.7)

and

R = AHABY 4V gd — VAV gHAE — aHABY 4d V gd + AV 4d V g HAP

1 1 1
+ §H0DVCHABVDHAB - §HABVBHCDVDHAC + 6FACD1433013;«1{/“9. (3.8)
In order to obtain the field equations, one has to take into account that §HAE is not an
arbitrary rank two tensor but restricted to symmetric O(D, D) generators. Therefore, one
introduces the generalised Ricci tensor [42, 62]

Rap = 2P(ACICCDFB)D with Pyp = %(T]AB +,HAB) and FAB = %(TZAB — ,HAB)-
(3.9)
It projects out the irrelevant components of K and allows to write the field equations for
the NS/NS sector in the compact form

Rap=0 and R =0. (3.10)

The R/R sector. Let us now examine the R/R sector for which the target space action

on D reads [63]

Sp/r = i/dQDX (VX)) Sy Vx.- (3.11)

Here x is a Majorana-Weyl spinor of Spin(D, D) and depending on its chirality encodes
either type IIA or IIB theories. A natural way to parameterise this spinor is in terms of even
or odd differential forms with degree up to D. Let us denote these forms as C?) so that

D

1 o
X=2_ 9072 ) C) o, ... T]0) (3.12)
p=0

in which the I'-matrices T'4 = (Fa, I‘“) obey {I'4, TP} = 21948 and |0) is the Clifford
vacuum annihilated by the I';. The action of an O(D, D) element O on a spinor, denoted
as Sp, is implicitly defined by the Clifford relation

= Serfs;togt. (3.13)
The covariant derivative for spinors entering the action is defined as

1 1
Vx =I4Vay with Vay=Day— EZFABCFBCX - 5FAX, (3.14)
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where we take into account that y transforms as a density with weight w = 1/2. The Dirac
operator Y is nilpotent providing that F4pcFABC = 0, this requirement in fact follows
from the section condition of DFT and we shall assume it to be the case.

Generalised diffeomorphisms act on the spinor as

1 1
Lox ="Vax+ §VA§BFABX + §VA§A><, (3.15)

and under 2D-diffeomorphisms it transforms exactly as in eq. (3.4) as a scalar with density
1/2. The field strengths are defined as G = Y. In order that eq. (3.11) describes the
correct degrees of freedom a self-duality condition must be imposed [63]

G=-KG with K=C"18;, (3.16)

in which C is the charge conjugation matrix.’

The variation of the action with respect to x gives rise to the equations of motion
V(KG) =0, (3.19)

which is automatically satisfied providing the self-duality constraint (3.16) and Bianchi
identity are imposed. Furthermore, the NS/NS sector equations of motion (3.10) receive
the additional contribution from also varying the R/R part of the action [63]

2d
Rap — %H( 4CGT 3y oKG = 0. (3.20)

3.2 The generalised frame fields

In order to present concrete solutions to the section condition let us restrict our attention
to the case relevant to £-models, i.e. that 9 admits a subalgebra h C d. Let Ty = (Tva, T.)
where T are generators of b and T, are the remaining generators whose span we denote
€. The subalgebra is maximally isotropic with respect to 1. The space £ is automatically
maximally isotropic but not necessarily a subalgebra. Locally in a patch, one can always
decompose a group element g € DD as

g(X") = h(#;)m(z?), heH and m € exp(t). (3.21)

This splitting should be extended globally, working patchwise if a global section m is un-
available [64]. Note that the coset-representative m(x?) is chosen to be just the exponential
of coset generators; this represents a preferred choice of coordinates on D/ H which will be
employed in what follows.

5Charge conjugation is defined by its action
crc'=r,=@"" and Cr,c'=r*=(@,)" (3.17)

on the T-matrices. This constraint requires that (C~'S%)? = 1 and therefore that D(D — 1)/2 is odd.
Thus, we can only impose it (D < 10) for [63]

D ={10,7,6,3,2}. (3.18)
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Now we make one further important requirement, namely we demand that
N =0 of n'=Esn'"PER’. (3.22)

In was shown in [65] when ID/H is identified with a group manifold (i.e.  is a Drinfel’d
double) or is a symmetric coset then eq. (3.22) follows directly from eq. (3.21). This will
be the case in all examples we are interested in this paper, however in anticipation that
there may be more general solutions we keep this as a separate requirement.

Then the section condition in DFT is implemented by demanding physical fields just
depend on the coordinates x* of the target space D/ H and not on Z;. A slight subtlety
arises for densities f of weight w where only the combination

fldet &, = f(z') with T, 'di; = h~'dh, (3.23)

depends on z?, whilst f depends on all coordinates. The physical fields are then the
generalised metric and the corrected dilaton:

SO o 1 :
H () and d(z') =d+ 5 log | det é,’|. (3.24)

The last equation takes into account that e~2¢ is the covariant density with weight w = 1.
Similarly in the R/R sector the coordinate dependence of x is restricted to

S=x = Xy/| det é| (3.25)

where ¥ depends on the physical coordinates x* only and S 5 will be the spinorial counter-
part of a certain frame-field we shall now define.

We now need to express the actions eq. (3.1) and (3.11) in terms of these restricted
quantities H1J , d and X which can be thought of as living in the generalised tangent space
of M =D/ H. To do so we shall show that when the factorisation eq. (3.21) is assumed
we can define a set of generalised frame fields E Af that obey

i. B4l is an O(D, D) element ,
ii. B Af only depends on the physical coordinates z’,
iii. E’Aj gives rise to the frame algebra,
L Epl = FapCEcl (3.26)

where F45¢ are the structure constants of the double D and L is the generalised Lie
derivative of generalised geometry

Lovi= o vl (07¢; —0,eHv7 (3.27)

At this stage we are working locally however where these frame fields can be globally
extended they would define a generalised Leibniz parallelisation on M = D /H [46, 47].
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Also note that because of condition ii we may use the term generalised Lie derivative and
Courant bracket are interchangeable here.

The hatted notation on indices is introduced to emphasise quantities that take values
in the generalised tangent space of M, i.e. when the section condition has been solved so

i v 0 &t
vI— <v1> , 0p= (0 8,~> , and mj;= <5j 0]> : (3.28)

In the present context we have the following useful theorem:

for example

Theorem 1. For each group ID, with a non-degenerate, bilinear, ad-invariant split form Uk
and a mazrimally isotropic subgroup H there exists generalised frame fields on M = lD/H
where eq. (3.21) and eq. (3.22) hold that obey conditions i—iii above. These are realized by

I

~ - A~ F b

Eal = MBS =B V0 OZ. , (3.29)
vp? pji Vb

with

MsB T =mTam™", Tyo%ds' + faAaidﬂ = T4VAde' = dmm™", v%v,) = 55 ,

(3.30)
and p;j the components of a two-form
1 . .
p?) = ipijdxl Adr? =w® — QP (3.31)
in which 1
w® = ivaiAajda:i Adx? (3.32)

and Q3 chosen such that
1 1
d0® =) = 12(<dmm [dmm™ dmm ™) = EZFABCVA AVBAVE . (3.33)

Proof. Condition i is trivially satisfied. The adjoint action of any group element in DD,
and in particular M4?, is an O(D, D) element as 7 is adjoint invariant. The second part
of (3.29), Vsl is also O(D, D) valued, indeed it is the product of a b-field transformation
and a GL(D) action. By construction the frame fields only depend on the coordinates {z*}
and the condition ii is automatic. Finally we have to check the frame algebra condition iii.
First we make use of the easy identity

O;MAP =V MAPFep® | (3.34)

to show that A
EoiLs Ep' = MAPMpP Mo (Tppr + Sper) | (3.35)

in which

UalAbZ‘ (52
(3.36)

L gy 0 0
Tapc = 3Va'0;(Ve" )V Sape = BAA Fpoie, AaP=VaVE = ( . ) .
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Since the structure constants are invariant under the adjoint action the proof is completed
provided

Tapc + Sapc = Fapo . (3.37)

This can be verified component by component:

Sabc -0 Tabc =0

Sabc _ ﬁabc, Tabc =0,

S%e = 2F % + 2F% A gy, T = —F% — 2F%y Ay,
Sabc = 3Fabc + 3Fd[abAc]d7 Tabc = Svaivijcka[ipjk} :

(3.38)

The proof is concluded by substituting the derivative of p from eq. (3.33) calculated using
1
dw® = -3 (FapVANVE A~ FapVAAVEAA), (3.39)

which follows from the Maurer-Cartan identity for V4. O

Comment 1. Using these frame fields we construct derivative operators 0; = EAfDA. As

detailed in appendiz C, nfjaiaj = 0 and therefore the section condition of DFT is solved.

Comment 2. The twisting of a Courant bracket by an H € H3(M,R) (see e.g. [66])

provides an interpretation for the use of Q@ which may not exist globally (even if the

decomposition eq. (3.21) does). Defining new generalised frame fields E'\! as in eq. (3.29)
()

but with now p;j = w;" we have that

EEAEQ = FapCEL + ( : iki (3.40)

Eg@;gm“))
such that H = QO) appears as such a twisting. If £ is also a subalgebra (as in the case of
a Drinfel’d double) this vanishes.

Comment 3. The assumption of eq. (3.22) allows us to introduce, in addition to nap and
Hag, the structure

0 -1
3 = . . 3.41
WAB <1 9 !aivlb> ( )

It will be shown in a forthcoming paper by one of the authors [67] that &, dressed with
an appropriate adjoint action to transport it around the group manifold D, and n equips
TD with an (almost) para-hermitian structure. An interesting question, beyond the present
scope, is to establish the circumstances in which Hap will allow a full Born geometry of [68].
Recently these structures were examined for the case of Drinfel’d double [69] and DFT [70].

Let us close this section with some further properties of the frame field that will be
employed in the sequel. We consider the quantity

) Lo A
ijf{:—aijA 7 (3.42)



An immediate consequence of the frame algebra is that

0O 15 _ 124 5B 2c
Vi) = 3Fhir = 3BT 1B ;B g Fasc - (3.43)
We shall also need the contraction
Qp =" 51, (3.44)

which can be simplified by making use of eq. (3.34) to show
Val0; = ApPFap® — 0;Va" . (3.45)

Then it follows using the Maurer-Cartan identity for VAT, = dmm ™! that

~

Q; = (—vaif“, O;log det v*; — Qgi)vajfa> (3.46)

i )

in which

fr=F", fo=Fu". (3.47)

In the special case of a Drinfel’d double, the final term involving Q) vanishes. Here we see
that €2; will play an important role in the case that b is non-unimodular, i.e when F, + 0.

