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DOUBLING THE EQUATORIAL FOR THE PRESCRIBED SCALAR

CURVATURE PROBLEM ON S
N

LIPENG DUAN, MONICA MUSSO, AND SUTING WEI

Abstract. We consider the prescribed scalar curvature problem on S
N

∆SN v −

N(N − 2)

2
v + K̃(y)v

N+2

N−2 = 0 on S
N
, v > 0 in S

N
,

under the assumptions that the scalar curvature K̃ is rotationally symmetric, and has a positive
local maximum point between the poles. We prove the existence of infinitely many non-radial
positive solutions, whose energy can be made arbitrarily large. These solutions are invariant under
some non-trivial sub-group of O(3) obtained doubling the equatorial. We use the finite dimensional
Lyapunov-Schmidt reduction method.

Keyword: Prescribed scalar curvature problem, Finite dimensional Lyapunov-Schmidt reduc-
tion

AMS Subject Classification: 35A01, 35B09, 35B38.

1. Introduction

Given the N -th sphere (SN , g) equipped with the standard metric g and a fixed smooth function

K̃, the prescribed scalar curvature problem on S
N consists in understanding whether it is possible

to find another metric g̃ in the conformal class of g, such that the scalar curvature of g̃ is K̃. For
some positive function v : SN → R, and a related conformal change of the metric

g̃ = v
4

N−2 g,

the scalar curvature with respect to g̃ is given by

v
−N+2

N−2

(

∆SN v −
N(N − 2)

2
v

)

,

where ∆SN is the Laplace-Beltrami operator on S
N . Thus the prescribed scalar curvature problem

on S
N can be addressed by studying the solvability of the problem

∆SN v −
N(N − 2)

2
v + K̃(y)v

N+2
N−2 = 0 on S

N , v > 0 in S
N . (1.1)

Testing the equation (1.1) against v and integrating on S
N , we get that a necessary condition

for the solvability of this problem is that K̃(y) must be positive somewhere. There are other
obstructions for the existence of solutions, which are said to be of topological type. For instance,
a solution v must satisfy the following Kazdan-Warner type condition (see [15]):

∫

SN

∇K̃(y) · ∇y v
2N
N−2 dσ = 0. (1.2)

This condition is a direct consequence of Theorem 5.17 in [16], where Kazdan and Warner proved
that given a positive solution v to

∆SN v −
N(N − 2)

2
v +H(y)va = 0
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on the standard sphere S
N , N ≥ 3, then

∫

SN

va+1∇H · ∇F =
1

2
(N − 2)

(

N + 2

N − 2
− a

)
∫

SN

va+1H F, (1.3)

for any spherical harmonics F of degree 1. Taking a = N+2
N−2 , H = K̃ and F = y in (1.3), we can

obtain condition (1.2). The problem of determining which K̃(y) admits a solution has been the
object of several studies in the past years. We refer the readers to [2, 3, 4, 6, 7, 8, 10, 14, 15, 30],
and the references therein.

By using the stereo-graphic projection πN : RN → S
N \ {(0, 0, · · · , 1)}, the prescribed scalar

curvature problem on S
N , i.e. (1.1), can be transformed into the following semi-linear elliptic

equation

∆v +K(y)v2
∗−1 = 0, v > 0, in R

N , v ∈ D1,2(RN ). (1.4)

Here 2∗ = 2N
N−2 , K(y) = K̃(πNy), and D1,2(RN ) denote the completion of C∞

c (RN ) with respect to

the norm
∫

RN |∇v|2. It is of interest to establish under what kind of assumptions on K problem
(1.4) admits one or multiple solutions.

For N = 3, Y.Y. Li [17] showed problem (1.4) has infinitely many solutions provided that K(y)
is bounded below, and periodic in one of its variables, and the set {x |K(x) = maxy∈R3 K(y)} is
not empty and contains at least one bounded connected component.

If K has the form K(y) = 1 + ϵh(y), namely it is a perturbation of the constant 1, D. Cao, E.
Noussair and S. Yan [5] proved the existence of multiple solutions.

IfK(y) has a sequence of strictly local maximum points moving to infinity, S. Yan [32] constructed
infinitely many solutions.

In [31], J. Wei and S. Yan showed that problem (1.4) has infinitely many solutions provided K is
radially symmetric K(y) = K(r), r = |y|, and has a local maximum around a given r0 > 0. More
precisely, they ask that there are r0, c0 > 0 and m ∈ [2, N − 2) such that

K(s) = K(r0)− c0|s− r0|m +O
(

|s− r0|m+σ
)

, s ∈ (r0 − δ, r0 + δ),

where σ, δ are small positive constants. In order to briefly discuss the main results in [31], we will
recall the expression of Aubin-Talenti bubbles. It is well known (see [29]) that all solutions to the
following problem

∆u+ u2
∗−1 = 0, u > 0 in R

N , (1.5)

are given by

Ux,Λ(y) = cN

( Λ

1 + Λ2|y − x|2
)

N−2
2

, x ∈ R
N , Λ > 0,

and cN = [N(N − 2)]
N−2

4 . The solutions in [31] are obtained by gluing together a large number of
Aubin-Talenti bubbles, which looks like

ũk ∼
k
∑

j=1

Uxj ,Λ̄
,

where Λ̄ is a positive constant and the points xj are distributed along the vertices of a regular
polygon of k edges in the (y1, y2)-plane, with |xj | → r0 as k → ∞:

xj =
(

r̃ cos
2(j − 1)π

k
, r̃ sin

2(j − 1)π

k
, 0, · · · , 0

)

, j = 1, · · · , k,

with r̃ → r0 as k → ∞.
Under a weaker symmetry condition for K(y) = K(|y′|, y′′) with y = (|y′|, y′′) ∈ R

2 × R
N−2, S.

Peng, C. Wang and S. Wei [27] constructed infinitely many bubbling solutions, which concentrate
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at the saddle points of the potential K(y). Y. Guo and B. Li [11] admitted infinitely many solutions
for problems (1.4) with polyharmonic operators. For fractional case, we refer to [13, 23].

The study of other aspects of problem (1.4), such as radial symmetry of their solutions, unique-
ness of solutions, Liouville type theorem, a priori estimates, and bubbling analysis, have been the
object of investigation of several researchers. We refer the readers to the papers [1, 9, 18, 20, 21,
22, 25, 26, 32] and the references therein.

Recently, Y. Guo, M. Musso, S. Peng and S. Yan [12] investigated the spectral property of the
linearized problem associated to (1.4) around the solution ũk found in [31]. They proved a non-
degeneracy result for such operator by using a refined version of local Pohozaev identities. As an
application of this non-degeneracy result, they built new type of solutions by gluing another large
number of bubbles, whose centers lie near the circle |y| = r0 in the (y3, y4)-plane.

All these results concern solutions made by gluing together Aubin-Talenti bubbles with centres
distributed along the vertices of one or more planar polygons, thus of two-dimensional nature.
The purpose of this paper is to present a different type of solution to (1.4) with a more complex
concentration structure, which cannot be reduced to a two-dimensional one.

To present our result, we assume thatK is radially symmetric and satisfies the following condition

(H) : There are r0 and c0 > 0 such that

K(s) = K(r0)− c0|s− r0|m +O
(

|s− r0|m+σ
)

, s ∈ (r0 − δ, r0 + δ),

where σ, δ > 0 are small constants, and

m ∈







[2, N − 2) if N = 5 or 6,
( (N−2)2

2N−3 , N − 2
)

if N ≥ 7.
(1.6)

There is a slight difference between our assumptions on K(s) and the ones in [31]. We will comment
on this issue later.

Without loss of generality, we assume r0 = 1, K(1) = 1. For any integer k, we denote

r = k
N−2

N−2−m , (1.7)

and set u(y) = r−
N−2

2 v
( |y|

r

)

. Then the problem (1.4) can be rewritten, in terms of u, as

−∆u = K
( |y|

r

)

u2
∗−1, u > 0, in R

N , u ∈ D1,2(RN ). (1.8)

We define

Wr,h,Λ(y) =

k
∑

j=1

Uxj ,Λ(y) +

k
∑

j=1

Uxj ,Λ(y), y ∈ R
N , (1.9)

for k integer large, where










xj = r
(√

1− h2 cos 2(j−1)π
k

,
√
1− h2 sin 2(j−1)π

k
, h,0

)

, j = 1, · · · , k,

xj = r
(√

1− h2 cos 2(j−1)π
k

,
√
1− h2 sin 2(j−1)π

k
,−h,0

)

, j = 1, · · · , k.

Here 0 is the zero vector in R
N−3 and h, r are positive parameters.

We shall construct a family of solutions to problem (1.8) which are small perturbations of Wr,h,Λ.
More precisely, the Aubin-Talenti bubbles are now centred at points lying on the top and the bottom
circles of a cylinder and this configuration is now invariant under a non-trivial sub-group of O(3)
rather than O(2).
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Throughout of the present paper, we assume N ≥ 5 and (r, h,Λ) ∈ Sk, where

Sk =

{

(r, h,Λ)
∣

∣ r ∈
[

k
N−2

N−2−m − σ̂, k
N−2

N−2−m + σ̂
]

, Λ ∈
[

Λ0 − σ̂,Λ0 + σ̂
]

,

h ∈
[ B′

k
N−3
N−1

(

1− σ̂
)

,
B′

k
N−3
N−1

(

1 + σ̂
)]

}

, (1.10)

with Λ0, B
′ being the constants in (3.7), (3.10) and σ̂ a fixed small number, independent of k. Since

h → 0 as k → ∞, then the two circles where the points xj and xj are distributed become closer to
each other as k increases.

In this paper, we shall prove that for any k large enough, problem (1.8) admits a family of
solutions uk with the approximate form

uk(y) ∼ Wr,h,Λ. (1.11)

Moreover, these solutions are polygonal symmetry in the (y1, y2)-plane, even in the y3 direction
and radially symmetric in the variables y4, · · · , yN . Our solutions are thus different from the ones
obtained in [31] and have strong analogies with the doubling construction of the entire finite energy
sign-changing solutions for the Yamabe equation in [24].

Define the symmetric Sobolev space:

Hs =

{

u : u ∈ H1(RN ), u is even in yℓ, ℓ = 2, 3, 4, · · · , N,

u
(

√

y21 + y22 cos θ,
√

y21 + y22 sin θ, y3, y
′′
)

= u
(

√

y21 + y22 cos
(

θ +
2jπ

k

)

,

√

y21 + y22 sin
(

θ +
2jπ

k

)

, y3, y
′′
)

}

,

where θ = arctan y2
y1
. Let us define the following norms which capture the decay property of

functions

∥u∥∗ = sup
y∈RN

(

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

])−1
|u(y)|, (1.12)

and

∥f∥∗∗ = sup
y∈RN

(

k
∑

j=1

[ 1

(1 + |y − xj |)
N+2

2
+τ

+
1

(1 + |y − xj |)
N+2

2
+τ

])−1
|f(y)|, (1.13)

where

τ = (
N − 2−m

N − 2
,
N − 2−m

N − 2
+ ϵ1), (1.14)

for some ϵ1 small. The main results of this paper are the following:

Theorem 1.1. Let N ≥ 5 and suppose that K(|y|) satisfies (H). Then there exists a large integer

k0, such that for each integer k ≥ k0, problem (1.8) has a solution uk of the form

uk(y) = Wrk,hk,Λk
(y) + ϕk(y), (1.15)

where ϕk ∈ Hs, (rk, hk,Λk) ∈ Sk, and ϕk satisfies

∥ϕk∥∗ = ok(1), as k → ∞.
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Equivalently, problem (1.4) has solution vk(y) of the form

vk(y) = r
2−N

2

[

Wrk,hk,Λk
(ry) + ϕk(ry)

]

,

with r as in (1.7).

