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1 Introduction

Generalized Geometry (GG) was first introduced by N. J. Hitchin in ref. [1]. As the author

himself states in his pedagogical lectures [2], it is based on two premises: the first consists

in replacing the tangent bundle T of a manifold M with T ⊕ T ∗, a bundle with the same

base space M but fibers given by the direct sum of tangent and cotangent spaces. The

second consists in replacing the Lie bracket on the sections of T , which are vector fields,

with the Courant bracket which involves vector fields and one-forms. The construction is

then extended to general vector bundles E over M so to have E⊕E∗ and a suitable bracket

for the sections of the new bundle.

The formal setting of GG has recently attracted the interest of theoretical physicists in

relation to Double Field Theory (DFT) [3]. We shall propose in this paper a model whose

analysis can help to establish more rigorously a possible bridge between the two through

the doubled world-sheet formalism that generates DFT.

DFT has emerged as a proposal to incorporate T-duality [4, 5], a peculiar symmetry

of a compactified string on a d-torus T d in a (G,B)-background, as a manifest symmetry

of the string effective field theory. In order to achieve this goal, the action of this field

theory has to be generalized in such a way that the emerging carrier space of the dynamics
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be doubled with respect to the original. What makes T-duality a distinctive symmetry of

strings is that these latter, as extended objects and differently from particles, can wrap

non-contractible cycles. Such a wrapping implies the presence of winding modes that have

to be added to the ordinary momentum modes which take integer values along compact

dimensions. T-duality is an O(d, d;Z) symmetry of the dynamics of a closed string under,

roughly speaking, the exchange of winding and momentum modes and establishes, in this

way, a connection between the physics of strings defined on different target spaces.

DFT is supposed to be an O(d, d;Z) manifest space-time effective field theory de-

scription coming from a manifestly T-dual invariant formulation of a string world-sheet,

i.e. from a doubled world-sheet.1 In fact, a formulation of the world-sheet action of the

bosonic string, in which T-duality is manifest, was already initially proposed in ref.s [6–8]

and, later, in [9–16] (see also more recent works in [17–22]). This string action must con-

tain information about windings and therefore it is based on two sets of coordinates: the

usual ones xa(σ, τ) and the “dual” coordinates x̃a(σ, τ), (a = 1, . . . , d) conjugate to the

winding modes. In this way the O(d, d;Z) duality becomes a manifest symmetry of the

world-sheet action. A corresponding doubling of all the D space-time degrees of freedom

(vielbeins in this case, not only relatively to the compact dimensions) in the low-energy

effective action first occurred in refs. [23–26] where, a manifestly O(D,D;R) form of the

target-space effective action was obtained, and such symmetry was realized linearly, even

at the price of loosing manifest Lorentz invariance (in target-space). In a sense, this can

be considered as a pionering work on what would be later defined Double Field Theory,

where the coordinates of the carrier space-time, that are nothing but that the fields on the

string world-sheet, are doubled in order to have a T-duality symmetric field theory.

Despite the preamble, which gives credit to the strings related literature for focusing

on the geometrical content of the doubled world-sheet and DFT, the interest for the subject

is relevant in the broad area of field theory when one deals with duality symmetries of the

dynamics which are not manifest at the level of the action.

A few remarks that clarify the philosophy of the paper are here in order. First of all,

it is worth stressing again that, in the framework of string theory, the doubling takes place

in the D-dimensional target space M of the non-linear sigma model underlying the string

action, by introducing new fields x̃i(σ, τ), which are dual to xi(σ, τ), with i = 1, . . . , D.

From this point of view, a first analogy with Generalized Geometry is straightforward, by

identifying xi, x̃i with sections of a generalized bundle E ⊕ E∗ over the world sheet of the

string. Secondly, it is only when the target space is considered as the configuration space

of the effective field theory we are going to deal with, that the doubling is reinterpreted

as a doubling of the configuration space. Actually, the original non-linear sigma model

has no doubled coordinates, but what is doubled are the field coordinates. When the

effective field theory derived from the Polyakov string action is considered, then the dual

fields xi, x̃i are seen as coordinates of the carrier space of the effective dynamics, which

corresponds to the string target space. DFT is thus formulated in terms of the background

1Let us observe here that we retain the name doubled world-sheet since this has become of common use,

but actually it is the string target-space which is doubled and not the world-sheet.
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fields Gij (the target-space metric tensor) and Bij (the Kalb-Ramond field), with i, j =

1, . . . , D, in addition to a dilaton scalar field φ. These fields depend, in that framework,

on doubled coordinates xi and x̃i even if there is no doubling of their tensor indices.

The gauge symmetry parameters for DFT are the vector fields ξi(x, x̃), which parametrize

diffeomorphisms and are sections of the tangent bundle of the doubled manifold, together

with the one-forms ξ̃i(x, x̃), which describe gauge transformations of the Kalb-Ramond field

Bij and are sections of the cotangent bundle of the doubled manifold. When considering

vector fields and one-forms as components of a generalized (indeed doubled) vector field

on the carrier space of the effective dynamics (which is itself doubled), one has, on the one

hand, another instance of field doubling, but on the other hand, at the same time, a section

of a generalized tangent bundle as in Generalized Geometry. The precise mathematical

meaning of considering ξi and ξ̃i on the same footing amounts to defining generalized Lie

brackets, which encode a mutual non-trivial action of one onto the other [27]. These are

the so-called C-brackets, first introduced, together with other relevant aspects of DFT,

in ref.s [23–25]. C-brackets provide an O(D,D) covariant, DFT generalization of Courant

brackets. More precisely, it can be shown that they reduce to Courant brackets if one drops

the dependence of the doubled fields on the coordinates x̃i. The geometry of the effective

dynamics is thus more appropriately renamed Doubled Geometry (DG).

To summarize, doubling can emerge at different stages:

• at the level of fields on a given configuration space, for example the sigma-model

fields xi, x̃i both depending on the world sheet coordinates (σ, τ);

• at the level of configuration space coordinates, with fields φ depending on twice the

initial configuration space variables, φ = φ(xi, x̃i);

• at the level of both, fields and coordinates: an example is provided by the gauge

fields ξi(x, x̃), ξ̃i(x, x̃).

There is therefore an interplay between GG and DG on the one hand and doubled world-

sheet and DFT on the other hand which, within the framework we have sketched, emerges

from the identification of the appropriate carrier space of the dynamics. Such interplay

does not involve only the above mentioned T-duality to which one usually refers as Abelian

T-duality, but it could be enlarged also to the other two dualities connecting non-linear

sigma models, the non-Abelian T-duality and the Poisson-Lie T-duality. The term “Abelian

T-duality” refers to the presence of global Abelian isometries in the target spaces of both

the paired sigma-models [28–30] while “non-Abelian” refers to the existence of a global

non-Abelian isometry on the target space of one of the two sigma-models and of a global

Abelian isometry on the other [31]. The “Poisson-Lie T-duality” generalizes the previous

definitions to all the other cases, including the one of a dual pair of sigma models both

having non-Abelian isometries in their target spaces [32–34]. More easily, the classification

of T-dualities is given by the types of underlying Drinfel’d doubles: Abelian doubles for the

Abelian T-duality, semi-Abelian doubles for the non-Abelian T-duality and non-Abelian

doubles for the Poisson-Lie T-duality.
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It is then clear that models whose carrier space is a Lie group G can be very helpful in

better understanding the above mentioned relation in all these cases, because the notion

of dual of a Lie group is well established together with that of double Lie group and the so

called Poisson-Lie symmetries [35–37]. The idea of investigating such geometric structures

in relation to duality in field theory has already been applied to sigma models by Klimč́ık

and Ševera in [32, 33] (also see [38, 39]) where the authors first introduced the notion of

Poisson-Lie T-duality. Since then, there has been an increasing number of papers in the

literature, focusing on Poisson-Lie dual sigma models (see for example ref. [40]). On the

other hand, in ref. [41], the phase space T ∗G was already proposed as a toy model for

discussing conformal symmetries of chiral models, in a mathematical framework which is

very similar to the one adopted here. Double Field Theory on group manifolds, including

its relation with Poisson-Lie symmetries, has been analyzed in [42–45]. In the present

paper, we propose a fresh look at the subject in relation to the recent developments in GG

and DFT by studying a model, the three-dimensional isotropic rigid rotator (IRR) that

provides a one-dimensional simplification of a sigma model which can be doubled in order

to have a manifestly Poisson-Lie duality invariant doubled world-sheet.

This is the first of a series of two papers. We study the IRR having as configuration

space the group manifold of SU(2) and introduce a model on the dual group SB(2,C).

Their properties under Poisson-Lie transformations are considered as an extended model

on the double group, the so-called classical Drinfel’d double SL(2,C), that is formulated in

terms of a generalized action, which we shall refer to as the parent action. In particular,

we emphasize how a natural para-hermitian structure emerges on the Drinfel’d double

and can be used to provide a “doubled formalism” for the pair of theories. An alternative

description of the IRR model on the Drinfel’d double was already proposed in [46], although

no dual model was introduced there, being the accent on the possibility of describing the

same dynamics with a different phase space, the group manifold SL(2,C), which relies on

the fact that the latter is symplectomorphic to the cotangent bundle of SU(2) [47].

Since our model describes an example of particle dynamics, the most appropriate

doubling within those enumerated above is the doubling of the configuration space. For the

same reason, we shall see that the model considered here is too simple to exhibit symmetry

under duality transformation, although a generalization to field theory is possible. Indeed,

we may look at the model as a 0 + 1 field theory, thus paving the way for a genuine

1 + 1 field theory, the SU(2) principal chiral model, which, while being modeled on the

IRR system, will exhibit interesting properties under duality transformations. This will be

briefly discussed in the concluding section while the model will be analyzed in detail in a

forthcoming paper [48].

The paper is organized as follows. In section 2 the dynamics of the IRR on the group

manifold of the group SU(2) is reviewed. In section 3 an account of the mathematical

framework that is going to be used is given, with Poisson-Lie groups and their Drinfel’d

doubles discussed in some detail. In section 4 a model on the dual group of SU(2), the group

SB(2,C), is introduced and its dynamics analyzed. The two models are seen to be dual to

each other in a precise mathematical meaning: their configuration spaces are dual partners

in the description of the group SL(2,C) as a Drinfel’d double. Moreover, the role of the two
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groups can be exchanged in the construction of the double and each model exhibits a global

symmetry with respect to the action of the dual group. In section 5, a dynamical model

on the Drinfel’d double is proposed: it has doubled configuration variables with respect

to the original IRR coordinates, and doubled generalized momenta (Ii, Ĩ
i) whose Poisson

brackets can be related to Poisson-Lie brackets on the two dual groups. The full Poisson

algebra of momenta is isomorphic to the algebra of SL(2,C), namely a semisimple group,

with each set of momenta underlying a non-Abelian algebra. That is why we refer to the

two models as non-Abelian duals giving rise, according to the above mentioned definitions,

borrowed from the existing literature, to a Poisson-Lie T-duality. In sections 5.2, 5.3, we

address the problem of recovering the IRR model and its dual. The generalized, or parent

action, exhibits global symmetries, which can be gauged, as is customary in DFT (see for

example [9, 10, 13, 14]). It is proven that, once chosen a parametrization for the group

SL(2,C), by gauging the left SB(2,C) symmetry the IRR model is retrieved, whereas, by

gauging the right SU(2) symmetry the dual model is obtained. In section 5.4, we introduce

the Hamiltonian formalism for the double model and in 5.5 we study in detail the full

Poisson algebra, together with the Hamiltonian vector fields associated with momenta

(Ii, Ĩ
i). The latter yield an algebra which is closed under Lie brackets, which can be seen

as derived C-brackets [49, 50]. In section 5.6 we discuss in some detail to what extent the

two models introduced exhibit Poisson-Lie symmetries. Finally, in section 6 we outline the

generalization to 1+1 dimensions for the principal chiral model and give our conclusions.

