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Doublon production rate in modulated optical lattices
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We theoretically study lattice modulation experiments with ultracold fermions in optical lattices. We focus
on the regime relevant to current experiments when interaction strength is larger than the bandwidth and
temperature is higher than magnetic superexchange energy. We obtain analytical expressions for the rate of
doublon production as a function of modulation frequency, filling factor, and temperature. We use local density
approximation to average over inhomogeneous density for atoms in a parabolic trap and find excellent agreement
with experimentally measured values. Our results suggest that lattice modulation experiments can be used for
thermometry of strongly interacting fermionic ensembles in optical lattices.
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I. INTRODUCTION

Cold atoms provide a new platform in which one can
explore long standing open questions of strongly correlated
systems in condensed matter physics [1,2]. In particular, two-
component Fermi mixtures in an optical lattice provide an ideal
realization of the fermionic Hubbard model, where two species
of fermions—corresponding to the spin 1/2—interact with an
on-site repulsion. This model is relevant for understanding
properties of electrons in several classes of novel quantum
materials including oxides and high-Tc superconductors [3,4].
There are currently many efforts to probe the low-temperature
physics of such a model, with experiments already demonstrat-
ing the Mott insulating behavior expected in this model [5,6].

An important feature of strongly correlated ultracold atoms
is that traditional probes used in solid state physics are often
not readily available. One thus needs to understand how
experimental techniques appropriate for atomic ensembles
can provide information on many-body states. In this paper
we focus on understanding lattice modulation experiments
with fermions in optical lattices. The technique of lattice
modulation was originally introduced for bosonic systems and
absorbed energy was measured as a function of modulation
frequency [7]. Measuring energy absorption, however, cannot
be done accurately enough for strongly interacting fermions.
Thus an extension of this technique was proposed [8], and
implemented [9], in which the number of doubly occupied sites
created by the lattice modulation was measured. Recent exper-
iments successfully reached the regime of weak perturbations
in which the number of doublons created scales quadratically
with the modulation amplitude (Fermi’s golden rule) and the
modulation pulse duration [9].

While theoretical understanding of such experiments with
bosons is now relatively complete [10–12], the case of
fermions turned out to be more challenging. The main
difficulty is the presence of excitations at very different energy
scales: high-energy charge excitations, so-called doublons and
holons, that have energies set by the on-site repulsion U and
fermion hopping strength J , and magnetic excitations that have
energies of the order of superexchange energy J 2/U . Under-
standing the interplay of charge and spin degrees of freedom
in the Hubbard model is a long standing problem in condensed
matter physics [13,14]. In the special case of half filling and

fully disordered spin states, analysis of lattice modulation
experiments has been performed previously [15,16]. However,
such analysis is not sufficient for quantitative comparison
to experiments which are done with systems in a parabolic
potential that have a large number of atoms outside of the
incompressible Mott plateaus.

Furthermore, such real-time dynamics at finite temperature
as seen in current experiments is problematic for numerics.
Monte Carlo simulations [17] suffer from the problems of
analytic continuation. Density-matrix renormalization group
approaches, which can deal with real time dynamics, are so far
limited to one dimension. Therefore, a comparison of dynami-
cal quantities to experiments is a nontrivial theoretical subject.

In this paper we develop another analytical approach to
calculate finite-temperature dynamics, that is, the doublon
production rate (DPR), based on the slave-particle technique
[15,18,19]. This approach is particularly adapted to the
paramagnetic phase of the Hubbard model, and can be
applied to any filling of the band and finite temperatures
whose region is relevant to ongoing experiments. It provides
a remarkable agreement to the experiments and allows for
potential extensions.

This paper is organized as follows. We define the system
Hamiltonian and introduce the slave-particle representation in
Sec. II. In Sec. III the spectral functions of the slave particles
are evaluated, and in addition the spectral function of the
original fermionic atom is also obtained. In Sec. IV we proceed
with the estimation of the doublon production rate based on the
obtained spectral functions in Sec. III, and the analytic formula
of the DPR spectrum is given. In Sec. V the obtained analytic
formula is extended to an inhomogeneous system in a trap by
the local density approximation (LDA), and a comparison with
the experiment in Ref. [9] is implemented. Finally, Sec. VI is
devoted to the summary.

