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DOUBLING THE EQUATORIAL FOR THE PRESCRIBED SCALAR
CURVATURE PROBLEM ON sV

LIPENG DUAN, MONICA MUSSO, AND SUTING WEI

ABSTRACT. We consider the prescribed scalar curvature problem on S¥

N(N —2)

Agnv — v+R(y)v%:0 on SV, v>0 in SV,

under the assumptions that the scalar curvature K is rotationally symmetric, and has a positive
local maximum point between the poles. We prove the existence of infinitely many non-radial
positive solutions, whose energy can be made arbitrarily large. These solutions are invariant under
some non-trivial sub-group of O(3) obtained doubling the equatorial. We use the finite dimensional
Lyapunov-Schmidt reduction method.

Keyword: Prescribed scalar curvature problem, Finite dimensional Lyapunov-Schmidt reduc-
tion

AMS Subject Classification: 35A01, 35B09, 35B38.

1. INTRODUCTION

Given the N-th sphere (S, g) equipped with the standard metric g and a fixed smooth function
K, the prescribed scalar curvature problem on S consists in understanding whether it is possible
to find another metric § in the conformal class of g, such that the scalar curvature of g is K. For

some positive function v : S¥ — R, and a related conformal change of the metric

4
gzvmg’

the scalar curvature with respect to g is given by

N2 N(N -2
v <A§NU - (2)v> ,

where Agw is the Laplace-Beltrami operator on S. Thus the prescribed scalar curvature problem
on S¥ can be addressed by studying the solvability of the problem

N(N -2 ~ N42
(2)1)—|—K((y)1)%tg =0 onS", v>0 in SV, (1.1)

ASNU -

Testing the equation (1.1)) against v and integrating on SV, we get that a necessary condition

for the solvability of this problem is that K(y) must be positive somewhere. There are other

obstructions for the existence of solutions, which are said to be of topological type. For instance,
a solution v must satisfy the following Kazdan-Warner type condition (see [15]):

VK(y)-Vy VN2 do = 0. (1.2)
SN
This condition is a direct consequence of Theorem 5.17 in [16], where Kazdan and Warner proved
that given a positive solution v to
N(N —2)

5 v+ H(y)v* =0

ASN’U —
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on the standard sphere SV, N > 3, then

1
/SN v TIVH . VF = 5(N—2) (E—Q /SN v H F, (1.3)

for any spherical harmonics F' of degree 1. Taking a = %, H =K and F =y in (L.3), we can

obtain condition . The problem of determining which K (y) admits a solution has been the
object of several studies in the past years. We refer the readers to [2, 3], 4, 6] [7, 8, 10} 14} 15, 30],
and the references therein.

By using the stereo-graphic projection my : RY — SV \ {(0,0,---,1)}, the prescribed scalar
curvature problem on SV, i.e. (I.1)), can be transformed into the following semi-linear elliptic
equation

Av+ Ky 1=0, v>0, inRY veDMRY). (1.4)
Here 2* = 2, K(y) = K(nny), and DY*(RY) denote the completion of C°(RY) with respect to
the norm [py |Vu|?. Tt is of interest to establish under what kind of assumptions on K problem
admits one or multiple solutions.

For N =3, Y.Y. Li [I7] showed problem has infinitely many solutions provided that K(y)
is bounded below, and periodic in one of its variables, and the set {z | K(r) = max,cgs K(y)} is
not empty and contains at least one bounded connected component.

If K has the form K(y) = 1+ €h(y), namely it is a perturbation of the constant 1, D. Cao, E.
Noussair and S. Yan [5] proved the existence of multiple solutions.

If K(y) has a sequence of strictly local maximum points moving to infinity, S. Yan [32] constructed
infinitely many solutions.

In [31], J. Wei and S. Yan showed that problem has infinitely many solutions provided K is
radially symmetric K(y) = K(r), r = |y|, and has a local maximum around a given ry > 0. More
precisely, they ask that there are rg, co > 0 and m € [2, N — 2) such that

K(s) = K(ro) — cols — ro|™ + O(!s - 7"0\"”"), s € (rg — 9,19 +9),

where 0,0 are small positive constants. In order to briefly discuss the main results in [31], we will
recall the expression of Aubin-Talenti bubbles. It is well known (see [29]) that all solutions to the
following problem

Au+u?"1=0, u>0inR"Y, (1.5)
are given by

A N-2

2 N
x - T A9 19 ) R 7A' M
Uz A(y) CN(1+A2]y—x]2> x € >0

and ¢y = [N(N — 2)]¥ The solutions in [31] are obtained by gluing together a large number of
Aubin-Talenti bubbles, which looks like

k
i~ Y U, 5,
j=1

where A is a positive constant and the points x; are distributed along the vertices of a regular
polygon of k edges in the (y1,y2)-plane, with |z;| — 9 as k — oc:

2(j — 1 2(j — 1
2 = (7 cos (jk T 5 sin (]k )”,0,---,0), G=1,-k,

with 7 — rg as k — oo.
Under a weaker symmetry condition for K (y) = K(|/|,%") with y = (|¢/|,v") € R2 x RN=2_ S,
Peng, C. Wang and S. Wei [27] constructed infinitely many bubbling solutions, which concentrate
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at the saddle points of the potential K(y). Y. Guo and B. Li [I1] admitted infinitely many solutions
for problems with polyharmonic operators. For fractional case, we refer to [13] 23].

The study of other aspects of problem , such as radial symmetry of their solutions, unique-
ness of solutions, Liouville type theorem, a priori estimates, and bubbling analysis, have been the
object of investigation of several researchers. We refer the readers to the papers [1, 9, 18, 20} 2T,
22, [25], 26, [32] and the references therein.

Recently, Y. Guo, M. Musso, S. Peng and S. Yan [12] investigated the spectral property of the
linearized problem associated to around the solution 4 found in [31]. They proved a non-
degeneracy result for such operator by using a refined version of local Pohozaev identities. As an
application of this non-degeneracy result, they built new type of solutions by gluing another large
number of bubbles, whose centers lie near the circle |y| = r¢ in the (y3, y4)-plane.

All these results concern solutions made by gluing together Aubin-Talenti bubbles with centres
distributed along the vertices of one or more planar polygons, thus of two-dimensional nature.
The purpose of this paper is to present a different type of solution to (1.4 with a more complex
concentration structure, which cannot be reduced to a two-dimensional one.

To present our result, we assume that K is radially symmetric and satisfies the following condition
(H) : There are rg and ¢y > 0 such that
K(s) = K(ro) — cols —ro|™ + O(|s — ro|™), s € (ro—6,r0+ ),
where ¢, > 0 are small constants, and

2, N —2) it N=5or6,
(1.6)

(W22 N—2)  if N>T.

There is a slight difference between our assumptions on K (s) and the ones in [31]. We will comment
on this issue later.

Without loss of generality, we assume rg = 1, K (1) = 1. For any integer k, we denote
N-—2

r=kN-2-m, (1.7)

and set u(y) = r‘¥v(M). Then the problem (1.4) can be rewritten, in terms of u, as

r

Au= K<@>u2*—1, >0, inRY, wueDW2RY). (1.8)
r
We define
k
Wena(W) =Y Uza(y) + > Up a(y), yeRY, (1.9)
j=1 j=1

for k integer large, where

fj:r(mcosiﬂjzl)ﬂ,\/l—hQSinLj;l)ﬂ,h,O), j=1,-k,
x-:T(mcosiﬂjzl)ﬂ,\/l—h%in@,—h,ﬂ), j=1,--- k.

Lj
Here 0 is the zero vector in RV =3 and h,r are positive parameters.

We shall construct a family of solutions to problem which are small perturbations of W, A.
More precisely, the Aubin-Talenti bubbles are now centred at points lying on the top and the bottom
circles of a cylinder and this configuration is now invariant under a non-trivial sub-group of O(3)
rather than O(2).



4 LIPENG DUAN, MONICA MUSSO, AND SUTING WEI

Throughout of the present paper, we assume N > 5 and (r, h, A) € ¥}, where

N—2 N-—-2
yk:{(r,h,A)‘TE[km—@km‘i‘&}v A€|:AO_&7AO+&7

he {é@—a—),%(wﬁ)]}, (1.10)

with Ag, B’ being the constants in (3.7)), (3.10) and & a fixed small number, independent of k. Since
h — 0 as k — oo, then the two circles where the points Z; and z; are distributed become closer to
each other as k increases.

In this paper, we shall prove that for any k large enough, problem (1.8) admits a family of
solutions wug with the approximate form

u(y) ~ Wipa- (1.11)

Moreover, these solutions are polygonal symmetry in the (y1,y2)-plane, even in the y3 direction
and radially symmetric in the variables gy, - ,yx. Our solutions are thus different from the ones
obtained in [31] and have strong analogies with the doubling construction of the entire finite energy
sign-changing solutions for the Yamabe equation in [24].