~

The quantities F} ;. can be thought of as generalised fluxes and, whilst not essential for
what follows, this view is explored in the appendix D.

3.3 Equivalence to (modified) type II supergravity

In what follows, we apply the idea of [44] and rewrite the action (3.1) using the generalised
frame field. We parametrise the generalised metric as in eq. (2.14) and write

HIT = B THABE Y . (3.48)
Similarly, we write the generalised dilaton, recalling eq. (3.24) as
~ 1 1 5
d:¢—zlog|detgij]:d—|— §log]dete“,~€|. (3.49)
Taking into account that,
0;¢(z") = B4} Dad(a"), (3.50)

we can make use of the property that E Af satisfies the frame algebra (3.26) to pull covari-
ant derivatives to generalised tangent bundle. An illustrative example is V 4 acting on a
weightless vector V2 for which

VAVB — 8147‘] + (Q[fkﬁ] — ﬁjki),’,}LJ"/\'K (3.51)

with ﬁf ji defined in eq. (3.42). The generalization to higher rank tensors follows
immediately.
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Next, we take a look at the covariant derivative for the generalised dilaton for which
we must pay attention to the weight factor,

1 ~ 1
Vad = Dad + 5DAlog\detzEBIy = Dad + 5D alog|det v (3.52)

Making of use of eq. (3.46) we have

~ 1~ 1 f g
VAd — 8fd + Xf + §Qf R Xf = 5 <f~avaj9(2)> . (353)
ij
When b is non-unimodular we have by definition X i # 0 [51]. In the following, we will
first consider the NS sector, treating unimodular and non-unimodular cases in turn, and
then we discuss the R/R sector pertaining to both cases.

3.3.1 Unimodular case

Pulling all quantities in the action (3.1) to the generalised tangent space, and doing some
algebra, we obtain for X; = 0 the action of DF'T with the section condition solved

~(1 ~p2 ,\ P
Sns =V / dee_2d<8HKL8K’Hf O HY (3.54)

~

~ o~ 1 ompr ompr i
1J 1J KL 1J
—20;doHY — SHM 0N 0 Hyy + aH 8fdajd>

All occurrences of € ik either directly cancel or occur in contractions that vanish due
to working in a particular solution of the section condition. Let us emphasise that in
eq. (3.54) the section condition has been implemented, the fields only depend on the co-
ordinates x, the integral is only over these coordinates, and the integration over Z has
been performed with a volume Vj; arising from the dilaton factor in the measure. It is
by now well established [63, 71] that the equations of motion derived from this theory
can be equated to the common NS sector (super)gravity field equations for g;;, Bi;, ¢ (see
appendix A for the supergravity field equations used).

3.3.2 Non-unimodular case

If H is not unimodular, we instead obtain generalised type II [48]. This is a modification
at the level of the equations of motion, described in detail in appendix A, that depends
crucially on a Killing vector I obeying

Lig=0, L/H=0, (3.55)

where L is the conventional Lie derivative along I, and a one form Z further constrained
to obey
dZ 4+ H=0, ;1Z2=0. (3.56)

The conditions eq. (3.56) allows the construction of a differential which acts on the formal
sum of forms
d=d +HAN —ZAN —u, d?>=-L;, (3.57)
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such that when the differential form is invariant under I the differential is nilpotent. This
differential operator will be important when discussing the R/R sector.
The first of eq. (3.56) may be integrated to yield

Z=dé+uyB-V, (3.58)

in which H = dB locally and L;B = dV. In the absence of the modifications due to the
Killing vector I the scalar field ¢ coincides with the conventional dilaton.” In the language
of mDFT [51, 72], the corresponding modifications to the DFT equations of motion are
implemented by a shift in the derivative of the DFT dilaton

6f§—> 8136/[—!- Xf . (3.60)

The DFT shift vector in (3.60) is related to the modified supergravity vectors by,

X; = (_IV> . (3.61)

The DFT vector X is not an arbitrary, instead reflecting the requirements eq. (3.55)—(3.59)
it is constrained to be a generalised Killing vector® obeying,

'ﬁijij =0, Exﬁfj =0 and Exc/i\: 0. (3.62)

Since we know already in the unimodular case that the DFT equations of motion are
recovered, it follows that in the non-unimodular case the mDFT equations are recovered
with the identification of the DFT vector X! with that in eq. (3.53) i.e. with

1.~ .
I=5f"0;, V= Q3 (3.63)

Whilst V here depends on a choice of Q23 it was shown in [51] that in fact there is a gauge
freedom that allows one to take V' to be zero.

It is immediate that the first of eq. (3.62) holds but we now investigate under what
circumstances the remaining constraints of eq. (3.62) are valid. Here we make use of the
generalised frame fields and transport the results back to the flat indices with ¢4 = X!'E fA
and HAB = F fAﬁf TE jB. A short calculation shows that,

EAEBLxHY = ¢CDeHAB (3.64)

"To make contact with the notation of [51] we define U = (7B — V such that Z = d¢ + U. The split of
d¢ and U is somewhat arbitrary since one could shift ¢ — ¢ + a« and U — U — da and so can be fixed by
demanding

Li¢g =0, v U=0. (3.59)

8To see this recall that a DFT gauge transformation generated by a vector V;= (v, 9;) acts as 0H;; =
LvH;; and in the solution to the section condition 9; = (0, ;) simply generates diffeomorphism dg = Ly g
and gauge transformations 6B = L, B + do.
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and hence if H4P is constant (as is in case of £ models) the second of eq. (3.62) holds. For
the third of eq. (3.62) we have

~ o~ s oo~ 1 S
I 1
Lxd=X'0;d— 50;X
_ o~ - 1 a 1 ra 1 re PaA
=X afd+ iaflogdetvi —Zf fa+1f F PN,

Now taking the trace of the Jacobi identity for the subalgebra b yields f“ﬁbca = 0 such
that the final term in the above vanishes. A consequence of the Jacobi identities for 0 is
that FapcFABC = 4fafa. Since we require FapcFABC = 0 to avoid violations of the
section condition for the cases we are interested in ff, = 0.

We can then make use of eq. (3.24) to recast the result in terms of conventional volume
preserving 2D-diffeomorphism acting on d:

S~ 1
Lxd= Led = —562‘1L56_2d. (3.65)

Hence when the DFTwzw dilaton, d, is invariant under 2D-diffeomorphisms then indeed
we obey the criteria in eq. (3.62) and it is evident that we reproduce the field equations of
modified SUGRA.

It is interesting to ask what happens at the level of the action since it is thought
that generalised SUGRA does not admit an action [52]. So what goes wrong when we try
to derive an action analogous to (3.54) by translating to the generalised tangent space?
To solve this puzzle, remember that we need integration by parts to make sense of the
action (3.54) and i.e. derive the field equations. This operation requires that the identity

/dXQDaf(\detlE]lEAI@ = /dXzD\detlE\DAqb (3.66)

holds. A quick calculation shows that this relation requires F4p? = 0, which is always the
case because the full double is always unimodular. However in (3.54), we also integrate out
the non-physical directions {Z;} to obtain an action just on the physical target space D/ H.
For the unimodular case this is perfectly fine because integration by parts works on D/ H
as well as on H independently. But in the non-unimodular case, ﬁ“bb = f“ = 0 obstructs
integration by parts on H. Therefore, we are not allowed to integrate out H and write an
action just on DD/ H. Instead we require a genuinely doubled action. That also explains
the problems in conventional DFT/EFT to find an action. There, the integration is only
performed over the physical space after solving the section condition, while in DFTwyzw it
is always over the full space.

3.3.3 R/R sector

As for the NS/NS sector, we now want to show that this description is equivalent to the
R/R sector of type ITA /B supergravity, or modified type II SUGRA if H is not unimodular.
So, we pull all quantities to the generalised tangent space. We start with the covariant
derivative

~a |—1/2¢q _ _ _ el _ &
den [ V25p¥y = (8 @5)s;" - 3

1~ =g 1
Fpip TR — 5(iﬂogydet m) X (3.67)
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which arises after substituting ¥ = | det &%;|~1/28 zx and identifying
I =SS EL!, §=T"0;. (3.68)
We can simplify further as

1~ PRPSPS 1 ~  ~::p 1as ~3
-1 ITJK I1JK J 1
—(@8g)S5 = Q' T°" = S Fy 5T +§Q 3

4 ﬁ IJK
1~ ~iip 1 . ~;
= ﬁFij_I‘IJK + ialog ’ det v z‘ — XfFI . (3.69)
Thus we have
G = | det &% /285G = |det &%| /25 Vx = (a - Xfff) % (3.70)

We are now able to consider the self-duality constraint eq. (3.16) pulled to the gener-
alised tangent space which gives

G=-C"5,G. (3.71)

To cast the results in the simplest form we follow [63] and make use of the decomposition
of the spinor representative of the generalised metric?

Sy =S5'S,1Sp  with Sp = exp(—B;;I'V). (3.72)

Defining
F=ersp (9-x;01) %, (3.73)

then, from [63], the self-duality condition reads,
F=-8,C7'F. (3.74)
We also define a different set of potential & = e?Spx such that
F = e®Sp ((79 — XTI ) e?S;la = da (3.75)

Here note the appearance of the exterior derivative introduced in eq. (3.57). This is exactly
as the R/R sector enters in mDFT in [48, 51]. Combining the Bianchi identity dF = 0 and
eq. (3.57) shows that the Lie derivative L 1 F = 0 without imposing any further constraints
on the R/R fields.

4 The E-model conditions

Here we define how the condition for Poisson-Lie symmetry or more generally the structure
behind an £-model can be simply stated in the context of DFTwzw. Namely we propose:

The conditions of an E-model are that the fields HAE, d and G of DF Twzw
are invariant under volume preserving 2D-diffeomorphisms.

In this section we shall follow through this proposal to constrain the structure of the dilaton
and R/R sector.