II. SLAVE-PARTICLE REPRESENTATION

We consider the Hubbard model H0 = HK + Hat with

HK = −J
∑

σ,〈i,j 〉
c
†
iσ cjσ , (1a)

Hat = −μ
∑
j,σ

njσ + U
∑

j

nj↑nj↓, (1b)
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where c
†
jσ and njσ = c

†
jσ cjσ are, respectively, a creation and

number operator of a spin-σ fermions at a j th site. We use the
following slave-particle representation:

c
†
j↑ = b

†
j↑hj + bj↓d

†
j , c

†
j↓ = b

†
j↓hj − bj↑d

†
j , (2)

where b
†
jσ , h

†
j and d

†
j are, respectively, creation operators

of a slave boson of spin-σ state (Schwinger boson), holon,
and doublon at a site j . They satisfy the (anti-)commutation
relations [biσ ,b

†
jσ ′ ] = δi,j δσ,σ ′ and {hi,h

†
j } = {di,d

†
j } = δi,j .

The enlarged Hilbert space is projected onto the physical one
by the following constraint at every site:∑

σ

b
†
jσ bjσ + h

†
jhj + d

†
j dj = 1. (3)

Equation (2) allows us to rewrite the Hamiltonian (1) as

HK = J
∑
〈i,j〉

[Fji(h
†
i hj − d

†
i dj ) + (A†

ij djhi + H.c.)], (4)

Hat =
∑

j

[
εd
j d

†
j dj + εh

j h
†
jhj +

∑
σ

εb
j b

†
jσ bjσ − λj

]
, (5)

where Fji = ∑
σ b

†
jσ biσ and A

†
ij = b

†
i↑b

†
j↓ − b

†
j↓b

†
i↑ mean the

hopping of slave bosons and the creation of spin singlet pair,
respectively. The local potentials of a slave boson, holon, and
doublon are, respectively, defined as εb

j = λj , εh
j = μ + λj ,

and εd
j = U − μ + λj . The constraint (3) is implemented via

the Lagrange multiplier λj .

III. DIAGRAMMATIC ANALYSIS

A. Atomic limit

We start with the atomic limit (J/U = 0). Then the kinetic
term (4) which describes the scattering among slave particles
vanishes. Since the atomic Hamiltonian (5) is quadratic, the
atomic propagators at j th site are easily obtained as

G(0)
bσ (rj ,iωn) = 1

iωn − εb
j

, G(0)
d/h(rj ,iνn) = 1

iνn − ε
d/h
j

, (6)

where ωn and νn are the Matsubara frequency for bosons and
fermions, respectively. Note that the atomic limit propagators
of slave bosons are independent of the spin. This means
that the atomic limit exhibits spin-incoherent paramagnetism.
Hereafter we set h̄ = 1.

Let us suppose the mean-field (MF) λj to be determined by
the atomic limit. Namely, the self-consistent equation for λj

corresponds to the statistical average of the constraint (3) in
the atomic limit:

2b(εb,j ) + f (εh,j ) + f (εd,j ) = 1, (7)

where the prefactor 2 comes from the spin degrees of freedom.
f (ε) and b(ε) are, respectively, the Fermi and Bose distribution
functions. One can expect that if the effect of the kinetic energy
HK is small, that is, at relatively high temperature compared
to the kinetic energy, the validity of this treatment should be
guaranteed. We thus use the MF assumption for the Lagrange
multiplier: λj → λ. Simultaneously the local potentials are
also replaced by the homogeneous ones: εx

j → εx, where x =
b,h,d. Corresponding to the MF treatment for the Lagrange

multiplier, the atomic propagators also become independent
of sites: For example, the replacement of λj → λ leads the
slave boson propagator G(0)

bσ (rj ,iωn) → Ḡb(iωn) where the
site-independent propagator is defined as

Ḡb(iωn) = 1

iωn − εb
. (8)

Let us solve the self-consistent equation (7). For kBT /

U � 1, Eq. (7) can be simplified, and solved analytically as
follows:

λ = kBT log
3 +

√
9 + 8(e−(U−μ)/kBT + e−μ/kBT )

2
. (9)

As discussed below, Eq. (7) is numerically solved, and we
compare the numerical result with Eq. (9). The obtained λ

leads the estimation of the slave-particle densities. The density
of each slave particle is given by the MF solution λ: nMF