Let us sketch the proof of Theorem 1.1. The first step in our argument is to find ϕ so that
u = Wr,h,Λ + ϕ solves the auxiliary problem























−∆
(

Wr,h,Λ + ϕ
)

= K
( |y|

r

)(

Wr,h,Λ + ϕ
)2∗−1

+
3
∑

ℓ=1

k
∑

j=1
cℓ

(

U2∗−2
xj ,Λ

Zℓj + U2∗−2
xj ,Λ

Zℓj

)

in R
N ,

ϕ ∈ E,

(1.16)

for some constants cℓ for ℓ = 1, 2, 3. In (1.16), the functions Zℓj and Zℓj are given by

Z1j =
∂Uxj ,Λ

∂r
, Z2j =

∂Uxj ,Λ

∂h
, Z3j =

∂Uxj ,Λ

∂Λ
,

Z1j =
∂Uxj ,Λ

∂r
, Z2j =

∂Uxj ,Λ

∂h
, Z3j =

∂Uxj ,Λ

∂Λ
,

for j = 1, · · · , k. Moreover, the function ϕ belongs to the set E given by

E =
{

v : v ∈ Hs,

∫

RN

U2∗−2
xj ,Λ

Zℓjv = 0 and

∫

RN

U2∗−2
xj ,Λ

Zℓjv = 0, j = 1, · · · , k, ℓ = 1, 2, 3
}

. (1.17)

From the linear theory developed in Section 2, problem (1.16) can be solved by means of the
contraction mapping theorem. More precisely, we prove that, for any (r, h,Λ) ∈ Sk there exist
ϕ = ϕr,h,Λ ∈ E and constants cℓ, ℓ = 1, 2, 3 which solve the auxiliary problem (1.16).

After the correction ϕ has been found, we shall choose (r, h,Λ) ∈ Sk so that the multipliers
cℓ = 0 (ℓ = 1, 2, 3) in (1.16). As a consequence, we can derive the results as in Theorem 1.1.
Equation (1.8) is the Euler-Lagrange equation associated to the energy functional

I(u) =
1

2

∫

RN

|∇u|2dy − 1

2∗

∫

RN

K
( |y|

r

)

|u|2∗dy. (1.18)

Thus, roughly speaking, if (r, h,Λ) is a critical point of function

F (r, h,Λ) := I(Wr,h,Λ + ϕr,h,Λ) for ϕr,h,Λ ∈ E,

then the constants cℓ, ℓ = 1, 2, 3 would be zero. Thus finding solutions of problem (1.8) would be
reduced to find a critical point of F (r, h,Λ). This is the result in Proposition 3.1.

An important work of this paper is to give an accurate expression of F (r, h,Λ) (see Proposition

3.2). Under the assumptions r ∼ k
N−2

N−2−m , h → 0, 1
hk

→ 0 as k → ∞, we first get the expansion of
the energy functional I(Wr,h,Λ)

F1(r, h,Λ) := I(Wr,h,Λ) = kA1 −
k

ΛN−2

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]

+ k
[ A2

Λmk
(N−2)m
N−2−m

+
A3

Λm−2k
(N−2)m
N−2−m

(r− r)2
]

+ kO
( 1

k
(N−2)m
N−2−m

+σ

)

,
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where Ai for i = 1, 2, 3 and Bj for j = 4, 5 are constants. We denote

G(h) := B4k
N−2

(
√
1− h2)N−2

+
B5k

hN−3
√
1− h2

,

and let h be the solution of ∂hG(h) = 0, then

h =
B′

k
N−3
N−1

(

1 + o(1)
)

, as k → ∞,

for some B′ > 0. If r ∼ k
N−2

N−2−m , h ∼ B′

k
N−3
N−1

, then

B5k

rN−2hN−3
√
1− h2

=
B̃

k
(N−2)m
N−2−m

+
2(N−3)
N−1

(1 + o(1)), as k → ∞

for some constant B̃.
However, we now find that the term O

(

1

k
(N−2)m
N−2−m

+σ

)

in the expansion of F1(r, h,Λ) competes

with the term B5k

rN−2hN−3
√
1−h2

. This makes it impossible to identify a critical point for F1(r, h,Λ).

In reality, though the remainder O
(

1

k
(N−2)m
N−2−m

+σ

)

can be estimated in a more accurate way (see

Proposition A.4) under our assumption (H).
We need to expand the full energy F (r, h,Λ) = I(Wr,h,Λ + ϕr,h,Λ). We need a strong control on

the size of ϕr,h,Λ in order not to destroy the critical point structure of F1(r, h,Λ) and to ensure the
qualitative properties of the solutions as stated in Theorem 1.1. This is another delicate step of
our construction, where we make full use of the assumption (H) on K.

Structure of the paper. The remaining part of this paper is devoted to the proof of Theorem
1.1, which will be organized as follows:

1. In Section 2, we will establish the linearized theory for the linearized projected problem.
We will give estimates for the error terms in this Section.

2. In Section 3, we shall prove Theorem 1.1 by showing there exists a critical point of reduction
function F (r, h,Λ).

3. Some tedious computations and some useful Lemmas will be given in Appendices A-B.

Notation and preliminary results. For the readers’ convenience, we will provide a collection
of notation. Throughout this paper, we employ C,Cj to denote certain constants and σ, τ, σj to
denote some small constants or functions. We also note that δij is Kronecker delta function:

δij =







1, if i = j,

0, if i ̸= j.

Furthermore, we also employ the common notation by writing O(f(r, h)), o(f(r, h)) for the functions
which satisfy

if g(r, h) ∈ O(f(r, h)) then lim
k→+∞

∣

∣

∣

g(r, h)

f(r, h)

∣

∣

∣
≤ C < +∞,

and

if g(r, h) ∈ o(f(r, h)) then lim
k→+∞

g(r, h)

f(r, h)
= 0.
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2. Finite dimensional reduction

For j = 1, · · · , k, we divide R
N into k parts:

Ωj :=
{

y = (y1, y2, y3, y
′′) ∈ R

3 × R
N−3 :

〈 (y1, y2)

|(y1, y2)|
,
(

cos
2(j − 1)π

k
, sin

2(j − 1)π

k

)〉

R2
≥ cos

π

k

}

.

where ⟨, ⟩R2 denote the dot product in R
2. For Ωj , we further divide it into two parts:

Ω+
j =

{

y : y = (y1, y2, y3, y
′′) ∈ Ωj , y3 ≥ 0

}

,

Ω−
j =

{

y : y = (y1, y2, y3, y
′′) ∈ Ωj , y3 < 0

}

.

We can know that

R
N = ∪k

j=1Ωj , Ωj = Ω+
j ∪ Ω−

j

and

Ωj ∩ Ωi = ∅, Ω+
j ∩ Ω−

j = ∅, if i ̸= j.

We consider the following linearized problem










−∆ϕ− (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ ϕ = f +

k
∑

i=1

3
∑

ℓ=1

(

cℓU
2∗−2
xi,Λ

Zℓi + cℓU
2∗−2
xi,Λ

Zℓi

)

in R
N ,

ϕ ∈ E,

(2.1)

for some constants cℓ.

Coming back to equation (1.5), we recall that the functions

Zi(y) :=
∂U

∂yi
(y), i = 1, . . . , N, ZN+1(y) :=

N − 2

2
U(y) + y · ∇U(y). (2.2)

belong to the null space of the linearized problem associated to (1.5) around an Aubin-Talenti
bubble, namely they solve

∆ϕ+ (2∗ − 1)U2∗−2ϕ = 0, in R
N , ϕ ∈ D1,2(RN ). (2.3)

It is known [28] that these functions span the set of the solutions to (2.3). This fact will be used
in the following crucial lemma which concerns the linearized problem (2.1).

Lemma 2.1. Suppose that ϕk solves (2.1) for f = fk. If ∥fk∥∗∗ tends to zero as k tends to infinity,
so does ∥ϕk∥∗.

The norms ∥ · ∥∗ and ∥ · ∥∗∗ are defined respectively in (1.12) and (1.13).

Proof. We prove the Lemma by contradiction. Suppose that there exists a sequence of (rk, hk,Λk) ∈
Sk, and for ϕk satisfies (2.1) with f = fk, r = rk, h = hk,Λ = Λk, with ∥fk∥∗∗ → 0, and ∥ϕk∥∗ ≥
c′ > 0. Without loss of generality, we can assume that ∥ϕk∥∗ = 1. For convenience, we drop the
subscript k.
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From (2.1), we know that

ϕ(y) = (2∗ − 1)

∫

RN

1

|z − y|N−2
K
( |z|

r

)

W 2∗−2
r,h,Λ ϕ(z) dz +

∫

RN

1

|z − y|N−2
f(z)dz

+

∫

RN

1

|z − y|N−2

k
∑

j=1

3
∑

ℓ=1

(

cℓU
2∗−2
xj ,Λ

Zℓj + cℓU
2∗−2
xj ,Λ

Zℓj

)

dz

:=M1 + M2 + M3.

For the first term M1, we make use of Lemma B.5, so that

M1 ≤ C∥ϕ∥∗
∫

RN

K
( |z|

r

)

|z − y|N−2
W 2∗−2

r,h,Λ

(

k
∑

j=1

[ 1

(1 + |z − xj |)
N−2

2
+τ

+
1

(1 + |z − xj |)
N−2

2
+τ

])

dz

≤ C∥ϕ∥∗
k
∑

j=1

[ 1

(1 + |z − xj |)
N−2

2
+τ+σ

+
1

(1 + |z − xj |)
N−2

2
+τ+σ

]

.

For the second term M2, we make use of Lemma B.4, so that

M2 ≤ C∥f∥∗∗
∫

RN

1

|z − y|N−2

k
∑

j=1

[ 1

(1 + |z − xj |)
N+2

2
+τ

+
1

(1 + |z − xj |)
N+2

2
+τ

]

dz

≤ C∥f∥∗∗
k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

.

In order to estimate the term M3, we will first give the estimates of Z1j and Z1j

|Z1j | ≤
C

(1 + |y − xj |)N−2
, |Z2j | ≤

Cr

(1 + |y − xj |)N−2
, |Z3j | ≤

C

(1 + |y − xj |)N−2
,

|Z1j | ≤
C

(1 + |y − xj |)N−2
, |Z2j | ≤

Cr

(1 + |y − xj |)N−2
, |Z3j | ≤

C

(1 + |y − xj |)N−2
.

(2.4)

Combining estimates (2.4) and Lemma B.4, we have

k
∑

j=1

∫

RN

1

|z − y|N−2
U2∗−2
xj ,Λ

Zℓj dz ≤ C

k
∑

j=1

∫

RN

1

|z − y|N−2

(1 + rδℓ2)

(1 + |z − xj |)N+2
dz

≤ C

k
∑

j=1

(1 + rδℓ2)

(1 + |y − xj |)
N−2

2
+τ

, for ℓ = 1, 2, 3,

where δℓ2 = 0 if ℓ ̸= 2, δℓ2 = 1 if ℓ = 2. Similarly, we have

k
∑

j=1

∫

RN

1

|z − y|N−2
U2∗−2
xj ,Λ

Zℓj dz ≤ C

k
∑

j=1

(1 + r δℓ2)

(1 + |y − xj |)
N−2

2
+τ

, for ℓ = 1, 2, 3.
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Next, we will give the estimates of cℓ, ℓ = 1, 2, 3. Multiply both sides of (2.1) by Zq1, q = 1, 2, 3,
then we obtain that

∫

RN

[

−∆ϕ− (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ ϕ

]

Zq1

=

∫

RN

f Zq1 +
k
∑

j=1

3
∑

ℓ=1

∫

RN

(

cℓU
2∗−2
xj ,Λ

Zℓj + cℓU
2∗−2
xj ,Λ

Zℓj

)

Zq1.

(2.5)

Using Lemma B.3, we can get

∫

RN

f Zq1 ≤ C∥f∥∗∗
k
∑

j=1

∫

RN

1 + r δℓ2

(1 + |y − x1|)N−2

[ 1

(1 + |y − xj |)
N+2

2
+τ

+
1

(1 + |y − xj |)
N+2

2
+τ

]

≤ C(1 + r δℓ2)∥fk∥∗∗.