—1 _
9This follows from writing H = (; (1)) <go 2) (é 1B>'
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4.1 NS sector

In this sector the condition simply implies that the HAP is a constant, exactly matching
the set up in section 2. Applying this restriction, and similar on the dilaton that we turn
to momentarily, the equations of motion simplify significantly. The Ricci scalar reduces to
the scalar potential of gauged supergravity

1
without section condition violating contributions 1/6FspcF ABC  For the generalised cur-
vature R 4, we find

1
Rap = g(HacHpr - nacnpr)(HEPHIE — R Pt Py Fpp” . (4.2)

This results matches perfectly with the RG flow calculation for a double sigma model
presented in [32, 33] in which

OHap
Blog 1 =TRuaB. (4.3)

4.2 Dilaton

For the dilaton we have to take into account that the covariant quantity e~2¢ has weight
w = 1. Hence, we demand

Lee = ¢4Dpe™ — ¢ Fae™ + Dage™ = 0, (4.4)

where we recall Fy = Djlog|det EB 7|. The last term vanishes, because the 2D-
diffeomorphisms which we are considering are area preserving. This leaves us with

¢19;(2d + log | det v%;| + log | det 7,'|) = 0. (4.5)
Plugging in the expression for the generalised dilaton
1 1 i
d:(b—Zlog\detgij]—§log]detva\, (4.6)
we obtain the condition
1 1 .
¢—Zlog\detgij|+§log|detv¢\=¢07 (4.7)

with ¢g a constant.

For the case of unimodular PL models it can be seen in a few lines that this condition is
fulfilled by the dilaton introduced using heavy duty mathematical treatment in [73]. The
details of this equivalence are provided as appendix material in section E. Similarly for
A-models this prescription provides the known dilaton, also detailed in E.
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4.3 R/R sector

We demand that the field strength G = Yy is invariant under arbitrary 2d diffeomor-
phisms i.e.

LeG = €4DAG — %(gAFA —DagMG =0. (4.8)

In general for a scalar density, G, of 2D-diffeomorphisms of weight w (and here w = %) we
could define
G = |det E|YGy (4.9)

and the invariance condition is satisfied for Gy being constant. Here we have a further
consequence since we can make use of the definition of the covariant derivative to show
this requires that

1
VaG = —EZFABcFBCG, (4.10)

and as a consequence, assuming the Bianchi identity 0 = Y&, upon contraction with a
gamma matrix we have a necessary condition

FapcTAB¢G = 0. (4.11)

Notice that the operator Fis nilpotent by virtue of the standard properties of I'-matrices
and the Jacobi identity of F4p®. Taking into account the dilaton and the R/R spinor
weights we have that the equation of motion involves purely constant algebraic quantities

e2¢0

Rap — 5 Ha GilpcKGo = 0. (4.12)

When transported to generalised tangent space via G = | det 17a%|_1/ 28 G we simply have

FG= L Fpppl 7RG =0, (4.13)
Notice further that S contains three factors, the first is the spinor counterpart Sys of the
adjoint action M4, the second is a B-field S » shift induced by the two form p and the third
is the spinor counterpart S;; of the GL(D) transformation induced by the vector fields vg".
Now this last transformation Sp carries with it a multiplicative factor of |det v\fé. This
factor combines with the |det 17|_1/ 2 to cancel the same factors coming from the weighting
and pragmatically speaking in the end to pass to the target space it will be sufficient to
calculate S,5)/Go. Where the context is clear we shall not overcrowd and already burden-
some notation with the subscript Gy and understand the push to the generalised tangent
space in the above sense.

4.4 Fourier-Mukai transformation

An alternative approach to study the transformation of R/R fluxes is a Fourier-Mukai trans-
formation. This idea was already applied to Abelian [74] and non-Abelian T-duality [75].
Here we show that our previous results allow us to write the R/R flux transformations also
in terms of a Fourier-Mukai transformation for the full Poisson-Lie T-duality. Especially,
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we give an explicit construction for the gauge invariant flux w of the topological defect
mediating the transformation.

Let us first set up our notation. We have two (pseudo)-Riemannian target spaces M
and M which are connected by Poisson-Lie T-duality. We are not restricted to the cases
where there are two maximally isotropic subgroups in a single decomposition of 9, one
could imagine taking an algebra 9 and by performing global O(D, D) rotation making two
different Manin quasi-triple decompositions. Both target spaces are D-dimensional and we
denote their coordinates as x* and :Tc;, respectively. Furthermore, their metrics, g;; and gﬁ,
are used to define a Hodge star on both of them.!® We are interested in their R/R flux
Fp) and ﬁ(p). They are governed by the self-duality conditions

(D—p)(D—p—1)
2

Fopy = (-1) * F(p_p) (4.15)
and the same for F, (p)- These fluxes can be related by the Fourier-Mukai transformation
?:s/ FAe, (4.16)
V(M) Jm

where s is the signature of the metric on M and V(M) denotes its volume. It arises
after integration over the volume form v(M) = /| det g|dz' A --- A dz”. The remaining,
essential ingredient in the equation is the two-form w. In order to fix this form, we need

to remember how Poisson-Lie T-duality works for the R/R fluxes in DFT. Fand F are
represented by Majorana-Weyl spinor of O(D,D). Using the generalised frames field E 'y

and E 47 of the two backgrounds we can write down the O(D,D) transformation [44]

~7%

O, = E.TEA; (4.17)
relating these two spinors. It acts as

F= A/ ]det éazea”SESéS_BF\ . (4.18)

A canonical way to parameterise the O(D,D) element O is

~F r + b~.~7’]~“lﬂlj borrk
OIj = ( r%,:;kj 1173 . (4.19)
j

It allows us to directly identify w with
1 1 . 1 e - .
w=-—3 Trlog(r,?) — B — §ﬁijdxz Adz? + §bg;dx’ ANdi’ + B —ry;dz’ A dz?

= W(0,0) T W(2,0) T Wo,2) +wW,1)- (4.20)

10We use the explicit expression
1

[detgl(D—p "t

for the Hodge star with ¢'?*P = 1. In this section we chose to restore “upstairs” positions for the indices i

pt1--FDIL-Jp g

(*A)il,.,ip = (414)

ptr1--kD

and “downstairs” for dual algebra generators T, — this is so as not to interfere with the standard notation
for differential forms.
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In the first line, we lowered the two indices of 8% with the metric gij and the same for the

second index of r;j . Additionally, we denote a p-form on M and a ¢-form on M as wy
b b

D,q)"
As we will see later, the contribution w ), which depends on r,” = éazr;j e”j, vanishes if
we have a Drinfeld double and is only relevant for Manin quasi-triple. Finally, B and B
are the B-fields on the target space and its dual.

To show that the expression presented in eq. (4.20) is indeed the correct form of w,
we calculate

F= ﬁ /M (F(D) A (1 + w(0,0) + wo,2)) + Fp—1) ANwa 1y + Fip—2) Awo) + - )
(4.21)

up to the linear order in w and compare it with the DFT result. We have to take into
account the two properties

s (—1)(P=pp

*x1=sv(M) and *FypyApy) = !

Filmip(pil'"ipv(/\/l) R (422)

of the Hodge star. They allow to simplify each term appearing in the expansion (4.21) to

1 . - -
=s(—1)PP N witire g(M)AdET A AdE . (4.23)

F(D—P) A w plg! 1-wdp J1---Jq

P,q)

Applying this relation, we find

~ 1 1 i 5
F= (F <1 b Tr log(rab)> + §F(b;5 + Bj;)di" A dz?

+ (—I)DFiszd.fJ — iFij(B” =+ ,3”) 4+ .. > . (424)

Note that this relation crucially relies on the assumption that the R/R fluxes admit Poisson-
Lie symmetry. Otherwise we would not be able to perform the integration and cancel
the volume factor in front of the integral. One can check that performing the spinor
transformation (4.18) gives exactly the same result. Thus the ansatz (4.20) is correct.
Finally, one has to take into account that in ITA/IIB there are either just even or odd
contributions for Fj,. Thus, eq. (4.24) simplifies accordingly. For D even, the Fourier-
Mukai transformations maps the R/R sector of IIB to IIB and of ITA to IIA, while for D
odd both are exchanged. Taking into account not just the leading order, but also all higher
order terms (the are hidden in ... in (4.24)), one can extract all R/R fields of the dual
background. However, form the computational effort this is in general more challenging as
performing the spinor transformation giving in (4.18) directly.

If we specialise to Poisson-Lie T-duality on a Drinfel’d double, using the generalised
frame field (3.29), we find

bg} == O, ﬁij == eci(HCd - ﬁCd)edj and ’I“;j = éageaj . (4.25)

The last equation implies that r,” = 62 and thus w(0,0=0. Writing furthermore the metric
on M as g;j = e“igabebj, we obtain

- 1 -
w=B—-B-— §gac(HCd — I gagpe® A e’ — gape® A el (4.26)
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For the case of non-Abelian T-duality, 1% = 0, 1% = — fo%_2¢ and g, is constant. Then
the equation for w above simplifies to

~ 1
w=B-B-— igacgbdfc‘iexee“ A el — gapdz® A € (4.27)

and matches the result in [75].

5 Application to integrable deformations

In the following we will give examples of how the formalism described in this paper can be
applied to £-models. In particular we will show how to recover the R/R-sector and dilaton
completing the SUGRA embedding for the n- and the A-models.

In the first subsection we study these theories at the level of the DFTwyzwdefined on
DD and then show that we recover the conventional target space descriptions on M = D/ H.
Whilst the solutions presented here are not new to the literature they serve to demonstrate
all the features we have described thus far.