σ =
b(εb) for a slave boson, nMF

h = f (εh) for a holon, and nMF
d =

f (εd) for a doublon. The temperature and chemical potential
dependency of them are shown in Fig. 1. In the temperature
region shown in Fig. 1, the results analytically given by Eq. (9)
are in precise agreement with ones given by the numerically
solved λ. It means that in such a regime we may always employ
Eq. (9) as a solution of the MF self-consistent equation (7).
On the other hand, the densities in the atomic limit can be
exactly calculated as shown in Appendix A. Here we take the
exact densities to be nσ , nh, and nd, and their temperature and
chemical potential dependency is also shown in Fig. 1. The
exact result allows us to discuss the temperature and chemical
potential regime justifying the slave-particle approach. From
the comparison made in Fig. 1, the slave-particle technique
is found to agree with the exact result in the temperature and
chemical potential region where nMF

σ = 1/2 and nMF
h = nMF

d =
0. In other words the slave-particle technique is expected to be
reasonable when the system is near a Mott insulator, and such
temperature as a benchmark is below kBT /U ≈ 0.1.

B. The finite hopping

We now consider a finite but small hopping by taking
the infinite series of diagrams produced by the scattering
HK among the slave particles, based on the noncrossing
(NC) approximation [13,14]. This approximation can be also
regarded as a certain type of high temperature series expansion
(HTSE) [20], but in our formalism the Wick theorem is
still applicable due to the quadratic Hamiltonian (5), and a
particular infinite series of kinetic energy perturbation can
be taken. Based on the NC approximation the self-energy
diagrams constructed by full propagators, shown in Fig. 2,
are considered.

Since one is in a temperature regime higher than the
antiferromagnetic exchange ∼4J 2/U , we apply the spin-
incoherent assumption to the slave boson propagator. Namely,
the slave boson propagators in the diagrams of Fig. 2 are
replaced by the atomic one (8),

G̃bσ (k,iωn) → Ḡb(iωn). (10)

The doublon and holon propagators are left full ones:
namely, by using the Dyson equation the full propagators are
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FIG. 1. (Color online) The slave-particle densities as a function of temperature for different chemical potentials: (a) the slave boson,
(b) holon, and (c) doublon density. The chemical potentials are chosen as follows: μ/U = 0.5, 0.2, 0.1, and 0 from the top to bottom. The
MF results nMF

σ , nMF
h , and nMF

d given by the slave-particle technique and the exact results in the atomic limit, nσ , nh, and nd, are compared.
nMF

σ , nMF
h , and nMF

d are calculated numerically and analytically. The solid, dashed, and dotted lines, respectively, denote the exact result by the
atomic limit calculation, the slave-particle approach (A3).

written as

G̃d/h(k,iνn) = G̃(0)
d/h(k,iνn)

+ G̃(0)
d/h(k,iνn)�̃d/h(k,iνn)G̃d/h(k,iνn). (11)

Unlike the standard MF theory, the dynamical fluctuation of the
slave bosons is retained here, which is necessary to describe the
doublon-holon excitation. The NC diagram Fig. 2(b) couples
the self-consistent equations of the doublon and holon self-
energy. However, the contribution is negligibly small because
it is a far off-shell diagram in this case such as Mott state.
Consequently the self-consistent equations of the self-energy
Fig. 2(a) are decoupled and one can obtain in momentum
space,

�̃d(k,iνn) = W 2

4

1

N

∑
p

G̃d( p,iνn). (12)

with W =
√

8zb(εb)[b(εb) + 1]J 2 corresponding to a half
bandwidth for the holon and doublon as we will see below.
z is a coordination number, and N is the total site number of

FIG. 2. The NC diagrams giving the doublon self-energy. The
solid, double dotted, and dashed lines, respectively, denotes the full
propagators of the doublon, holon, and slave bosons. The left diagram
(a) describes the scattering between a doublon and slave boson. The
right diagram (b) represents the higher energy scattering to a holon
than the left (a). Thus, as long as charge excitations of energy ∼U

are taken for large U , the diagram (b) would be irrelevant. The holon
self-energy is also given by the same type of diagrams.

the system. Note that due to the momentum dependence of
the right-hand side the self-energy should be given as a local
quantity: �̃d(k,iνn) = �d(iνn). Consequently the propagator
also turns out to be local: G̃d(k,iνn) = Gd(iνn). Thus the
self-consistent equation (12) is easily solved through the
Dyson equation (11) as follows:

�d(iνn) = iνn − εd − i
√

W 2 − (iνn − εd)2

2
. (13)

Through the analytic continuation the doublon spectral func-
tion, which is equivalent to the density of state (DOS) in this
case, is also obtained. In this approximation, a semicircle type
DOS is formed:

Ad(ω) = 4

W

√
1 −

(
ω − εd

W

)2

. (14)

One can also obtain the self-energy and spectral function of
the holon in the same way. The forms are the same as what
is obtained by the replacement εd → εh in Eqs. (13) and (14).
The holon spectral function is found to reasonably reproduce
the result of Brinkman and Rice on single hole dynamics in a
Mott insulator [13]. The chemical potential dependency of the
bandwidth W is shown in Fig. 3.

Using the representation (2), via the Matsubara Green’s
function of the original fermion, the DOS (spectral function)
is represented as

Aσ (ω) = [b(εb) + f (εb − ω)]Ah(εb − ω)

+ [b(εb) + f (εb + ω)]Ad(εb + ω). (15)

As expected, the doublon and holon spectral functions Ad

and Ah give the upper and lower Hubbard band, respectively.
The spectral function as a function of J/U and the chemical
potential is shown in Fig. 4.
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FIG. 3. (Color online) The doublon-holon bandwidth W/
√

zJ as
a function of kBT for μ/U = 0.5. The chemical potential dependence
of the bandwidth for kBT/U = 0.01 (solid), 0.05 (dashed), 0.1
(dashed-dotted), and 0.5 (dotted) is also shown in the inset.

IV. DOUBLON PRODUCTION RATE

We calculate the DPR induced by the amplitude modulation
of an optical lattice potential using the above formalism.
The amplitude modulation of the optical lattice potential
V (t) = V0 + δV cos(ωt) modifies both J and U as J →
J [1 + δJ cos(ωt)] and U → U [1 + δU cos(ωt)], where δJ

and δU are dimensionless modulation perturbation parameters
and given as a function of δV . However, it is possible to map
the two parameter modulations problem to single parameter
one of either J or U [8,10,11,15]. Namely, the modulation
perturbation to be discussed here can be written as

Hmod(t) = δF cos(ωt)HK, (16)

FIG. 4. (Color online) The spectral function of the original
fermion as a function of kBT/U for μ/U = 0.5 and J/U = 0.02
(top panel), μ/U for kBT/U = 0.1 and J/U = 0.02 (middle panel),
and J/U for kBT/U = 0.1 and μ/U = 0.5 (bottom panel).

where δF = δJ − δU [21]. Within the second-order pertur-
bation in terms of δF , the DPR defined as the time averaged
growth rate of atoms forming doublons is given as [8]

PD(ω) = − (δF )2

U
ω ImχR

K (ω), (17)

where χR
K (ω) = −i

∫ ∞
0 dt eiωt 〈[HK(t),HK(0)]〉. As shown in

Appendix B, we represent the correlation function χK(τ ) =
−〈TτHK(τ )HK(0)〉 without vertex corrections in the slave-
particle description [22].

χK(τ ) = −2J 2
∑
〈i,j 〉

{
�h

ij (τ )Ḡb(τ )Ḡb(−τ )+�d
ij (τ )Ḡb(τ )Ḡb(−τ )

− [Ḡb(−τ )]2Gh(τ )Gd(τ ) − [Ḡb(τ )]2Gh(−τ )Gd(−τ )
}
,

(18)

where �X
ij (τ ) = 〈Tτx

†
i (τ )xj (τ )x†

j (0)xi(0)〉 (x = d or h) is a
two-particle Green’s function of a doublon (X = d) and holon
(X = h). The diagrams corresponding to the terms in Eq. (18)
are illustrated in Fig. 5. Without the vertex correction, the
two-particle propagators are contracted to a single particle
propagators by the Wick expansion: �X

ij (τ ) = −GX(τ )GX(−τ ).
Through the Fourier transform of χK(τ ) and analytic contin-
uation, one can straightforwardly obtain the real-time kinetic
energy correlation function in frequency domain. As a result,
the imaginary part of the correlation function is given as

ImχR
K (ω)