Define the symmetric Sobolev space:

H, = {u:uEHl(RN), wis even in yy, £ =2,3,4,--- , N,

u(y/y%+y§cos07y/y%+y§sin07y3,y")
2 2 2gm 2 2w 2gm 1"
:U( y1+92005(9+7), y1+y281n(9+7),y3,y> )

where § = arctan Z—f Let us define the following norms which capture the decay property of

functions
] Ml : ¥ 1 Tl (12)
U||x = sup — Nz MD uty)is .
yeRN VT M4 |y —T5)) 2 T (I+ly—z;[) 2 o
and
1 1 -1
[l = sup (37 e + =) @l (113)
yeRN VT P+ ly —T5) 2 T (T4 fy—zy) 2 T
where

_(N—Q—m N—-2—-m
TTVUN—2 T N2
for some €; small. The main results of this paper are the following:

+ €1), (1.14)

Theorem 1.1. Let N > 5 and suppose that K(|y|) satisfies (H). Then there ezists a large integer
ko, such that for each integer k > ko, problem (1.8]) has a solution uy of the form

uk(y) = Wy heri () + 01 (Y), (1.15)
where ¢, € Hg, (1, hi, Ak) € Sk, and ¢y satisfies

lpkll« = ok(1), as k— oo.
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Equivalently, problem (1.4)) has solution vi(y) of the form

2—N

o(y) = 252 W, (1) + 6r(ry)|,

with v as in ((1.7)).

Let us sketch the proof of Theorem The first step in our argument is to find ¢ so that
u = Wy pa + ¢ solves the auxiliary problem

2% —1
“A(Wepa+6) = K(4) (Wena +0)
+Z ZC@( 2Z53+U2 AJJ) inRN, (1.16)
¢ €k,
for some constants ¢, for £ =1,2,3. In (1.16)), the functions Zgj and Z,; are given by
— an A — an A — an A
Z J— Jo Z J— VE Z R s
VT o EAR T TN
OU,. A OU,. A OU,. A
Zl': . 9 Z2': — 9 Z3':;Ja
J or J oh J oA
for j =1,--- , k. Moreover, the function ¢ belongs to the set E given by
E:{v v e Hg, / 2Zgjv—() and
/ U 2Zyv =0, j=1,---k 5:1,2,3}. (1.17)
RN

From the linear theory developed in Section [2, problem can be solved by means of the
contraction mapping theorem. More precisely, we prove that, for any (r,h,A) € .%; there exist
¢ = ¢rp,a € E and constants ¢, £ = 1,2,3 which solve the auxiliary problem .

After the correction ¢ has been found, we shall choose (r,h,A) € 7} so that the multipliers
ce =00 =1,2,3) in . As a consequence, we can derive the results as in Theorem
Equation is the Euler-Lagrange equation associated to the energy functional

1

1 |y| 2%
I(u) == Vul?dy — — K(Z dy. 1.1
(u) 2/RNI ul“dy 7 Jon (r)IUI Yy (1.18)

Thus, roughly speaking, if (r, h, A) is a critical point of function

F(r,h,A) .= I(Wy oA+ drna) for ¢ppa €E,

then the constants ¢y, £ = 1,2,3 would be zero. Thus finding solutions of problem (|1.8)) would be
reduced to find a critical point of F'(r, h, A). This is the result in Proposition
An important work of this paper is to give an accurate expression of F(r, h,A) (see Proposition
N-—2
. Under the assumptions r ~ kN-2=m_h — 0, ﬁ — 0 as k — oo, we first get the expansion of
the energy functional I(W, j A)

L o k B4kN_2 Bsk
Fi(r.h, A) o= I(Wepa) = kAL = 55| Tt i — |
A A 1
+k[ (1\27—2)m + ? N_2)m (I‘—T)Q} +kO(W)7
AmMEN—2=m AM—2L N—2-m kN2-m1C
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where A; for i = 1,2,3 and B, for j = 4,5 are constants. We denote

BykN 2 N Bsk
VI—2N2 | NI
and let h be the solution of 9,G(h) = 0, then

G(h) :=

B/
h=—F=5(140(1)), as k— oo,
EN-1

for some B' > 0. If 7 ~ kN-2m b ~ —B'_ then
EN—1
Bsk B
(N2 2(N_3) (I1+0(1)), as k— o0

PNZ2pN=3T— R SR

for some constant B.

However, we now find that the term O(W) in the expansion of Fi(r, h,A) competes
kN—2-m™°

with the term %. This makes it impossible to identify a critical point for Fy(r, h,A).

In reality, though the remainder O(W) can be estimated in a more accurate way (see
N—=2—-m™7
Proposition under our assumptiolil (H).

We need to expand the full energy F(r,h,A) = I(Wy.pa + ¢rpn). We need a strong control on
the size of ¢, p A in order not to destroy the critical point structure of Fi(r, h, A) and to ensure the
qualitative properties of the solutions as stated in Theorem This is another delicate step of
our construction, where we make full use of the assumption (H) on K.

Structure of the paper. The remaining part of this paper is devoted to the proof of Theorem
which will be organized as follows:

1. In Section [2, we will establish the linearized theory for the linearized projected problem.
We will give estimates for the error terms in this Section.

2. In Section[3] we shall prove Theorem [I.1] by showing there exists a critical point of reduction
function F(r, h,A).

3. Some tedious computations and some useful Lemmas will be given in Appendices [A{B]

Notation and preliminary results. For the readers’ convenience, we will provide a collection
of notation. Throughout this paper, we employ C,C; to denote certain constants and o, 7,0; to
denote some small constants or functions. We also note that d;; is Kronecker delta function:

1, ifi=y,
(51']' =
0, iféi#j.

Furthermore, we also employ the common notation by writing O(f(r, h)), o(f(r, h)) for the functions
which satisfy

if g(r,h) € O(f(r,h)) then kgrfoo‘ ?E:’ Z)) ’ < C < +o0,
and
it g(r,h) € o(f(r,h)) then lim g(r.h) =0.

k—+o00 f(?“, h)
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2. FINITE DIMENSIONAL REDUCTION

For j =1,---,k, we divide RN into k parts:

Q; :Z{y = (y1,y2,¥3,9") € R* x RV 72 ;

<’(y1’y2)|,(00s2(‘j_1)ﬂ- ) 2(j—1)7r)> 7r}.

,sin > COSs —
(y1,92) k k 2 k

where (, )2 denote the dot product in R%. For ;, we further divide it into two parts:
Of =y y= "y e Qjy3 >0
;=Y iy =(Yy2,y8,Y) € Q5,3 = 07,

QJ_ :{y Y= (y17y27y37y//) € QjayS < 0}

We can know that
RY = U0y, =07 uQ;
and
Q4NQ=0, Q NQ; =0, if i #j.

We consider the following linearized problem

* k 3 * — *
“A¢— (2 — DK (w226 = 1+ 99> <CgU%’X2Zm + ceU‘,?i’XQZ&) in RV,
1=1/4=1 B

(2.1)
¢ € E,
for some constants cy.
Coming back to equation (|1.5), we recall that the functions
ou ) N -2
Zi(y) == ay}(y), i=1....N, Znuly) = —5—U) +y- VU(y). (2.2)

belong to the null space of the linearized problem associated to (1.5)) around an Aubin-Talenti
bubble, namely they solve

Ap+ (2F =1 U¥ 26=0, n RN, ¢e DM2(RM). (2.3)
It is known [28] that these functions span the set of the solutions to (2.3]). This fact will be used
in the following crucial lemma which concerns the linearized problem (2.1)).

Lemma 2.1. Suppose that ¢y solves (2.1)) for f = fi. If || fx |l tends to zero as k tends to infinity,
so does ||dx|«-

The norms || - ||« and || - ||+« are defined respectively in (1.12]) and (1.13]).

Proof. We prove the Lemma by contradiction. Suppose that there exists a sequence of (g, hg, Ax) €
7%, and for ¢ satisfies with f = fe, 7 =16, h = hgg, A = Ag, with || fi|l — 0, and [|¢g||« >
¢ > 0. Without loss of generality, we can assume that ||¢x|l« = 1. For convenience, we drop the
subscript k.
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From , we know that
(9% _ 1 || 2% -2 1
o) = =) | s k(WA e+ [ ()

k3
1 2
+/sz P ZZ(@U 3T + U2 3y )z

=My + My + Ms.