The discussion on the left side of (2.5) may be more tricky, in fact, we have
∫

RN

[

−∆ϕ− (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ ϕ

]

Zq1

=

∫

RN

[

−∆Zq1 − (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ Zq1

]

ϕ

= (2∗ − 1)

∫

RN

[

1−K
( |y|

r

)]

W 2∗−2
r,h,Λ Zq1ϕ+

(

U2∗−2
x1,Λ

−W 2∗−2
r,h,Λ

)

Zq1ϕ

:= J1 + J2.

Using the property of K(s), similar to the proof of Lemma B.5, we can get

J1 ≤C∥ϕ∥∗
∫

RN

∣

∣

∣
1−K

( |y|
r

)∣

∣

∣
W 2∗−2

r,h,Λ Zq1

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

=C∥ϕ∥∗
∫

||y|−r|≤√
r

∣

∣

∣
1−K

( |y|
r

)∣

∣

∣
W 2∗−2

r,h,Λ Zq1

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

+ C∥ϕ∥∗
∫

||y|−r|≥√
r

∣

∣

∣
1−K

( |y|
r

)
∣

∣

∣
W 2∗−2

r,h,Λ Zq1

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

≤ C√
r

∫

RN

W 2∗−2
r,h,Λ (y)

1 + r δℓ2

(1 + |y − x1|)N−2

k
∑

j=1

1

(1 + |y − xj |)
N−2

2
+τ

+
C

rσ

∫

RN

W 2∗−2
r,h,Λ (y)

1 + r δℓ2

(1 + |y − x1|)N−2

k
∑

j=1

1

(1 + |y − xj |)
N−2

2
+τ−2σ

≤ C

rσ
(1 + r δℓ2).

For J2, it is easy to derive that

J2 ≤
∫

RN

∣

∣

∣
U2∗−2
x1,Λ

−W 2∗−2
r,h,Λ

∣

∣

∣

1 + r δℓ2

(1 + |y − x1|)N−2
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×
k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

≤ C

rσ
(1 + r δℓ2).

Then, we get
∫

RN

[

−∆ϕ− (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ ϕ

]

Zq1 ≤
C

rσ
(1 + r δℓ2) ∥ϕ∥∗.

On the other hand, there holds

k
∑

j=1

∫

RN

(

U2∗−2
xj ,Λ

Zℓj + U2∗−2
xj ,Λ

Zℓj

)

Zq1 = c̄ℓδℓq(1 + δq2r
2) + o(1), as k → ∞.

Note that

∫

RN

U2∗−2
x1,Λ

Zℓ1Zq1 =











0, if ℓ ̸= q,

c̄q(1 + δq2r
2), if ℓ = q,

for some constant c̄q > 0. Then we can get

cℓ =
1 + rδℓ2

1 + δℓ2r2
O
( 1

rσ
∥ϕ∥∗ + ∥f∥∗∗

)

= o(1), as k → ∞. (2.6)

Then we have

|ϕ| ≤
(

∥f∥∗∗
k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

+

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ+σ

+
1

(1 + |y − xj |)
N−2

2
+τ+σ

] )

.

(2.7)

Combining this fact and ∥ϕ∥∗ = 1, we have the following claim:

Claim 1: There exist some positive constants R̄, δ1 such that

∥ϕ∥L∞(BR̄(xl)) ≥ δ1 > 0, (2.8)

for some l ∈ {1, 2, · · · , k}.
Since ϕ ∈ Hs, we assume that l = 1. By using local elliptic estimates and (2.7), we can get, up

to subsequence, ϕ̃(y) = ϕ(y − x1) converge uniformly in any compact set to a solution

−∆u− (2∗ − 1)U2∗−2
0,Λ u = 0, in R

N ,

for some Λ ∈ [L1, L2]. Since ϕ is even in yd, d = 2, 4, · · · , N , we know that u is also even in
yd, d = 2, 4, · · · , N . Then we know that u must be a linear combination of the functions

∂U0,Λ

∂y1
,

∂U0,Λ

∂y3
, y · ∇U0,Λ + (N − 2)U0,Λ.

From the assumptions
∫

RN

U2∗−2
x1,Λ

Zℓ1 ϕ̃ = 0 for ℓ = 1, 2, 3,

we can get
√

1− h2
∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y1
ϕ̃+ h

∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y3
ϕ̃ = 0,
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√

1− h2
∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y1
ϕ̃− h

∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y3
ϕ̃ = 0,

and
∫

RN

U2∗−2
0,Λ

[

y · ∇U0,Λ + (N − 2)U0,Λ

]

ϕ̃ = 0.

By taking limit, we have
∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y1
u =

∫

RN

U2∗−2
0,Λ

∂U0,Λ

∂y3
u =

∫

RN

U2∗−2
0,Λ

[

y · ∇U0,Λ + (N − 2)U0,Λ

]

u = 0.

So we have u = 0. This is a contradiction to (2.8). □

For the linearized problem (2.1), we have the following existence, uniqueness results. Further-
more, we can give the estimates of ϕ and cℓ, ℓ = 1, 2, 3.

Proposition 2.2. There exist k0 > 0 and a constant C > 0 such that for all k ≥ k0 and all

f ∈ L∞(RN ), problem (2.1) has a unique solution ϕ ≡ Lk(f). Besides,

∥ϕ∥∗ ≤ C∥f∥∗∗, |cℓ| ≤
C

1 + δℓ2r
∥f∥∗∗, ℓ = 1, 2, 3. (2.9)

Proof. Recall the definition of E as in (1.17), we can rewrite problem (2.1) in the form

−∆ϕ = f + (2∗ − 1)K
( |y|

r

)

W 2∗−2
r,h,Λ ϕ for all ϕ ∈ E, (2.10)

in the sense of distribution. Furthermore, by using Riesz’s representation theorem, equation (2.10)
can be rewritten in the operational form

(I− Tk)ϕ = f̃ , in E, (2.11)

where I is identity operator and Tk is a compact operator. Fredholm’s alternative yields that
problem (2.11) is uniquely solvable for any f̃ when the homogeneous equation

(I− Tk)ϕ = 0, in E, (2.12)

has only the trivial solution. Moreover, problem (2.12) can be rewritten as following










−∆ϕ− (2∗ − 1)K
(

|y|
r

)

W 2∗−2
r,h,Λ ϕ =

k
∑

i=1

3
∑

ℓ=1

(

cℓU
2∗−2
xi,Λ

Zℓi + cℓU
2∗−2
xi,Λ

Zℓi

)

in R
N ,

ϕ ∈ E.

(2.13)

Suppose that (2.13) has nontrivial solution ϕk and satisfies ∥ϕk∥∗ = 1. From Lemma 2.1, we know
∥ϕk∥∗ tends to zero as k → +∞, which is a contradiction. Thus problem (2.12) (or (2.13)) only
has trivial solution. So we can get unique solvability for problem (2.1). Using Lemma 2.1, the
estimates (2.9) can be proved by a standard method. □

We can rewrite problem (1.16) as following






















−∆ϕ− (2∗ − 1)K
(

|y|
r

)

W 2∗−2
r,h,Λ ϕ = N(ϕ) + lk

+
k
∑

j=1

3
∑

ℓ=1

(

cℓU
2∗−2
xj ,Λ

Zℓj + cℓU
2∗−2
xj ,Λ

Zℓj

)

in R
N ,

ϕ ∈ E,

(2.14)

where

N(ϕ) = K
( |y|

r

)[

(

Wr,h,Λ + ϕ
)2∗−1 −W 2∗−1

r,h,Λ − (2∗ − 1)W 2∗−2
r,h,Λ ϕ

]

,
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and

lk = K
( |y|

r

)

W 2∗−1
r,h,Λ −

k
∑

j=1

(

U2∗−1
xj ,Λ

+ U2∗−1
xj ,Λ

)

.

Next, we will use the Contraction Mapping Principle to show that problem (2.14) has a unique
solution in the set that ∥ϕ∥∗ is small enough. Before that, we will give the estimate of N(ϕ) and
lk.

Lemma 2.3. Suppose N ≥ 5. There exists C > 0 such that

∥N(ϕ)∥∗∗ ≤ C∥ϕ∥min{2∗−1,2}
∗ ,

for all ϕ ∈ E.

Proof. The proof is similar to that of Lemma 2.4 in [31]. Here we omit it. □

We next give the estimate of lk.

Lemma 2.4. Suppose K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. There exists k0 and C > 0
such that for all k ≥ k0

∥ lk ∥∗∗ ≤ Cmax
{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

, (2.15)

where ϵ1 is small constant given in (1.14).

Proof. We can rewrite lk as

lk =K
( |y|

r

)[

W 2∗−1
r,h,Λ −

k
∑

j=1

(

U2∗−1
xj ,Λ

+ U2∗−1
xj ,Λ

) ]

+
k
∑

j=1

[

K
( |y|

r

)

− 1
](

U2∗−1
xj ,Λ

+ U2∗−1
xj ,Λ

)

:= S1 + S2.

Assume that y ∈ Ω+
1 , then we get

S1 = K
( |y|

r

)[(

k
∑

j=1

Uxj ,Λ + Uxj ,Λ

)2∗−1
−

k
∑

j=1

(

U2∗−1
xj ,Λ

+ U2∗−1
xj ,Λ

) ]

≤ CK
( |y|

r

)[

U2∗−2
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

+
(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)2∗−1]

.

Thus, we have

S1 ≤C
1

(1 + |y − x1|)4
k
∑

j=2

1

(1 + |y − xj |)N−2
+ C

1

(1 + |y − x1|)4
k
∑

j=1

1

(1 + |y − xj |)N−2

+ C
(

k
∑

j=2

1

(1 + |y − xj |)N−2

)2∗−1
:= S11 + S12 + S13.

We first consider the case N = 5. It is easy to get that

S11

∣

∣

N=5
≤C

1

(1 + |y − x1|)
7
2
+τ

k
∑

j=2

1

|xj − x1|3
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≤C
1

(1 + |y − x1|)
7
2
+τ

(k

r

)3
. (2.16)

When N ≥ 6, similar to the proof of Lemma B.1, for any 1 < α1 < N − 2, we have

k
∑

j=2

1

(1 + |y − xj |)N−2
≤ C

(1 + |y − x1|)N−2−α1

k
∑

j=2

1

|xj − x1|α1
.

Since τ ∈ (N−2−m
N−2 , N−2−m

N−2 + ϵ1), we can choose α1 satisfies

N + 2

2
− N − 2−m

N − 2
− ϵ1 < α1 =

N + 2

2
− τ < N − 2.

Then

S11

∣

∣

N≥6
≤ C

(1 + |y − x1|)N+2−α1

k
∑

j=2

1

|xj − x1|α1

≤ C

(1 + |y − x1|)N+2−α1

( k

r
√
1− h2

)α1

≤ C
1

(1 + |y − x1|)
N+2

2
+τ

(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

. (2.17)

Then combining (2.16) and (2.17), we can get

∥S11∥∗∗ ≤























C
(

k
r

)
N+2

2
−N−2−m

N−2
−ϵ1

, if N ≥ 6,

C
(

k
r

)3
, if N = 5.

(2.18)

For S12, we can rewrite it as following

S12 = C
1

(1 + |y − x1|)4
[ 1

(1 + |y − x1|)N−2
+

k
∑

j=2

1

(1 + |y − xj |)N−2

]

≤ C
1

(1 + |y − x1|)4
[ 1

(1 + |y − x1|)N−2
+

k
∑

j=2

1

(1 + |y − x̄j |)N−2

]

.

Similarly to (2.16), we can obtain

S12

∣

∣

N=5
≤ C

1

(1 + |y − x1|)
7
2
+τ

(k

r

)3
.