5.1 Deformations based on the (m)CYBE

Each solution, R, of the mCYBE on g gives rise to a canonical group manifold D = g® gr
as described in the appendix B. The structure constants of ID are related to those of g
(denoted by f.°¢) according to

Fabc = O, F‘abC = fabca ﬁabc = Radfcdb - Rbdfcda = fabc’ ﬁabc =0. (51)

For the YB-deformations described by the action (2.21), the generalised metric reads

TNKab _nﬁacRCb
HAB = ( ab > : (5.2)

7,’Rac/'{cb % - nRaC’{cdeb

in which x is the Cartan-Killing form on g. Here 1 can be considered a deformation
parameter. One can simplify the form of HAP considerably by performing the O(D,D)

0,7 = (w%% _\/ﬁRab> . (5.3)

transformation

1 b
0 ﬁ%

This leaves nap invariant and gives rise to

ﬁAB —_ OACHCDOBD _ <’L€(()zb Kg[)) ) (54)

The transformed components of the structure coefficients become, after using the mCYBE,

v

o 1 < 3
Fupe =0, Fabczﬁfabc, F, =0, Fe=p3R2gadghefy.c. (5.5)
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Notice here we need not specify the value of ¢, and the following considerations will hold
for all cases. The generalised curvature capturing the field equations for the metric and
the B-field in this rotated frame reads

cip RV =022 (ke O
RAP = ———— ™ : 5.6
4n 0 —keb (5.6)

After transforming back to the original frame, we obtain

e RV(1—c2n®)? [ Ka —KaeR®
RAB = 0 ARCPO B =" — 1~ a . 5.7
C D 4 Rac"fcb _%Zb _ RacHCdeb ( )

This is consistent with the renormalisation of the sigma-model eq. (2.21) given by

AB V(1 — 22)2
OHTZ _ pab iy 00 (A =cr)” (5.8)
dlog Olog 4
In the rotated frame the generalised Ricci scalar is quite easily calculated to be
1
R=- (n364 —6nc? — 377_1) hY dim g . (5.9)

6

There is no solution for R = 0, the dilaton equation of DF Twyzw which holds for arbitrary n
and c. However we may extend our considerations to include a direct sum of simple algebras

g=01D---Dgn. (5.10)

In this case, we can choose a different scaling for the inner product imposed on each simple
factor g;:

i 1 i i)e
/{((zb) = _2h\/aifcgc)dfb(d) : (511)

In this way we will be able to engineer a cancelation of contributions to the curvature com-
ing from each group factor, as is typical between AdS and internal factors of supergravity
solutions. In principle we could have done this already for the simple case, but there such
a scaling amounts to an trivial overall rescaling of the solution. For N simple factors, we
have N —1 additional degrees of freedom for which the dilaton field equation R = 0 implies
the constraint,

N
> a;h dimg; = 0. (5.12)
i=1

This direct sum of algebras is however insufficient to solve Rap = 0. Hence, we

conclude that in general there no setup which can solve the field equations without any
contributions from the R/R sector. In order for the R/R sector to compensate the NS/NS
contribution, we require (again in the rotated frame where equations are simplified),

i o<en hV(A -2 [0 =& 15 “
A CB a T A
o pr— = . .1
H7=R 520 8G CIr*°G (5.13)
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The field G is an eigenvector of K with eigenvalue —1 as required by (3.16) and of definite
chirality. We discuss this condition in the following.

As the NS/NS sector, the R/R sector should also exhibit Poisson-Lie symmetry and
in particular eq. (4.11) has to hold

ABE &
FypeT45¢G =0, (5.14)

at least if there are no sources like D-branes. Expanding this constraint into components,
we obtain

(3 FTOT, + 22 f“bcrabc> G=0. (5.15)

At this stage we should like to be explicit about solutions for G. To do so we found
it convenient to recast our manipulations in terms of an O(D) Drinfel'’d G%? which can
be related to G by a vectorisation map G = vecG. The presentation of this somewhat
technical procedure is detailed below and can be skipped on a first reading jumping instead
to the explicit solution in the case of an example g = s[(2) & su(2).

Bispinorisation. The strategy will be to find a representation of G such that the self-
duality and chirality constraints are automatically implemented and the only thing that
remains to be taken care of is (5.15). We introduce the y-matrices for the D-dimensional
target space obeying the Clifford algebra,

{’Yaa ’Yb} = 2Kqp - (516)

Assuming that D is even (which in our cases it shall be) they furthermore can be brought
into the form,

o 0 (Ya)a . N §8 0 0 o2

(5.17)
denoting the chirality and charge conjugation matrices. We express the 2” components of
G as a bispinor é%, where o, 3, ...are Dirac spinor indices which run from 0 to D. To
get back and forth between these two representations, we use the vectorization

9

5 . 5 5 5 T
G = vee(G) = (G@, L., GO GgpL G@) : (5.18)
The O(D,D) I'matrices can now be written as

1 1
r,=— ®1—1 ® and "= —W*'®1+14 ®~vY). 5.19
a ﬁ(% YD+1 @ Ya) \@(7 VD41 ® %) (5.19)

At first glance this new representation looks somewhat unwieldy. However, it has the
advantage that the operator K and the chirality I'op41 have a very convenient form:

K=-1®vp41), Taps1=(ypr1 ®VD41)- (5.20)

Remember that G has to be an eigenvector of K with eigenvalue —1. Furthermore, it has
to have a fixed chirality which also makes it an eigenvector of I'sp 1. The eigenvalue under
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this operator decides whether we are capturing a type IIA or a IIB theory. In the bispinor
representation solving these two constraints requires just to pick a particular subblock of
Cu-‘w%, namely

block G G Go? G
eigenvalue K +1 -1 41 -1 (5.21)
eigenvalue I'opy1  +1 -1 -1  +1.

The condition encoding the Poisson-Lie symmetry (5.15) reads
(B4 ) (u® 1+ iypr1 @ u) + 3(1 — ) (V" @ ug + iugypi1 @) G =0, (5.22)

with
U= fapey™ and  uq = faper. (5.23)

Note that because G has to be an eigenvector of both K and I'spy1, two combinations
of the terms in this constraint have to vanish individually. This leaves us with the two
equations

[(B+ ) (1) +3(1 — ) (7* © ug)]

0,
B+ (1 @u) +3(1—n)(ue ©4%)] G =0.

G =
G = (5.24)
In the following, we do not want to discuss all solutions of these equations, but only the
ones that have a chance to give rise to backgrounds which solve the field equations. To
this end, we restrict our attention to G’s that are invariant under the action of g. More
explicitly we impose

(e @1 +1®ua)G =0. (5.25)

Using this identity, (5.15) simplifies to
EPwe1)G=0 and (1@ u)G=0. (5.26)

In particular, for the S-deformations for which ¢? = 0, the condition (5.25) is sufficient and
in all other cases, we have to additionally impose the two constraints above (5.26).

In order to see what singles out these solutions, we have to take a closer look at the left
hand side of R/R corrected field equation (5.13). To satisfy this equation the contributions
from I'* and Ty, to the left hand side vanish completely. Therefore, we just have to
calculate the remaining:

GTer,KG = éT(7D+1717“ ® ’yp+1’yl’yb)é =4Tr ((Cv-‘rfylfy“)Tfylfybé> . (5.27)

This equation assumes a target space with Minkowski signature!! with the time direction
matching 4! and the +/— depends on whether G is chiral/anti-chiral. Here, we have used
the charge conjugation matrix on O(D, D) spinors given by

C =ivypr1y ® o117 (5.28)

UEor an Euclidean spacetime, we would just have to drop the v'’s.
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For a simple Lie group the Killing metric is up to a scaling factor the only invariant bilinear
form. But this implies that because G is invariant, the left hand side of (5.27) has to be
proportional to ¢¢. So the only thing we have to fix is the normalization of G. According
to (5.13) it becomes,

y V(1 - cn?)?dimg

Tr (G977 G) = F ; (5.29)

If we have more than one simple factor, like in (5.10), there are additional constraints on G:
aih) (1 - 2n?)? dim g

Te ((Gr 9 )T (P)ar G ) = ; , (5.30)

where (P;)°, denotes a projector on the ith simple factor.

Example. Let us illustrate this procedure for deformations of AdS3xS3. In this partic-
ular case, the two relevant Lie algebras are

g1 =5l(2) and go=su(2) with hY =hy =2, dimg; =dimgs =3. (5.31)
In order to solve the field equation for the dilaton (5.12), we choose
ap=1 and ap=-1. (5.32)

This results in k4 of Minkowski signature, as required to describe AdS3xS3. A compatible
R/R sector arises from (5.25). The corresponding R/R bispinor has the two solutions'?

G ~ diag(1,1,1,1) and Ggap ~ diag(1l,—1,—1,1) (5.33)

after restricting to the components of G with K eigenvalue —1. Only the second one
solves the additional constraint (5.26), which is required for ¢ # 0. Furthermore, the first
solution can not be normalized such that (5.29) is satisfied for both the sl(2) and su(2)

factors. Thus, we conclude that for arbitrary ¢, there is only one R/R field configuration
< 1
Gog = —(1 — ?n?) diag(1, -1, —1,1 5.34
o m( c™n”) diag( ) (5.34)
that admits Poisson-Lie symmetry and in connection with the NS/NS sector solved all field
equations. An alternative way to write this solution is

. 1— c2n2
G=-——""1f,1% 5.35
12\/ﬁ fabc | >a ( )

where |0) denotes the vector which is annihilated by all T',,.

12YWe use the chiral y-matrices

(1) = (_?7 ‘g) , (12)as = <§ _f@) , () = (? ‘OI> 7
(ye)as = (3 0”) , (5)as = <°g g) , (16)as = (5’2 f) .

They are conjugated by 7% = €*#79(v,),s and give rise to the Killing metric 6,5 = diag(—1,1,1,1,1,1).

afByé 1234 _ 1

o; denotes the three Pauli matrices with o =1 and ¢ is totally anti-symmetric with €
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5.2 n-deformation redux

In this case the target space M = D/ His equivalent to a group manifold H whose algebra
corresponds to the direct sum of algebras introduced in eq. (5.10). Parametrising M by
a group element g € H (with e and v corresponding left and right Maurer-Cartan forms
respectively and M2 Tp = gT4g™") we have from theorem 1 the generalised frame field

~ el Habebi
Ba —(OZ ) (5.36)

in which we recall AH“b = MM bc.A The target space metric and the B-field are readily
extracted from H!Y = E4'HABERY and read'?

3
ds® = gape®e’ = nrap e® @ €’ — %ﬂabﬂw“bdﬁae”cf el
, g (5.37)
n d ap b
B=_——— < ¢ A ) :

Here we have used the S-parametrisation of the generalised metric

i “ 0 Jab gaCBCb e’ 0
T ' o ~ 7o) 5.38
( 0 eaZ _/Bacgcb gab - Bacgcdﬁdb 0 ebj ( )

of the generalised metric for which
gab — 77501) and ,Bab — Hab . Rab — _MaCMbdRcd ] (539)

In this parametrisation the metric and the B-field in flat indices arise from inverting
—1
L
(’i - B) = gab — Bap, (540)
n ab

whereas the curved version are obtained after contraction with e%;. A comparison with the
action (2.9) gives rise to

1

(GO _ BO)—lab — gab + ﬁab _ Hab — 7Kab _ Rab (5‘41)
n

which is equivalent to (2.22). The dilaton is determined by the Poisson-Lie condition (4.7)
and has to have the form

1 1 1
o= ¢o+ 1 log | det g;| — §log | det e®;| = ¢po + Zlog | det gup| , (5.42)

where according to (4.7), ¢ is a free constant.