−NW 2/8
=

∫
dν

2π
[f (ν − ω) − f (ν)][Ah(ν)Ah(ν − ω)

+Ad(ν)Ad(ν − ω)] + 2 sinh(εb)
∫

dν

2π
[b(2εb)

+ f (ν)]{[f (2εb − ν) − f (2εb − ν + ω)]

× Ad(ν)Ah(2εb + ω − ν) − (ω → −ω)}.
(19)

V. COMPARISON WITH EXPERIMENTS

Let us compare our result (19) with the experimental
data. We employ a set of the parameters evaluated in the
40K atom experiment [9]: the hopping J/h̄ = 2π × 85 (Hz)
and the interaction U/h̄ = 2π × 5400 (Hz). In terms of the
optical lattice potential, the depth, modulation rate, and lattice
constant are, respectively, taken to be V0 = 10ER, where ER

is a recoil energy, δV/V0 = 0.1, and a = 532 (nm). The
lattice modulation is translated into δF ≈ −0.32 in hopping
modulation. The LDA is used to take into account the effect
of the harmonic trap potential Vtrap(r) whose frequency is
(ωx/2π,ωy/2π,ωz/2π ) = (56,61,139) (Hz). In the LDA we
replace the chemical potential of the homogeneous case by the
local one μ(r) = μ0 − Vtrap(r), where μ0 is self-consistently
determined to give the total trapped atom number 8 × 104. In
our framework, temperature is treated as a free parameter so
that we determine the temperature by a fit of the DPR spectrum
intensity at ω = U/h̄, which is obtained in the experiment.

The temperature dependence of the DPR spectrum at ω =
U/h̄ is shown in the inset in Fig. 6, and kBT/U ≈ 0.052 in
this system is determined [23]. The determined temperature is
in the region to justify the slave-particle approach, which is
discussed in Sec. III, and the theory is thus expected to work
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FIG. 5. The diagrams contributing to the considered correlation function (18): The diagrams (a), (b), (c), and (d) correspond to the first,
second, third, and fourth terms. The solid, double dotted, and dashed lines denotes the doublon, holon, and slave boson propagators, respectively.

well. Furthermore, using the obtained temperature, we plot the
DPR spectrum in Fig. 6. The agreement is remarkably good. In
addition to giving access to the line shape it means that via our
theory one can use the shaking method as a good thermometer
in low temperature regime [24] since the curve giving the
amplitude versus temperature (the inset in Fig. 6) is reasonably
smooth and steep. To check this point we compare in our case
the temperature determined by the fitting of the shaking curve
with other estimates from entropy calculations [25] and find
that the two results are perfectly consistent.

VI. CONCLUSION AND SUMMARY

In this paper we have described the charge excitation of
strongly correlated fermionic systems in the spin-incoherent
paramagnetic regime by a slave-particle representation and
diagrammatic approach from the atomic limit. This method
allows us to take the finite temperature and trapping into
account. Based on the spectrum functions of the doublon and
holon, the analytical form of the DPR spectrum as a second-
order response of the optical lattice modulation has been given,
and extended to the homogeneous system of the trapped atom
cloud by using the local density approximation. In addition,
substituting the parameters evaluated in the experiment [9],
a comparison with the experiment has been made. Although
temperature has not been directly measured in experiments,
it has been determined as an optimization parameter which is
controlled to fit the experimental data. The result has been in

FIG. 6. (Color online) The DPR spectrum as a function of
modulation frequency. The solid line and points denote the theoretical
and experimental results, respectively. The temperature necessary to
draw the theoretical curve is determined in the inset; the temperature
dependence of the theoretically given DPR at ω = U/h̄ and the
temperature is determined from the crossing point to the experimental
data (dotted line), which is kBT/U ≈ 0.052.

agreement with the experimental data, which shows that one
can use the lattice modulation spectroscopy as a thermometer.

Our method has potential extension such as SU(N ) higher
symmetric atom systems realized in alkaline-earth-metal atom
experiments [26–29].
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APPENDIX A: THE SLAVE-PARTICLE DENSITY
IN THE ATOMIC LIMIT

In order to clarify the parameter regime to justify the
slave-particle approach, we make a comparison with the exact
calculation in the atomic limit. Then we focus on the single
site occupations as a function of temperature and chemical
potential, which is identical to the densities of the slave boson,
holon, and doublon.