For N ≥ 6 and the same α1 as in (2.18), it is easy to derive that

1

(1 + |y − x1|)4
1

(1 + |y − x1|)N−2

≤
[ 1

(1 + |y − x1|)N+2−α1
+

1

(1 + |y − x1|)N+2−α1

] 1

|x1 − x1|α1

≤ C

(1 + |y − x1|)N+2−α1

1

(hr)α1
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≤ C
1

(1 + |y − x1|)
N+2

2
+τ

(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

,

where we have used the fact hr > C r

k
. Thus, we can obtain that

∥S12∥∗∗ ≤























C
(

k
r

)
N+2

2
−N−2−m

N−2
−ϵ1

, if N ≥ 6,

C
(

k
r

)3
, if N = 5.

(2.19)

Next, we consider S13. For y ∈ Ω+
1 ,

k
∑

j=2

1

(1 + |y − xj |)N−2
≤

k
∑

j=2

1

(1 + |y − x1|)
N−2

2

1

(1 + |y − xj |)
N−2

2

≤
k
∑

j=2

C

|xj − x1|
N−2

2
−N−2

N+2
τ

1

(1 + |y − x1|)
N−2

2
+N−2

N+2
τ

≤ C
( k

r
√
1− h2

)
N−2

2
−N−2

N+2
τ 1

(1 + |y − x1|)
N−2

2
+N−2

N+2
τ
.

Thus we have

S13 ≤
( k

r
√
1− h2

)
N+2

2
−τ C

(1 + |y − x1|)
N+2

2
+τ

≤ C

(1 + |y − x1|)
N+2

2
+τ

(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

.

Since
(

N+2
2 − N−2−m

N−2 − ϵ1
)
∣

∣

N=5
> 3 for m ∈ [2, 3), then we have

∥S13∥∗∗ ≤























C
(

k
r

)
N+2

2
−N−2−m

N−2
−ϵ1

, if N ≥ 6,

C
(

k
r

)3
, if N = 5.

(2.20)

Combining (2.18), (2.19), (2.20), we obtain

∥S1∥∗∗ ≤























C
(

k
r

)
N+2

2
−N−2−m

N−2
−ϵ1

, if N ≥ 6,

C
(

k
r

)3
, if N = 5.

(2.21)

We now consider the estimate of S2. For y ∈ Ω+
1 , we have

S2 ≤ 2

k
∑

j=1

[

K
( |y|

r

)

− 1
]

U2∗−1
xj ,Λ

=2U2∗−1
x1,Λ

[

K
( |y|

r

)

− 1
]

+ 2

k
∑

j=2

U2∗−1
xj ,Λ

[

K
( |y|

r

)

− 1
]
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:=S21 + S22.

• If | |y|
r
− 1| ≥ δ1, where δ > δ1 > 0, then

|y − x1| ≥
∣

∣|y| − r
∣

∣ −
∣

∣r− |x1|
∣

∣ ≥ 1

2
δ1r.

As a result, we get

U2∗−1
x1,Λ

[

K
( |y|

r

)

− 1
]

≤ C
(

1 + |y − x1|
)

N+2
2

+τ

1

r
N+2

2
−τ

≤ C
(

1 + |y − x1|
)

N+2
2

+τ

(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

.

• If | |y|
r
− 1| ≤ δ1, then

[

K
( |y|

r

)

− 1
]

≤C
∣

∣

∣

|y|
r

− 1
∣

∣

∣

m

=
C

rm
||y| − r|m

≤ C

rm

[

∣

∣|y| − |x1|
∣

∣

m
+
∣

∣|x1| − r
∣

∣

m
]

≤ C

rm

[

∣

∣|y| − |x1|
∣

∣

m
+

1

kθ̄m

]

.

Thus, we can get, if m > 3,

U2∗−1
x1,Λ

[

K
( |y|

r

)

− 1
]

≤ C

rm

[

∣

∣|y| − |x1|
∣

∣

m
+

1

kθ̄m

] C
(

1 + |y − x1|
)N+2

≤ C

r
m+3

2

[

∣

∣|y| − |x1|
∣

∣

m+3
2

(

1 + |y − x1|
)N+2

+
1

r
m−3

2

1

kθ̄m

1
(

1 + |y − x1|
)N+2

]

≤ C

r
m+3

2

[ 1
(

1 + |y − x1|
)

N+2
2

+τ

1
(

1 + |y − x1|
)

N+2
2

−τ−m+3
2

+
1

(

1 + |y − x1|
)N+2

]

≤ 1

r
m+3

2

C
(

1 + |y − x1|
)

N+2
2

+τ
,

the last inequality holds due to N+2
2 − τ − m+3

2 > 0.

On the other hand, if m ≤ 3, we have

U2∗−1
x1,Λ

[

K
( |y|

r

)

− 1
]

≤ C

rm

[

∣

∣|y| − |x1|
∣

∣

m
+

1

kθ̄m

] C
(

1 + |y − x1|
)N+2

≤ C

rm

[ 1
(

1 + |y − x1|
)

N+2
2

+τ

1
(

1 + |y − x1|
)

N+2
2

−τ−m
+

1
(

1 + |y − x1|
)N+2

]

≤ C

rm
1

(

1 + |y − x1|
)

N+2
2

+τ
,

since N+2
2 − τ −m > 0. Thus we have

U2∗−1
x1,Λ

[

K
( |y|

r

)

− 1
]

≤ C

rmin{m,m+3
2

}
1

(

1 + |y − x1|
)

N+2
2

+τ
.
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As a result,

S21 ≤ Cmax
{(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

,
1

rmin{m,m+3
2

}

} 1

(1 + |y − x1|)
N+2

2
+τ

. (2.22)

Since y ∈ Ω+
1 , then for j = 2, · · · , k, there holds

|x1 − xj | ≤ |y − x1|+ |y − xj | ≤ 2|y − xj |.
Therefore, it is easy to derive that

S22 ≤ C
1

(1 + |y − x1|)
N+2

2

k
∑

j=2

1

(1 + |y − xj |)
N+2

2

≤ C
1

(1 + |y − x1|)
N+2

2
+τ

k
∑

j=2

1

|x1 − xj |
N+2

2
−τ

≤ C

(1 + |y − x1|)
N+2

2
+τ

(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

. (2.23)

Combining (2.22) with (2.23), we obtain

∥S2∥∗∗ ≤ Cmax
{(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

,
1

rmin{m,m+3
2

}

}

.

If N = 5, we can check that 1
rm

=
(

k
r

)3
. Thus, we can rewrite (2.21) as

∥S1∥∗∗ ≤ Cmax
{(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

,
1

rmin{m,m+3
2

}

}

.

Therefore, we showed (2.15). □

The solvability theory for the projected problem (2.14) can be provided in the following:

Proposition 2.5. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. There exists an

integer k0 large enough, such that for all k ≥ k0 problem (2.14) has a unique solution ϕk which

satisfies

∥ϕk∥∗ ≤ Cmax
{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

, (2.24)

and

|cℓ| ≤
C

(1 + δℓ2r)
max

{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

, for ℓ = 1, 2, 3. (2.25)

Proof. We first denote

B :=

{

v : v ∈ E ∥v∥∗ ≤ Cmax
{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

}

.

From Proposition 2.2, we know that problem (2.14) is equivalent to the following fixed point problem

ϕ = Lk

(

N(ϕ) + lk
)

=: A(ϕ),

where Lk is the linear bounded operator defined in Proposition 2.2.
From Lemma 2.3 and Lemma 2.4, we know, for ϕ ∈ B

∥A(ϕ)∥∗ ≤ C
(

∥N(ϕ)∥∗∗ + ∥lk∥∗∗
)
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≤ O(∥ϕ∥1+σ
∗ ) + max

{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

≤ max
{ 1

k
( m
N−2−m

)(N+2
2

−N−2−m
N−2

−ϵ1)
,

1

k
( N−2
N−2−m

)min{m,m+3
2

}

}

.

So the operator A maps from B to B. Furthermore, we can show that A is a contraction mapping.
In fact, for any ϕ1, ϕ2 ∈ B, we have

∥A(ϕ1)−A(ϕ2)∥∗ ≤ C∥N(ϕ1)−N(ϕ2)∥∗∗.
Since N(ϕ) has a power-like behavior with power greater than one, then we can easily get

∥A(ϕ1)−A(ϕ2)∥∗ ≤ o(1)∥ϕ1 − ϕ2∥∗.
A direct application of the contraction mapping principle yields that problem (2.14) has a unique
solution ϕ ∈ B. The estimates for cℓ, ℓ = 1, 2, 3 can be got easily from (2.6). □

3. Proof of Theorem 1.1

Proposition 3.1. Let ϕr,h,Λ be a function obtained in Proposition 2.5 and

F (r, h,Λ) := I(Wr,h,Λ + ϕr,h,Λ).

If (r, h,Λ) is a critical point of F (r, h,Λ), then

u = Wr,h,Λ + ϕr,h,Λ

is a critical point of I(u) in H1(RN ). □

We will give the expression of F (r, h,Λ). We first note that we employ the notation C(r,Λ) to
denote functions which are independent of h and uniformly bounded.

Proposition 3.2. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. We have the

following expansion as k → ∞

F (r, h,Λ) = I(Wr,h,Λ) + kO
( 1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
)

)

= kA1 −
k

ΛN−2

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]

+ k
[ A2

Λmk
(N−2)m
N−2−m

+
A3

Λm−2k
(N−2)m
N−2−m

(r− r)2
]

+ k
C(r,Λ)
k

m(N−2)
N−2−m

(r− r)2+σ

+ k
C(r,Λ)

k
m(N−2)
N−2−m

+σ
+ kO

( 1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
)

)

,

where A1, A2, A3, B4, B5 are positive constants.

Proof. The proof of Proposition 3.2 is similar to that of Proposition 3.1 in [31]. We omit it here. □

Next, we will give the expansions of ∂F (r,h,Λ)
∂Λ and ∂F (r,h,Λ)

∂h
.

Proposition 3.3. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. We have the

following expansion for k → ∞
∂F (r, h,Λ)

∂Λ
=

k(N − 2)

ΛN−1

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]
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− k
[ mA2

Λm+1k
(N−2)m
N−2−m

+
(m− 2)A3

Λm−1k
(N−2)m
N−2−m

(r− r)2
]

+ kO
( 1

k
(N−2)m
N−2−m

+σ

)

, (3.1)

where A2, A3, B4, B5 are positive constants.

Proof. The proof of this proposition can be found in [31]. We omit it here. □

Proposition 3.4. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. We have the

following expansion

∂F (r, h,Λ)

∂h
= − k

ΛN−2

[

(N − 2)
B4k

N−2

rN−2(
√
1− h2)N

h− (N − 3)
B5k

rN−2hN−2
√
1− h2

]

+ kO
( 1

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
)

)

, (3.2)

where B4, B5 are positive constants.

Proof. Notice that F (r, h,Λ) = I(Wr,h,Λ + ϕr,h,Λ) , there holds

∂F (r, h,Λ)

∂h

=

〈

I ′(Wr,h,Λ + ϕr,h,Λ),
∂(Wr,h,Λ + ϕr,h,Λ)

∂h

〉

=

〈

I ′(Wr,h,Λ + ϕr,h,Λ),
∂Wr,h,Λ

∂h

〉

+

〈

I ′(Wr,h,Λ + ϕr,h,Λ),
∂ϕr,h,Λ

∂h

〉

=

〈

I ′(Wr,h,Λ + ϕr,h,Λ),
∂Wr,h,Λ

∂h

〉

+

〈

k
∑

j=1

3
∑

ℓ=1

(

cℓU
2∗−2
xj ,Λ

Zℓj + cℓU
2∗−2
xj ,Λ

Zℓj

)

,
∂ϕr,h,Λ

∂h

〉

. (3.3)

Since
∫

RN U2∗−2
xj ,Λ

Zℓjϕr,h,Λ =
∫

RN U2∗−2
xj ,Λ

Zℓjϕr,h,Λ = 0, we can get easily

〈

U2∗−2
xj ,Λ

Zℓj ,
∂ϕr,h,Λ

∂h

〉

= −
〈

∂(U2∗−2
xj ,Λ

Zℓj)

∂h
, ϕr,h,Λ

〉

,

〈

U2∗−2
xj ,Λ

Zℓj ,
∂ϕr,h,Λ

∂h

〉

= −
〈

∂(U2∗−2
xj ,Λ

Zℓj)

∂h
, ϕr,h,Λ

〉

.