13The overall factor of 7 in front of the metric may look unfamiliar but the reader should recall that the
normalisation k of the £-model, in which the DFT equations are perturbative is related to the normalisation
of the sigma-model by a corresponding factor %
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Since in general H will be non-unimodular we will have solutions of modified type 11
SUGRA encoded in the DFT vector

. 1 Rbcfb ay, %
X' = e 5.43
- ( " ) , (5.43)

from which the Killing vector I of modified supergravity is
7 1 bcp a, 1 1 bcy a, i
I'= —§R foctva' = —§ﬁ foced” . (5.44)
To complete the NS sector specification of the modified type II SUGRA one also needs the

one-form Z defined in eq. (3.58) which gives rise to

1
Z = Zg“bdgab +uB. (5.45)
Finally, we have to obtain the R/R fluxes. To this end, we begin with a solution G of
Poisson-Lie condition (5.15) evaluated in the simplified rotated frame and then calculate

9

1 A ai...a X 1 a
Z p!2p/2 G((lzi)nﬂpr b= \/ﬁsﬁG = \/ﬁexp (46 bFab) G (546)

p=1

in flat indices and again contract with e%; to get the curved versions. Converting this into
a polyform one can construct the fluxes F = e¢%e~BG which obey the flux equations and
Bianchi identities dF = 0 with d the modified exterior derivative of eq. (3.57).

An example is the AdS3xS? from the last section for which a realization of the Drinfel’d
double provided in appendix G. However there is no need to resort here to an explicit
parametrisation since the geometry can be entirely written in terms of e® and £ whose
exterior derivatives are easily obtained as

1
det = =S fucet N e, dF = 2f, 1 5Ve (5.47)

The metric, B-field and vector I are already given in the simple forms above and in addition
we have that for this example the dilaton is constant and

/2
¢ = log T +¢o, H=dB=0, Z=0. (5.48)

Evaluating (5.46) for the solution given in eq. (5.35), gives rise to

gw = ! A e, GO = gf/gfabcea Aeb At (5.49)

At this stage the preceding discussion establishes that we have a solution of modified

supergravity, or rather a six-dimensional truncated version thereof. As a consistency check
and for completeness we provide details of the uplift to a full ten-dimensional solution in
appendix F.
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5.3 A-deformation redux

We now describe the A-model in this framework. Here the underlying Double is formed
from ® = g + g with the maximal isotropic subgroup H being the diagonal embedding
Gaiag C D (see B for further details), whose generators are T9 in the canonical basis. In
this case however the complementary isotropic does not form a subgroup as can be seen
from the structure constants of 0 given in terms of those of g by

1
V2

1
V2

1
V2

1
fabc = 75adﬁbefdefﬁfcv

V2
(5.50)

with others given by symmetry enforced by the ad-invariance of 7. This algebra admits a

FabC:07 Fabc: fabc: fabf"ffCa ﬁabc:07 ﬁabc:

Zs grading so that M = DD/ H= (G x G)/Ggiag is a symmetric space and we can apply the
construction of theorem 1 to obtain generalised frame fields that describe the geometry.
To do so requires some care however in the parametrisation of coset representatives that
we now explain.

Before doing so let us mention the alternative route to describe the A-deformation as
the Poisson-Lie T-duality of the n-model and a subsequent analytic continuation. This
can be made quite manifest at the level of £-models [29] and therefore in DFTwzw. It
is worthwhile briefly recasting this argument in the language we use here by identifying
a frame where the double d = g® decomposes, up to an analytic continuation, into d =
6 ® € = gdiag D Gantidiag- Starting from the frame (5.5) we perform a rotation

o ab
OA/B = ( 0 ) , (5.51)

Kap O

to obtain structure coefficients IF'y, g/ = OaPOREOLTF -

5 that have components

a

1
Flye = 0" fukae, Fpt=0, F* = %ﬂ“dﬁbencffdef , F'=0.  (5.52)

One can write down “generators” for the commutation relations (5.52),

. ab
T, = i{—ita,it,} and T°= 'j/ﬁ{tb,tb}, ta€g, (5.53)

however we see that the generators here are not anti-hermitian and hence an analytic
continuation
T, — i1, (5.54)

must be taken in order to match (up to scaling) the structure of 0 = g + g.

We now resume the construction of the generalised frame fields. We must set the
representative m for coset D/ H. To be explicit we make the choice of parameterisation
of the coset representative!* m = {g,g~!} with g € G. However to match directly to the
A-model of eq. (2.24) which is parametrised by a group element g, a further identification

“Here we deviate from [29] in which the coset representative is chosen as m = {g, e}, the reason will be
that this choice is the one that matches the parametrisations used in theorem 1.

~ 31—



is needed namely that g2 = g. We let &, v, D be the left/right-invariant forms and adjoint
action on g constructed from g which can be related to those constructed from g via,

e’ =(1+D wet,, D*=D. (5.55)
The adjoint action of m on 0, i.e. mTam ™~ = MsBTp, is given by

1 k' XTr k71X~ _
X*=D+D™! 5.56
( i , (556)
and is easily seen to be an O(D, D) element preserving n45. The one-form dmm ™! deter-
mines a veilbein and h-valued connection according to

dmm ™' = VA, Tyda' = T,o%da' + T Agida’ | (5.57)
with

V= G, Aw = ki (5 8) (5.58)

KA \/§ T al \/é a 1
From these we can construct a two-form
1 . 1 _
W@ — E'UaiAajdxz A ded = I (kD" — Dk) & ne°, (5.59)

such that 1

dw(2) — _Zfabc (éa A éb ATE + T4 A ’L_}b A éc> ) (5.60)

In addition there is a globally defined three from

1 1
0B = E<<chmn—1, [dmm™", dmm™']) =  fabee™ A e’ ne, (5.61)

for which locally we can introduce a suitable potential dQ2) = Q).

Then in theorem 1 we have in combination
@ 0@ _ 1 an b A
p=w —Q %dp——ﬁfabce ANe’ Ae (5.62)

giving the three form Hywzw that comes from Sywzw|g].

We now have all the ingredients to introduce a generalised frame field, itself also an
O(d,d) element. We, as per comment 2, will strip out the H-flux contribution given by p
and consider the frame field

i 1SR Dk Va1 -D)) Ve 0 :
B (Bl e ), (6 ), e

in which we have massaged the expressions such that they only depend on the left /right-
invariant forms and adjoint action on g constructed from g so as to match the parametri-
sation of the A-model of eq. (2.24). A useful decomposition of the frame field is given by

N T I I
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with

1 1
rT 1+D7 1), b:§(D*1—D)n and B =2k D

:ﬁ(

From the definition of the operator £ in the A-model we have the generalised metric in flat

—1 b

0 1—AX

Hoap = <€ R ) S (5.66)
0 €2 Kab

(5.65)

space given by

from which as usual we construct the curved space generalised metric. From this the metric
and B-field are readily extracted as

1
ds3 = = ((Og=1 + 0y = 1)K) , e* ® e’
2 . (5.67)
By = Bwzw + 1 (ngl — Og)ab e A €b,
in which HWZW = dBWZW and
O, = (1-AD)"". (5.68)

As in our previous discussion, and detailed in appendix E, the PL conditions on the dilaton
determine that
1 —1
b\ = ¢g — 5 logdet(1 —AD™"), (5.69)

in which ¢¢ is constant. This matches the dilaton obtained due to a Gaussian elimination
of fields in the construction of [16].

Since g is assumed to be unimodular we have that 6 is also unimodular, and thus we
in the situation of conventional (not modified) supergravity. What remains is to determine
the RR fluxes from the PL conditions.

To be totally analogous with the discussion of the 1 deformations we should actually
further perform and O(D, D) rotation

1
B _ 61(50’1) 0
OA - ( 0 Ei(sab> ) (570)

such that the structure constants become

1

[ C n 6_% Fabe Sab €4 ab
Fu© =0, Fabczﬁfabca F =0, F c:ﬁf c- (571)

In this frame the PL condition invokes
(P e + 3 Eus™) G = 0. (5.72)

Notice here we have a direct similarity between the same constraint found in the n branch.
Indeed, comparing this with eq. (5.15) we simply have to swap the index positions, up and
down, (corresponding to the rotation eq. (5.51)), and identify A\ = (7 +)(n —i)~'. Thus
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knowing already how to solve this equation we can construct the curved space spinor R/R
field strengths via
N 1 ~ .

! / _
G_E%MWGMMFH%_%&&%G, (5.73)

p:
in flat indices and the final result arise after contraction with the left-invariant from e®.
Note that here we are dressing with the spinor representative of £’ in which the B-shift
induced by p has been stripped off. To get the raw G that obey dG = 0 one must apply
the spinor representative of a B-shift for Bwyzw.

Example. Let us now come again to the SL(2) x SU(2) example. Like for the -
deformation in the last section, it is convenient to express all supergravity fields just in
terms of the invariant tensors of the Lie algebra g and the adjoint action D,,. From this
point of view $% is the only quantity in (5.73) which also includes the inverse of 1 + D.
However, it always appears in either one of the two combinations

Tac,BCb — L (Kab . Dab) or /Bachb — _%52 + %

V2

At this stage we find it convenient to pick a particular representation for both SU(2)
and SL(2) elements:

(Dy" + DY) . (5.74)

cosh a; — sinh ov; cosh g — sinh 7 sinh ape®3
gsL(2) =

sinh «q sinh ape™3 cosh o + sinh o cosh a

. (5.75)
(cos B1+isinBicos By sin B sin foe B8 )

gsu(2) = .

—sin B sin B2e3  cos B — isin By cos B2
Here as will become the time-like direction. To reduce paper we write ¢; = cos 8; and
ch; = cosh «; etc. The line element is given by
R (1 — A?)sh?
S 1-A A

14+ 1 —A\2)s?
(—da% + shgdag) + %dﬁ% + J

d2
5 o

dof + (dB3 + s3dp3) |

(5.76)
and the B-field and dilaton

B = Bwzw + By, By =4MA"'chyshishydas Adas + 4O Leisisad Sy AdBs
1 (5.77)
Bwzw = QSh%Shgagdal ANdag + 28%8263(161 ANdBy, D= ¢y — 5 log A©,

with
A=1+X—2xch;, O =1+ —2\c. (5.78)

We can apply directly eq. (5.73) and after some work we find
GO =y (shicidag — chysidp)
GG — n(slsh:fshgdag/\dag/\dﬁl — clchls%shgdoq Adog Ados
— s3soshyday AdBaAdBs — cichystsodfy /\dﬁg/\d,@g)

é“5>::n(chNQSﬁﬁdalAdQQAdagAdﬁzAdﬁg+«qs%gsh§ﬂuda2Ada3AdﬁlAdﬁzAdﬁg),
(5.79)
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which have to be twisted with the WZW contribution to the B-field in order to obtain
G = eBwzw Zi:l G'(?n=1) which satisfies the Bianchi identity dG = 0. All that remains
2 _ A2, —2¢g

= §€ .

to be fixed is the normalisation n One can lift this to a solution in 10d by

adding an auxiliary T exactly as is done in the appendix F.