While completing the article we have become aware of the work in refs. [51, 52]. In

the first one non-Abelian T-duality is analyzed within the same mathematical framework,

whereas the latter studies an interesting mechanical model, the electron-monopole system,

within the DFT context. Their relation with the present work should be further investi-

gated; we plan to come back to this issue in the future.

2 The isotropic rigid rotator

The Isotropic Rigid Rotator (IRR) provides a classical example of dynamics on a Lie group,

the group being in this case SU(2) with its cotangent bundle T∗SU(2), the carrier space of

the Hamiltonian formalism, carrying the group structure of a semi-direct product. In this

section, the Lagrangian and Hamiltonian formulations of the model on the group manifold

are reviewed. Although being simple, the model captures relevant characteristics of the

dynamics of many interesting physical systems, both in particle dynamics and in field

theory, such as Keplerian systems, gravity in 2+1 dimensions in its first order formulation,

with and without cosmological constant [53], Palatini action with Holst term [54], and

principal chiral models [55, 56].

2.1 The Lagrangian and Hamiltonian formalisms

As carrier space for the dynamics of the three dimensional rigid rotator in the Lagrangian

[Hamiltonian] formulation we can choose the tangent [cotangent] bundle of the group SU(2).

We follow ref. [57] for the formulation of the dynamics over Lie groups.
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A suitable action for the system is the following

S0 =

∫
R
L0 dt = −1

4

∫
R

Tr
(
g−1dg ∧ ∗g−1dg

)
= −1

4

∫
R

Tr
(
g−1ġ

)2
dt (2.1)

with g : t ∈ R→ SU(2), the group-valued target space coordinates, so that

g−1dg = iαkσk

is the Maurer-Cartan left-invariant one-form, which is Lie algebra-valued, σk are the Pauli

matrices, αk are the basic left-invariant one-forms, ∗ denotes the Hodge star operator on

the source space R, such that ∗dt = 1, and Tr the trace over the Lie algebra. Moreover,

g−1ġ is the contraction of the Maurer-Cartan one-form with the dynamical vector field

Γ = d/dt, g−1ġ ≡ (g−1dg)(Γ). Let us remind here that the Lagrangian is written in

terms of the non-degenerate invariant scalar product defined on the SU(2) manifold and

given by 〈a|b〉 = Tr(ab) for any two group elements. The model can be regarded as a

(0 + 1)-dimensional field theory which is group-valued.

The group manifold can be parametrized with R4 coordinates, so that g ∈ SU(2) can

be read as g = 2(y0e0 + iyiei), with (y0)2 +
∑

i(y
i)2 = 1, e0 = I/2, ei = σi/2 the SU(2)

generators. One has then:

y0 = Tr (ge0), yi = −i Tr (gei) i = 1, . . . , 3

By observing that

g−1ġ = i
(
y0ẏi − yiẏ0 + εijky

j ẏk
)
σi = iQ̇iσi (2.2)

we define the left generalized velocities Q̇i as

Q̇i ≡ (y0ẏi − yiẏ0 + εijky
j ẏk). (2.3)

(Qi, Q̇i) i = 1, . . . , 3 are therefore tangent bundle coordinates, with Qi implicitly defined.

Starting with a Lagrangian written in terms of right-invariant one-forms, one could define

right generalized velocities in an analogous way. They give an alternative set of coordinates

over the tangent bundle.

The Lagrangian L0 in eq. (2.1) can be rewritten as:

L0 =
1

2

(
y0ẏi − yiẏ0 + εikly

kẏl
) (
y0ẏj − yj ẏ0 + εjmny

mẏn
)
δij =

1

2
Q̇iQ̇jδij .

In the intrinsic formulation, which is especially relevant in the presence of non-invariant

Lagrangians, the Euler-Lagrange equations of motion are represented by:

LΓθL − dL0 = 0

being

θL =
1

2
Tr
[
g−1ġ g−1dg

]
= Q̇iαjδij

– 6 –
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the Lagrangian one-form and LΓ the Lie derivative with respect to Γ. By projecting along

the basic left-invariant vector fields Xi dual to αi, one obtains:

iXi [LΓθL − dL0] = 0

Since LΓ and iXi commute over the Lagrangian one-form, one gets:

LΓ

(
Q̇j iXiα

l
)
δjl − LXiL0 = 0

which implies

LΓQ̇
jδji − Q̇pQ̇qεipkδqk = LΓQ̇

jδji = 0 (2.4)

because of the rotation invariance of the product and the antisymmetry of the structure

constants of SU(2) as a manifestation of the invariance of the Lagrangian under rotation.

Equivalently, the equations of motion can be rewritten as:

d

dt

(
g−1dg

dt

)
= 0 (2.5)

being, from eq. (2.2):

δijQ̇
j = −i Tr (g−1ġ ei). (2.6)

Cotangent bundle coordinates can be chosen to be (Qi, Ii) with the Ii’s denoting the left

momenta:

Ii =
∂L0

∂Q̇i
= δijQ̇

j

An alternative set of fiber coordinates is represented by the right momenta, which are

defined in terms of the right generalized velocities.

The Legendre transform from TSU(2) to T∗SU(2) yields the Hamiltonian function:

H0 =
[
IiQ̇

i − L0

]
Q̇i=δijIj

=
1

2
δijIiIj . (2.7)

By introducing a dual basis {ei∗} in the cotangent space, such that 〈ei∗|ej〉 = δij , one can

consider the linear combination:

I = i Iie
i∗. (2.8)

The dynamics of the IRR is thus obtained from the Hamiltonian (2.7) and the following

Poisson brackets

{yi, yj} = 0 (2.9)

{Ii, Ij} = εij
kIk (2.10)

{yi, Ij} = δijy
0 + εi jky

k or equivalently {g, Ij} = 2igej (2.11)

which are derived from the first-order formulation of the action functional

S1 =

∫
〈I|g−1ġ〉dt−

∫
H0 dt ≡

∫
ϑ−

∫
H0dt

– 7 –
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with θ the canonical one-form. Indeed the symplectic form ω is readily obtained as

ω = dϑ = dIi ∧ δijαj −
1

2
Iiδ

i
jε
j
klα

k ∧ αl

with dαk = i
2 ε

k
ijα

i ∧ αj . By inverting ω one finds the Poisson algebra (2.9)–(2.11).

The fiber coordinates Ii are associated with the angular momentum components and

the base space coordinates (y0, yi) to the orientation of the rotator. The resulting system

is rotationally invariant since {Ii, H0} = 0.

The Hamilton equations of motion for the system are:

İi = 0, g−1ġ = 2iIiδ
ijej .

Thus the angular momentum Ii is a constant of motion, while g undergoes a uniform preces-

sion. Since the Lagrangian and the Hamiltonian are invariant under right and left SU(2) ac-

tion, as well-known right momenta are conserved as well, being the model super-integrable.

Let us remark here that, while the fibers of the tangent bundle TSU(2) can be identified,

as a vector space, with the Lie algebra of SU(2), su(2) ' R3, with Q̇i denoting vector fields

components, the fibers of the cotangent bundle T∗SU(2) are isomorphic to the dual Lie

algebra su(2)∗. As a vector space this is again R3, but the Ii ’s are now components of

one-forms. This remark is relevant in the next section, when the Abelian structure of su(2)∗

is deformed.

As a group, T∗SU(2) is the semi-direct product of SU(2) and the Abelian group R3,

with the corresponding Lie algebra given by:

[Li, Lj ] = iεij
kLk (2.12)

[Ti, Tj ] = 0 (2.13)

[Li, Tj ] = iεij
kTk. (2.14)

Then, the non-trivial Poisson bracket on the fibers of the bundle, (2.10), can be understood

in terms of the coadjoint action of the group SU(2) on its dual algebra su(2)∗ ' R3 and it

reflects the non-triviality of the Lie bracket (2.12). In this picture the Lie algebra generators

Li’s are identified with the linear functions on the dual algebra.2

Before concluding this short review of the canonical formulation of the dynamics of

the rigid rotator, let us stress the main points which we are going to elaborate further:

• The carrier space of the Hamiltonian dynamics is represented by the semi-direct

product of a non-Abelian Lie group, SU(2), and the Abelian group R3 which is

nothing but the dual of its Lie algebra.

• The Poisson brackets governing the dynamics are the Kirillov-Souriau-Konstant

brackets induced by the coadjoint action.

2The group semi-direct product structure of the phase space T∗SU(2) has been widely investigated in

literature in many different contexts. Besides classical, well known applications, some of which we have

already mentioned in the introduction, let us mention here applications in noncommutative geometry in

relation to the quantization of the hydrogen atom [61], to the electron-monopole system [62], and, recently,

to models on three-dimensional space-time with su(2) type non-commutativity [63–69].

– 8 –
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It has been shown in ref. [46] that the carrier space of the dynamics of the rigid rotator

can be generalized to the semisimple group SL(2, C), which is obtained by replacing the

Abelian subgroup R3 of the semi-direct product above, with a non-Abelian group. The

generalization is obtained by considering the double Lie group of SU(2). In this paper

such generalization will be further pursued giving rise to the simplest instance of doubled

dynamical model, together with its double geometry.

The underlying mathematical construction of Drinfel’d double Lie groups and their

relation with the structures of Generalized Geometry is the subject of the next section.

3 Poisson-Lie groups and the double Lie algebra sl(2,C)

In this section we shortly review the mathematical setting of Poisson-Lie groups and Drin-

fel’d doubles, see [37, 70, 74] for details, with the aim of introducing, in the forthcoming

sections, new Lagrangian and Hamiltonian formulations of the IRR with a manifest sym-

metry under duality transformation. More precisely, in section 4, a model which is dual to

the one described in section 2 is introduced, while in section 5 a new model is built with

doubled dynamical variables and with a manifest symmetry under duality transformation.

The dynamics derived from the new action describes two models, dual to each other, being

one the ordinary rigid rotator, the other a“rotator-like” system, with the rotation group

SU(2) replaced by its Poisson-Lie dual, the group SB(2, C) of Borel 2×2 complex matrices.