Then
〈

k
∑

j=1

(

cℓU
2∗−2
xj ,Λ

Zℓj + cℓU
2∗−2
xj ,Λ

Zℓj

)

,
∂ϕr,h,Λ

∂h

〉

≤ C|cℓ|∥ϕr,h,Λ∥∗
k
∑

i=1

∫

RN

∂(U2∗−2
xi,Λ

Zℓi)

∂h

(

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

)

≤ C|cℓ|∥ϕr,h,Λ∥∗

×
k
∑

i=1

∫

RN

r(1 + δℓ2r)

(1 + |y − xi|)N+3

(

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

]

)
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≤ Crmax
{ 1

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
,

1

k
( N−2
N−2−m

)min{2m,m+3}

}

, (3.4)

where we used the estimates (2.24)-(2.25) and the inequalities

∣

∣

∣

∂
(

U2∗−2
xi,Λ

Zℓi

)

∂h

∣

∣

∣
≤ C

r(1 + δℓ2r)

(1 + |y − xi|)N+3
for i = 1, · · · , k, ℓ = 1, 2, 3.

On the other hand, we have
〈

I ′(Wr,h,Λ + ϕr,h,Λ),
∂Wr,h,Λ

∂h

〉

=

∫

RN

∇(Wr,h,Λ + ϕr,h,Λ)∇Wr,h,Λ −
∫

RN

K
( |y|

r

)

(Wr,h,Λ + ϕr,h,Λ)
2∗−1∂Wr,h,Λ

∂h

=

∫

RN

∇Wr,h,Λ∇
∂Wr,h,Λ

∂h
−
∫

RN

K
( |y|

r

)

(Wr,h,Λ + ϕr,h,Λ)
2∗−1∂Wr,h,Λ

∂h

=
∂I(Wr,h,Λ)

∂h
+ (2∗ − 1)

∫

RN

K
( |y|

r

)

W 2∗−2
r,h,Λ

∂Wr,h,Λ

∂h
ϕr,h,Λ +O

(

∫

RN

ϕ2
r,h,Λ

)

. (3.5)

For the second term in (3.5), using the decay property of K(|y|) and orthogonality of ϕr,h,Λ, we
can show this term is small. In fact, we have

∫

RN

K
( |y|

r

)

W 2∗−2
r,h,Λ

∂Wr,h,Λ

∂h
ϕr,h,Λ

=

∫

RN

K
( |y|

r

)[

W 2∗−2
r,h,Λ

∂Wr,h,Λ

∂h
−

k
∑

i=1

(

U2∗−2
xi,Λ

Z2i + U2∗−2
xi,Λ

Z2i

)

]

ϕr,h,Λ

+
k
∑

i=1

∫

RN

[

K
( |y|

r

)

− 1
]

(

U2∗−2
xi,Λ

Z2i + U2∗−2
xi,Λ

Z2i

)

ϕr,h,Λ

= 2k

∫

Ω+
1

K
( |y|

r

)[

W 2∗−2
r,h,Λ

∂Wr,h,Λ

∂h
−

k
∑

i=1

(

U2∗−2
xi,Λ

Z2i + U2∗−2
xi,Λ

Z2i

)

]

ϕr,h,Λ

+ 2k

∫

RN

[

K
( |y|

r

)

− 1
]

U2∗−2
x1,Λ

Z21ϕr,h,Λ.

According to the expression of Wr,h,Λ, we can obtain that

∫

Ω+
1

K
( |y|

r

) [

W 2∗−2
r,h,Λ

∂Wr,h,Λ

∂h
−

k
∑

i=1

(

U2∗−2
xi,Λ

Z2i + U2∗−2
xi,Λ

Z2i

]

ϕr,h,Λ

≤ C

∫

Ω+
1

[

U2∗−2
x1,Λ

(

k
∑

j=2

Z2j +
k
∑

j=1

Z2j

)

+
(

k
∑

i=2

U2∗−2
xi,Λ

Z2i +
k
∑

i=1

U2∗−2
xi,Λ

Z2i

)

]

ϕr,h,Λ

≤ C
(k

r

)
N+2

2
−τ
∫

Ω+
1

r
(

1 + |y − x1|
)

N
2
+2+τ

ϕr,h,Λ
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≤ C
(k

r

)
N+2

2
−τ

∥ϕr,h,Λ∥∗
∫

Ω+
1

r
(

1 + |y − x1|
)

N
2
+2+τ

(

k
∑

j=1

[ 1

(1 + |y − xj |)
N−2

2
+τ

+
1

(1 + |y − xj |)
N−2

2
+τ

])

≤ Cr
(k

r

)
N+2

2
−τ

∥ϕr,h,Λ∥∗ ≤ Cr
(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

max
{(k

r

)
N+2

2
−N−2−m

N−2
−ϵ1

,
1

rmin{m,m+3
2

}

}

≤ Crmax
{ 1

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
,

1

k
( N−2
N−2−m

)min{2m,m+3}

}

.

And it’s easy to show that
∫

RN

[

K
( |y|

r

)

− 1
]

U2∗−2
x1,Λ

Z21 ϕr,h,Λ

≤ Crmax
{ 1

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
,

1

k
( N−2
N−2−m

)min{2m,m+3}

}

.

Combining all above, we can get

∂F (r, h,Λ)

∂h
=

∂I(Wr,h,Λ)

∂h

+ kO
(

rmax
{ 1

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
,

1

k
( N−2
N−2−m

)min{2m,m+3}

})

. (3.6)

Combing (3.6), Proposition A.6 and Lemma B.6, we can get (3.2) □

Remark 3.5. The expansions of
∂F (r,h,Λ)

∂h
and

∂F (r,h,Λ)
∂Λ would be applied in the proof of Proposition

3.6, which is essential for proving the existence critical point of F (r, h,Λ). In order to get a proper

expansion of
∂F (r,h,Λ)

∂h
, we need accurate estimates for ϕr,h,Λ. □

Rewritten the expansion of the energy functional.

Let Λ0 be

Λ0 =
[ (N − 2)B4

A2m

]
1

N−2−m
. (3.7)

Then it solves
B4(N − 2)

ΛN−1
− A2m

Λm+1
= 0.

Denote

G(h) := B4k
N−2

(
√
1− h2)N−2

+
B5k

hN−3
√
1− h2

,

then

G′(h) = (N − 2)
B4k

N−2h

(
√
1− h2)N

− (N − 3)
B5k

hN−2
√
1− h2

+ h
B5k

hN−4(1− h2)
3
2

= (N − 2)B4k
N−2h

[

1 +O(h2)
]

− (N − 3)
B5k

hN−2

[

1 +O(h2)
]

+
B5k

hN−4

[

1 +O(h2)
]

=
[

(N − 2)B4k
N−2h− (N − 3)

B5k

hN−2

]

+O
( k

hN−4

)

,
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and

G′′(h) = (N − 2)
B4k

N−2

(
√
1− h2)N

+ (N − 2)N
B4k

N−2h2

(
√
1− h2)N+2

+ (N − 3)(N − 2)
B5k

hN−1
√
1− h2

− (N − 3)
B5k

hN−3(1− h2)
3
2

− (N − 4)
B5k

hN−3(1− h2)
3
2

+
3B5k

hN−5(1− h2)
5
2

=(N − 2)B4k
N−2 + (N − 3)(N − 2)

B5k

hN−1
+O

(

h2kN−2
)

+O
( k

hN−3

)

, (3.8)

and

G′′′(h) = O
( k

hN

)

. (3.9)

Let h be a solution of
[

(N − 2)B4k
N−2h− (N − 3)

B5k

hN−2

]

= 0,

then

h =
B′

k
N−3
N−1

, with B′ =
[(N − 3)B5

(N − 2)B4

]
1

N−1
. (3.10)

Define

Sk =

{

(r, h,Λ)
∣

∣ r ∈
[

k
N−2

N−2−m − 1

kθ̄
, k

N−2
N−2−m +

1

kθ̄

]

, Λ ∈
[

Λ0 −
1

k
3θ̄
2

,Λ0 +
1

k
3θ̄
2

]

,

h ∈
[ B′

k
N−3
N−1

(

1− 1

kθ̄

)

,
B′

k
N−3
N−1

(

1 +
1

kθ̄

)]

}

,

for θ̄ is a small constant such that θ̄ ≤ σ
100 . In fact, Sk is a subset of Sk. We will find a critical

point of F (r, h,Λ) in Sk.

A direct Taylor expansion gives that

G(h) =G(h) + G′(h)(h− h) +
1

2
G′′(h)(h− h)2 +O

(

G′′′(h+ (1− ι)h
)

)

(h− h)3, (3.11)

where

G(h) = B4k
N−2

[

1 +
N − 2

2
h2 +O(h4)

]

+
B5k

hN−3

[

1 +
1

2
h2 +O(h4)

]

,

G′(h) = O
( k

hN−4

)

and

G′′(h) =
(N − 2)

2

[

B4k
N−2 + (N − 3)

B5k

hN−1

]

+O
(

h2kN−2
)

.

Since G(h),G′′(h) are independent of h, r,Λ, for simplicity, in the following, we will denote

G(h) = B4k
N−2 +

(N − 2)B4

2
kN−2h2 +

B5k

hN−3
, (3.12)

G′′(h) =
(N − 2)

2

[

B4k
N−2 + (N − 3)

B5k

hN−1

]

. (3.13)
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Then combining (3.11), (3.12), (3.13), we can get

G(h) =B4k
N−2 +

(N − 2)B4

2
kN−2h2 +

B5k

hN−3
+O

( k

hN−4

)

(h− h)

+
(N − 2)

2

[

B4k
N−2 + (N − 3)

B5k

hN−1

]

(h− h)2 +O
( k

hN

)

(h− h)3.

Therefore, we get

G(h) =B4k
N−2 +

[(N − 2)B4B
′2

2
+

B5

B′N−3

] kN−2

k
2(N−3)
N−1

+
(N − 2)

2

[

B4B
′2 +

(N − 3)B5

B′N−3

] kN−2

k
2(N−3)
N−1

(1− h−1h)2 +O
( kN−2

k
2(N−3)
N−1

)

(1− h−1h)3

=B4k
N−2 +B6

kN−2

k
2(N−3)
N−1

+B7
kN−2

k
2(N−3)
N−1

(1− h−1h)2 +O
( kN−2

k
2(N−3)
N−1

)

(1− h−1h)3, (3.14)

where

B6 =
(N − 2)B4B

′2

2
+

B5

B′N−3
, B7 =

(N − 2)

2

[

B4B
′2 +

(N − 3)B5

B′N−3

]

.

Since

r ∈
[

k
N−2

N−2−m − 1

kθ̄
, k

N−2
N−2−m +

1

kθ̄

]

,

then

rN−2 = k
(N−2)2

N−2−m

(

1 +
C(r,Λ)

k
(N−2)

N−2−m
+θ̄

)

.

We now rewrite

B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

=
B4

k
(N−2)m
N−2−m

+
B6

k
(N−2)m
N−2−m

+
2(N−3)
N−1

+
C(r,Λ)

k
(N−2)m
N−2−m

+σ

+
B7

k
(N−2)m
N−2−m

+
2(N−3)
N−1

(1− h−1h)2 +O
( 1

k
(N−2)m
N−2−m

+
2(N−3)
N−1

)

(1− h−1h)3.