For the first term M;, we make use of Lemma so that

K(Ey . 1 1
M, <C / I W22 —— + = dz
L S ThA(;[ L+ |z —z)) 2 17 (1+\z—1‘j|)N22”D
<ol 3| ! , : ]
T+ - T (L e gyl) T T

For the second term Ms, we make use of Lemma [B-4] so that

1 1
Mo <Ol [ Wz[ e + —E

Atz 27 (A+lz—z) 7t

k

1 1
<Clfll > | e+

— N2 - N2 T]'
Sty —z) T (I4ly—z)) =+

In order to estimate the term M3, we will first give the estimates of le and le

— C — Cr — C
VATIRS . |Zg4] < . |Zs4] < —
T (L4 y —z[)V 2 T (L4 y —z)NV 2 T (L4 y —z[)V 2

C Cr C
VT (A fy — )2 U (L4 Jy —ayh)N-2 I (L4 |y —ay)N-2

(2.4)

Combining estimates (2.4) and Lemma we have

_ 1+T5@2)
227, s < / (
Z/RN 2 —y ’N =2 Uz Lejdz CZ Nz—y |N 2 1+ |z —3; V12 dz

<CZ (14 7o) -, for0=1,2,3,
(1+ |y_$JD

where dpp = 0 if £ # 2, §po = 1 if £ = 2. Similarly, we have

_ 1+7“5e2)

U2 =27

dz<C = for £=1,2,3.
Z/RN !Z—?J|N 7 Vg, Lt Z (1+y— )7
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Next, we will give the estimates of ¢, £ = 1,2,3. Multiply both sides of (2.1]) by Zg1,q = 1,2, 3,
then we obtain that

/}RN [_qu_@*_l) <‘y|>W2h_A2¢] Zn

Using Lemma B3] we can get

147 d¢9 1 1
qul < CHfH** Z/ N—2 [ N+2 + N+2
/ (1+ |y — 1) ( )2 T (1+]y—gj|)T+T

< C(1+702) || frc]| -

The discussion on the left side of may be more tricky, in fact, we have
[ [-ao-@ -k ('y‘)WZh—iqs} Za
- /R [ aZ - 2 - (w2 2z,
= (2 — 1)/RN [1 (’y|)}W3h’qu1¢+ (U;XZ thf) Zqr¢

=J1 + Jo.

Using the property of K(s), similar to the proof of Lemma we can get

J1<C|¢||/ ’1— ))WEZ/\ZZCI Z[ : N, T : Mw]

I+ly—z) =7 (A+ly—z) >

=C/|¢]| / ‘1 <\y|) ‘ Wi Za Z [ : Na,, T 1 MM}

1+ly—7= 2 14+ ly—z.]) 2
llyl—rl<vE ly =) (1+ |y — ;)

weol. [ -k ('y’)tvvfh‘iquZ[ : + )

(I+ly -3 T 7 A+ly—g) T

[ly|—r|>vr
k
<— [ W22y
VT gy rh,A (l—i—\y—l"ﬂ)N_zj; (1+|y_$]|) 5= +T
k
C 2% _9 ]. +T5f2 ]. C
+— | WoixWw) — < —(147dp)
o Jgx o PP (L4 Jy =T )N 2; (+|y—m)) T+ ~ 17

For Js, it is easy to derive that

JQS/
RN

1 —f—’l“(;gg
(L+ |y =7 [)V—2

2% —2 2% -2
vZ - W

xlv
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k 1 1

% [ N2, T N-2
A+l -z T (At ly—z) T T

c
S 7(1 + T(SZQ)

Then, we get

* \y! 2*—2 |= C
— — — - < — .
L [-ao-e - r(L)w 6]z, < S0+ raw ol
On the other hand, there holds

Z /N _2Zg] Ui;ﬁzéj ) Zqg1 = ¢6eq(1 + (5q2r2) +o(1), as k— oo.
R z

Note that
0, if £#q,
2% 27 =
| VAR -
q(1 4 64212), if (=g,

for some constant ¢; > 0. Then we can get

1476
0= 11550 (ol 171) = o), a5 ko
Then we have
k
1 1
ol < (713 | =+ =]
SOty -T) T Ay —al) T T
k
1 1
+Z[ 2+ * 247+ }>
Sy -T) T (g —ayl) T

Combining this fact and ||¢||. = 1, we have the following claim:
Claim 1: There exist some positive constants R, §; such that

¢l oo (Bo@)) = 01 >0,
for some [ € {1,2,--- ,k}.

(2.6)

(2.7)

(2.8)

Since ¢ € Hg, we assume that [ = 1. By using local elliptic estimates and (2.7)), we can get, up

to subsequence, &(y) = ¢(y — T1) converge uniformly in any compact set to a solution

—Au— (2" = 1)U Pu=0, inRY,

for some A € [Ly,Lo]. Since ¢ is even in yg,d = 2,4,--- , N, we know that u is also even in
Yd,d =2,4,--- ,N. Then we know that u must be a linear combination of the functions
0Up,A oUp,A

- VU, N —2)Up .
3@/1 3 8y3 ) Y 0,A+( ) 0,A

From the assumptions

/ U2 2Zpn¢=0 for =123,
RN ’

we can get

0

m/R UZ* 28U0A¢+h/R UQ* 28Uo Qg
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\/W/ Uy 8U0A<z> h/ U’ Wou 5 _,
RN

0ys3

and
/ Uz, —2 y-VUO,AJr(N—z)UM}qE:

By taking limit, we have

o, U o, U .
/RNUgAQ o " :/RNU(?AQ o " :/RNU&AZ[y'VUO’”(N‘?)UO’A}“:O'

So we have u = 0. This is a contradiction to (2.8). O

For the linearized problem (2.1]), we have the following existence, uniqueness results. Further-
more, we can give the estimates of ¢ and ¢y, £ = 1,2, 3.

Proposition 2.2. There exist kg > 0 and a constant C' > 0 such that for all k > ko and all
f € LX(RN), problem (2.1)) has a unique solution gb = L (f). Besides,

<
9l < Cllflless el < 5 +6

Proof. Recall the definition of E as in ((1.17]), we can rewrite problem (2.1 in the form

— Mfll £=1,2,3. (2.9)

—Ad= [+ (2" = DK (|y|>wfh;3¢ for all ¢ € E, (2.10)
in the sense of distribution. Furthermore, by using Riesz’s representation theorem, equation ([2.10))
can be rewritten in the operational form

(I—-Tw)¢=f, inE, (2.11)

where [ is identity operator and Ty is a compact operator. Fredholm’s alternative yields that
problem (2.11]) is uniquely solvable for any f when the homogeneous equation

(I-Ty)¢=0, inkE, (2.12)
has only the trivial solution. Moreover, problem (2.12]) can be rewritten as following

3
~a¢— (2 - DK (M)W e - ; ¥ (2 37+ U L) R,
¢ ek
Suppose that (2.13) has nontrivial solution ¢y, and satisfies ||¢g||« = 1. From Lemma we know
llok |« tends to zero as k — +oo, which is a contradiction. Thus problem (2.12) (or (2.13))) only

has trivial solution. So we can get unique solvability for problem (2.1). Using Lemma the
estimates (2.9)) can be proved by a standard method. O

(2.13)

We can rewrite problem ((1.16|) as following
“Ao— (2~ DK ('y')sz 6 =N(6)+1s
k =3 *
+X 521 (U2 3220 + U2 322, ) mRY, (2.14)
j=1le=

¢ €E,

where
2% 1

N(¢) = K('i{) [(WT,M +0) _ Wg;jAl (- 1)W,32f/\2 }
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and

k
lyl 2% -1 2% —1 2% —1
Ly = ( )thA - (U@-,A + Uz A )
7=1
Next, we will use the Contraction Mapping Principle to show that problem (2.14) has a unique
solution in the set that ||¢||« is small enough. Before that, we will give the estimate of N(¢) and

1.
Lemma 2.3. Suppose N > 5. There exists C' > 0 such that
min{2*—1,2
IN@)lex < Ol 742,
for all ¢ € E.
Proof. The proof is similar to that of Lemma 2.4 in [31]. Here we omit it. O

We next give the estimate of 1.
Lemma 2.4. Suppose K(|y|) satisfies (H) and N > 5, (r,h,A) € #. There exists kg and C > 0
such that for all k > ko

1 1
1w < Cmax { —— e~y | (2.15)

k;(N 2= m) St A) k;(N727m)mln{m’ 2
where €1 1s small constant given in .