A Poisson-Lie group is a Lie group G equipped with a Poisson structure which makes

the product µ : G×G→ G a Poisson map if G×G is equipped with the product Poisson

structure. Linearization of the Poisson structure at the unit e of G provides a Lie algebra

structure over the dual algebra g∗ = T ∗e (G) by the relation

[dξ1(e), dξ2(e)]∗ = d{ξ1, ξ2}(e) (3.1)

with ξi ∈ C∞(G). The compatibility condition between the Poisson and Lie structures of

G yields the relation:

〈[X,Y ], [v, w]∗〉+〈ad∗vX, ad∗Y w〉−〈ad∗wX, ad∗Y v〉−〈ad∗vY, ad∗Xw〉+〈ad∗wY, ad∗Xv〉 = 0 (3.2)

with v, w ∈ g∗, X, Y ∈ g and ad∗X , ad∗v the coadjoint actions of the Lie algebras g, g∗ on

each other. This allows one to define a Lie bracket in g⊕ g∗ through the formula:

[X + ξ, Y + ζ] = [X,Y ] + [ξ, ζ]∗ − ad∗Xζ + ad∗Y ξ + ad∗ζX − ad∗ξY . (3.3)

If G is connected and simply connected, (3.2) is enough to integrate [ , ]∗ to a Poisson

structure on G that makes it Poisson-Lie and the Poisson structure is unique. The sym-

metry between g and g∗ in (3.2) implies that one has also a Poisson-Lie group G∗ with Lie

algebra (g∗, [ , ]∗) and a Poisson structure whose linearization at e ∈ G∗ gives the bracket

[ , ]. G∗ is the dual Poisson-Lie group of G. The two Poisson brackets on G, G∗, which

are dually related to the Lie algebra structure on g∗, g, respectively, when evaluated at the

identity of the group are nothing but the Kirillov-Souriau-Konstant brackets on coadjoint
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orbits of Lie groups. The Lie group D, associated with the Lie algebra d = g ./ g∗ is the

Drinfel’d double group of G (or G∗, being the construction symmetric).34

There is a dual algebraic approach to the picture above, mainly due to Drinfel’d [35, 36],

which starts from a deformation of the semi-direct sum g ⊕̇ Rn, with Rn ' g∗, into a fully

non-Abelian Lie algebra, which coincides with d. The latter construction is reviewed below.

To be specific to our problem, we focus on the group SU(2) whose Drinfel’d double

can be seen to be the group SL(2,C) [35, 36]. An action can be shown to be written on the

tangent bundle of D, in such a way that the usual Lagrangian description of the rotator

can be recovered by reducing the carrier manifold to the tangent bundle of SU(2).

The structure of d = sl(2,C) as a double algebra is shortly reviewed here.

With this purpose, we start recalling that the complex Lie algebra sl(2) is completely

defined by the Lie brackets of its generators:

[t3, t1] = 2t1; [t3, t2] = −2t2; [t1, t2] = t3; (3.4)

with

t1 =

(
0 1

0 0

)
; t2 =

(
0 0

1 0

)
; t3 =

(
1 0

0 −1

)
. (3.5)

By considering complex linear combinations of the basis elements of sl(2), say ei, bi,

i = 1, 2, 3, respectively given by:

e1 =
1

2
(t1 + t2) =

σ1

2
, e2 =

i

2
(t2 − t1) =

σ2

2
, e3 =

1

2
t3 =

σ3

2
(3.6)

bi = iei i = 1, 2, 3 (3.7)

the real algebra sl(2, C) can be easily obtained with its Lie brackets:

[ei, ej ] = iεij
kek (3.8)

[ei, bj ] = iεij
kbk (3.9)

[bi, bj ] = −iεijkek (3.10)

with {ei}, i = 1, 2, 3, generating the su(2) subalgebra.

In a similar way, one can introduce the combinations:

ẽ1 = it1; ẽ2 = t1; ẽ3 =
i

2
t3, (3.11)

which are the dual basis of the generators (3.6), with respect to the scalar product naturally

defined on sl(2,C) as:

〈u, v〉 = 2 Im(Tr(uv) ), ∀u, v ∈ sl(2,C). (3.12)

3Properly [37] Drinfel’d doubles are the quantum version of double groups. The latter is introduced

below. The notation classical and quantum Drinfel’d doubles is also used.
4We denote with the symbol ./ the Lie algebra structure of d which is totally noncommutative, being

both Lie subalgebras non-Abelian.
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Indeed, it is easy to show that〈
ẽi, ej

〉
= 2 Im

(
Tr(ẽiej)

)
= δij . (3.13)

Hence, {ẽj} is the dual basis of {ei} in the dual vector space su(2)∗. Such a vector space is

in turn a Lie algebra, the special Borel subalgebra sb(2,C) with the following Lie brackets:

[ẽ1, ẽ2] = 0; [ẽ1, ẽ3] = −iẽ1; [ẽ2, ẽ3] = −iẽ2. (3.14)

In a more compact form, the generators (3.11) can be written as:

ẽi = δij
(
bj + ekε

k
j3

)
, (3.15)

and the corresponding the Lie brackets can be derived:

[ẽi, ẽj ] = if ijkẽ
k (3.16)

and

[ẽi, ej ] = iεijkẽ
k + iekf

ki
j (3.17)

with f ijk = εijlεl3k. For future convenience we also note that:

ẽiẽj = −1

4
δi3δj3σ0 +

i

2
f ijkẽ

k. (3.18)

The following relations can be easily checked:

〈ei, ej〉 =
〈
ẽi, ẽj

〉
= 0 (3.19)

so that both su(2) and sb(2,C) are maximal isotropic subspaces of sl(2,C) with respect

to the scalar product (3.12).5 Therefore, the Lie algebra sl(2,C) can be split into two

maximally isotropic dual Lie subalgebras with respect to a bilinear, symmetric, non degen-

erate form defined on it. The couple (su(2), sb(2,C)), with the dual structure described

above, is a Lie bialgebra. Since the role of su(2) and its dual algebra can be interchanged,

(sb(2,C), su(2)) is a Lie bialgebra as well. The triple (sl(2,C), su(2), sb(2,C)) is called a

Manin triple [35, 36]. The total algebra d = g ./ g∗ which is the Lie algebra defined by the

Lie brackets (3.8), (3.16), (3.17), with its dual d∗ is also a Lie bialgebra.

The couple (d, d∗) is called the double of (g, g∗) [37]. The double group D is meant to

be the Lie group of d endowed with some additional structures such as a Poisson structure

on the group manifold compatible with the group structure; more details are given in the

next section. The two partner groups, SU(2) and SB(2,C) with suitable Poisson brackets,

are named dual groups and sometimes indicated by G,G∗. Their role can be interchanged,

so that they share the same double group D.

The splitting of sl(2,C) is realized with respect to the scalar product (3.12). This is

given by the Cartan-Killing metric gij = 1
2cip

qcjq
p, induced by the structure constants cij

k

of sl(2,C) in its adjoint representation.

5Notice that another splitting of the sl(2,C) Lie algebra into maximally isotropic subspaces with respect

to the same scalar product is represented by the span of {ei}, {bi}, i = 1, 2, 3, with 〈ei, ej〉 = 〈bi, bj〉 =

0, 〈ei, bj〉 = δij . However the generators {bi} do not close a Lie subalgebra.
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But this is not the only decomposition of sl(2,C) one can give. There is another

non-degenerate, invariant scalar product, represented by

(u, v) = 2Re(Tr(uv) ) ∀u, v ∈ sl(2,C). (3.20)

In this case, for the basis elements, one gets:

(ei, ej) = δij , (bi, bj) = −δij , (ei, bj) = 0, (3.21)

giving rise to a metric which is not positive-definite. With respect to the scalar product

defined in eq. (3.20), new maximal isotropic subspaces can be defined in terms of:

f+
i =

1√
2

(ei + bi) ; f−i =
1√
2

(ei − bi) . (3.22)

It turns out that:

(f+
i , f

+
j ) = (f−i , f

−
j ) = 0 ; (f+

i , f
−
j ) = δij (3.23)

whereas 〈
f+
i , f

+
j

〉
= δij ,

〈
f−i , f

−
j

〉
= −δij ,

〈
f+
i , f

−
j

〉
= 0 . (3.24)

Let us notice that neither of them spans a Lie subalgebra. By denoting by C+ and C− the

two subspaces spanned by {ei} and {bi} respectively, one can notice [75] that the splitting

d = C+ ⊕ C− defines a positive definite metric H on d via:

H = ( , )C+ − ( , )C− (3.25)

As in ref. [75], the inner product is here used to identify d with its dual, so that the metric

H may be viewed as an automorphism of d which is symmetric and which squares to the

identity, i.e. H2 = 1. Let us indicate the Riemannian metric with double round brackets.

One has then:

((ei, ej)) ≡ (ei, ej); ((bi, bj)) ≡ −(bi, bj); ((ei, bj)) ≡ (ei, bj) = 0 . (3.26)

In order to come back to the main subject of the paper, namely the relation between

GG and DFT, introducing the following notation for the sl(2,C) generators reveals to be

very helpful:

eI =

(
ei
ei

)
, ei ∈ su(2), ei ∈ sb(2,C), (3.27)

with I = 1, . . . 2d, being d = dim g. Then the scalar product (3.12) becomes

〈eI , eJ〉 = ηIJ =

(
0 δji
δij 0

)
. (3.28)

This symmetric inner product has signature (d, d) and therefore defines the non-compact

orthogonal group O(d, d), with d = 3 in this case.
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The Riemannian product (3.26) yields instead:((
ẽi, ẽj

))
= δipδjq

((
bp + elε

l
p3

))((
bq + ekε

k
j3

))
= δij + εil3δ

lkεjk3 ; (3.29)((
ei, ẽ

j
))

=
[
(ei, bq) + εkq3(ei, ek)

]
δjq = ε3i

j . (3.30)

Hence, one has:

((eI , eJ)) = HIJ =

(
δij ε3i

j

−εij3 δij + εil3δ
lkεjk3

)
. (3.31)

This metric satisfies the relation:

HT ηH = η (3.32)

indicating that H is a pseudo-orthogonal O(3, 3) matrix.

It is interesting to see how the metric η in eq. (3.28) and the metric H in eq. (3.31)

naturally emerge out in the framework here in exam. They correspond, in the usual

context of DFT, to the O(d, d) invariant metric and to the so-called generalized metric [6,

7, 76], respectively. In particular, in the latter, the role of the graviton field is played by

the Kronecker delta δij while the role of the Kalb-Ramond field is played by the three-

dimensional Levi-Civita symbol εij3 with one of the indices being fixed.

3.1 Para-Hermitian geometry of SL(2,C)

The two non-degenerate scalar products of SL(2, C), discussed above, have been widely

applied in many physical contexts where the Lorentz group and its universal covering

SL(2,C) play a role, starting from the pioneering work by E. Witten [53]. While the first

scalar product, i.e. the one defined in eq. (3.12), is nothing but the Cartan-Killing metric

of the algebra, the Riemannian structure H can be mathematically formalized in a way

which clarifies its role in the context of Generalized Complex Geometry [75, 77] and gives

a further example of doubled geometry [10]. Let us shortly review the derivation.