Then we can express F (r, h,Λ) as

F (r, h,Λ) = kA1 − k
[ B4

ΛN−2k
(N−2)m
N−2−m

+
B6

ΛN−2k
(N−2)m
N−2−m

+
2(N−3)
N−1

+
B7

ΛN−2k
(N−2)m
N−2−m

+
2(N−3)
N−1

(1− h−1h)2
]

+ k
[ A2

Λmk
(N−2)m
N−2−m

+
A3

Λm−2k
(N−2)m
N−2−m

(r− r)2
]

+ k
C(r,Λ)
k

(N−2)m
N−2−m

(r− r)2+σ

+ kO
( 1

k
(N−2)m
N−2−m

+
2(N−3)
N−1

)

(1− h−1h)3 + kO
( 1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
)

)

. (3.15)
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And similarly, we have

∂F (r, h,Λ)

∂Λ
= k
[ (N − 2)B4

ΛN−1k
(N−2)m
N−2−m

− mA2

Λm+1k
(N−2)m
N−2−m

]

+
(m− 2)A3

Λm−1k
(N−2)m
N−2−m

(r− r)2 + kO
( 1

k
(N−2)m
N−2−m

(r− r)2+σ
)

;

and from (3.2), by using some calculations, we have

∂F (r, h,Λ)

∂h
=

k

ΛN−2

[ 2B7

ΛN−2k
(N−2)m
N−2−m

+
(N−3)
N−1

(1− h−1h)
]

+ kO
( 1

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

)

)

(1− h−1h)2 + kO
( 1

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
)

)

. (3.16)

Now define

F̄ (r, h,Λ) = −F (r, h,Λ), (3.17)

and

t2 = k(−A1 + η1), t1 = k
(

−A1 −
( A2

Λm
0

− B4

ΛN−2
0

) 1

k
(N−2)m
N−2−m

− 1

k
(N−2)m
N−2−m

+ 5θ̄
2

)

,

where η1 > 0 small. We also define the energy level set

F̄ t =
{

(r, h,Λ)
∣

∣ (r, h,Λ) ∈ Sk, F̄ (r, h,Λ) ≤ t
}

.

We consider the following gradient flow system






























dr
dt = −F̄r, t > 0;

dh
dt = −F̄h, t > 0;

dΛ
dt = −F̄Λ, t > 0;

(r, h,Λ)
∣

∣

t=0
∈ F̄ t2 .

The next proposition would play an important role in the proof of Theorem 1.1.

Proposition 3.6. The flow would not leave Sk before it reaches F̄ t1 .

Proof. There are three positions that the flow tends to leave Sk:

position 1. |r − r| = 1
kθ̄

and |1− h−1h| ≤ 1
kθ̄
, |Λ− Λ0| ≤ 1

k
3θ̄
2

;

position 2. |1− h−1h| = 1
kθ̄

when |r − r| ≤ 1
kθ̄
, |Λ− Λ0| ≤ 1

k
3θ̄
2

;

position 3. |Λ− Λ0| = 1

k
3θ̄
2

when |r − r| ≤ 1
kθ̄
, |1− h−1h| ≤ 1

kθ̄
.

♠ We now consider position 1. Since |Λ− Λ0| ≤ 1

k
3θ̄
2

, it is easy to derive that

( B4

ΛN−2
− A2

Λm

)

=
( B4

ΛN−2
0

− A2

Λm
0

)

+O(|Λ− Λ0|2)

=
( B4

ΛN−2
0

− A2

Λm
0

)

+O
( 1

k3θ̄

)

.

(3.18)
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Combining (3.15), (3.17), (3.18), we can obtain that, if (r, h,Λ) lies in position 1,

F̄ (r, h,Λ) = −kA1 + k
[ B4

ΛN−2
0 k

(N−2)m
N−2−m

− A2

Λm
0 k

(N−2)m
N−2−m

]

− k
A3

Λm−2
0 k

(N−2)m
N−2−m

+2θ̄
+O

( 1

k
(N−2)m
N−2−m

+ 5θ̄
2

)

< t1.

♠ On the other hand, we claim that it’s impossible for the flow
(

r(t), h(t),Λ(t)
)

leaves Sk when it

lies in position 2. If 1− h−1h = 1
kθ̄
, then from (3.16) and (3.17), we have

∂F̄ (r, h,Λ)

∂h
= − k

ΛN−2

[ 2B7

ΛN−2k
(N−2)m
N−2−m

+
(N−3)
N−1

+θ̄

]

+O
( 1

k
(N−2)m
N−2−m

+N−3
N−1

+2θ̄

)

< 0. (3.19)

On the other hand, if 1− h−1h = − 1
kθ̄

∂F̄ (r, h,Λ)

∂h
=

k

ΛN−2

[ 2B7

ΛN−2k
(N−2)m
N−2−m

+
(N−3)
N−1

+θ̄

]

+O
( 1

k
(N−2)m
N−2−m

+N−3
N−1

+2θ̄

)

> 0. (3.20)

So it’s impossible for the flow leaves Sk when it lies in position 2.

♠ Finally, we consider position 3. If Λ = Λ0 +
1

k
3θ̄
2

, from (3.1) and (3.17), there exists a constant

C1 such that
∂F̄ (r, h,Λ)

∂Λ
= k

[

C1
1

k
(N−2)m
N−2−m

+ 3
2
θ̄
+O

( 1

k
(N−2)m
N−2−m

+2θ̄

) ]

> 0.

On the other hand, if Λ = Λ0 − 1

k
3θ̄
2

, there exists a constant C2 such that

∂F̄ (r, h,Λ)

∂Λ
= k

[

− C2
1

k
(N−2)m
N−2−m

+ 3
2
θ̄
+O

( 1

k
(N−2)m
N−2−m

+2θ̄

)]

< 0.

Hence the flow
(

r(t), h(t),Λ(t)
)

does not leave Sk when |Λ− Λ0| = 1

k
3θ̄
2

.

Combining above results, we conclude that the flow would not leave Sk before it reach F̄ t1 . □

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1: According to Proposition 3.1, in order to show Theorem 1.1, we only need
to show that function F̄ (r, h,Λ), and thus F (r, h,Λ), has a critical point in Sk.

Define

Γ =
{

γ : γ(r, h,Λ) =
(

γ1(r, h,Λ), γ2(r, h,Λ), γ3(r, h,Λ)
)

∈ Sk, (r, h,Λ) ∈ Sk;

γ(r, h,Λ) = (r, h,Λ), if |r − r| = 1

kθ̄

}

.

Let
c = inf

γ∈Γ
max

(r,h,Λ)∈Sk

F̄
(

γ(r, h,Λ)
)

.

We claim that c is a critical value of F̄ (r, h,Λ) and can be achieved by some (r, h,Λ) ∈ Sk. By
the minimax theory, we need to show that

(i) t1 < c < t2;

(ii) sup|r−r|= 1

kθ̄
F̄
(

γ(r, h,Λ)
)

< t1, ∀ γ ∈ Γ.

Using the results in Proposition 3.6 we can prove (i) and (ii) easily.
Finally, for every k large enough, we get the critical point (rk, hk,Λk) of F (r, h,Λ). □
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Appendix A. expansions for the energy functional

This section is devoted to the computation of the expansion for the energy functional I(Wr,h,Λ).
We first give the following Lemma.

Lemma A.1. N ≥ 5 and (r, h,Λ) ∈ Sk. We have the following expansions for k → ∞:

k
∑

i=2

1

|x1 − xi|N−2
=

kN−2

(

r
√
1− h2

)N−2

(

B1 + σ1(k)
)

, (A.1)

k
∑

i=1

1

|x1 − xi|N−2
=

B2k

rN−2hN−3
√
1− h2

(

1 + σ2(k)
)

+
σ1(k)k

N−2

(

r
√
1− h2

)N−2
, (A.2)

where

B1 =
2

(2π)N−2

∞
∑

i=1

1

iN−2
, B2 =

1

2N−3π

∫ +∞

0

1
(

s2 + 1
)

N−2
2

ds, (A.3)

and

σ1(k) =







O
(

1
k2

)

, N ≥ 6,

O
(

ln k
k2

)

, N = 5,
σ2(k) = O

(

(hk)−1
)

. (A.4)

Proof. In fact, for 1
2 < c3 ≤ c4 ≤ 1, we have

c3
iπ

k
≤ sin

iπ

k
≤ c4

iπ

k
, for i ∈

{

1, · · · , k
2

}

.

Without loss of generality, we can assume k is even. It is easy to derive that

k
∑

i=2

1

|x1 − xi|N−2
=

k
∑

i=1

( 1

2r
√
1− h2 sin iπ

k

)N−2

=

k
2
∑

i=1

( 1

2r
√
1− h2 sin iπ

k

)N−2
+

k
∑

i= k
2
+1

( 1

2r
√
1− h2 sin iπ

k

)N−2
.

Direct computations show that

k
2
∑

i=1

( 1

2r
√
1− h2 sin iπ

k

)N−2

=

[ k
6
]

∑

i=1

( 1

2r
√
1− h2 sin iπ

k

)N−2
+

k
2
∑

i=[ k
6
]+1

( 1

2r
√
1− h2 sin iπ

k

)N−2

=

[ k
6
]

∑

i=1

( 1

2r
√
1− h2 iπ

k

)N−2(

1 +O
( i2

k2

))

+O
( k
(

2r
√
1− h2

)N−2

)

=
( k

r
√
1− h2

)N−2(

D1 + σ1(k)
)

, (A.5)
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where D1 = 1
2πN−2

∑∞
i=1

1
iN−2 and σ1(k) is defined in (A.4). Using symmetry of function sinx, we

can easily show

k
∑

i= k
2
+1

( 1

2r
√
1− h2 sin iπ

k

)N−2
=
( k

r
√
1− h2

)N−2(

D1 + σ1(k)
)

.

Thus we proved (A.1).
Similarly, we can obtain

k
∑

i=1

1

|x1 − xi|N−2
=

k
∑

i=1

1
(

2r
[

(1− h2) sin2 (i−1)π
k

+ h2
]
1
2

)N−2

=
2

(2rh)N−2

k
2
∑

i=1

1
(

(1−h2)
h2

(i−1)2π2

k2
+ 1
)

N−2
2

+ σ1(k)O
(( k

r
√
1− h2

)N−2)

.

Consider O
(

(hk)−1
)

= o(1) as k → ∞. Since

k
2
∑

j=1

1
(

(1−h2)
h2

(j−1)2π2

k2
+ 1
)

N−2
2

≥
∫ k

2

0

1
(

(1−h2)
h2

x2π2

k2
+ 1
)

N−2
2

dx

≥
∫ 2

0

1
(

(1−h2)
h2

x2π2

k2
+ 1
)

N−2
2

dx +

k
2
+1
∑

j=4

1
(

(1−h2)
h2

(j−1)2π2

k2
+ 1
)

N−2
2

,

then we have
k
2
∑

j=1

1
(

(1−h2)
h2

(j−1)2π2

k2
+ 1
)

N−2
2

=

∫ k
2

0

1
(

(1−h2)
h2

x2π2

k2
+ 1
)

N−2
2

dx+ 1 + o(1)

=
hk√

1− h2π

∫
(1−h2)

4h2
π2

0

1
(

s2 + 1
)

N−2
2

ds+ 1 + o(1)

=
hk√

1− h2π

∫ +∞

0

1
(

s2 + 1
)

N−2
2

ds
(

1 +O
(

(kh)−1
)

)

.

Combining above calculations, we can obtain that

k
∑

i=1

1

|x1 − xi|N−2
=

1

(rh)N−2

B2hk√
1− h2

(

1 + σ2(k)
)

+O
( σ1(k)k

N−2

(

r
√
1− h2

)N−2

)

,

where B2 and σ2 are defined in (A.3), (A.4).
□
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Lemma A.2. We have the expansion, for k → ∞
∫

RN

U2∗−1
x1,Λ

Uxi,Λ =
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N−ϵ0

)

,

and
∫

RN

U2∗−1
x1,Λ

Uxi,Λ =
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N−ϵ0

)

,

where B0 =
∫

RN
1

(1+z2)
N+2

2

and ϵ0 is constant small enough.