6 Conclusion

In this work we have continued the development of Poisson-Lie T-duality, based on a Drin-
fel’d double, by describing explicitly its embedding into DF'T. We are further able to extend
these ideas to include so-called £-models (which incorporate e.g. integrable A-deformed the-
ories), the required Drinfel’d double is relaxed to that of a Manin quasi-triple. In either case
we are able to extend the conditions for Poisson-Lie symmetry or an £-model to the dila-
ton, recovering rather simply a result that took some effort in the mathematical literature,
and to the R/R sector which to date had been treated in a somewhat ad-hoc fashion.

The condition of having an £-model can be understood in the context of DFTywzw
defined on a 2D-dimensional group manifold ID of an algebra 0 as demanding invariance
under the 2D diffeomorphism symmetry. Choosing a solution to the section condition
amounts to finding a subalgebra h € 9, reducing the dynamics to that defined on the coset
M =D/ H. When b is unimodular, the equations of motion of regular DFT (within a
solution to the section condition) are recovered, and when non-unimodular those corre-
sponding to a known modification of DFT (and SUGRA) are found. In this way, for the
backgrounds we are considering, the equations of motion for DFTywzw become algebraic
and match those derived some years ago from the context of the doubled worldsheet in
the bosonic sector. Similarly we are able to reduce the considerations of the R/R-sector to
essentially an algebraic problem.

Critical is that we are able to construct generalised frame fields that are O(D, D) valued
and moreover close under the generalised Lie derivative to generate structure constants of
the Lie-algebra 0. This is allows to translate the algebraic results for the D FTywzw defined
on ID to conventional target space fields on the physical spacetime M. We demonstrate
this technology with examples corresponding to 77 and A integrable deformations. This is a
quite satisfying result, viewed as conventional geometries these deformations look anything
but simple, whereas in this language their underlying simplicity becomes transparent. It
seems plausible that more general integrable sigma models [76-79] may give rise to such
a structure.

One of the original motivations for this study was to see if by using D F'Tyyzw we could
resolve the long standing questions concerning the global properties of non-Abelian duality
transformations. At first sight things seem promising since we have an underlying doubled
group manifold ID. However, a closer look shows this is not quite the full story. Firstly our
constructions only make use of the algebra 0, additional input is required to specify the
global structure of ID, e.g. there may be discrete quotients to be taken. A second challenge
is that we assume a factorisation of the group elements of the form g(X) = h(Z)m(z)
with particular parametrisation of m(z) as the exponent of coset generators. Neither the
factorisation of g nor the identity-connectedness of m are guaranteed to hold globally.
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Thus further work is needed to establish the patching required to extend our construction.
However, suppose that this procedure can be completed and our frames given a global
definition. In that case we would have specified a generalised parallelisation for M and
would provide an explicit demonstration of the fact [47] that the reduction on such spaces
constitutes a consistent truncation [80, 81].

This work prompts many interesting directions. The most obvious is to describe
the dressing coset procedure in this language (something that we intend to report on
shortly [82]), and eventually the extension to semi-symmetric spaces with the application
to the full AdSs x S° superstring in mind. In these more general cases we also intend
to detail the question of supersymmetry, by making manifest the idea that whilst naively
broken in conventional SUGRA it is recovered in DFT by allowing Killing spinors to have
dependence on the ‘dual’ coordinates [83, 84]. In the present work we also showed that the
PL T-duality rule on R/R fields can be recast in the format of a Fourier-Mukai transforma-
tion, something which was known to be the case for Abelian T-duality [74]. It is well know
that D-brane charges admit a K-theory classification [85, 86] and that this Fourier-Mukai
transformation can be understood as implementing T-duality at the level of K-theory. So
one might (optimistically perhaps given the state of knowledge of global properties) hope
to understand the Poisson-Lie transformation at this level. Looking further ahead the
prospect of using the algebraic description of these backgrounds to study higher order
corrections [87-89] is enticing as is the interpretation of such generalised dualities in the
context of the Exceptional Field Theory approach to M-theory.
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A Conventions and notation

There are many different groups, algebras, subgroups and subalgebras encountered in this
paper — we list the main definitions in table 2. Commensurate with this is an abundance
of indices outlined in table 3.

Sigma-models and supergravity. We consider 2d non-linear sigma models in Lorentzian
signature given by

S = 1/d0d78+Xi(G(X) — B(X));0-X7, (A1)

™8
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Double o Lagrangian Lagriangian Algebra g
subalg. 6 compl. ¢
Exponentiation D H exp(t)/H G
for ¢ subsp./subalg.)

Algebra gen. Ta T T, ta

Inner product | (T4, Tg) = nan (To, Tp) = Kap
Structure csts Fup© ﬁabc Fu° fap©

Group element g(Xx’) h(5) m(z?) g gt =g
Adjoint action MyB M, M,b D,b : Dgb
L/R MC forms EA[ VA, AL jyA B4, )VA,

L/R MC comps &' /T4’ e /v [ Aai e /v% D et /Y

Table 2. The variety of algebras, groups and group elements used.

tensor indices
Flat frame Ta ABC,---=1...2D
Rotated flat frame TA ABC,---=1...2D
Doubled curved space 17 I,JK,---=1...2D
Generalised tangent space ZA} .f, j, K, ce=1...2D

Table 3. The variety of indices used.

in which 04 = %(87 + 0,). This sign choice for the NS two-form field means that for a
constant G and B the Hamiltonian

. 1 )
Ham = X'P, — L = TZMHMNZN , ZM = (27sP;, 0, XYY, (A.2)
s

is written with the generalised metric defined as

Yo — G' -G'B
MN=\Bea-' G- BG'B) "

The NS sector supergravity equations are given by (for type IIB)

(A.3)

1
0= Rmn + 2vmnq> - ZHmqunpq
1 1 1 1 1
20 2 2 2 2 2
- *F mn *F mn 7F mn — TYmn F *F 9

e <2(1) +4(3) +96(5) 19 <1+63>> (A4)

0=d[e2®« H|+ Fy NxF5+ F3 \ Fy,
1

0=R+4V*® — 4(09)? — EH?,

in which H = dB. For the R/R fields we have Hodge duals defined (in d = 10 dimensions)
according to Fi,) = —(=1)Pe+D)/2 F(4—p) for which the poly-form F = Zp F, obeys

dpF = (d+ HN)F =0. (A.5)

— 37 —



The Hodge star operator is such that *2w( = s(—l)p(d*p)w(p), where s is the signature.

For IIB we have

D)

F= F(l) + F(g) + F(5) — *F(g) + *F(l) , F(5) = *F(5) . (A.6)

We occasionally also use F = e G and F = ®7.
In modified supergravity [48] we have instead

1
ZHmqunpq + Vi Xy + VX
1

o 1 2 1 2 - 2 _} 2 1 2
<2(JT:1 )mn+4(F3 )mn"" 96(]:5 )mn 4gmn <]:1 +6f3 ’

OZRmn_

O0=dxH+FLAxF3+F3NFs5—2xdX —2X NxH , (A7)
1
0=R+4V, X" —4X,X" — EH2 ,
0=dF=(d+HN-ZAN—-u1)F.
Here the vector X is given by
with the constraints
dZ +.H=0, ;1Z=0, Ljg=L;H=0. (AQ)

For the case of I = 0 we have that X = d¢ and the conventional supergravity is recovered.
In general we identify the “dilaton” as the exact piece of Z;

Z=d¢+uB-V, L;B=dV. (A.10)

In these equations we use the interior contraction defined as tzw = *(Z A *w) and recall
Lrw = dizw + trdw.

B Algebraic structures

Algebras and groups. We work with real Lie algebras g, and corresponding group G,
of dimension dim G = D with a basis of anti-Hermitian generators {¢,} equipped with an
ad-invariant symmetric pairing given by the Cartan-Killing form, x = (-, ), obeying

1 er d
_Wfad fbe . (Bl)
Left /right-invariant forms and adjoint actions for a group element g(z) € G, depending on

[ta, ts] = fapte, Kap = (ta,ty) =

local coordinates z¢, are defined according to

dgg™t = v = v, = v4da't,, g ldg = e = ey = eda'ty, (B.2)
adgt = gt,g ' = Dlgl’ts v® = e’ D[g],* . '
This definition of the adjoint action obeys
Dlg]"' = D[g""], DlglsDlg]" =&, (B.3)
we will write D = DJ[g] when clear from the context.
The Maurer-Cartan equations are
1 1
dv® = +§fbcavb Ave,  de® = —ifbcaeb Aef,  dD[gl® = v°Dlgla®fed’ . (B.4)
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R-matrices. We consider R a skew-symmetric endomorphism of g defined as
R(ta) = R’ty, Rap = Ri°kep = —Rpa, R =r"“R.S =—-R". (B.5)
From R is constructed a second bracket over the vector space g,

2,9l = [R(x), 4] + [, RW)],  [tastolr = fante ,  fa® = Ra®fer” + Ro fac® - (B.6)

This will obey the Jacobi identity provided R solves the modified classical Yang-Baxter
equation
[R(X),R(Y)] = R([X,Y]r) + ?[X,Y] =0 VX,Y,€g. (B.7)

We will define the algebra constructed from this bracket as gr. We have two Lie-brackets
giving algebras g and gr over the same vector space and this set up is also called a bi-
algebra. Technically the construction of eq. (B.6) means this is a coboundary bi-algebra.
It can be useful to define a element r € /\2 g as

r=R%, ®1t. (B.8)

Drinfel’d double. Here we consider real Lie algebra 9, and corresponding group DD, of
dimension dim D = 2d with a basis of anti-Hermitian generators {4} equipped with an
ad-invariant symmetric pairing, n = (-, -)), obeying