The splitting of sl(2,C) in su(2) and sb(2,C) implies the existence of a (1, 1)-tensor:

R : sl(2,C)→ sl(2,C) (3.33)

such that R2 = 1 and of eigenspaces given by su(2), with eigenvalue +1, and sb(2,C),

with eigenvalue −1. This can be seen as the local expression of a (1, 1)-tensor on SL(2,C)

called product structure, since it has integrable eigenbundles TSU(2) and TSB(2,C), that,

at every point of SL(2,C), are given by su(2) and sb(2,C) and are such that TSL(2,C) =

TSU(2) ⊕ TSB(2,C). These two eigenbundles are maximal isotropic with respect to the

scalar product (3.12) and, being integrable, they give rise to two transversal foliations of

SL(2,C), the one with SU(2) as leaves, the other with SB(2,C).

Moreover, the tensor R is compatible with the scalar product (3.12) meaning that the

following equation holds:

〈R(X), Y 〉+ 〈R(Y ), X〉 = 0 ∀X,Y ∈ Γ(TSL(2,C)),
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where Γ(TSL(2,C)) denotes the vector fields over the group manifold. In a more compact

form, one has: RT ηR = −L, with η(X,Y ) = 〈X,Y 〉 , ∀X,Y ∈ Γ(TSL(2,C)). This

condition implies that a 2-form field can be defined as:

ω(X,Y ) = 〈R(X), Y 〉 , ∀X,Y ∈ Γ(TSL(2,C)).

In other words, a para-Hermitian structure [77] can be defined on the manifold SL(2,C),

where R is the product structure, (3.12) is the scalar product compatible with the

Lorentzian signature and ω is the fundamental two-form. In this sense, the scalar prod-

uct (3.31) can be read as a metric with Riemannian signature considering the bases (3.22).

In fact, expressing the bases (3.22) as linear combinations of {ei} and {ẽi} yields

the following:

f+
i =

1√
2

(
δij ẽ

j +
(
δji + ε3i

j
)
ej

)
, (3.34)

and

f−i =
1√
2

(
−δij ẽj +

(
δji + ε3i

j
)
ej

)
, (3.35)

which generate, respectively, the subspaces V+ and V− of sl(2,C), maximal isotropic with

respect to (3.20).

Then, given the splitting sl(2,C) = V+⊕V−, there exists the (1, 1)-tensor H such that

H(f+
i ) = f+

i , H(f−i ) = −f−i , (3.36)

and

H2 = 1,

implying that V+ and V− are eigenspaces of H with eigenvalues +1 and −1 respectively.

One can immediately notice that the Lie bracket of any two elements in {f+
i } and

{f−i } is not involutive, hence V+ and V− are not Lie subalgebras of sl(2,C).

As described at the beginning of this section, eq. (3.36) can be read as the definition,

at any point, of a (1, 1)-tensor field H as an almost product structure on SL(2,C), since

the eigenbundles V+ and V−, obtained as distributions that, at any point, are V+ and V−
respectively, are not integrable. The local change of splitting implies that TSL(2,C) =

V+ ⊕ V−.

In order to write down the dual bases {f j∗+ } and {f j∗− } of {f+
j } and {f−j } respec-

tively, by using the duality relation between {ei} and {ẽi}, the duality conditions have to

be imposed:

f+
i (f j∗+ ) = δji , f−i (f j∗+ ) = 0

and

f−i (f j∗− ) = δji , f+
i (f j∗− ) = 0

which lead to

f i∗+ =
1√
2

(
ẽi + (δik + εik3)ek

)
and

f i∗− =
1√
2

(
ẽi − (δik + εki3)ek

)
.
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Therefore, the almost product structure H turns out to be the following:

H = δijf
+
i ⊗ f

j∗
+ − δijf−i ⊗ f

j∗
− ,

which, in the bases {ei}, {ẽi}, becomes:

H = δij ẽ
i ⊗ ẽj + δikε

kj3ẽi ⊗ ej + δkjε
ki3ei ⊗ ẽj + (δij + δlkε

il3εjk3)ei ⊗ ej .

The metric (3.28) can be used on H for raising and lowering indices. In fact, in the doubled

formalism, one can write the matrix:

HIJ = ηIKH
K
J =

(
δij εi

j3

−εij3 δij + δlkε
il3εjk3

)
(3.37)

which is exactly the generalized metric (3.31), i.e. H = ηH. The metric (3.37) is a rep-

resentative element in the coset O(3, 3)/O(3) × O(3), i.e. it is defined by 32 independent

elements. Thus, the form of the generalized metric depends on the choice of polarization

(the splitting of the double Lie algebra in two maximal isotropic subspaces). In fact, as

in Generalized Geometry, the metric (3.37) gives a reduction of the structure group of

TSL(2,C) to O(3) × O(3) and we can interpret such reduction, in this very specific case,

as related to the other natural scalar product on SL(2,C). Moreover, the introduction of

a generalized metric on Drinfel’d doubles is also discussed in [10], in which has been made

clear how, from different choices of polarization of the Drinfel’d double, the generalized

metric takes a different form which allows to recover different backgrounds. This is shown

to be very useful in the description and gauging of non-linear sigma models with doubled

target space.

It is also easy to verify that the metric with Lorentzian signature arising from (3.20)

is given by:

K = δijf
i∗
+ ⊗ f

j∗
− + δijf

i∗
− ⊗ f

j∗
+ (3.38)

which takes the form

KIJ =

(
δij εi

j3

−εij3 −δij + δlkε
il3εjk3

)
and is compatible with H, i.e. HTKH = −K. The compatibility condition of K and H

gives a closed two-form

Ω = KH = δijf
i∗
+ ∧ f

j∗
− , (3.39)

that, in the bases {ei} and {ẽi}, gets the following expression:

Ω = δijei ⊗ ẽj − δ
j
i ẽ
i ⊗ ej .

This can be read as an explicit form of the product structure R and the fundamental

two-form Ω.

In conclusion, it has been here shown that the natural scalar product (3.20) and

the almost product structure H define an almost para-Hermitian structure on the mani-

fold SL(2,C).
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Finally, let us describe the structure arising from (3.26). In the previous section, a

positive definite metric H (3.25) on SL(2,C) has been defined by the splitting sl(2,C) =

C+ ⊕ C−. In order to explicitly write down the metric tensor H, dual bases of {ei} and

{bi} have been introduced. After noticing that

bi = δij ẽ
j + ε k3

i ek

and by imposing the conditions

ei(b
∗j) = 0 , bi(b

j∗) = δji

and

ei(e
j∗) = δji , bi(e

j∗) = 0 ,

one obtains:

ei∗ = ẽi + εik3ek , bi∗ = δijej .

It is worth to stress that changing the splitting also changes the dual bases. Thus, the

metric tensor of eq. (3.25) can be retrieved:

H = δije
i∗ ⊗ ej∗ + δijb

i∗ ⊗ bj∗ = (, )C+ − (, )C− .

It takes the form (3.37) in the bases ({ei}, {ẽi}), is symmetric and squares to the identity.

Moreover, the metric H can be seen to be given by the composition of two generalized

complex structures [75], IJ and Iω, respectively defined by an almost complex structure J

and a symplectic structure ω. Therefore, one has a pair (IJ , Iω) of commuting generalized

complex structures on TSL(2,C) inducing a positive definite metric H. This is usually

called a generalized Kähler structure. Consequently, it has been shown how the almost

para-Hermitian structure and the generalized metricH on the manifold SL(2,C) are related.

The discussion that has been just completed shows the existence of two non-degenerate,

invariant scalar products on the total algebra d. In the forthcoming sections both products

will be considered in order to define action functionals for the dynamical systems in exam.

4 The dual model

In the previous section the dual group of SU(2), the group SB(2,C), has been introduced as

the partner of SU(2) in a kind of Iwasawa decomposition of the group SL(2, C). The latter

has been regarded as a deformation of the cotangent bundle of SU(2) with fibers F ' R3

replaced by the group SB(2,C). It is then legitimate to reverse the paradigma and regard

SL(2,C) as a deformation of the cotangent bundle T∗SB(2,C), with fibers F̃ ' R3 now

replaced by SU(2). In this section a dynamical model on the configuration space SB(2,C)

is proposed with an action functional that is formally analogous and indeed dual to (2.1).

The model is described with its symmetries in the Lagrangian and Hamiltonian formalisms.

In section 5 a generalized action containing both the models is finally introduced on the

whole group SL(2,C). The Poisson algebra encoding the dynamics, as well as the algebra

of generalized vector fields describing infinitesimal symmetries, turns out to be related to

the so-called C-bracket of DFT.
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4.1 The Lagrangian and Hamiltonian formalisms

As carrier space for the dynamics of the dual model in the Lagrangian (respectively Hamil-

tonian) formulation one can choose the tangent (respectively cotangent) bundle of the

group SB(2,C). A suitable action for the system is the following:

S̃0 =

∫
R
L̃0 dt = −1

4

∫
R
T r[g̃−1dg̃ ∧ ∗g̃−1dg̃] = −1

4

∫
R
T r[(g̃−1 ˙̃g)(g̃−1 ˙̃g)]dt (4.1)

with g̃ : t ∈ R→ SB(2,C), the group-valued target space coordinates, so that

g̃−1dg̃ = iβkẽ
k

is the Maurer-Cartan left invariant one-form on the group manifold, with βk the left-

invariant basic one-forms, ∗ the Hodge star operator on the source space R, such that

∗dt = 1. The symbol T r is here used to represent a suitable scalar product in the Lie

algebra sb(2,C). Indeed, since the algebra is not semi-simple, there is no scalar product

which is both non-degenerate and invariant. Therefore, one has two possible different

choices: the scalar product defined by the real and/or imaginary part of the trace, given

by eqs. (3.12) and (3.20) which is SU(2) and SB(2,C) invariant, but degenerate; or one

could use the scalar product induced by the Riemannian metric G, which, on the algebra

sb(2,C) takes the form (3.29) which is positive definite and non-degenerate, but only

invariant under left SB(2,C) action and SU(2) invariant. Indeed, by observing that the

generators ẽi are not Hermitian, (3.29) can be verified to be equivalent to:

((u, v)) ≡ 2Re Tr [(u)†v] (4.2)

so that ((g̃−1 ˙̃g, g̃−1 ˙̃g)) = 2Re Tr [(g̃−1 ˙̃g)†g̃−1 ˙̃g] which is not invariant under right SB(2,C)

action, since g̃−1 6= g̃†.

The associated dynamical models are obviously different. The non-degenerate scalar

product defined in eq. (3.29) is used here, therefore the Lagrangian (4.1) is only left/right

SU(2) and left-SB(2,C) invariant, differently from the Lagrangian of the rigid rotator (2.1)

which is invariant under both left and right actions of both groups. As in the previous case,

the model can be regarded as a (0 + 1)-dimensional field theory which is group-valued.