Proof. We can rewrite 1 as

w=r () -

k
(U3 + v |
j=1

P [ () 1) (2 oz ) = s s

j=1
Assume that y € Q, then we get

1=K () (3 va+0i0)

-l ‘ 2%—1 2%—1

j=1

k k k k .
< CK(’?) [Ule*sz (ZU@’A + ZU%’A> + <ZQij,A + Z;UZj’A)Q 1],
i= i=

Jj=2 J=1

Thus, we have

k k
S <C S +C
' <1+|y—mlr4§;; 1+ry—xr <1+\y—xlr4; +ry—x V-2
k
1 251
+C( _ ) = 811 + Si2 + Sis.
jz:; Tty 7,V 11 12 13
We first consider the case N = 5. It is easy to get that
1 N




DOUBLING THE EQUATORIAL FOR THE PRESCRIBED SCALAR CURVATURE PROBLEM ON SV 13

1 kN3
<C _ (—) . (2.16)
L+]y—m))2"m r
When N > 6, similar to the proof of Lemma [B.1] for any 1 < ay < N — 2, we have
SO S B S
2y =) 2 = Wy w7 2 [y —ml
Since T € (5252, 25 4 ¢p), we can choose oy satisfies
N+2 N-2- N +2
;— - N72m_61<a1:T+_T<N_2'
Then
k
C 1
Sll|N>6 < Z NN +2—a T — 7|
=07 1+ |y — 7)) el Tl

< C ( k )al
T A+ y =T )NEe \p /T — B2

<C : (k)NQH_NNQQm h (2.17)
T Aty em) T
Then combining (2.16)) and (2.17)), we can get
M_N*Z*'m_el
C(%) PN N>,
[S11lex < (2.18)

For Si2, we can rewrite it as following

k
1 1 1
S0 =C
12 <1+|y—xlr>4[<1+\y—x1|>N—2*Zuﬂy—mw}

j=2
k
1 1 1
<C — { + - }
A+ly =T LA+ [y =z )¥72 0 (L |y =)V
Similarly to (2.16)), we can obtain
1 kN3
512|N25 <C 7 (;) :

(L+[y —m])2™7
For N > 6 and the same oy as in (2.18)), it is easy to derive that
1 1
A+ly—z)* A+ |y — 2z )V 2

1 1 1
<| )
R e e e A [P

_ C 1
T (It fy =z (hr)n




14 LIPENG DUAN, MONICA MUSSO, AND SUTING WEI

N+2 N-—-2—-m
1 TN @

k
SC - ]
(1+ \y—fﬂ)%ﬂ' (r)

where we have used the fact hr > C'z. Thus, we can obtain that

N+2 N-2-m _

cf)* T i N6

)

[[S12][4 < (2.19)

k

1 i 1
— < - -
= +ly =) ; @)z (1 7))

<C( k )22—N+§T 1
- rvi- (A+ly—m]) 7 ¥
Thus we have
Ni2
S (= )" .
rv1—~h (1+‘y_§1|)T+T
C kNP2 - -
= = (5)

N
A+ly—m)) ="

Since (% — N;ﬂ_}m — 61) ‘N:5 > 3 for m € [2,3), then we have

N+2_ N-2-m_

0(5)2 N2 N>,

r

1913 lx < (2.20)

Combining (2.18)), (2.19), (2.20)), we obtain

N+2 N-—2-m

C(E) 2N if N> 6,

9

1S [ex < (2.21)
3
C(E) . if N=5.

r

We now consider the estimate of Sy. For y € Qf, we have

s <23 [ (M) -1]oz
j=1
—20 [k(2) 1) e2 3wz () -

Jj=2
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=591 + Soo.
o If ]@ — 1| > 61, where § > 6; > 0, then
. . 1
ly =71 = |lyl = x| = [r = [71]] > Sour.

As a result, we get

. Y| ¢ !
vna K () -1 < Tl) T T
(I+ly—mf) 2 "r2
< c ] (k)N;?—W—E{
< +2 r

(+ly—m]) 2 7

() 1) <] 1" = St o

< il =™ + iz -2l

o If ]@ — 1| < 4y, then

Tn
C _ m ].
Srfmﬂ\y|—|$1“ +k97m}
Thus, we can get, if m > 3,
2% —1 Y C _m 1 C
vna [K(F) —1) < ol - il + 5] o
r r k (1+ |y —=])
m+3
- [ Iyl = [z1]] 2 11 1 ]
= N+2 m=3 15 _ \N+2
r (1+ |y —z1]) + rz K (14 |y —7) +
C 1 1 1
< n }
= “mt3 Nt2_ —  Ni2___mi3 —_ \N+2
e t(l4ly—m)) 2 T (14 |y—m)) > (I+|y—m))
1 C
= “mis N+2_
r 2 (1+|y—fl|) 2 17
the last inequality holds due to & +2 -7 — mTJrg > 0.
On the other hand, if m < 3, we have
2% —1 \y!)_}<£[ ™ 1} C
UaC1, |: <I‘ 1 = rm ||y| |5L‘1H =+ kém (1+‘y_fl‘)N+2
< C [ 1 1 n 1 ]
rm N+2 Nt2 — \N+2
"y -m) T T4 y—m) T (A+ly—Tl)
C 1
Si

Nt2

(1t ly —m))
—m > 0. Thus we have

vz () )< C 1 .
r mm{m,mTH} _ %—FT
r (I+ly—m)

since N+2
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As a result,
oy N2 N-2-m

su<Cmax{(3)F V7, 1m+3}}( SR (2.22)

r I,min{m, 5

Since y € QT, then for j = 2,--- | k, there holds
71— 75 < |y =Tl + |y — 75| < 2y — 751
Therefore, it is easy to derive that

1 il 1
S < C ——~3 ) — N2
A+ly—m)) 2 S A+ ly—7) 2

< ¢ — (ﬁ) RN (2.23)

Combining (2.22)) with ([2.23]), we obtain
N+2 N-2-m _

Hs2|y**gcmax{(§) T N2 1m+}}

I,mm{m,

3
If N =5, we can check that ,%m = <§> . Thus, we can rewrite (2.21) as

AN 1
H&H**SCIH&X{(;) 7W}
Therefore, we showed ([2.15)). O

The solvability theory for the projected problem (2.14]) can be provided in the following;:

Proposition 2.5. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € . There exists an
integer ko large enough, such that for all k > ko problem (2.14) has a unique solution ¢y which
satisfies

1 1
,<C { , } 2.24
el < Cmaxy S Vamm o (FT i 20 (2.24)
and
C 1 1
< { , } (=1,2,3. (2.25
4 S T 5 ™ o RS (s minim 25y | 17" (225)
Proof. We first denote
1 1
= : E < { , } .
5 {” veE ull. < Omaxy Sy i }

From Proposition we know that problem (2.14)) is equivalent to the following fixed point problem

¢ =Ly(N(¢) + 1) = A(9),

where Ly is the linear bounded operator defined in Proposition
From Lemma [2.3] and Lemma we know, for ¢ € B

|A@1x < C(IN@)llex + el )
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1 1
<0 1to —i—max{ ) }
< Olell-™) ) O ) | (2 min{m, 252
N — —
max , — — .
= P G B ) (2 min{m, 2

So the operator A maps from B to B. Furthermore, we can show that A is a contraction mapping.
In fact, for any ¢1, ¢po € B, we have

[A(61) = A(@2)[l+ < Cl[N(¢1) — N(2)|lx-
Since N(¢) has a power-like behavior with power greater than one, then we can easily get
[A(¢1) — A(g2)l« < 0(1)[|p1 — o]

A direct application of the contraction mapping principle yields that problem has a unique
solution ¢ € B. The estimates for ¢, £ = 1,2, 3 can be got easily from . O
3. PROOF OF THEOREM [I.1]

Proposition 3.1. Let ¢, 4 be a function obtained in Propositz'on and
F(r,h,A) :=I(Wyp A + Orna)-
If (r,h,A) is a critical point of F(r,h,\), then
u=WynA+ Ornnr
is a critical point of I(u) in H'(RY). O
We will give the expression of F(r, h, A). We first note that we employ the notation C(r,A) to
denote functions which are independent of h and uniformly bounded.

Proposition 3.2. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € /. We have the
following expansion as k — oo

1
F(r,h,A) = I(Wypa) + kO — —
(k(N(—]\;_2+2(Jifv—13) +‘7) >
k BykN—2 Bsk
— kA — [ + }
A 2 (r‘/l_hQ)N—Z rN—QhN—?),/l_hQ
A2 A3 C(Ta A) o
+ k[ (N—2)m (N—2)m (I‘ - T)Q] +k m(N—2) (I‘ - 7‘)2+
Amkm Am*2k N—-2—m k;N727m
C(r,A) 1
+khk—rna—tkO — = )
I8 = A (k(M+W+0) )

where A1, Ao, Az, By, Bs are positive constants.

Proof. The proof of Proposition is similar to that of Proposition 3.1 in [3I]. We omit it here. O

Next, we will give the expansions of aF(g}\h’A) and aF(g’:’A).

Proposition 3.3. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € %;. We have the
following expansion for k — oo

OF(r,h,A) k(N —2) BykN—2 Bsk

oA AT /TN N2 s T 12
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A —2)A 1
_k[ = (27 2)m + (m )72? (F_T)Q] + kO (W)’ (3'1)
AL S Am—1f N kN—2—m 17
where Ao, A3, By, Bs are positive constants.
Proof. The proof of this proposition can be found in [31]. We omit it here. U

Proposition 3.4. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € %;. We have the
following expansion

F(r,h,A BykN 2 B
OF(rhA) _ k’; [(Nfg) ak h— (N —3) 5k
Oh AN—2 rN=2(y/1 = h2)N PN-2pN-2. /T _ ]2
1
+k0 — _ bl (32)
<k(z<_’§_i2+%_?+a)>

where By, Bs are positive constants.