Proof. Let dj = |x1 − xj |, dj = |x1 − xj | for j = 1, · · · , k. We consider

∫

RN

U2∗−1
x1,Λ

Uxi,Λ =

∫

RN

Λ
N+2

2

(1 + Λ2|y − x1|2)
N+2

2

Λ
N−2

2

(1 + Λ2|y − xi|2)
N−2

2

=

{

∫

B di
4

(x1)
+

∫

RN\B di
4

(x1)

}

Λ
N+2

2

(1 + Λ2|y − x1|2)
N+2

2

Λ
N−2

2

(1 + Λ2|y − xi|2)
N−2

2

. (A.6)

First, we have

∫

B di
4

(x1)

Λ
N+2

2

(1 + Λ2|y − x1|2)
N+2

2

Λ
N−2

2

(1 + Λ2|y − xi|2)
N−2

2

=

∫

BΛdi
4

(0)

1

(1 + z2)
N+2

2

1

(1 + z2 + 2Λ⟨z, x1 − xi⟩+ Λ2|x1 − xi|2)
N−2

2

(A.7)

=
1

ΛN−2|x1 − xi|N−2

∫

BΛdi
4

(0)

1

(1 + z2)
N+2

2

(

1− N − 2

2

1 + z2 + 2Λ⟨z, x1 − xi⟩
Λ2|x1 − xi|2

+O
((1 + z2 + 2Λ⟨z, x1 − xi⟩

Λ2|x1 − xi|2
)2)

)

.

It is easy to check that

1

ΛN−2|x1 − xi|N−2
O
(

∫

BΛdi
4

(0)

1

(1 + z2)
N+2

2

(1 + z2 + 2Λ⟨z, x1 − xi⟩
Λ2|x1 − xi|2

)2)

= O
( 1

|x1 − xi|N
)

, (A.8)

and

1

ΛN |x1 − xi|N
∫

BΛdi
4

(0)

1

(1 + z2)
N+2

2

(

1 + z2 + 2Λ⟨z, x1 − xi⟩
)

= O
( 1

|x1 − xi|N−ϵ0

)

. (A.9)

Standard calculation implies that

1

ΛN−2|x1 − xi|N−2

∫

BΛdi
4

(0)

1

(1 + z2)
N+2

2

=
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N
)

, (A.10)

where B0 =
∫

RN
1

(1+z2)
N+2

2

.
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From (A.7)-(A.10), we get

∫

B di
4

(x1)

Λ
N+2

2

(1 + Λ2|y − x1|2)
N+2

2

Λ
N−2

2

(1 + Λ2|y − xi|2)
N−2

2

=
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N−ϵ0

)

. (A.11)

When y ∈ R
N \B di

4

(x1), there holds

|y − x1| ≥
1

4
|x1 − xi|.

It’s easy to get
∫

RN\B di
4

(x1)

Λ
N+2

2

(1 + Λ2|y − x1|2)
N+2

2

Λ
N−2

2

(1 + Λ2|y − xi|2)
N−2

2

= O
( 1

|x1 − xi|N−ϵ0

)

. (A.12)

Combining (A.6), (A.11) and (A.12), we can get
∫

RN

U2∗−1
x1,Λ

Uxi,Λ =
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N−ϵ0

)

. (A.13)

Similarly, we can get
∫

RN

U2∗−1
x1,Λ

Uxi,Λ =
B0

ΛN−2|x1 − xi|N−2
+O

( 1

|x1 − xi|N−ϵ0

)

,

for i = 1, · · · , k.
□

Lemma A.3. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. We have the expansion

for k → ∞

I(Wr,h,Λ) = kA1 − k

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

+ k
[ A2

Λmrm
+

A3

Λm−2rm
(r− r)2

]

+ k
C(r,Λ)
rm

(

r− r
)2+σ

+ k
C(r,Λ)
rm+σ

+ kO
((k

r

)N−ϵ0
)

+ kO
( 1

km

(k

r

)N−2)

,

where C(r,Λ) denotes function independent of h and should be order of O(1),

A1 =
(

1− 2

2∗

)

∫

RN

|U0,1|2
∗
, A2 =

2c0
2∗

∫

RN

|y1|mU2∗

0,1, (A.14)

A3 =
c0m(m− 1)

2∗

∫

RN

|y1|m−2U2∗

0,1, (A.15)

and ϵ0 is constant can be chosen small enough.

Proof. Recalling the definition of I(u) as in (1.18), then we obtain that

I(Wr,h,Λ) =
1

2

∫

RN

|∇Wr,h,Λ|2 −
1

2∗

∫

RN

K
( |y|

r

)

W 2∗

r,h,Λ

:= I1 − I2. (A.16)
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According to the expression of Wr,h,Λ, we have

I1 =
1

2

k
∑

j=1

k
∑

i=1

∫

RN

−∆
(

Uxj ,Λ + Uxj ,Λ

)(

Uxi,Λ + Uxi,Λ

)

= k

k
∑

j=1

∫

RN

(

U2∗−1
x1,Λ

Uxj ,Λ + U2∗−1
x1,Λ

Uxj ,Λ

)

= k

∫

RN

(

U2∗

0,1 +
k
∑

j=2

U2∗−1
x1,Λ

Uxj ,Λ

)

+ k

∫

RN

k
∑

j=1

U2∗−1
x1,Λ

Uxj ,Λ

= k

∫

RN

U2∗

0,1 + k

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

i=1

Uxj ,Λ

)

. (A.17)

For I2, using the symmetry of function Wr,h,Λ, we have

I2 =
2k

2∗

∫

Ω+
1

K
( |y|

r

)

W 2∗

r,h,Λ

=
2k

2∗

∫

Ω+
1

K
( |y|

r

)

{

U2∗

x1,Λ + 2∗U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

+O
(

U
2∗

2
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)
2∗

2

)

}

:=
2k

2∗

(

I21 + I22 + I23

)

. (A.18)

For y ∈ Ω+
1 , from Lemma B.1, we have

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C
(

1 + |y − x1|
)

(N−2)ϵ0
N

(k

r

)N−2− (N−2)ϵ0
N

,

with ϵ0 > 0 can be chosen small enough. Then we can get

I23 =O
(

∫

Ω+
1

K
( |y|

r

)

U
2∗

2
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)
2∗

2

)

= O
((k

r

)N−ϵ0
)

. (A.19)

For I21, we can rewrite it as following

I21 =

∫

Ω+
1

U2∗

x1,Λ +

∫

Ω+
1

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ

=

∫

RN

U2∗

0,1 +

∫

Ω+
1

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ +O
((k

r

)N)

.

Furthermore, we obtain
∫

Ω+
1

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ =

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≥δ

}

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ
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+

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ.

When | |y|
r
− 1| ≥ δ, there holds

|y − x1| ≥
∣

∣|y| − r
∣

∣ −
∣

∣r− |x1|
∣

∣ ≥ 1

2
δr.

Thus we can easily get
∫

Ω+
1 ∩
{

y: | |y|
r
−1|≥δ

}

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ ≤ C

rN−ϵ0
.

If | |y|
r
− 1| ≤ δ, recalling the decay property of K, we can obtain that

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

[

K
( |y|

r

)

− 1
]

U2∗

x1,Λ

= −c0
1

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m
U2∗

x1,Λ

+O
( 1

rm+σ

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m+σ
U2∗

x1,Λ

)

= −c0
1

rm

∫

RN

∣

∣|y| − r
∣

∣

m
U2∗

x1,Λ +O
(

∫

RN\B r

k
(x1)

( |y|m
rm

+ 1
)

U2∗

x1,Λ

)

+O
( 1

rm+σ

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m+σ
U2∗

x1,Λ

)

= −c0
1

rm

∫

RN

∣

∣|y + x1| − r
∣

∣

m
U2∗

0,Λ

+O
( 1

rm+σ

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m+σ
U2∗

x1,Λ

)

+O
((k

r

)N−ϵ0
)

.

Furthermore, recalling |x1| = r and using the symmetry property, we have
∫

RN

∣

∣|y + x1| − r
∣

∣

m
U2∗

0,Λ =

∫

RN

∣

∣|y + e1r| − r
∣

∣

m
U2∗

0,Λ,

where e1 = (1, 0, · · · , 0).
We get

∫

RN

||y + x1| − r|mU2∗

0,Λ

=

∫

RN

|y1|mU2∗

0,Λ +
1

2
m(m− 1)

∫

RN

|y1|m−2U2∗

0,Λ(r− r)2 + C(r,Λ)(r− r)2+σ,

here C(r,Λ) denote functions which are independent of h and can be absorbed in O(1).
Similarly, we can also have the following expression

O
( 1

rm+σ

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m+σ
U2∗

x1,Λ

)

= O
( 1

rm+σ

∫

RN

∣

∣|y| − r
∣

∣

m+σ
U2∗

x1,Λ

)

+O
((k

r

)N−ϵ0
)
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=
C(r,Λ)
rm+σ

+ O
((k

r

)N−ϵ0
)

.

Then, we can obtain that

I21 =

∫

RN

|U0,1|2
∗ − c0

Λmrm

∫

RN

|y1|mU2∗

0,1

− 1

2
m(m− 1)

c0

Λm−2rm

∫

RN

|y1|m−2U2∗

0,1(r− r)2

+
C(r,Λ)
rm

(r− r)2+σ +
C(r,Λ)
rm+σ

+O
((k

r

)N−ϵ0
)

. (A.20)

Finally, we consider I22

I22 =2∗
∫

Ω+
1

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

+ 2∗
∫

Ω+
1

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

=2∗
∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

− 2∗
∫

RN\Ω+
1

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

+ 2∗
∫

Ω+
1

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

: = I221 + I222 + I223.

For I222, it is easy to derive that

k
∑

j=1

∫

RN\Ω+
1

U2∗−1
x1,Λ

Uxj ,Λ = O
(kN

rN

)

.

Moreover, we know that

k
∑

j=2

∫

RN\Ω+
1

U2∗−1
x1,Λ

Uxj ,Λ

=
k
∑

j=2

∫

(

RN\Ω+
1

)

∩Bdj/2
(x1)

U2∗−1
x1,Λ

Uxj ,Λ +
k
∑

j=2

∫

(

RN\Ω+
1

)

\Bdj/2
(x1)

U2∗−1
x1,Λ

Uxj ,Λ

=

k
∑

j=2

∫

(

RN\Ω+
1

)

∩Bdj/2
(x1)

U2∗−1
x1,Λ

Uxj ,Λ +O
(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)

≤C

k
∑

j=2

∫

Bdj/2
(x1)\Bd2/2

(x1)
U2∗−1
x1,Λ

Uxj ,Λ +O
(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)

=C

k
∑

j=2

1

|x1 − xj |N−2

∫

BΛdj/2
(0)\BΛd2/2

(0)

1

(1 + z2)
N+2

2

+O
(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)
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≤C

k
∑

j=2

1

|x1 − xj |N−2
O
( 1

d
2
2

)

+O
(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)

=O
(k2

r2

)

k
∑

j=2

1

|x1 − xj |N−2
+O

(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)

=O
(kN

rN

)

+O
(

k
∑

j=2

1

|x1 − xj |N−ϵ0

)

,

where dj = |x1 − xj | for j = 2, · · · , k and d2 = |x1 − x2| = 2r
√
1− h2 sin π

k
= O

(

r
k

)

. Then we get

I222 = O
((k

r

)N−ϵ0
)

. (A.21)

Next, we consider the term I223. In fact, we have

I223 =

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≥δ

}

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

+

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

.

When | |y|
r
− 1| ≥ δ, there hold

|y − x1| ≥
∣

∣|y| − r
∣

∣−
∣

∣r− |x1|
∣

∣ ≥ 1

2
δr.

And for y ∈ Ω+
1 and | |y|

r
− 1| ≥ δ, we have

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C
(k

r

)α 1
(

1 + |y − x1|
)N−2−α

, (A.22)

with α = (N−2−m
N−2 , N−2

2 ). Then we can get easily

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≥δ

}

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

≤ C

rN−α−ϵ0

(k

r

)α

≤ C
(k

r

)N

.