Let us perform the atomic limit calculation. We consider
the atomic Hamiltonian (1b). Then the partition function is
calculated as

Zatom = 1 + 2x + x2y, (A1)

where x = eμ/KBT and y = e−U/kBT . To calculate the den-
sities of the slave boson, holon, and doublon, we introduce
the projection operators. In the original fermion picture,
the projection operators of the slave boson, holon, and
doublon state are, respectively, written as pσ = nσ − n↑n↓,
ph = (n↑ − 1)(n↓ − 1), and pd = n↑n↓. They obviously obey
the constraint

∑
σ pσ + ph + pd = 1. Taking the statistical

average of these projection operators, we obtain the following
exact result of slave-particle densities:

nσ = 〈pσ 〉 = x

1 + 2x + x2y
, (A2a)

nh = 〈ph〉 = 1

1 + 2x + x2y
, (A2b)

nd = 〈pd〉 = x2y

1 + 2x + x2y
. (A2c)
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On the other hand, in the case of the slave-particle approach
combined with the MF solution of the Lagrange multiplier λ,
the slave-particle densities are given as

nMF
σ = b(εb), (A3a)

nMF
h = f (εh), (A3b)

nMF
d = f (εd), (A3c)

where εb = λ, εh = μ + λ, and εd = U − μ + λ, and λ is a
solution of the MF constraint equation (7). For kBT /U � 1
the MF Lagrange multiplier λ is analytically obtained as shown
in Eq. (9). The comparison of the exact result (A2) and the MF
approach (A3) is shown in Fig. 1.

APPENDIX B: CALCULATION OF THE KINETIC
ENERGY CORRELATION FUNCTION

Here we show the calculation of the kinetic energy
correlation function χK(τ ) in detail, and derive Eq. (18) given
in Sec. IV. Using the expression of the kinetic energy Hamil-
tonian (4), the correlation function χK(τ ) is straightforwardly
written as

χK(τ ) = −J 2
∑

〈i,j 〉,〈l,m〉
{〈TτFji(τ )Fml(0)〉〈Tτ [h†

i (τ )hj (τ )

− d
†
i (τ )dj (τ )][h†

l (0)hm(0) − d
†
l (0)dm(0)]〉

+ 〈TτA
†
ij (τ )Alm(0)〉〈Tτdj (τ )d†

m(0)〉〈Tτhi(τ )h†
l (0)〉

+ 〈TτAij (τ )A†
lm(0)〉〈Tτh

†
i (τ )hm(0)〉〈Tτd

†
j (τ )dl(0)〉},

(B1)

where the correlation functions between the operators Fji and
Aml have been supposed to be zero because the slave bosons
do not condense in this case. The autocorrelations for Fji and
Aml should be finite, and in the calculation the spin-incoherent
assumption (10) is applied in the same way as in Sec. III. As
a result, the autocorrelations are calculated as follows:

〈TτFji(τ )Flm(0)〉 = 2δj,lδi,j Ḡb(−τ )Ḡb(τ ), (B2)

〈TτAij (τ )A†
lm(0)〉=−2(δj,lδi,m + δj,mδi,l)Ḡb(τ )Ḡb(τ ). (B3)

As seen in Sec. III the doublon and holon propagators turn out
to be local: namely,

〈Tτhi(τ )h†
j (0)〉 = iδi,jGh(τ ), (B4)

〈Tτdi(τ )d†
j (0)〉 = iδi,jGd(τ ). (B5)

We substitute Eqs. (B2)–(B5) into Eq. (B1), and then the
correlation function is rewritten as

χK(τ ) = −2J 2
∑
〈i,j 〉

{
Ḡb(−τ )Ḡb(τ )

[
�h

i,j (τ ) + �d
i,j (τ )

]
− [Ḡb(−τ )]2Gh(τ )Gd(τ ) − [Ḡb(τ )]2Gh(−τ )Gd(−τ )

}
,

(B6)

where the following two particle correlation functions have
been defined as

�h
i,j (τ ) = 〈Tτh

†
i (τ )hj (τ )h†

j (0)hi(0)〉, (B7)

�d
i,j (τ ) = 〈Tτd

†
i (τ )dj (τ )d†

j (0)di(0)〉. (B8)
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[7] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,
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