Proof. Notice that F(r,h,A) = I(W, nA + ¢rna) , there holds

oh
O(Wyna + br
= <I/(WT,h,A + Qbr,«’h’A), ( ’h7A8h ¢ 7h7A)>

oW, 86,
- <I/(W7"vh7/\ + érpa), ahhA> + <I/(Wr,h,A + Grhn)s M>

(7 OW'n,A S 2% — OPr.h,A
= I(Wr,h,A+¢r,h7A),T + ZZ (CEUE] T JngU A J]> o . (3.3)

Since fRN = g]gbrh A= fRN Z@qﬁrh A = 0, we can get easily

. o O, U2 P Zyj)
<U£j,AQZEj7 ¢8ZVA> = _<3h ’ s PronA ) s

27
<U2*AQZ[ O¢rhA > o <3(me A Zej) b hA>
!ja J ah - 6h )y TN, °

S rA+ly-z) T T (4 y -y

2_2Z'L k
< Cleclléraal Z/ z (Z[ g+ 1 DN;J)
J

< Cle|érpall«

k
—i—(;ggr [ 1 1
— _ }
Z/RN 1—|—|y—g: | N+3 (]Z:; +|y_fj‘)—N22+T ( +|y_$ DN22+T
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< Crmax{ ! ! }

) 3.4
(33 ) (V422 NZ22m—9er) i N2 ) min{2m,m+3} (3.4)

where we used the estimates ([2.24)-(2.25) and the inequalities
a(U 2 722&)

) oh
On the other hand, we have

oW,
<I/(Wr,h,A + drnA)s hA>

r(1+552’l”) )
Atz ori=Llo k=123

oh
*_ aWr
= VWynA+ Grna) VIVepn — /N K(’Z') (Wena + brnn)? 120 nhA
R

. oh

OWyrhA ly| or_1 OWer A
— AR STUTA N g1 . - A
/RN VW, h AV o /RN K ( - )(Wr,h,A + Orhn)

oh
_ 8I(Wr,h,A) * Y| 2 2 OWr A 2
=, T (2" -1) /]RN K(?)Wr,h,A o7, Ora T O(/RN ¢r,h,A)- (3.5)

For the second term in (3.5)), using the decay property of K(|y|) and orthogonality of ¢, a, we
can show this term is small. In fact, we have

1Y\ 11252 OWr A
/RN (r)W”hA o OrdA

k
= /RN K (W) [, 2 S (2 37+ U2 372) |

=1

+Z/ M ](U2 N Lo+ U2 (L) by

. OW, F _
a0 [ S 0

" 2k/N |:K<‘i/"> - 1} Uf2:,7\2z21¢r,h,A-
R

According to the expression of W, ; A, we can obtain that

/ K(M) [WQ*—Q‘?WT’h’A - zk:((ﬁ N Toi + UL |
Q{F r rh,A oh : 23 Z194 | Pr.h, A

k k
<C /Q . [Ugjf (D Zaj + D> Zoj) + (D U2 PZai + Y Ugfzz,-)} Prh,A

1 j=2 j=1 i=2 i=1

kN Y2 r
< C(I‘) /QT (1 N gbr,h,/\

1 ‘) 54’24’7’
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by 452 - zk: 1 1
<c(3) 7 ommall [ ] o+ o))
o (1+y - *|>2*2*T e O ) R O VR
Nt2 N2 N-2-m_ N+2 N—2-m_ .
<or(B) e ) I 4 e —
r ” r r pmin{m, 5=}
1 1
< .
= Crmax{k(Ngl J(N+2—282om 9y k(NN22m)min{2m,m+3}}

And it’s easy to show that
L () ]z
R

<Cr max{

1 1
(= (N +2— oNZ2om _oep)’ k(ij;fm)min{zm,mH} }
Combining all above, we can get
OF(r,h, ) 8[( Wina)

oh oh
1 1
+ kO (r max { () (N+2—225m —9e)) " (G220 min{2m,m+3} }) (3.6)
Combing ({3.6]), Proposition and Lemma. we can get (3.2 O

Remark 3.5. The expansions of 8F(g’:’A) and 8F(gf’A) would be applied in the proof of Proposition

which is essential for proving the existence critical point of F(r,h,A). In order to get a proper

OF (r,h,A)
oh

expansion of , we need accurate estimates for ¢, p A. ]

Rewritten the expansion of the energy functional.
Let Ag be

ro= (O]

Then it solves
B4(N — 2) Agm

AT pmr = O
Denote
N-2
G(h) = —2 T L
VIV NI
then
BikN—2h Bsk Bsk
"(hy=(N—-2)—2 % (N-3)— 2% 4 p 5%
g( ) ( )(m)]\] ( )hN—2m hN—4(1_h2)%
— (N —2)BakN2h[ 1+ 0(h?)]
Bsk Bsk
— (N - 3)hN s[1+0(M)] + RN— 4[1+O(h2”

= [(N — 2)Byk™N2h — (N — 3)%] +O(%)7
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B4kJN_2h2

(VI R2)N+2
Bsk

-3
)hN*3(1 — h2)2
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B kN_Q
! +(N—2)N

Bsk

9y o
WNLT 72

)

(N —-2)
(

g”(h) _

3Bsk

+ (N —3)(N
hN=5(1 — h2)3

Bsk

T T
AN=3(1 — h2)2

—(N—-14)
(N —2)B4kN 72 + (N - 3)(N

[(N —2)BykN"2h — (N — 3)%] —0,
(N — 3)35} L
(N =2)By ‘

and
Let h be a solution of
B/
. with B/ = [

N-3
1

e

h=
Ao +

30

k2

then

ie} Ae [Ao—

Define
@)

S, — {(r,h,A)\re [

point of F(r, h,A) in Sy.

Bsk
hN-3

30
k=2

(3.10)

1

)

N
for 0 is a small constant such that 6 < 100+ In fact, Sy is a subset of ;. We will find a critical
(3.11)

[1 + %hZ + O(h4)},

A direct Taylor expansion gives that
G(1) =G(h) + G'(W)(h ~ b) + L G" (W) (h —0)* + O (6" (i + (1 — 1)) ) (h — )",

Y220 omh) +

)

where
G(h) = Buk" 2|1+ ==
k
and
(N -2) N—2 Bsk 2, N—2
G"(h) = = | Bk 2 4 (N = 3) 0% | + O(n%V2).
Since G(h),G”(h) are independent of h,r, A, for simplicity, in the following, we will denote
o, (N=2)By n_ Bsk
G(h) = BykV 2 + 5 EN"2n? 4 Nt (3.12)
(N —-2) _ Bsk
BykN72 4 (N - 31 v-T)- (3.13)

g”(h) — 5
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Then combining (3.11)), (3.12)), (3.13)), we can get

gn) =BuN -2 4 W= DB Bk (8 Y om)

2 hV-3 hV—4
N —2 Bsk k
4 5 WBMN”+(N—ah;JMh—m2+OQW>M—hﬁ
Therefore, we get
2 N—2
o N-2 (N —2)B,B’ Bs k
(N —2) s (N —3)Bs1 kN2 _ kN2 _
+ 2 [BA‘B/ + BN-3 } 2(N-3) (1—h~h)* + O(m) (1-h~"h)’
N-1 —1
N-2 KN RN —17\2 KN —1733
—BykN 2 + Bo zpm + B s (1-h'h)2+ O</<;2(N3)> (1-h'h)3,  (3.14)
N-1 N-1 N—1
where
(N —2)B4B”? B (N -2) 2 (N —3)Bs
Bﬁ == 9 + B/N73, B7 - 9 |:B4B + W] .
Since
— 1 1
rée |kN=—2-m _ﬁ’ kN—2=m +ﬁ}’
then
N_g N2 C(r,A)
PN (14 &N;%w)
We now rewrite
B4kN72 n Bsk
(7"' /1 — h2)N_2 rN=2RN=3,/1 — h2
B4 B6 C(Ta A)
= T (N—2m + (N—2)m | 2(N=3) N—2)m |
kN=—2-m kN—2-m T N-1 kN=—2-m

By _ 1 B
+ o amg L h )T O<W>(1 —h7'n)’.
N-1 1

kN727m+ kN—2-m T N-—

Then we can express F'(r, h, A) as

By Bg
F(r,h,A) =kA; — k[ N T (N—2)m | 2(N-3)
AN—2LN=2=m AN-2[ Noo—m T N=1
By —17\2
+ e (1= b))
o T
AQ A3 C(Ta A) o
+ k[ ~om T (N—2)m (r— T)Q] +k (N—2)m (r— T)2+
AMEN—2—m AM—2L N=2=m kN—2—m
1 1
+k0<7>(1 “h i) +kO( ) (3.15)
REZomra )
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And similarly, we have