The group manifold can be parametrized with R4 coordinates, so that g̃ ∈ SB(2,C)

reads g̃ = 2(u0ẽ
0 + iuiẽ

i), with u2
0 − u2

3 = 1 and ẽ0 = I/2. One has then:

ui =
1

4
((ig̃, ẽi)), i = 1, 2, u3 =

1

2
((ig̃, ẽ3)), u0 =

1

2
((g̃, ẽ0))

where the last product is defined as twice the real part of the trace, in order to be consistent

with the others. By observing that

g̃−1 ˙̃g = 2i(u0u̇i − uiu̇0 + fi
jkuj u̇k)ẽ

i (4.3)

the Lagrangian in (4.1) can be rewritten as:

L̃0 = (u0u̇i − uiu̇0 + fi
jkuj u̇k)(u0u̇r − uru̇0 + fr

pqupu̇q)((ẽ
i, ẽr)) = ˙̃Qi

˙̃Qrh
ir
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being
˙̃Qi ≡ u0u̇i − uiu̇0 + fi

jkuj u̇k

the left generalized velocities and

hir ≡ (δir + εil3ε
r
s3δ

ls) (4.4)

the metric defined by the scalar product. By repeating the analysis already performed for

the IRR, one finds the equations of motion:

LΓ( ˙̃Qj iX̃iβl)h
jl − LX̃iL̃0 = 0, (4.5)

with X̃j being the left invariant vector fields associated with SB(2,C). Differently from

the IRR case, the Lagrangian now is not invariant under right action, therefore, being the

left invariant vector fields the generators of the right action, the l.h.s. in eq. (4.5) is not

expected to be zero and through a straightforward calculation it results to be:

LΓ
˙̃Qjh

ji − ˙̃Qp
˙̃Qqf

ip
kh

qk = 0. (4.6)

(Q̃i,
˙̃Qi) are therefore tangent bundle coordinates, with Q̃i implicitly defined.

It has to be noticed here that, analogously to the IRR case, one could define the right

generalized velocities on the fibers starting from right invariant one-forms, but, differently

from that case, the right invariant Lagrangian is not equivalent to the left invariant one,

as already stressed.

The cotangent bundle coordinates are (Q̃i, Ĩ
i) with Ĩi the conjugate left momenta

Ĩj =
∂L̃0

∂ ˙̃Qj
= ˙̃Qr(δ

jr + εjl3ε
r
s3δ

ls) =
i

2
((g̃−1 ˙̃g, ẽi))δji .

The latter is in turn invertible, yielding:

˙̃Qj = Ĩi
(
δij −

1

2
εip3εjq3δ

pq

)
,

so that the Legendre transform from TSB(2,C) to T∗SB(2,C) leads to the Hamiltonian

function:

H̃0 =
[
Ĩj ˙̃Qj − L̃

]
˙̃Q= ˙̃Q(Ĩ)

=
1

2
Ĩi(h−1)ij Ĩ

j , (4.7)

being (
h−1

)
ij
≡
(
δij −

1

2
ε p3i ε q3j δpq

)
(4.8)

the inverse of eq. (4.4). Similarly to eq. (2.8), the linear combination over the dual basis is

introduced:

Ĩ = iĨj ẽ∗j (4.9)

with 〈ej∗|ẽi〉 = δij . Then, the first order dynamics can be obtained from the Hamilto-

nian (4.7) and the following Poisson brackets:

{ui, uj} = 0 (4.10)

{Ĩi, Ĩj} = f ij kĨ
k (4.11)

{ui, Ĩj} = δji u0 − fi jkuk or equivalently {g̃, Ĩj} = 2ig̃ẽj (4.12)
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which are derived from the first order formulation of the action functional. Since the results

are slightly different from the IRR case, let us present the derivation in some detail.

The first-order action functional reads in this case as:

S̃1 =

∫
〈Ĩ|g̃−1dg̃〉 −

∫
H̃dt ≡

∫
ϑ̃−

∫
H̃dt . (4.13)

Observing that

〈Ĩ|g̃−1dg̃〉 = iĨiδki βk , (4.14)

the symplectic form ω̃ reads as:

ω̃ = dϑ̃ = dĨj ∧ βj −
1

2
Ĩjfj

lmβl ∧ βm (4.15)

where the relation d[g̃−1dg̃] = i
2βi ∧ βjf

ij
kẽ
k has been used. By inverting ω̃, one finally

finds the Poisson algebra (4.10)–(4.12).

Hamilton equations are readily obtained from the Poisson brackets. In particular

one gets:
˙̃Ij = {Ĩj , H̃} = f jkl Ĩ

lĨrh−1
kr

which is consistent with eq. (4.6) and is different from zero, expressing the non-invariance of

the Hamiltonian under right action. Vice-versa, by introducing the right momenta J̃ i as the

Hamiltonian functions of right-invariant vector fields, which in turn generate the left action,

and observing that left and right invariant vector fields commute, one readily obtains:

˙̃J j = {J̃ j , H̃} = 0 (4.16)

namely, right momenta are constants of the motion and the Hamiltonian is invariant under

left action, as we expected.

By using (4.12) it is possible to find:

g̃−1 ˙̃g = 2iẽi(h−1)ij Ĩ
j

consistently with eq. (4.3). Right momenta are therefore conserved, as for the rigid rotator,

while left momenta are not.

Let us remark here that, while the fibers of the tangent bundle TSB(2,C) can be iden-

tified, as a vector space, with the Lie algebra of SB(2, C), sb(2,C) ' R3, with ˙̃Qi denoting

vector fields components, the fibers of the cotangent bundle T∗SB(2, C) are isomorphic to

the dual Lie algebra sb(2,C)∗. As a vector space this is again R3, but Ĩj are now com-

ponents of one-forms. This remark will be relevant in the next section where the Abelian

structure of sb(2, C)∗ is deformed.

As a group, T∗SB(2,C) is the semi-direct product of SB(2,C) and the Abelian group

R3, with Lie algebra the semi-direct sum represented by

[Bi, Bj ] = ifij
kBk (4.17)

[Si, Sj ] = 0 (4.18)

[Bi, Sj ] = ifij
kSk. (4.19)
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Then, as before, the non-trivial Poisson bracket on the fibers of the bundle, (4.11), can

be understood in terms of the coadjoint action of the group SB(2,C) on sb(2,C)∗ ' R3,

i.e. its dual algebra, and it reflects the non-triviality of the Lie bracket (4.17) with the Lie

algebra generators Bi identified with linear functions on the dual algebra.

To summarize the results of this section, the model that has been introduced is dual

to the Isotropic Rigid Rotator in the sense that the configuration space SB(2,C) is dual,

as a group, to SU(2). Moreover, as we shall see, the Poisson brackets of the momenta Ii, Ĩ
i

are dually related.

In the next section, a generalized action is constructed on the Drinfel’d double group

and it encodes the duality relation between the two models and the global symmetries that

have been discussed.

5 A new formalism for the isotropic rotator: the doubled formulation

In the previous sections, two dynamical models have been introduced with configuration

spaces being Lie groups which are dually related. The Poisson algebras for the respective

cotangent bundles, T∗SU(2), T∗SB(2,C), which we restate for convenience in the form:

{g, g} = 0, {Ii, Ij} = εij
kIk, {g, Ij} = 2igej (5.1)

{g̃, g̃} = 0, {Ĩi, Ĩj} = f ijkĨ
k, {g̃, Ĩj} = 2ig̃ẽj , (5.2)

have both the structure of a semi-direct sum dualizing the semi-direct structure of the Lie

algebras su(2)⊕̇R3 and sb(2,C)⊕̇R3. By identifying the dual algebras R3, in both cases,

with an Abelian Lie algebra, we have that each semi-direct sum has the form (3.3), with

R3 generators satisfying trivial brackets and with a trivial ad∗ action:

[X + ξ, Y + ζ] = [X,Y ]− ad∗Xζ + ad∗Y ξ . (5.3)

To this, it is sufficient to expand the group variables, g, g̃

g ' 1 + iλJ iei +O(λ2), g̃ ' 1 + iµJ̃iẽ
i +O(µ2) (5.4)

and compute the related Poisson brackets in eqs. (5.1), (5.2) to first order in the parameters.

One gets:

{J i, J j} = 0, {Ii, Ij} = εij
kIk, {J i, Ij} = −εijkJk (5.5)

{J̃i, J̃j} = 0, {Ĩi, Ĩj} = f ijkĨ
k, {J̃i, Ĩj} = −J̃kfkij . (5.6)

The new dynamical variables J i, J̃i will be identified in the forthcoming section with Ii, Ĩi
by unifying the cotangent bundles T∗SU(2),T∗SB(2,C) into the Drinfel’d double SL(2,C).

The brackets (5.5), (5.6) will then emerge naturally as appropriate limits of the Poisson-Lie

brackets on the dual groups G, G∗, when evaluated at the identity of the respective groups

as in eq. (3.3).
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5.1 The Lagrangian formalism

We are now ready to introduce the new action for the Isotropic Rigid Rotator using the

Lagrangian formalism on TSL(2,C). As in the conventional formulation described above,

its description can be read as a (0+1)-dimensional field theory which is group-valued, with

g(t) ∈ SU(2) now replaced by γ : t ∈ R→ γ(t) ∈ SL(2,C). The left invariant one-form on

the group manifold is then:

γ−1dγ = γ−1γ̇ dt ≡ Q̇
I
eIdt (5.7)

with eI = (ei, ẽ
i) the sl(2,C) basis introduced in eq. (3.27) and Q̇I , the left generalized

velocities. By defining the decomposition Q̇I ≡ (Ai, Bi) one has:

γ−1γ̇ dt = (Aiei +Biẽ
i)dt

where, however, both components are tangent bundle coordinates for SL(2, C).6 By using

the scalar product (3.12), the components of the generalized velocity can be explicitly ob-

tained:

Ai = 2Im Tr (γ−1γ̇ẽi); Bi = 2Im Tr (γ−1γ̇ei).

Since

∗γ−1dγ = Q̇IeI ,

with the Hodge operator defined as previously, namely ∗dt = 1, the proposed action is

the following:

S =

∫
R
Ldt =

1

2

∫
R

(
k1

〈
γ−1dγ ∧, ∗γ−1dγ

〉
+ k2((γ−1dγ ∧, ∗γ−1dγ))

)
, (5.8)

where k1, k2 are real parameters, and
〈
γ−1dγ ∧, ∗γ−1dγ

〉
is defined in terms of the scalar

product in eq. (3.28) while ((γ−1dγ ∧, ∗γ−1dγ)) is defined in terms of the scalar product in

eq. (3.31), namely: 〈
γ−1dγ ∧, ∗γ−1dγ

〉
= Q̇IQ̇J 〈eI , eJ〉 = Q̇IQ̇JηIJ (5.9)

((γ−1dγ ∧, ∗γ−1dγ)) = Q̇IQ̇J((eI , eJ)) = Q̇IQ̇JHIJ . (5.10)

Explicitly, in terms of the chosen splitting of the Drinfel’d double sl(2,C) = su(2) ./

sb(2,C), one has, up to an overall constant:

L =
1

2
(k 〈eI , eJ〉 Q̇IQ̇J + (eI , eJ)Q̇IQ̇J) =

1

2
(k ηIJ +HIJ)Q̇IQ̇J (5.11)

with

k ηIJ +HIJ =

(
δij kδji + ε3i

j

−εij3 + kδji δ
ij + εil3ε

j
k3δ

lk

)
6We could alternatively interpret (Ai, Bi) as fiber coordinates of the generalized bundle T ⊕ T ∗, with

base manifold SU(2), so that the model is an instance of both Generalized Geometry and Doubled Geometry
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and where the position k1/k2 ≡ k has been made. This leads to:

L=
1

2

[
δijA

iAj+
(
kδji +εi

j3
)
AiBj+

(
kδij−εij3

)
BiA

j+
(
δij+δlkεil3ε

j
k3

)
BiBj

]
. (5.12)

The Lagrangian one-form is therefore:

θL = (k ηIJ +HIJ)Q̇IαJ (5.13)

and the equations of motion read as:

LΓQ̇
I(k ηIJ + HIJ)− Q̇P Q̇QCKIP (k ηQK + HQK) = 0 (5.14)

where CKIP are the structure constants of sl(2,C). The matrix k ηIJ + HIJ is non-singular,

provided k2 6= 1, which will be assumed from now on.