If | |y|
r
− 1| ≤ δ, then

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

[

K
( |y|

r

)

− 1
]

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∣

∣|y| − r
∣

∣

m
U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

=
C

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∩
{

y: |y−x1|≤ δ1r
k

}

∣

∣|y| − r
∣

∣

m
U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)
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+
C

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∩
{

y: |y−x1|≥ δ1r
k

}

∣

∣|y| − r
∣

∣

m
U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

,

where δ1 is small constant. If |y − x1| ≤ δ1r
k
, it is easy to derive

∣

∣|y| − r
∣

∣ ≤ |y − x1|+ ||x1| − r| ≤ δ2r

k
,

for some small δ2. Therefore,

C

rm

∣

∣|y| − r
∣

∣

m ≤ C

km
.

Hence

C

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∩
{

y: |y−x1|≤ δ1r
k

}

∣

∣|y| − r
∣

∣

m
U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

≤ C

km

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C

km

(k

r

)N−2
.

When |y − x1| ≥ δ1r
k
, combing (A.22), we can get easily,

C

rm

∫

Ω+
1 ∩
{

y: | |y|
r
−1|≤δ

}

∩
{

y: |y−x1|≥ δ1r
k

}

∣

∣|y| − r
∣

∣

m
U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C
(k

r

)N−ϵ0
.

Thus we can get

I223 = O
((k

r

)N−ϵ0
)

+O
( 1

km

(k

r

)N−2)

. (A.23)

Combining (A.17), (A.18), (A.20), (A.19), (A.21) and (A.23), we can get

I(Wr,h,Λ) = k
(

1− 2

2∗

)

∫

RN

|U0,1|2
∗ − k

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

+
2k

2∗

[ c0

Λmrm

∫

RN

|y1|mU2∗

0,1 +
c0m(m− 1)

2Λm−2rm

∫

RN

|y1|m−2U2∗

0,1(r− r)2
]

+ k
C(r,Λ)
k

m(N−2)
N−2−m

(r− r)2+σ + k
C(r,Λ)
rm+σ

+ kO
((k

r

)N−ϵ0
)

+ kO
( 1

km

(k

r

)N−2)

.

□

Combining Lemma A.1-A.3, we can get the following Proposition which gives the expression of
I(Wr,h,Λ).

Proposition A.4. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. Then we have

I(Wr,h,Λ) = kA1 −
k

ΛN−2

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]
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+ k
[ A2

Λmk
(N−2)m
N−2−m

+
A3

Λm−2k
(N−2)m
N−2−m

(r− r)2
]

+ k
C(r,Λ)
k

m(N−2)
N−2−m

(r− r)2+σ

+ k
C(r,Λ)

k
m(N−2)
N−2−m

+σ
+ kO

( 1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
)

)

, (A.24)

as k → ∞, where Ai, (i = 1, 2, 3), B4, B5 are positive constants.

Proof. A direct result of Lemma A.1-A.3 is

I(Wr,h,Λ) = kA1 − k

ΛN−2

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]

+ k
[ A2

Λmrm
+

A3

Λm−2rm
(r− r)2

]

+ k
C(r,Λ)
k

m(N−2)
N−2−m

(r− r)2+σ

+ k
C(r,Λ)

k
(N−2)m
N−2−m

+σ
+ kO

((k

r

)N−ϵ0
)

+ kO
( 1

km

(k

r

)N−2)

+ kO
( σ1(k)k

N−2

(

r
√
1− h2

)N−2

)

+ kO
( σ2(k)k

rN−2hN−3
√
1− h2

)

,

with B4 = B0B1, B5 = B0B2 are positive constants. From the expressions of σ1(k), σ2(k) and
asymptotic expression of h, r as in (A.4), (1.10) , we can show that

σ1(k)k
N−2

(

r
√
1− h2

)N−2
,

σ2(k)k

rN−2hN−3
√
1− h2

,

can be absorbed in O
(

1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ

)

)

.

Noting that m > N−2
2 implies

N − 3

N − 1
<

m

N − 2−m
,

thus provided with ϵ0, σ small enough, we can get
(k

r

)N−ϵ0
=

1

k
m(2−ϵ0)
N−2−m

1

k
m(N−2)
N−2−m

≤ C
1

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
) .

Since m ≥ 2, we can check that

1

km

(k

r

)N−2
≤ C

k

(

m(N−2)
N−2−m

+
2(N−3)
N−1

+σ
) .

Thus we can get (A.24). □

To get the expansions of F (r,h,Λ)
∂Λ ,

F (r,h,Λ)
∂h

, we need the following expansions for
∂I(Wr,h,Λ)

∂Λ ,
∂I(Wr,h,Λ)

∂h
.

Proposition A.5. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. We have

∂I(Wr,h,Λ)

∂Λ
=

k(N − 2)

ΛN−1

[ B4k
N−2

(r
√
1− h2)N−2

+
B5k

rN−2hN−3
√
1− h2

]

− k
[ mA2

Λm+1k
(N−2)m
N−2−m

+
(m− 2)A3

Λm−1k
(N−2)m
N−2−m

(r− r)2
]

+ kO
( 1

k
(N−2)m
N−2−m

+σ

)

,

as k → ∞, where the constants Bi, i = 4, 5 and Ai, i = 2, 3 are defined in Proposition A.4.
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Proof. The proof of this proposition is standard and the reader can refer to [31] for details. □

Proposition A.6. Suppose that K(|y|) satisfies (H) and N ≥ 5, (r, h,Λ) ∈ Sk. Then we have

∂I(Wr,h,Λ)

∂h
= − k

ΛN−2

[

(N − 2)
B4k

N−2

rN−2(
√
1− h2)N

h− (N − 3)
B5k

rN−2hN−2
√
1− h2

]

+ kO
( 1

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
)

)

(A.25)

as k → ∞.

Proof. Recall

Z2j ≤ C
r

(1 + |y − xj |)N−1
, Z2j ≤ C

r

(1 + |y − xj |)N−1
. (A.26)

We know that

∂I(Wr,h,Λ)

∂h
=

1

2

∂

∂h

∫

RN

|∇Wr,h,Λ|2 −
1

2∗
∂

∂h

∫

RN

K
( |y|

r

)

W 2∗

r,h,Λ

= k
∂

∂h

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +
k
∑

i=1

Uxj ,Λ

)

−
∫

RN

K
( |y|

r

)

W 2∗−1
r,h,Λ

(

Z21 +

k
∑

j=2

Z2j +

k
∑

j=1

Z2j

)

. (A.27)

From (A.27), similar to the calculations in the proof of Proposition A.3, we can get

∂I(Wr,h,Λ)

∂h
= −k

∂

∂h

∫

RN

U2∗−1
x1,Λ

(

k
∑

j=2

Uxj ,Λ +

k
∑

i=1

Uxj ,Λ

)

+ k2O
((k

r

)N−ϵ0
)

. (A.28)

Then by some tedious but straightforward analysis, we can get

∂I(Wr,h,Λ)

∂h
= − k

ΛN−2

[

(N − 2)
B4k

N−2

rN−2(
√
1− h2)N

h− (N − 3)
B5k

rN−2hN−2
√
1− h2

]

+ h
B5k

rN−2hN−3(1− h2)
3
2

]

+ k2O
((k

r

)N−ϵ0
)

, (A.29)

for some ϵ0 small enough. In fact, we know that k
(

k
r

)N−ϵ0
and h B5k

rN−2hN−3(1−h2)
3
2
can be absorbed

in O
(

1

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ

)

)

provided with m satisfying (1.6) and ϵ0, σ small enough. In fact, this is

the reason why we need the assumption (1.6). Then we can get (A.25) directly.
□

Appendix B. Some basic estimates and lemmas

Lemma B.1. Under the condition (r, h,Λ) ∈ Sk, for y ∈ Ω+
1 there exists a constant C such that

(

k
∑

j=2

Uxj ,Λ +

k
∑

j=1

Uxj ,Λ

)

≤ C
(k

r

)α 1
(

1 + |y − x1|
)N−2−α

,

with α = (1, N − 2).
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Proof. For y ∈ Ω+
1 and j = 2, · · · , k, we have

|y − xj | ≥ |x1 − xj | − |y − x1| ≥
1

4
|x1 − xj |, if |y − x1| ≤

1

4
|x1 − xj |,

and

|y − xj | ≥ |y − x1| ≥
1

4
|x1 − xj |, if |y − x1| ≥

1

4
|x1 − xj |,

|y − xi| ≥
1

4
|x1 − x1| ≥ C

( r

k

)

.

Then

(

k
∑

j=2

Uxj ,Λ +
k
∑

j=1

Uxj ,Λ

)

≤ C
(

1 + |y − x1|
)N−2−α

[

k
∑

j=2

1
(

1 + |y − xj |
)α +

1
(

1 + |y − x1|
)α

]

≤ C
(

1 + |y − x1|
)N−2−α

[

k
∑

j=2

1

|x1 − xj |α
+

1

|x1 − x1|α
]

≤ C
(

1 + |y − x1|
)N−2−α

(k

r

)α

.

□

Lemma B.2. Under the condition (r, h,Λ) ∈ Sk, for y ∈ Ω+
1 we have

(

k
∑

j=2

Z2j +

k
∑

j=1

Z2j

)

≤ C
(k

r

)α r
(

1 + |y − x1|
)N−1−α

,

with α = (1, N − 1).

Proof. The proof of Lemma B.2 is similar to Lemma B.1. We omit the details for concise. □

For each fixed i and j, i ̸= j, we consider the following function

gij(y) =
1

(1 + |y − xj |)γ1
1

(1 + |y − xi|)γ2
,

where γ1 ≥ 1 and γ2 ≥ 1 are two constants.

Lemma B.3. (Lemma B.1, [31]) For any constants 0 < υ ≤ min{γ1, γ2}, there is a constant C > 0,
such that

gij(y) ≤
C

|xi − xj |υ
( 1

(1 + |y − xi|)γ1+γ2−υ
+

1

(1 + |y − xj |)γ1+γ2−υ

)

.

Lemma B.4. (Lemma B.2, [31]) For any constant 0 < β < N − 2, there is a constant C > 0, such
that

∫

RN

1

|y − z|N−2

1

(1 + |z|)2+β
dz ≤ C

(1 + |y|)β .

Lemma B.5. Suppose that N ≥ 5 and τ ∈ (0, 2), y = (y1, · · · , yN ). Then there is a small σ > 0,
such that when y3 ≥ 0,

∫

RN

1

|y − z|N−2
W

4
N−2

r,h,Λ(z)

k
∑

j=1

1

(1 + |z − xj |)
N−2

2
+τ

dz

≤ C

k
∑

j=1

1

(1 + |y − xj |)
N−2

2
+τ+σ

,
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and when y3 ≤ 0,

∫

RN

1

|y − z|N−2
W

4
N−2

r,h,Λ(z)
k
∑

j=1

1

(1 + |z − xj |)
N−2

2
+τ

dz

≤ C

k
∑

j=1

1

(1 + |y − xj |)
N−2

2
+τ+σ

.

Proof. The proof of Lemma B.5 is similar to Lemma B.3 in [31]. Here we omit it. □

Lemma B.6. Suppose that N ≥ 5 and m satisfies (1.6). We have

rmax
{ 1

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
,

1

k
( N−2
N−2−m

)min{2m,m+3}

}

≤ C

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
) , (B.1)

provided with σ, ϵ1 small enough.

Proof. It’s easy to show that

r

k
( N−2
N−2−m

)min{2m,m+3}
≤ C

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
) ,

for m ≥ 2. In order to get (B.1), we just need to show

r

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
=

k
N−2

N−2−m

k
( m
N−2−m

)(N+2−2N−2−m
N−2

−2ϵ1)
≤ C

k

(

m(N−2)
N−2−m

+
(N−3)
N−1

+σ
) , (B.2)

for some σ, ϵ1 small. The problem to show (B.2) can be reduced to show that 6 + (N−3)
N−1 <

3( N−2
N−2−m

)+ 2N−2−m
N−2 , for m satisfying (1.6). This inequality follows by simple computations. This

fact concludes the proof. □
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