OF (r,h,A) i (N — 2)B4 mAs
EIN - [ BN (N—Q)m:|
AN— 1kN 3-m AM+1EN=2=m
2)A 1
+ W—(N)zin(r — )2 +kO (m(r — 7“)2+">;
Am— lkN 2—m kN=—2-m
and from ({3.2), by using some calculations, we have
OF(r,h,\) _k { 2By (1— 1h)]
oh AN=2 | gy (B S
+k0(k(m S 3)))(1—}1 h) +k0(k(2“§ omCE 3)+a)) (3.16)
Now define
F(r,h,A) = —F(r,h,\), (3.17)
and A B 1 1
to=k(—Ai1+m), ti1=k({—-A— i— Li o — )
( (A Aév 2) k%\lﬁm k%V “2m | 56 )

where 71 > 0 small. We also define the energy level set
Pt = {(r,h,A)\ (r,h,A) € Sg, F(r,h,A) < }

We consider the following gradient flow system

&r = _F, t>0;
‘é? = —F, t>0;
db = _Fy, t>0;
(T7h7A)‘t:o € Ft2,

The next proposition would play an important role in the proof of Theorem
Proposition 3.6. The flow would not leave Sy, before it reaches F*.

Proof. There are three positions that the flow tends to leave Sg:

position 1. |r—r| = % and |1 — h™!h| < i A=Al < -1
k2
position 2. |1 —h7!p| = 9 when |r —r| < % A — Aol < L
k2
position 3. |A — Ag| = L= when |r —r| < % 1 —-h7th| < %
=

& We now consider position 1. Since |A — Ag| <

(A%i2 B %i)

39 , it is easy to derive that

B4 A2 2
(Aév_z - Aan> + O(|A — Aol?)

i_é L (3.18)
(AéV—Q A6”> +O(k39>'
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Combining (3.15)), (3.17)), (3.18]), we can obtain that, if (r, h, A) lies in position 1,
B4 A2 :|

(N=2)m B (N—-2)m
AéV*Qk N2-m Ak N-2-m

As 1
—k +0(
A 2 20 pRmt Y

F(r,h,A) = —kA; + k

><t1

& On the other hand, we claim that it’s impossible for the flow (r(t), h(t), A(t)) leaves Sy when it
lies in position 2. If 1 —h™'h = %, then from (3.16) and (3.17]), we have

aF(Tv ha A) k 237 1
- O <0. 3.19
oh AN=2 [AN 2). " 22):+(%:?)+9_:| + (kgjv “2m | No3 4 9g ) (3.19)
On the other hand, if 1 —h™'h = _%
aF(T‘, h’A) _ k 237 1

So it’s impossible for the flow 1eaves Sk When it lies in position 2.
# Finally, we consider position 3. If A = Ag + —-, from (3.1)) and (3.17), there exists a constant
k2
(1 such that

oA k[clkgy_—;_%:me‘ +O< @4-20)] >0

kN
On the other hand, if A = Ag — there exists a constant C such that

k%g ’
OF (r,h, A 1 1
M:k[ — Co——5m _+O< e )} < 0.
oA kN—2- +29 kN—2- ""29
Hence the flow (r(t), h(t), A(t)) does not leave Sy, when [A — Ag| = —55.
k2 _
Combining above results, we conclude that the flow would not leave Sy before it reach F*'. [

Now we give the proof of Theorem

Proof of Theorem According to Proposition [3.1} in order to show Theorem we only need
to show that function F'(r, h,A), and thus F(r, h, A), has a critical point in S.
Define

I = {7 : y(r,hyA) = (71(7“, hy A), ya(r, h,A),*yg(r,h,A)) € Sk, (r,h,A) € Sg;

: 1
%nmAyZQWJQJHT_ﬂ:zﬁ}

Let

— inf F(v(r.h,A)).
c=inf max (v(r,h, A))

We claim that c is a critical value of F'(r,h,A) and can be achieved by some (r, h, A) € S;. By
the minimax theory, we need to show that
(i) t1 <c <ty
(i) SUP|, _p|= L F’(’y(r,h,A)) <ty, Vyerl.
K0

Using the results in Proposition [3.6| we can prove (i) and (ii) easily.
Finally, for every k large enough, we get the critical point (g, hy, Ag) of F(r, h, A). O
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APPENDIX A. EXPANSIONS FOR THE ENERGY FUNCTIONAL

This section is devoted to the computation of the expansion for the energy functional I(W, p A).
We first give the following Lemma.

Lemma A.1. N >5 and (r,h,A) € . We have the following expansions for k — oco:
k.NfZ

k
1
ZZ:; T =N (T = B2)

N2 (Bl + Jl(k‘», (Al)

k
1 Bsk o1 (k)kN—2
— — = 1+ o09(k)) + — (A.2)
; |T1 —2;|N-2  pN-2pN-3,/1 _ 2 ( ) (rv/1— 12 h2)N 2
where
2 =1 1 +oo 1
Bi= -3 g Ba=ox / —ds, (A.3)
(2m)N=2 i1 2 2N=3m g (32 + 1)T
and
O(k%)’ N 2 6’ 1
o1(k) = 1 oo(k) = O((hk)_ ) (A.4)
O(2F), N =5,
Proof. In fact, for % < c3 <e¢q <1, we have
i Lo i . k
c;;zgsm?g@?, forzE{l,---,§}.

Without loss of generality, we can assume k is even. It is easy to derive that

St )
|7y — 7| V2 2rv/1— h?sin I

i=1

Direct computations show that

k

2 1 N—-2
Z (2rmsin f)

i=1
[&]

Z( 1 )N*Q 1 N-2
4 + ( . )
— \2rv1— h?sin , 2rv/1 — h?sin

MES

Il
—
[N}
3
—
[ =
>
DO
=
~—
¥
[\]
—
—_
+
Q
—
?T‘s.
[\
~—
~
+
Q
—
—~
[\}
3
—_
IES
>
[\-]
SN—
i
(3]
~—

_ (Nl"’_ihz)]M(Dl +ou(k)), (A.5)
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where Dy = 27_(_]}]_2 > ,L-Nl_g and o1(k) is defined in (A.4). Using symmetry of function sinz, we
can easily show

k

A z’“;d (2r\/ﬁsin %’)N2 - (T\/lk_ihgyvz <D1 + 01(k:)).
=3
Thus we proved _

Similarly, we can obtain
k k
1 1
; 1T — L,|N72 - Z

i=1 (2r[(1 — h2) sin? L_kl)w + h?] %>

N-2

[NIES

2 1 k N-2
N (2rh)N=2 Z (1—h2) (i—1)272 o= t o Ug)O((ﬁ) )
=1 (Ui )
Consider O((hk)™') = o(1) as k — oo. Since
k
z 1 5 1
Z o [ 5 o N-2 Z/ R N-2 dz
= (GGAGSER 1) T 0 (G ) T

2 1 3t 1
Z/0 Mdfﬂ+z

((1252) Iigz n 1) p)

N-2"

j=4 ((1;32) G-l | 1)T

then we have

1
N—2

1 ((1;;12) (%;;2#2 + 1>T

-,

Mo

J

[NIES

1
o ~—z dz +1+0(1)
— T 2
(s )

hk (1—ff>ﬂ2 1
4h
=" L ds+1+0(1)
V1= h21 Jo (82+1)L22

hk oo 1 _
:1_]1%/0 (82+1)N2_2ds<1+0((kh) 1)).