5.2 Recovering the standard description

The standard dynamics of the isotropic rigid rotator is now shown to be recovered from

the new Lagrangian.

To be definite, let us fix a local decomposition for the elements of the double group

SL(2,C): γ = g̃g, with g ∈ SU(2) and g̃ ∈ SB(2,C). From eq. (5.8), one can see that L is

invariant under left and right action of the group SU(2), but only under left action of the

group SB(2,C), given by

SB(2,C)L : γ → h̃γ = h̃g̃g, ∀h̃ ∈ SB(2,C). (5.15)

In order to recover the usual description of the rotator, the SB(2,C)L invariance has to be

promoted to a gauge symmetry. One has then:

γ−1dγ → γ−1DC̃γ = (γ−1γ̇ + γ−1C̃γ)dt (5.16)

with

C̃ = C̃i(t)ẽ
i (5.17)

the gauge connection. The following split can be performed:

γ−1γ̇ + γ−1C̃γ = γ−1γ̇ + C̃iγ
−1ẽiγ = Uiẽi +W iei .

Then, eq. (3.13) implies:

Ui = 2Im Tr
[(
γ−1γ̇ + C̃jγ

−1ẽjγ
)
ei

]
= Bi + C̃j 2Im Tr

(
γ−1ẽjγei

)
(5.18)

W i = 2Im Tr
[(
γ−1γ̇ + C̃jγ

−1ẽjγ
)
ẽi
]

= Ai + C̃j 2Im Tr
(
γ−1ẽjγẽi

)
. (5.19)

Let us explicitly compute the two terms in the r.h.s. of eqs. (5.18), (5.19) correspond-

ing to the adjoint action of SL(2,C), in the chosen parametrization. After observing

that the infinitesimal adjoint action of g, g̃ on ej , ẽ
j is represented by the Lie brack-

ets (3.8), (3.16), (3.17), one gets:

Tr(γ−1ẽjγei) = Tr[(g̃−1ẽj g̃)(geig
−1)] = Tr(Adg̃ ẽ

j)(Adg−1ei)] = Tr[(a(g̃)jkẽ
k)(h−1(g)

s
i es)]
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so that, from (3.12) we have

2Im Tr
(
γ−1ẽjγei

)
= ajkh

−1
i
s
δks

which yields:

Ui = Bi + C̃ja
j
k(h
−1)ki . (5.20)

Analogously, one can compute:

Tr (γ−1ẽjγẽi) = Tr [(g̃−1ẽj g̃)(gẽig−1)] = Tr (Adg̃ ẽ
j)(Adg−1 ẽi)]

= Tr [(a(g̃)jkẽ
k)(b−1(g)

i
sẽ
s + d−1(g)

is
es)]

and, from (3.12):

2Im Tr (γ−1ẽjγẽi) = a(g̃)jkd
−1(g)

is
δks

that is

W i = Ai + C̃ja
j
kd

ik. (5.21)

After replacing the Lagrangian in (5.8) with the gauged Lagrangian

LC̃ =
1

2

[
k
〈
γ−1Dγ ∧, ∗γ−1Dγ

〉
+ ((γ−1Dγ ∧, ∗γ−1D , γ))

]
(5.22)

one gets:

LC̃ =
1

2
(k ηIJ +HIJ)

˙̂
Q
I ˙̂
Q
J

(5.23)

with
˙̂
Q
I

= (W i,Ui) (5.24)

namely

LC̃ =
1

2

[
δijW iWj + 2

(
kδji + εj3i

)
W iUj +

(
δij + δlkεil3ε

j
k3

)
UiUj

]
. (5.25)

Let us introduce now the combination:

Ŵ i =W i +
(
kδis − εis3

)
Us , (5.26)

allowing to rewrite the Lagrangian LC̃ as follows:

LC̃ =
1

2

[
δijŴ iŴj +

(
1− k2

)
δijUiUj

]
. (5.27)

This can be used for writing the partition function of the system under analysis as:

Z =

∫
DgDg̃DC̃e−SC̃ (5.28)

and integrate over the gauge potential. Therefore, the integration with respect to C̃i
can be traded for the integration with respect to Ui. The functional integral (5.28) can be

performed by changing the integration variable. Therefore, by inverting the relation (5.21),
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one can calculate det

(
δC̃i
δUj

)
and see that it is a constant, because the matrices involved in

the definition of Ui are all invertible. Consequently, the functional integral in the partition

function becomes:

Z =

∫
DgDg̃e−

1
2

∫
R dt(δijŴiŴj)

∫
DUe−

1
2

∫
R dt(1−k2)δijUiUj , (5.29)

where ∫
DUe−

1
2

(1−k2)
∫
R δ

ijUiUj = (2π)
3
2 (det(δij))−

1
2 . (5.30)

It is worth noticing that, in (5.26), the tensor T ij = kδij − εij3 defines, for k 6= 0, a

constant invertible map T : sb(2,C) → su(2), so one can introduce the endomorphism E

of d = su(2)⊕ sb(2,C) which preserves the splitting, defined by the constant matrix:

EIJ =

(
δij T ij

−(T−1)ij δji

)
(5.31)

This acts on any element of d in the following way:(
δij T ij

−(T−1)ij δji

)(
Wj

Uj

)
=

(
Ŵ i

Ûi

)

where Ŵ i is given by (5.26) and Ûi = Ui − (T−1)ijWj . We can write down the left

invariant forms

g′−1dg′ = Ŵ ieidt

and

g̃′−1dg̃′ = Ûiẽidt.

The constant endomorphism (5.31) induces a map exp(E) : SL(2,C)→ SL(2,C) such

that γ = g̃g → γ′ = g̃′g′. Then, one can see that the path integral measure can be

transformed giving DgDg̃ = Dg′Dg̃′ up to a constant factor, i.e. the determinant of the

constant map exp(E).

Thus the path integral (5.29) can be written, up to constant factors, as:

Z =

∫
Dg̃′

∫
Dg′e−

1
2

∫
R Tr [g′−1dg′∧∗g′−1dg′] (5.32)

where the path integral over g̃′ gives a constant and the other integral is exactly the

partition function of the action of the IRR defined up to a constant factor.

5.3 Recovering the dual model

The dual model described by the action functional (4.1) can be recovered along the same

lines as in the previous section. We consider the parent action (5.8), with the same

parametrization as before, namely γ = g̃g, and explore the global invariance under right

SU(2) action

SU(2)R : γ → γh = g̃gh, ∀h ∈ SU(2). (5.33)
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Hence, in complete analogy with eq. (5.16), we gauge this symmetry, by introducing the

su(2)-valued connection one-form C = Ci(t)ei so that

γ−1dγ → γ−1Dγ = (γ−1γ̇ + γ−1Cγ)dt (5.34)

Notice that in this case we could gauge the left SU(2) action, in which case it would be

convenient to use the other parametrization of γ as γ = kk̃, k ∈ SU(2), k̃ ∈ SB(2,C).

From (5.34) we have:

γ−1Dγ = Ũiẽi + W̃ iei (5.35)

with

Ũi = 2Im Tr
[(
γ−1γ̇ + Cjγ−1ejγ

)
ei
]

= Bi + Cj 2Im Tr
(
γ−1ejγei

)
(5.36)

W̃ i = 2Im Tr
[(
γ−1γ̇ + Cjγ−1ejγ

)
ẽi
]

= Ai + Cj 2Im Tr
(
γ−1ejγẽ

i
)
. (5.37)

By using the adjoint action of SL(2,C) on ei, ẽ
i, we obtain:

Tr (γ−1ejγei) = Tr [(g̃−1ej g̃)(geig
−1)]

= Tr (Adg̃ej)(Adg−1ei)]

= Tr [
(

l(g̃)kj ek + mjk(g̃)ẽk
) (

h−1(g)
s
i es
)
]

(5.38)

so that, from (3.12) one gets:

2Im Tr (γ−1ejγei) = mjk(h
−1)i

k

which yields:

Ũi = Bi + Cjmjk(h
−1)i

k
. (5.39)

Analogously, one can compute:

Tr (γ−1ejγẽ
i) = Tr [(g̃−1ej g̃)(gẽig−1)] = Tr (Adg̃ej)(Adg−1 ẽi)]

= Tr [(l(g̃)kj ek + mjk(g̃)ẽk)(b−1(g)
i
sẽ
s + d−1(g)

is
es)]

and, from (3.12)

2Im Tr (γ−1ejγẽ
i) = lkj (b

−1)ik + mk
j (d
−1)ik

that is

W̃ i = Ai + C̃j
(

lkj (b
−1)ik + mk

j (d
−1)ik

)
(5.40)

The gauged Lagrangian reads then

LC =
1

2
(kηIJ +HIJ) ˙̃QI ˙̃QJ (5.41)

with ˙̃QI ≡
(
W̃ i, Ũi

)
so that

LC =
1

2

[
δijW̃ iW̃j + 2(kδji + εi

j3)W̃ iŨj + (δij + δlkεil3ε
j
k3)ŨiŨj

]
=

1

2

[
δijW̃ iW̃j + 2(kδji + εi

j3)W̃ iŨj + hijŨiŨj
]
. (5.42)

– 25 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
5

We can proceed as in previous section and introduce

Ŭi = Ũi + W̃sTs
l(h−1)il , (5.43)

with

Ts
l = kδls + εs

l3 (5.44)

and the inverse metric

(h−1)il = δil −
1

2
δpqεi

p3εl
q3 (5.45)

allowing to rewrite the Lagrangian L̂C as follows:

LC =
1

2

[(
δij − TikTj l(h−1)kl

)
W̃ iW̃j + hijŬiŬj

]
. (5.46)

Thus we can write the partition function of the system under analysis as:

Z =

∫
DgDg̃DCe−SC (5.47)

and integrate over the gauge potential.

Let us stress that the difference with respect to the previous case is that now the

gauge connection is an SU(2) one, therefore allowing to trade the integration over Ci for

the integration over W̃ i.