(T4, Tp)l=Fap®Tc, nap={(Ta, Ts). (B.9)

A classical double is such a real Lie algebra that admits a decomposition 0 = g ® g as the
sum of two Lie subalgebras each of dimension d that are Lagrangian (maximally isotropic
with respect to n). In a basis Ty = (T%,T,) we have that

[Ta7 Tb] = FabCTc ) [Tva’ TVb] = ﬁvabcfc’ [Taa Tb} = ﬁbcaTc - FachC )

- ~ ~ B.10
(To o) = (T T") =0, (T.,T°) = 4", (T, Tp) = 0% (540

The Jacobi identity of F45% places a compatibility condition on the two Lie subalgebras,
namely that §(7},) = F*,T, ® T, viewed as a map g — /\2 g, should be a one-cocycle for g
valued in A? g obeying

0=dd(X,Y) = adxd(Y) — adyd(X) — 6([X,Y]), (B.11)

in which the adjoint action extends to the tensor product as adxY = (1 ® adx + adx ®
1)Y for Y € g® g. Of particular interest will be the case when the one-cocycle is a
one-coboundary

I(X)=[X,r], regAhg. (B.12)

Identifiying T, = t, and with r = R%t, ® t;, we have that
F®, = R*F,b — R¥*F,.%, (B.13)

which is nothing other than the raising of indices on ﬁabc defined in eq. (B.6) using . In
this case the double ? = g@ gr and the Jacobi identity of IF45¢ follows from the mCYBE.
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In this way we have an equivalence between such doubles and coboundary Lie-bialgebras.
The cocycle § can be integrated to give a cocycle on G valued in g A g

Mfg] = (1 - ady-1 ®ad,—1) r, (B.14)
which for g = exp(ex) has II[g] ~ €[ X, r] = €6(X) and obeys
H[hg] = TI(g) + ady—1 ® ad,1I1[A], Tl[e] =1. (B.15)

In components
M[g)** = R* — D[g~"].*R*'D[g~"]" (B.16)

Whilst the above expression applies in the case of the coboundary specialisation, one can
construct the same group cocycle for any double as follows. Let g be a group element for
G = expg C ID and using its adjoint action on 0,

(B.17)

gTAgfl — D[Q]ABTB, D[Q]AB — (D[g]ab D[g]ab> ,

0 D[Q]ab

one has
M[g]** = D[g)**Dlg]" (B.18)

The group composition of the adjoint action in ID shows that the cocycle properties
eq. (B.15) holds and its derivative returns the algebra cocycle 6. The cocycle can be
understood as being as element of T.(G) ® T.(G), and by taking its right translation to
a point g we have a bi-vector Il € T,(G) ® Ty(G); this endows a Poisson structure to G
making it a Lie-Poisson group manifold.

Manin pair, triple and quasi-triple. We now describe a weakening of the above
structure to define a Manin quasi-triple. A pair (0,6) consisting of an algebra, 0 and
a Lagrangian subalgebra 6 C 0 is called a Manin pair. A Manin quasi-triple (9, 6,?) is a
Manin pair (9, 6) together with a choice of complementary Lagrangian subspace £ such that
0= 6@{?. Different choices of complementary subspaces are related by a twist ¢ € A%p [66].
The salient difference to Drinfel’d double is that the complementary Lagrangian £ need not
be a subalgebra.

We define a basis of anti-Hermitian generators {T4} for 0 equipped with an ad-
invariant symmetric pairing, n = (-, -), obeying

[TAy TB] - IFABCT07 NAB = <TA7 TB> . (Blg)
Letting Ty = (T“, T.,) be the decomposition ? = 6 @ ¢ these relations read

[Taa Tb] = FabcTc + ¢abcfc7 [Ta’ fb] = Fvabci—?c 5 [Tm fb] = ﬁbcaTc - Facbfc7

~ - ~ B.20
<<Ta7 Tb» = <<Ta7 Tb>> =0, <<Tav Tb» = 5ab : ( )

The object ¢gpe is antisymmetric in all its indices and invariant under the (co-adjoint)
action of H = exp .
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Algebraic structure of A- and 1 models. The integrable A and n models can be
placed into this algebraic framework [29, 90] in which ® = g+ g (a Manin quasi-triple) and
0 = g+ gr = g° (a Drinfel’d double) respectively.

Consider a Lie algebra g endowed with an ad-invariant non-degenerate symmetric
bilinear form . The construction of the A-deformation requires a double that is the direct
sum 0 = g @ g equipped with the inner product

({X1, Y1}, { X, Yo} ) = (X3, Xo) — (Y1, Y2).

The two subspaces completing the Manin quasi-triple are taken to be the diagonal subalge-
bra h = Gdiag, embedded in 9 by the map X — {X, X1}/v/2 for X € g, and the anti-diagonal
subspace € = ganti—diag €mbedded as X — {X, —X}/V2in 0. Let f,° be generators of g,
then in 0 we have that

1 1 1 1
fabc = 7Had"<'7befdef’{fca ¢abc == =

V2 V2 V2 V2

The n-deformation on the other hand, the double is determined by the operator R en-

FabC:07 ﬁabc: fabc: fabf/‘ﬂ}fc. (B21)

tering the definition of the deformation. This operator is the canonical R-matrix associated
to a semi-simple Lie algebra g with Killing form . It acts by anti-symmetrically swapping
positive and negative roots and annihilates the Cartan. As described above, since R is a
solution to the classical (modified) Yang-Baxter equation it defines a second Lie-bracket
[-,:]gr on g. The double is the direct sum d = g & gr, which is isomorphic to the complex-
ification g* of g. This double can be decomposed in to a Manin pair using the Iwasawa
decomposition g€ = g @ (a + n), where g and a + n are both Lagrangian subalgebras of
9 = g€, The ad-invariant non-degenerate symmetric bilinear form on d = g® is

<<Zl, Z2>> = —1 K(Zl, ZQ) +i/~€(Z1, ZQ) ,

where Z € g© and - denotes the complex conjugation.

C Solution to the section condition

In this appendix we show how the choice of generalised frame fields solves the section
condition (3.28). Even more, this equation together with the requirement to be an O(d, d)-
element, will completely fix the form of the generalised frame field in (3.29) completely in
terms of the element of the right-invariant form on the double @ = h & ¢,

Ts,VAdX! = ToMp*EPdX! = 0;gg~1dX!. (C.1)

Let us now explicitly calculate W4 by using the parameterization of the double element
g = h(Z;)m(z'), h € H and m € exp(t). We obtain

dgg™' = Ty VA dX" = hdymm b~ 'da' + 0:hh~\di; = TAVAde’ + TV, 'di;  (C.2)

and V% = 0 because h is an element of the subgroup H. As usual the inverse transpose
of W4} is denoted as W4l , for which we have that V% = 0.
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Looking now at the generalised frame field, it is convenient to decompose it into
two parts, R R
Eal = MAPVET. (C.3)
Using this decomposition we need to check that

BA B0 = VA WA 0 = (0. 07) (C.4)

We need the above equation to only hold on the physical fields that we are considering,
which will depend only on the coordinates z* so that we may use on the left hand side that
or = (0 8i>. To see the first equality of eq. (C.4) the parametrisation g(z,z) = B(a?;)m(x’)
is paramount since it ensures that the differences between the adjoint action M of g and
the adjoint action M of m don’t contribute. Then eq. (C.4) reduces to

(VAivaio; VAwaio;) = (0 o) (C.5)

or equivalently
VAV =0 and VA4 VA =67, (C.6)

The second of these is satisfied providing
TaVA = T,V + T Vol pi, (C.7)
with arbitrary and to be fixed matrix p;;. For the first component VA we find
TAVAS; = T°V,'0; (C.8)

because W = 0. Furthermore we need to require the generalised frame field to be an
O(D, D) element, that is VAf has to have the property

~

VAmaV?;=n;;. (C.9)

This implies several constraints (those on the right being implied by those on the left):

VAnasVPj=0 (0igg™". 0,88 ") + 2035 = 0 (C.10)
VAnapV5 =0 (T, T ve'vy! =0 (C.11)
VA VB =5 (T, Ty)va"v’; = 6t (C.12)

The first term in the first equation on the right vanishes by assumption and the second
one implies that p;; has to be antisymmetric. All other identities follow automatically.
Summarising the discussion above, V! reads

~ 7 a. 0
Pl = ( v ) | (C.13)
Va” Pji Va

as claimed in (3.29). The precise form of p;; will be fixed to ensure the frame fields obey
a frame algebra under the generalised Lie derivative.
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D Fluxes in the generalised parallelizable frame

It is instructive to compute the components of Fj;y, the structure constants dressed by
the generalised frame fields as in eq. (3.43), explicitly. In conventional notation these are

denoted H, Q,F,R [91]. First let us consider the case of a Drinfel’d double for which we
have in general

H;j, =0,
Fijk — eb[iecj} eakaca
QY = eqliey/eh (FO, + FylTI%) = —e,lie,/10), 1190

g 1 . . .
Rz]k _ 56a[z€b] eck} (Fdeal—[bdnce + FadedC) ’
1 . . ~
= —Zea[zebjeck] (Fa[bd]:[c]d — 2FdeaHde€c) =0.

The identity required to show the vanishing of the R-flux is slightly involved and was
provided in [6].

In the case that the Drinfel’d Double corresponds to a coboundary Lie bialgebra, i.e.
both F ab . and 1% are expressible in terms of an R-matrix (see appendix A) we can go a
little further to express the fluxes as

H;jr, =0,
Fij" = o0 j0d" foc
Q). = 20,070 g R = ooy 2,
RYF =3 (va[ivijck] — ea[iebjeck]> Fy.*RY Ree
= -3¢ (Ua[ivijck] - ea[iebjeck]) Fabe — 0.
In the two last fluxes, we used the definition of the modified Yang-Baxter equation.
Let us now turn to the more general case of a Manin quasi-triple. Here we must make a

slight refinement, the H-flux also has a contribution that arises as a twisting of the Courant
bracket as discussed in comment 2. In what follows we shall strip off this twisting using

the frame fields
i
~, 7 b
B = Myt (Uoz 0 ; ) , (D.1)
b/ B

that obey

(D.2)

SO ~ 3 EJEIgH(QB) — dw®)
I . Crr 1 A B Jki
EE,AEB Fap~En" + ( 0 .