Combining above calculations, we can obtain that

k 1 1 BQhk Ul(k‘)kN,Q
; T e v e ®) + O (rm)m),

where By and oy are defined in (A.3)), (A.4).
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Lemma A.2. We have the expansion, for k — oo

U U = vo(o—t o)
RN Z1,A Zi, A AN—2|51 _ §i|N—2 ’jl _ fi’N—EO
and
U U = vo(e—t )

/]RN T1,A szA AN_2’T1 _ %"N_Q ‘fl _ gi‘N—eo ’

where By = IRN ﬁ and €y 1s constant small enough.
(1+22)" 2
Proof. Let dj = |z1 — T}, d; = |71 —zj| for j=1,--- k. We consider
a3 AT

* A
U2 AlUi,Az/ =
o i = |, A+ A2y—:?) 5 L+ A2y =)

A AT
- / +/ — o NE2 g N2 (A.6)
By @) JRM\Bg (@) ) (1+A2ly—m1)?) 2 (1+ A2y —7[?) 2
1 4
First, we have
/ a2 AT
By @) (1+ A2y —7[2) 2" (1+ A2y —32) "7
a4
1 1
:/ Nt2 N-2 (A'7)
B,z (0 (1+22)72° (1422 42A(2, 71 — Ty) + A7) —T[?) 2
4
- 1 / 1 N—21+22+2A<Z,Tl—fi>
ANz — N2 Jp -0 (14 Z2)¥ 2 A2|z — 2
jl

+O<<1~|—,22+2A<z,;21 —mi>>2>>‘

AQ‘El —fi|2

It is easy to check that

1 1 1+ 22+ 202,71 — 7;)\2 1
—o(—— ), (A
AN_2|x1—(L'Z'|N_2O</BAd_(O) (1_‘_22)]\’;2< AQ‘fl—fi‘Q > ) O<|f1—fi|N>’ ( 8)

Ady
1 /
AN‘Tl —TZ“N B

Standard calculation implies that

and

| m (1 + 22 + 20\ (2, 7 — @)) = O(é) (A.9)

ag; (©
4

1 / 1 By 1
—— = 2+ 0(—=x): A10
ANz =N o) (14 22)% AV - E (4.10)
4

1
where B() = fRN —— N¥7 -
(1+22)72
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From (A.7)-(A.10), we get

AT AT
/B @) (L+ A2y~ )" (L4 A2y —if2) "
1
By 1
= O(—) A1l
AN—2|51 _ Ei|N_2 + |El _ fi’N—Eo ( )
When y € RV \ By, (1), there holds
Y
_ . _
ly —@1| > 1’1‘1 — Tl
It’s easy to get
N+2 N—2

A2 Az 1

/ - Nt2 - N—2 :O< e\ S ) (A.12)
_ oy 2 — 2 =2 — 7. |N—co
BN\, @) (14 A2ly = 212) 72 (1+ A2y — mif2) 2 1 =il
4
Combining (A.6)), (A.11) and (A.12)), we can get

U2 Uy, 0 = O(——5=): A3
/RN 1‘1,/\ CEzyA AN_2’T1 _ E,L’N_2 + ’Tl - ji’N_EO ( )

Similarly, we can get

* BO ].
U2 U, A= O(—)
/]RN Z1,A z;,A AN_nyl _ gi’N—Q + ’fl _ gi’N—Eo ’

fori=1,--- k.
O

Lemma A.3. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € .#;. We have the expansion
for k — oo

k k
I(Wypa) =kAr — k:/ Uz ( > Usn+ Ug].,A)
i=2 j=1

RN

Ao As q C
* k[Amrm + Am—2ym (r—m) } tk

NpIGTON ko((k)N_m) 40 (0 (5)N_2)7

rmto r Em \r
where C(r, A) denotes function independent of h and should be order of O(1),

2 - 2c R
A = (1 - 5) /RN Uoa|*, Ap= 2*0 /RN |1 U&,l, (A.14)
com(m — 1 _ X
A = 0 (2* ) / |y1|m QU&I? (A15)
RN

and €qy is constant can be chosen small enough.

Proof. Recalling the definition of I(u) as in (1.18)), then we obtain that

1 1 .
I(Wena) =35 /RN VWenal” = o5 /RN K('?)Wf,h,A

::Il —12. (A]‘G)
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According to the expression of W, ;, x, we have

3

J=1

k
—k:/RN (w3, +;U§:7R1ij,/\> / ZU2* Us, A

2*—1 2*—1
N (Ufl,A Uz;n + Uy, 2 U@»A)

2 2 -1
=k | U +1<:/R £ (ZU% A+ ZU%,A). (A.17)
For I3, using the symmetry of function W, j a, we have
2k |l
I = ? ( r )WThA

- Q¢K<'i'>{“ (S S )

( ZUxJ,A+ZUIA )}

2k
<IQl + Iso + IQg) . (A18)

T2
For y € 7, from Lemma we have

N_2_ (N—=2)¢g

k k
C k N
(E :Uijl\ + E :Ul]-7A) < (N—2)co (;) )
Jj=2 j=1 N

(1+ |y —7])

with ¢y > 0 can be chosen small enough. Then we can get

b =of [ K()EA S0 300 ) <o((5) )

For I51, we can rewrite it as following

o= [ 0z [ () <oz,
- [ [ () -aezaso((5)),

Furthermore, we obtain

/QT [K(“i) ) 1} e _/ﬂiﬂ{yrlf'ﬂza} [K(!ZJJ) a 1} W



30 LIPENG DUAN, MONICA MUSSO, AND SUTING WEI

L SN L C R At

When ]@ — 1| > 4, there holds

1
=1l ol =1] = |~ ]| > o

Thus we can easily get

/qm{y;nr/1|>5} {K<|?I{|> _ 1] Usia < rNCeO

If ||‘z—‘ — 1| <4, recalling the decay property of K, we can obtain that

/QTm{y:'Z—uga} [K<|?1{|> B 1] Ui

= —CoL HZ/\ - I‘|m
™ Jorn{y: | -1<s}

1

rmto /Q+ﬂ{ ||y| 1‘<5}

oz [ Il =" 1A+O(/RN\BE($1)(%J:—Fl)U:?:,)

1

m+a/
r Qfﬂ{y:|%—l\§6}

= — o/ Hy—f—m\—r‘

0 /W@_M}* o= us) vo((1)")

Furthermore, recalling |Z1| = r and using the symmetry property, we have

/\|y+x1|—r\ OA—/ lly + exr| — x|"UZ},

where e; = (1,0,---,0).

We get
[ Ny +a] =g

myr2* 1 m— * o
= [ U+ gmtm =) [0 = 0 Ol ) = )

here C(r, A) denote functions which are independent of h and can be absorbed in O(1).
Similarly, we can also have the following expression

1 - m-+to 2% )
O(rm+a Qfﬂ{y:\@—ngé} “y| I“ le,

ok [ - ) +o((5) )

—i—O( Hy\—r‘m+UU2* )

xl?

+0( [yl = [ UZ; )
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e o(()

rmto r

Then, we can obtain that

I 2/
RN

2
A A Jo\ N—e
$ 0N e SR (B, (A.20)
r r r
Finally, we consider Iz
k k
* 2% —1
Iy =2 /+ UER (Y Una+ > Uspa)
1 =2 j=1
1yl - -
* 2*—1
o f () e (3 S )
1 7j=2 7j=1
k k k k
_ ox 2% —1 * 2*—1
_2LéNa%A(§:a%A+§:U@A)—2LéNQ+QWA(§:U%A+§:U;A)
=2 j=1 \ 7j=2 j=1
| | k k
* 2*—1
+2 /91* [K(?) . 1} i (]Z;Ux],A + ; U:p],A)

:=1I991 + I292 + I223.

For I599, it is easy to derive that

Moreover, we know that

z/ L
R\m AT

k
UZ Uz, A+ / U2 Uz, A
/(RN\W) By @) 2 (IRN\Q) \By )

Jj=2 Jj=
k k
_ / UgrxlUjjJ\—FO(Z — )
j=2 (M\ef)n NBg jp(@1) ]:2| 1= T | 0
k k
<C / UZ 3 Uz A+ O _ :
jz_; By, 2(@)\Bg, (1) LA T <]Z_; T — Z; ]N o)

b 1 1 k 1
Z ’331—.%]"]\[_2/% N+2 + Z ‘jl_fj‘]\f—eo

Ag]./z(o)\BAEQ/Q(O) (1 + 22) 2 Jj=2
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j=2
2\ o 1 : 1
—O<T2>Z;|x1—x]|N 2+O<Z;|x1—a:]|N 60)
j= j=
N k 1
_O(TN)“LO(Z;@*E B o)
7j=2
where d; = |71 — 7| for j = 2 Jk and dy = [T — To| = 2rvV1 — h?sin T = O(%). Then we get

Lopo = o((g)N_m). (A.21)

Next, we consider the term I03. In fact, we have

O PN [ B 30 SRS ST

" /ﬂfﬂ{y: el _1j<s) [K<|i]”> ] “’?;_1<Z Uzjn + Z U@ij)'

When |2 — 1] > 4, there hold
1
ly =71 = [lyl — x| = [r = [7]| = Sor.