By repeating exactly the same steps as in section 5.2, one arrives at:

Z =

∫
DgDg̃e−

1
2

∫
R dthij ŬiŬj

∫
DW̆e−

1
2

∫
R dt(δij−TikTj l(h−1)kl)W̆iW̆j

, (5.48)

and ∫
DW̆e−

1
2

∫
R dt(δij−TikTj l(h−1)kl)W̆iW̆j

= (2π)
3
2

(
det(δij − TikTj l(h−1)kl)

)− 1
2
. (5.49)

It is worth noticing that, as in (5.26), also in (5.43) the tensor T̆ij = (h−1)ilT
l
j defines

a constant invertible map T̆ : su(2) → sb(2,C), so that we can use the split-preserving

endomorphism Ĕ of d = su(2)⊕ sb(2,C), defined below, to get:

Ĕ

(
W̃j

Ũj

)
=

(
δij −(T̆−1)ij

T̆ij δji

)(
W̃j

Ũj

)
=

(
W̆ i

Ŭi

)
(5.50)

where Ŭi is given by (5.43) and W̆ i = W̃ i − (T̆−1)ijŨj . The constant endomorphism Ĕ

induces a map exp(Ĕ) : SL(2,C) → SL(2,C) which preserves the chosen parametrization,

namely, exp(Ĕ) : γ = g̃g → γ′ = g̃′g′. Then, one can see that the path integral measure

can be transformed giving DgDg̃ = Dg′Dg̃′ up to a constant factor, i.e. the determinant of

the constant map exp(Ĕ). Finally, by introducing the left invariant forms

g′−1dg′ = W̆ ieidt

and

g̃′−1dg̃′ = Ŭiẽidt
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the path integral (5.48) can be written, up to constant factors, as:

Z =

∫
Dg′

∫
Dg̃′e−

1
2

∫
R T r[g̃

′−1dg̃′∧∗g̃′−1dg̃′] (5.51)

where the path integral over g′ gives a constant and the other integral is exactly the

partition function of the dual model defined up to a constant factor.

5.4 The Hamiltonian formalism

In the doubled description introduced above, the left generalized momenta are repre-

sented by:

PI =
∂L̂

∂Q̇I
= (ηIJ + kHIJ)Q̇J (5.52)

The Hamiltonian reads then as:

Ĥ = (PIQ̇
I − L̂)P =

1

2
[(η + kH)−1]IJPIPJ

with

[(η + kH)−1]IJ =
1

2
(1− k2)−1

(
δij + εil3ε

j
k3δ

lk −εij3 − kδij
εi
j3 − kδji δij

)
.

From (5.52) one can explicitly write the generalized momenta PI in terms of the compo-

nents of Q̇I ≡ (Ai, Bj), finding:

PI ≡ (Ii, Ĩ
i) =

(
δijA

j + (kδji + εj3i )Bj , (kδ
i
j − εij3)Aj + [δij + δlkεil3ε

j
k3]Bj

)
.

In terms of the components Ii, Ĩ
j , it turns out that:

Ĥ =
1

2
(1− k2)−1

(
δijIiIj + δij Ĩ

iĨj + εil3ε
j
k3δ

lkIiIj − 2kδijIiĨ
j + 2εj3i Ĩ

iIj

)
=

1

2
(1− k2)−1

(
(1− k2)δijIiIj + δij(Ĩ

i − Is(kδsi + εsi3))(Ĩj − Ir(kδrj + εrj3))
)

which can be rewritten as

Ĥ =
1

2
(1− k2)−1

(
(1− k2)δijIiIj + δij ĨiĨj

)
after having defined

Ĩi ≡ Ĩi − Is(kδsi + εsi3) = δij(1− k2)Bj .

In order to obtain the Hamilton equations for the generalized model on the Drinfel’d double,

one can proceed as in the previous section with the determination of Poisson brackets from

the first-order action functional:

Ŝ =

∫
〈P|γ−1dγ〉 −

∫
Ĥdt ≡

∫
θ −

∫
Ĥdt

with

P = i PIe
I∗ = i (Iie

i∗ + Ĩiẽ
∗
i )

γ−1dγ = iαJeJ = (αkek + βkẽ
k) .
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We stress once again that PI, α
J are respectively generalized momenta and basis one-

forms on the doubled configuration space SL(2,C). The symplectic form on T∗SL(2,C) '
SL(2,C)× sl(2,C)∗ is therefore:

ω = dθ = dIi ∧ αi + dĨi ∧ βi +
1

2
Ĩ l
(
αj ∧ βkεkjl − βj ∧ αkεjkl − βj ∧ βkf jkl

)
+

1

2
Il

(
−αj ∧ αkεljk + αj ∧ βkf lkj − βj ∧ αkf ljk

)
which yields for the generalized momenta the Poisson brackets:

{Ii, Ij} = εij
kIk (5.53)

{Ĩi, Ĩj} = f ijkĨ
k (5.54)

{Ii, Ĩj} = εj ilĨ
l − Ilf lj i {Ĩi, Ij} = −εijlĨ l + Ilf

li
j (5.55)

while the Poisson brackets between momenta and configuration space variables g, g̃ are

unchanged with respect to T∗SU(2),T∗SB(2,C). We shall come back to the Poisson alge-

bra (5.53) in the next subsection.

In order to derive Hamilton equations, it is sufficient to write in compact form:

{PI ,PJ} = CKIJPK

with CKIJ the structure constants specified above. We have then:

d

dt
PI = {PI , Ĥ} = [(η + kH)−1]JK{PI ,PJ}PK = [(η + kH)−1]JKCLIJPLPK

which is not zero, consistently with (5.14).

5.5 The Poisson algebra

The generalized formulation of the isotropic rotator is completed by discussing the Poisson

brackets on the double group SL(2,C), which correctly generalize those on the cotangent

bundle stated in eq.s (2.9)–(2.11) as well as in eqs. (4.10)–(4.12). These have been intro-

duced long time ago in [37, 70] in the form

{γ1, γ2} = −γ1γ2r
∗ − rγ1γ2 (5.56)

where γ1 = γ ⊗ 1, γ2 = 1⊗ γ2 while r ∈ d⊗ d is the classical Yang-Baxter matrix:

r = ei ⊗ ei (5.57)

satisfying the modified Yang-Baxter equation

[r12, r13 + r23] + [r13, r23] = h

with r12 = ei ⊗ ei ⊗ 1, r13 = ei ⊗ 1 ⊗ ei, r23 = 1⊗ ⊗ , and h ∈ d ⊗ d ⊗ d and adjoint

invariant element in the enveloping algebra. The matrix

r∗ = −ei ⊗ ei (5.58)

– 28 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
5

is also solution of the Yang-Baxter equation. The group D equipped with the Poisson

bracket (5.56) is also called the Heisenberg double [37, 70]. On writing γ as γ = g̃g it can

be shown that (5.56) is compatible with the following choice

{g1, g2} = [r∗, g1g2], (5.59)

{g̃1, g2} = −g̃1rg2 (5.60)

{g̃1, g̃2} = −[r, g̃1g̃2], (5.61)

with g1 = g⊗ 1, g2 = 1⊗ g, g̃1 = g̃⊗ 1 and g̃2 = 1⊗ g̃. eqs. (5.61) (5.59) are the so-called

Sklyanin brackets [78]. We also have {g1, g̃2} = −g̃2r
∗g1.

Let us verify that we actually recover eq.s (2.9)–(2.11). In order to obtain the PB on

the fibers of the cotangent bundle T∗SU(2), the matrix r is rescaled by a real parameter λ

and the elements of G∗ are made dependent on the same parameter. By expanding up to

the first order, one gets:

g̃(λ) = eiλIie
i

= 1 + iλIie
i +O(λ2). (5.62)

Substituting this in (5.61) yields, for the left-hand side:

{g̃1, g̃2} = {g̃ ⊗ 1,1⊗ g̃} ' −λ2ei ⊗ ej{Ii, Ij}+O(λ3),

and for the right-hand side:

[r, g̃1g̃2] ' −λ
(
[ei, iλIjej ]⊗ ei + ei ⊗ [ei, iλIje

j ]
)

+O(λ3)

= −iλ2Ij
(
[ei, ej ]⊗ ei + ei ⊗ [ei, e

j ]
)

+O(λ3)

= λ2Ij(f
ij
r e

r ⊗ ei − εjire
i ⊗ er − f rji e

i ⊗ er) +O(λ3)

= −λ2Ikε
k
ijei ⊗ ej +O(λ3).

(5.63)

By equating the two sides, in the limit λ→ 0, one obtains the Poisson bracket:

{Ii, Ij} = εkijIk. (5.64)

Let us consider the second Poisson bracket, eq. (5.60). In order to compute its l.h.s. we

use for g the parametrization g = y0σ0 + iyiσi. We have, up to the first order in λ:

{g̃1, g2} = 2iλ
(
{Ii, y0}ei ⊗ e0 + i{Ii, yj}ei ⊗ ej

)
+O(λ2) (5.65)

while for the r.h.s.

−g̃1rg2 ' −2
(
(1 + iλIie

i)⊗ 1
)

(λek ⊗ ek)
(
1⊗ (y0e0 + iyjej)

)
= −2λek ⊗ ek

(
1⊗ (y0e0 + iyjej)

)
+O(λ2)

= −2λ(
1

2
y0ek ⊗ ek + iyjek ⊗ ekej) +O(λ2)

= −λ(y0ek ⊗ ek + iyjek ⊗ (δkje0 + iεikjei) (5.66)
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After equating (5.65) with (5.66), one finally gets at order λ:

{Ii, y0} = −yjδij
{Ii, yj} = y0δji − y

kεjki (5.67)

where the first one is compatible with the second one, by using (y0)2 = 1 −
∑

k y
kyk.

Finally, let us consider (5.59). The l.h.s. yields:

{g1, g2} = {y0, yj}i(σ0 ⊗ σj − σj ⊗ σ0)− {yi, yj}σi ⊗ σj (5.68)

which does not depend on λ. The r.h.s. instead reads as:

[r∗, g1g2] = −λ[ek ⊗ ek, g ⊗ g] +O(λ2) (5.69)

which is at least first order in λ. Therefore, by comparing (5.68) with (5.69), one obtains:

{y0, yj} = {yi, yj} = 0 +O(λ) . (5.70)

Thus, eqs. (5.64), (5.67), (5.70) reproduce correctly the canonical Poisson brackets on the

cotangent bundle in eqs. (2.9)–(2.11).