We then consider F;JK = FABCE’CfE’BjE’Ck and simply add back the contribution to
the H given by H = Q®) — dw®).
We recall that from the coset representative m(x) for ID/H we have

dmm ™ = v%d2' T, + Aaidazifa .
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Then evaluating the fluxes one finds

H;jr = (%bcMadeeMcf + %FabcMadeeMcf - ;ﬁabcMadeeMcf> 'Ud[z‘vejvfk] +H,

Fi;" =2v. 007 ) (Fbcd(MdeMb FME— My MO MC ) — F 4 (Mye MM ® f — Mo Moy M)
+MceMdbea¢bcd) ,

Q) = 200 o Tl0f (= Foa (Mg MM — MM M)
+§cde(McaMdbMef+MchdbMea) +MdfMeaMcb¢dec) 7

Rk — <¢abCMdaMechf+ %FabchaMecher ;ﬁabcMadeeMcf> valivedv .

Here

FLiji = =34, Ap0 1 ™ + Ganev” 0" 0%y (D.3)

is the contribution to the H-flux coming from the twisting of the Courant bracket.

Specialising to 0 = g @ g relevant to the A-model we can now go further by using the
explicit form of the adjoint action M4®Z, given in eq. (5.56). Doing so we find numerous
cancellations to leave

3 2
H;j, = _ﬁAa[iAbj'Uck]fabc + ﬁfqbcva[ivijck} ;
g 1 .. g

F;*=0, QY= ﬁva[lvb]]vckfabm R7* =0,
in which k is used to raise algebra indices out of position. It might seem contrary to have
Q rather than F flux but it reflects the construction of the geometry as a coset ID /G giag
and that Ganti-diag is D0t a subgroup of D.

E Dilaton in PL and A models

Here we show that the constraint on the doubled dilaton d matches the (conventional)
dilatons for both PL and A-models.
We begin by extracting the metric for the PL model of eq. (2.9)

G=e" (1+E;N) "Gy (1-TIE]) ‘e
T ~—1 =\t = a1\t (E.1)
=e (1—}—90 (H—Bo)> Jo (1—(H—Bo)go ) e,
-\ -1
in which E(jf = Gy *+ By and E;, = (go — b()) and e are the components of the left-
invariant forms. It is simple to take the determinant
log det G = 2log det e — log det gg — 2log det (1 + §D_1(H — §0)> (E.2)

Since det e = det v we conclude from (4.7)

1 1 -
6 = ¢o — 7 logdet o — - log det (1 + g7 (I - B0)> , (E.3)
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and choosing ¢g = %log det go, which is of course a constant, gives the result provided in
the more mathematically inclined treatment of [73].

For the case of the A-model, the expression correctly reduces to the known expression,
see e.g. [92]. This can be readily seen by conveniently expressing the curved metric g;; in
terms of right-invariant form on G and the flat metric

g =(1=AD"HY '+ (1=AD) 'k — k),

=(1-M)(1-=ADH k(1 - AD) k) (E.4)

ab ’
Starting from the expression (4.7), we indeed obtained the correct expression for the
dilaton of the A-model:
1 ]' a / 1 /! ]‘ —1
(]5:<Z>O+Zlog|detgij]—§log|detv il :¢0+Zlog\detgab| = 0—§log\det(1—)\D ),

where we have used that the adjoint action has unit determinant. The last step is ob-
tained by plugging (E.4) and using that D=7 = x~!Dx. All constant contribution were
successively absorbed into the constant dilaton term.

F Details of n-supergravity solution

In this appendix we detail the full modified supergravity solution outlined in section 5.2.
For the generators t, of g = su(1,1) @ su(2) we let ¢; be those of su(1,1) and ¢; be those of
s5u(2) in a basis where the non-vanishing structure constants are given by

fi2b = fi3? = farl = =1, fr3° = foz' = f512 = —1. (F.1)

To raise and lower indices we use the ad-invariant inner-product given by

[0 . o 7 j .
Rij = gfzklf]lk = dlag(a, a, 70‘) ’ K‘fj = 7§f€]_gl jl_k = dlag(a) a, Oé) ) (F2)

in which we note that the overall normalisation of the su(2) part is of opposite sign to
that of the su(1,1). The solution of the ¢> = —1 mCYBE is given by an R-matrix with

non-vanishing components
Ris = —Ro1 = —a, Riz=-—Rs;1=aqa. (F.3)

We supplement the six dimensional space corresponding to the deformed AdSsz x S3
with a four-torus (with coordinates x*, u = 1...4) such that the NS data is

3
ds® = v%ggv? + datdat = v° <7]/<cab + 1Z2Radeb> o + datdzt
n
2 2
n b na 1 2 1 2
Be T (R ) = P (il aed)
2T+ w VAV Tt vEAVY — v A (F.4)
/2
0g 112 + ¢o
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Note that we have chosen to work with the right-invariant Maurer-Cartan forms rather
than the left; this removes all coordinate dependance from the metric and fluxes. The
curvatures that follow from this metric have non-vanishing components

Rie.. = A7) (Q4+n)@B+n?) o op (4t (4+n)B+nY)
U ARV 2na 9ij - T Ty 2na EN
(F.5)
and are such that the curvature scalar is zero,
1 1
R= _ifacdfbdcgab - Zfacefbdfgabg(:dgef =0. (Fﬁ)

This is fundamentally due to the choice of opposing normalisations for the su(2) and su(1,1)
in the inner-product.

The modified supergravity is defined by the one-form
1 _
I= iRabfangcdvd =-n (713 + U3) : (F.7)

and related
Z=db+.,;B=0, X=I4+7=1. (F.8)

Eq. (5.35) encodes the unique solution for the R/R fluxes however this is in six-
dimensions. Here we need to uplift it to 10-dimensions. In six-dimensions we define

14—772
3V2

Al 1+ n?
Géd):_ﬁ

and the six-dimensional poly-form

Rabfabcvc ’ a((;?;l) = fabc'Ua A vb Av© ’

Foa=e®e 8 (G) +GF)). (F.9)

which by construction has vanishing Lie derivative along 7 i.e. LI]?M = 0. The components
of this obey

g F) =0, dFD) = B aFY = 1 FE) . w6 FL) = —F8) ) w6 FO) = F9)

(F.10)
From this we can build a ten-dimensional R/R poly-form
Flod = ,u]?(;d ANl4+w-—voly), (d+HAN-ZAN—t1)F10a=0 (F.11)

in which p is a normalisation to be fixed, and w = 11~ &J is expanded in the basis of self-dual
three forms on T and voly = dz' A dz? A do3 A dz*. With this in mind it is quite easy
now to verify the modified supergravity equations of eq. (A.4) are satisfied providing the
normalisation of the R/R sector are set such that

p=e"% (2n(1+ ﬁQ))‘% : (F.12)
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Explicitly we have

3 3 Q - - _
Pl () (o) 8 (T

(1+n2)
]:1(81)1: —p (v3+v3> Avoly+ (1?_[:72) (v123—vﬁg—n%wg—kn%ﬁg) Aw
2.2
a~nmp 12312 | 12123
+7(1+772)2 (v +v ) ,

in which we let p = n(1 + ﬁ'Q)_%.

G Drinfel’d doubles and group parameterisations

G.1 su(2)@Pes

We work with the following basis of generators
T =180 T=l0o T= 180

~ 1 1 ~ 1 1 ~ 1
T1:—503®01—§H®02 T2:—§U3®02+§H®01 T3:_§J3®U3'

Defining projectors
Pt = %(]I:i:ag) I,
allows us to realise the inner-product as
(Ty, Tp) =iTr (P+’JI‘AP+’JI‘B — P_’JI‘AP_’JI‘B) =NAB -
The R-matrix that gives this a bialgebra structure is

010
R=1]1-1001,
0 00

and we parametrise an SU(2) element as

a9 0 B e/l —r2  —e iy
N0 g}’ 9= ey er/1—r2)"’

such that the left-invariant forms defined by G~1dG = €T, read

1oy oy €Filemd) 2 - e’ 2 2
5 (6 + 1€ ) = ﬁ (T(T' — 1)d<$ + ¢) + 2d?") N ? = (T — 1)dm —+r d¢
-Tr

The metric on S3 is obtained as

dr?

3 + r2d¢?,

%Tr (GT1dGGT1dG) = (1 — r?)dz® +

)

(F.13)

(G.7)

which is rendered more familiar with » = sin 8. Finally, we need the combination of adjoint

actions that enter into the PL sigma models:

0 272 —2rv/1 —r2sin(z — ¢)
1= —2r2 0 —2rv/1 —r2cos(z — ¢)
2rv1 —r2sin(z — ¢) 2rv1 —r2 cos(z — ¢) 0
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G.2 su(l,1)Pes

We work with the following basis of generators

1 1 )
T1:§O'3®02 T2:§O'3®0'1 T3:§H®O'3
~ 1 ) ~ 1 ) ~ 1 (G.Q)
T12—503®01—§H®O’2 T2:§O'3®0'2—§H®0'1 T3:—§O‘3®0'3.

and realise the inner-product again as (G.3).
Recall that in its defining representation SU(1,1) consists of complex matrices of unit

Jlwg=w, w= (1 0) : (G.10)

determinant that satisfy

0 -1
and such a group element can be parameterized as
(e (G1)
9= eV p eit\/m : :

In the 4 x 4 representation used for the Drinfel’d double we have

g 0
G= . G.12
( 0 adyg > ( )
The left-invariant one forms are given as
1(611162) —@( (1+ p*)d(t + )  idp) é——(1+ Hdt — pdy . (G.13)
2 \/m p p p Y 2 p p * *

The combination of adjoint actions that enter into the PL sigma models is
0 —2p? 2p+/p? + 1sin(t — )
IT= 2p? 0 —2p\/p?2+1cos(t —) |. (G.14)
—2p+/p? + 1sin(t — ) 2p+/p? + 1cos(t — ) 0

The metric on AdSg3 is obtained as

dp2 272
+ p°d
1+p2 " " v (G.15)

= —cosh? odt? + do? + sinh? ody)?

%Tr (GTHGGT1dG) = —(1 + p*)dt* +

with p = sinh o. This follows from the embedding
—1=-XZ+X?+ X3 - X3 (G.16)

with
Xo+iX3=¢'cosho, X;+iXy=e ¥sinho. (G.17)

Although we shall not directly need it we note for completeness the isomorphism to SL(2, R)

Xo+ X1 Xo+ X3
= . G.18
I8L(2) <X2 — X3 Xo — Xl) ( )

is made by defining
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