And for y € Qf and |@ — 1] > 4, we have

k k ko
(St 30 ) <c(8)'
Jj= Jj=1

with o = (¥52=m, %) Then we can get easily

/Qiﬂ{y:'f—llzs}[ Ui{l) ]UQ%:Al(ZU%’AJFZU%’A)

Sy ey
It "%‘ — 1] <9, then
/ﬂiﬂ{yrl"i"—lsa} [Koi‘) } EIAI(ZU%AJFZU‘T A)

k

C .
<— llyl - Uj;Al(Z m],ﬁzU%.,A)

rm Qfﬂ{y:\%—ﬂgé} —

C *_1
T Usa+> U,
/(Hm{y ‘\y\ 1|<6} {y ly—% |<%r} Hy| (Z 5, A Z 7],A)

1

—— (A.22)
14ly—m )"
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k k
C myr2t— 1(
+ ¢ Usyr+ 3 Uz )
rrm /Qf’ﬁ{y:hy,—lﬁﬁ}ﬂ{y:y—mlzélkr}“y’ r| A ]z; oh ]z; b))

where 97 is small constant. If |y — 71| < ‘SlTr, it is easy to derive

521’
Iyl = x| < ly =7 + |[7a] = x| < ==,
for some small d5. Therefore,
C m _ C
eyl =" <
Hence
C k k
— | |_I_m 2* 1( U*-,A“‘ U, -,A)
rm Qi"ﬂ{yﬂ@—llﬁé}ﬂ{y: |y—51|§%} ‘ ‘ A jz:; N ; =

<o [ 5;—1(ZUIJ,A+ZU$ A)

: %@)“

When |y — 71| > 9 combing (A.22)), we can get easily,
Em Hy‘ _r‘m *_1<ZUIJA+ZU§WA)
r Jofofu s in{y -2 | ?
< C(ﬁ)N—eo‘

r
Thus we can get

r=0((4)" ) v o (5)"). s

Combining (A.17), (A.18)), (A.20), (A.19), (A.21) and m, we can get

I(Wypa) :k(l - ;) /RN Uoa |2 — k/ Uii_l(ZUx],A + ZUI A)

2kt ¢ com(m — 1 o o
P e L e
RN RN

Amym oAm—2pm
e e S io((4)) i () )

0

Combining Lemma we can get the following Proposition which gives the expression of
I(Wrp.n)-
Proposition A.4. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € #,. Then we have

k { BykN—2 N Bsk ]
O Ny e Ty N =

I(Wyrpn) =kA; —
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A2 A3 C r, A o
+k ~om T (N—2)m (r— "”)2} +k n(m(N72)) (r— 7’)2+
AMmEN—2-m AM—2L N—2—m kN—2-m
C(r,A) 1
b h— kO( R — ) (A.24)
as k — oo, where A;, (i = 1,2,3), By, Bs are positive constants.
Proof. A direct result of Lemma is
k BykN =2 Bsk
I(Wypa) =kA; — [ ]
(Wrn.) LA LT p2)N-2 Yt NN s T
Az As 2 C(r,A) 240
+ k |:Amrm + Am—2pm (I’ - T) :| + k 7]3(71\;:: (I‘ - T)

D ao(£)) ko))

kN727m+ r km r

o N—-2 o
' ((rfl(k_lm)f”) #10( =)

with By = ByBj, Bs = ByBy are positive constants. From the expressions of o;(k),o2(k) and
asymptotic expression of h,r as in (A.4)), (1.10)) , we can show that

0’1(]{7)ka2 O’Q(k))k
(rVI=R2)N 2 pN2pN=3 TR
. 1
can be absorbed in O<k(ﬁ<1\2{2+2(§v13> +U) )

Noting that m > % implies
N-3 m
< )
N—-1 N-2-m
thus provided with €y, o small enough, we can get

(ﬁ)N—eo B 1 1 <C 1
r R i T (REER A e)
Since m > 2, we can check that

1 /k\N-2 C

km (;) < (m(N72) 2(N—3) ) :

L\t = o
Thus we can get (A.24). O
To get the expansions of w, W, we need the following expansions for MWgT’A) , 81(%2’}””‘) )
Proposition A.5. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,\) € %;. We have
OI(Wyrna) k(N —2) [ BykN—2 N Bsk }
OA AN LT R2)N-2  pN-2pN-3/T 2
A —2)A 1
- k[ “ (i_z)m + (m (N)_z?m (r— 7")2} + kO(w)
AMHLIEN=—2=m  Am—1kN—2-m kN—2-m 17

as k — oo, where the constants B;,i = 4,5 and A;,i = 2,3 are defined in Proposition[A.J).
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Proof. The proof of this proposition is standard and the reader can refer to [31] for details. O

Proposition A.6. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € . Then we have

OI(Wyna) _ k_ [(N—2) BykN=2 _(N—3) Bsk ]
oh AN-2 rN=2(y/1 = B2)N rN=2pN-2,/1 — p2
MO(;{;(MLN 3>+a)) (A.25)
as k — oo.
Proof. Recall
Znj < C 4 Zy, <C - (A.26)

T (4 y TNy T Ay )N

OI(Wypa) 10 s 10 |yl
oh _2%/RN|VWM’A| 2+ 8h/R (JWMA

We know that

_k;h/ Uf:’_l(ZUxJ,A + ZUzj,A>

_ /R k(MY w2 5 (2 +ZZ2] +ZZ2]). (A27)

From ([A.27)), similar to the calculations in the proof of Proposmon m we can get

81( 'I‘hA) _ 8 2% _1 2 k N—eo
S =k [ U (Z%A + ZUx A)rio(() ) @
Then by some tedious but straightforward analysis, we can get
OI(W, k BykN—2 Bsk
HWras) _ ¥ T2yt he (N =)y ]
oh AN-2 PN2(JT = R2)N NN -2 T = 2
Bsk kN N—e
5 . ] + kQO((—) O), (A.29)
74N—2hN—3(1 _ h2)5 r

N—e¢
for some €y small enough. In fact, we know that k (%) " and h Bsk + can be absorbed

,,,N72hN—3(1_h2)§
in O( (m(N%) 1 5 ) ) provided with m satisfying (1.6) and €y, o small enough. In fact, this is
e\ N—2—m T N=T t°

the reason why we need the assumption (|1.6). Then we can get (A.25)) directly.

0

APPENDIX B. SOME BASIC ESTIMATES AND LEMMAS

Lemma B.1. Under the condition (r,h, A) € %, for y € Qf there exists a constant C' such that

k k Iy 1
(S-S va) <o) e
7j=2 7=1 ( |)

1+ |y —7

with a = (1, N — 2).



36 LIPENG DUAN, MONICA MUSSO, AND SUTING WEI
Proof. For y € Qf and j = 2,--- , k, we have

_ _ _ 1 _ . _ 1 _
Y=zl 2 70—zl =y — Tl 2 Jf7 — 75l iy -7 < fm -7,

and
_ _ 1 _ . _ 1 _
=Tl 2y =zl 2 Jlz -7, iy —Tf 2 Jlz -,
1 r
ly — ;| > Z|331 — x| > C(%)
Then
k k k
C 1
(D Uz + D Usn) < [ + |
2P L) € (e S ey al
k
C 1 1
< N—-2—« {Z T4 — _ a]
(1+ |y — ) = |71 — ) 1 — 2y
<o)
N—2—a\y
(Ltly—z)" "0
g
Lemma B.2. Under the condition (r, h,A) € %, for y € Qf we have
k k I o .
(373 z) <o (t) -
=2 j=1 r (1 + |y — f1’) “
with a = (1, N — 1).
Proof. The proof of Lemma [B.2]is similar to Lemma [B.I] We omit the details for concise. O

For each fixed i and j, ¢ # j, we consider the following function
1 1
(I Jy — i) (T4 [y — @)

where v; > 1 and 2 > 1 are two constants.

9ij(y) =

Lemma B.3. (Lemma B.1, [31]) For any constants 0 < v < min{~v;, 72}, there is a constant C' > 0,
such that

c 1 1
(y) < :
550) < = (g = a * T =)

Lemma B.4. (Lemma B.2, [31]) For any constant 0 < 8 < N — 2, there is a constant C' > 0, such
that

/ 1 1 ds < C
2 < —
ry |y — 2[N72 (14 ]2])4F (1+ [y])?
Lemma B.5. Suppose that N > 5 and 7 € (0,2),y = (y1,--- ,yn). Then there is a small o > 0,
such that when y3 > 0,

k
1 1
- (=) -d
/RN ly — 2|N= 3" ‘

7=1 1+|Z_x1’)

zi: 1

Ly — ) e
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and when y3 < 0,

1 ok 1
/RN \y— z\N_2 th,A(Z)Z dz

N2
1 (T+]z—z4]) 2 +T

J

k 1
<0y

(4 ly—z,) = 7t

j=1
Proof. The proof of Lemma is similar to Lemma B.3 in [31]. Here we omit it. 0
Lemma B.6. Suppose that N > 5 and m satisfies (1.6). We have
1 1 C
< .
s TR e | S ey B

provided with o, €1 small enough.

Proof. Tt’s easy to show that

r C
N—-2

<
k(N— _m)mm{2m,m+3} k,(%‘i’%*ﬂf) ’

for m > 2. In order to get (B.1)), we just need to show

T _ ]{;N72—m < C (B2)

m N—2—m m N—2—m — _ _ )
k(m)(N+2_2 oo —2€1) k(N727m)(N+2_2 oo —2€1) k(%-ﬁ-%-&w)

for some o,€; small. The problem to show (B.2) can be reduced to show that 6 + (%:i’) <

3( N]j ;_Zm) + 2N ;,2:2’”, for m satisfying ([1.6[). This inequality follows by simple computations. This
fact concludes the proof. ]
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