In order to underline the symmetric role played by the group SU(2) and its dual, one

can perform a slightly different analysis by considering r∗ as an independent solution of

the Yang-Baxter equation

ρ = −µek ⊗ ek (5.71)

and expanding g ∈ SU(2) as a function of the parameter µ:

g = 1 + iµĨiei +O(µ2) . (5.72)

By repeating the same analysis as above, it is straightforward to prove that the Poisson

structure induced by ρ is the one that correctly reproduces the canonical Poisson brack-

ets on the cotangent bundle of G∗ = SB(2, C) derived in eqs. (4.10)–(4.12). Indeed, by

substituting (5.72) in the l.h.s. of (5.59) one finds:

{g1, g2} ' −µ2ei ⊗ ej{Ĩi, Ĩj}+O(µ3),

and for the right-hand side:

[ρ, g1g2] ' −µ
(

[ei, iµĨ
jej ]⊗ ei + ei ⊗ [ei, iµĨjej ]

)
+O(µ3)

= −iµ2Ĩj
(
[ei, ej ]⊗ ei + ei ⊗ [ei, ej ]

)
+O(µ3)

= µ2Ĩj(εrijer ⊗ ei + f rijei ⊗ er + εijrei ⊗ er) +O(µ3)

= µ2Ĩkf ijkei ⊗ ej +O(µ3).

(5.73)

By equating the two sides, in the limit µ→ 0, one obtains the Poisson bracket:

{Ĩi, Ĩj} = f ijk Ĩ
k. (5.74)
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Last but not least, it is possible to consider a different Poisson structure on the double,

given by [37]:

{γ1, γ2} =
λ

2
[γ1(r∗ − r)γ2 − γ2(r∗ − r)γ1] . (5.75)

This is the one that correctly dualizes the bialgebra structure on d when evaluated at the

identity of the group D. To this, let us expand γ ∈ D as γ = 1+ iλIiẽ
i+ iλĨiei and rescale

r, r∗ by the same parameter λ. It is straightforward to obtain, on the l.h.s. of eq. (5.75),

{γ1, γ2} = −λ2
(
{Ii, Ij}ẽi ⊗ ẽj + {Ĩi, Ĩj}ei ⊗ ej + {Ii, Ĩj}(ẽi ⊗ ej − ej ⊗ ẽi)

)
while, on the r.h.s. of the same equation:

−λ2
(
Isε

s
ij ẽ

i ⊗ ẽj + Ĩsf ijs ei ⊗ ej + Isf
sj
i (ẽi ⊗ ej − ej ⊗ ẽi) + Ĩsεjsi(ẽ

r ⊗ ej − ej ⊗ ẽi)
)
.

By equating the two results one obtains:

{Ii, Ij} = εij
kIk

{Ĩi, Ĩj} = f ijkĨ
k

{Ii, Ĩj} = −fijkIk − Ĩkεkij

which is nothing but the Poisson bracket induced by the Lie algebra structure of the

double (3.17).

By using the compact notation I = iIie
i∗, Ĩ = iĨiẽ

∗
i , one can rewrite the Poisson

algebra as follows:

{I + Ĩ , J + J̃} = {I, J} − {J, Ĩ}+ {I, J̃}+ {Ĩ , J̃}. (5.76)

This is a very interesting structure, which represents a Poisson realization of the C-bracket

for the generalized bundle T ⊕ T ∗ over SU(2), once one considers the isomorphisms

TSL(2,C) ' SL(2,C)× sl(2,C)

with the fiber:

sl(2,C) ' su(2)⊕ sb(2,C) ' TSU(2)⊕ T∗SU(2).

That is, we recognize I = iIie
i∗, J = iJie

i∗ as one-forms, with ei
∗

being a basis over T ∗

and Ĩ = Ĩiẽ∗i , J̃ = J̃ iẽ∗i as vector-fields, with ẽ∗i a basis over T . Namely, the couple (Ii, Ĩ
i)

identifies the fiber coordinate of the generalized bundle T ⊕ T ∗ of SU(2).

In order to complete the analysis, let us look at the Lie algebra of Hamiltonian vector

fields associated with the momenta I, J . Hamiltonian vector fields are defined in terms of

Poisson brackets in the standard way

Xf ≡ {· , f}

so that, by indicating with Xi = {· , Ii}, X̃i = {· , Ĩi} the Hamiltonian vector field as-

sociated with Ii, Ĩ
i respectively, one has, after using the Jacobi identity, the following
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Lie algebra:

[Xi, Xj ] = {{· , Ii}, Ij} − {{· , Ij}, Ii} = {· , {Ii, Ij} = εij
k{· , Ik} = εij

kXk

[X̃i, X̃j ] = {{· , Ĩi}, Ĩj} − {{· , Ĩj}, Ĩi} = {· , {Ĩi, Ĩj}} = f ijk{· , Ĩk} = f ijkX̃
k

[Xi, X̃
j ] = {{· , Ii}, Ĩj} − {{· , Ĩj}, Ii} = {· , {Ii, Ĩj}} = −fijk{· , Ik} − {· , Ĩk}εkij

= −fijkXk − X̃kεki
j

namely

[X + X̃, Y + Ỹ ] = [X,Y ] + LX Ỹ − LY X̃ + [X̃, Ỹ ]

which shows that C-brackets can be obtained as derived brackets, in analogy with the ideas

of ref.s [49, 50], with the remarkable difference that, in this case, they are derived from the

canonical Poisson brackets of the dynamics.

5.6 Poisson-Lie simmetries

Let us explicitly address the nature of symmetries of the dual models introduced in the

previous sections. In particular we want to discuss to what extent the models possess

Poisson-Lie symmetries. We closely follow [46] for this subsection. Poisson-Lie symme-

tries are Lie group transformations implemented on the carrier space of the dynamics via

group multiplication, which, in general, are not canonical transformations as they need not

preserve the symplectic structure. However, if the Poisson structure is of the form (5.56)

with carrier space D itself, or (5.59), (5.61) if we are looking at G, G∗ respectively, Pois-

son brackets can be made invariant if the parameters of the group of transformations are

imposed to have nonzero Poisson brackets with themselves. Group multiplication is then

said to correspond to a Poisson map. We have for example, for the right transformations

of G on D,

γ → γh , h ∈ G , γ ∈ D (5.77)

and the left action of G∗ on D,

γ → h̃γ , h∗ ∈ G∗ γ ∈ D. (5.78)

In terms of the coordinates (g̃, g) this implies

g → gh , g̃ → g̃ , (5.79)

for the former and

g → g , g̃ → h̃g̃ , (5.80)

for the latter. By themselves these transformations do not preserve the Poisson brack-

ets (5.59)–(5.61). But they can be made to be invariant if we require that the parameters

of the tranformation, h, have the following Poisson brackets

{h1, h2} = [ r∗ , h1h2 ] , (5.81)
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and zero Poisson brackets with g and g̃. Then the SU(2) right multiplication is a Poisson

map and (5.77) corresponds to a Poisson-Lie group transformation. For (5.78) to be a

Poisson-Lie group transformation, h̃ must have the following Poisson bracket with itself

{h̃1, h̃2} = −[ r , h̃1h̃2 ] , (5.82)

and zero Poisson brackets with g and g̃. Since the right-hand-sides of (5.81) and (5.82)

vanish in the limit λ → 0, the transformations (5.77) and (5.78) become canonical in

the limit.

Moreover, Poisson brackets (5.59)–(5.61) are invariant under the simultaneous action

of both G and G∗ via (5.77) and (5.78), if we assume that

{h̃1, h2} = 0 . (5.83)

By comparing with eq. (5.60) we conclude that the algebra of the observables g and g̃ is

different from the algebra of the symmetries parametrized by h and h̃. Therefore, dynamics

on the group manifold of SL(2,C) and on the two partner groups SU(2) and SB(2,C)

possesses Poisson-Lie group symmetries, when endowed with the above mentioned brackets.

Let us go back to the symplectic structures of the IRR and the dual model, respectively

given by eqs. (2.10) and (4.11). The former is obtained from (5.61) while the latter is

obtained from (5.59), for small (but non-zero) value of the parameters λ and µ, as we

have shown in 5.5 (see eqs. (5.63), (5.73)). We can therefore conclude that the momentum

variables of each model inherit their Poisson brackets from the Poisson-Lie structure of the

dual group, which in turn exhibits Poisson-Lie symmetry in the sense elucidated above.

6 Conclusions and outlook

Starting from an existing description of the dynamics of the Isotropic Rigid Rotator on

Heisenberg doubles [46], we have introduced a new dynamical model which is dual to the

standard IRR. To this, we have used the notion of Poisson-Lie groups and Drinfel’d double

for understanding the duality between the carrier spaces of the two models. Specifically,

we have used the Drinfel’d double of the group SU(2) as the target configuration space for

the dynamics of a generalized model, with doubled degrees of freedom. This model exhibits

non-Abelian duality and is an ideal arena to analyze in a simple context the meaning to

physics of generalized and double geometry structures. Moreover, we have shown that,

from the generalized action, the usual description with half the degrees of freedom, can be

recovered by gauging one of its symmetries.

The simple model of the IRR is especially interesting as a toy model for field theories

with non-trivial target spaces such as Principal Chiral Models. In their original formula-

tion [55, 56] these are nonlinear sigma models with the principal homogeneous space of the

Lie group SU(N) as its target manifold, where N is the number of quark flavors. Therefore,

the dynamical fields of the model, so called currents take value in the cotangent bundle of

the Lie group, while the canonical formalism is described by a Poisson algebra which takes

the form of a semi-direct sum. The analogy with the IRR is thus very strict: the analysis
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we have performed can be readily generalized, starting from an alternative description of

Principal Chiral Models given in ref.s [59, 60, 79–81] (also see [82] where Principal Chiral

Models are analyzed in the DFT context).

A Principal Chiral Model is a field theory with target space given by a Lie group G

and base space given by the two-dimensional space R2 endowed with the metric hαβ =

diag(−1, 1).

It describes the dynamics of two dimensional fields g : R1,1 = (R2, h) → G. The action

may be written in terms of Lie algebra valued left invariant one forms

g−1dg = g−1∂tgdt+ g−1∂σgdσ (6.1)

so to have

S =
1

2

∫
R2

Tr(g−1dg ∧ ∗g−1dg), (6.2)

where trace is understood as the scalar product on the Lie algebra g. The Hodge operator

exchanges the time and space derivatives

∗ (g−1dg) = ∗(Q̇idt+Qi
′
dσ)ei = (Q̇idσ −Qi′dt)ei (6.3)

with Q̇i = Tr g−1∂tgei, Q
i′ = Tr g−1∂σgei. The action (6.2) is the two-dimensional analogue

of the IRR action. Notice that in this case the Hodge operator maps one-forms into one-

forms while exchanging time and space derivatives. When passing to the Hamiltonian

formalism the momenta Ii = Q̇jδji and the space derivatives J i := Qi
′

close a Poisson

algebra, which, upon an equivalent reformulation of the model [59, 60, 79, 80], results to

be isomorphic to the Kac-Moody algebra ̂sl(2,C). It is therefore natural to conceive a dual

model with the same underlying ̂sl(2,C) structure but with the role of Ii, J
i exchanged. The

action of the dual model is the natural two-dimensional analogue of (4.1), with g̃ = g̃(σ, t).

Moreover a parent action encoding both models can be introduced, which is in turn the

analogue of (5.8), with γ = γ(σ, t). The symmetries of the two models under duality

transformations are addressed as well. Because of the presence of time and space derivatives

that are exchanged by the Hodge operator, the structure is richer than the one exhibited

by the particle dynamical systems considered here. We are completing the analysis and

the results will be detailed in a forthcoming paper [48].
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