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Abstract

Nowadays, multi-view clustering has attracted
more and more attention. To date, almost all the
previous studies assume that views are complete.
However, in reality, it is often the case that each
view may contain some missing instances. Such
incompleteness makes it impossible to directly use
traditional multi-view clustering methods. In this
paper, we propose a Doubly Aligned Incomplete
Multi-view Clustering algorithm (DAIMC) based
on weighted semi-nonnegative matrix factorization
(semi-NMF). Specifically, on the one hand, DAIM-
C utilizes the given instance alignment information
to learn a common latent feature matrix for all the
views. On the other hand, DAIMC establishes a
consensus basis matrix with the help of L2,1-Norm
regularized regression for reducing the influence of
missing instances. Consequently, compared with
existing methods, besides inheriting the strength of
semi-NMF with ability to handle negative entries,
DAIMC has two unique advantages: 1) solving the
incomplete view problem by introducing a respec-
tive weight matrix for each view, making it able to
easily adapt to the case with more than two views;
2) reducing the influence of view incompleteness
on clustering by enforcing the basis matrices of in-
dividual views being aligned with the help of re-
gression. Experiments on four real-world datasets
demonstrate its advantages.

1 Introduction

Many datasets in real world naturally appear in multiple
views or come from multiple sources [Blum and Mitchell,
1998; Schechter et al., 2017], which are called multi-view
data. For example, a document can be translated into dif-
ferent languages, and images can be described by different
features such as Fourier shape descriptors and K-L expan-
sion coefficients. In multi-view data, these different views
often share some consistency and complementary informa-
tion [Sun, 2013; Zhao et al., 2017]. Such information can be
beneficial to learning tasks such as classification and cluster-
ing. This leads to a surge of interest in multi-view learning

[Potthast et al., 2018; Jing et al., 2017], whose goal is to in-
tegrate information and give a compatible solution across all
views. Nowadays, multi-view learning has been widely stud-
ied in different areas such as face recognition, image process-
ing and natural language processing [Romero et al., 2017;
Xing et al., 2017; Nie et al., 2018].

In all the tasks of multi-view learning, multi-view clus-
tering [Bickel and Scheffer, 2004; Fan et al., 2017; Nie et
al., 2017; Chao et al., 2017] has attracted more and more at-
tentions due to exempting the expensive requirement of data
labeling. The goal of multi-view clustering is making ful-
l use of multi-view data to get a better clustering result than
just simply concatenated views. To date, many multi-view
clustering methods have been proposed. Among these meth-
ods, one of the most widely used techniques is nonnegative
matrix factorization (NMF) [Wang et al., 2016b; Li, 2016].
[Lee and Seung, 1999] proposes the NMF, which has received
much attention because of its straightforward interpretability
for applications. Then, some researchers utilize the NMF for
multi-view learning, especially multi-view clustering. A joint
NMF process with the consistency constraint is formulated in
[Liu et al., 2013], which performs NMF for each view and
pushes each view’s low dimensional representation towards a
common consensus. Besides, some researchers have integrat-
ed manifold learning and multi-view learning by imposing
the manifold regularization on the objective function of NM-
F respectively for individual views data [Wang et al., 2016a;
Zong et al., 2017].

Most of the previous studies on multi-view clustering make
a common assumption that all of the views are complete.
However, in real world applications, multi-view data tend to
be incomplete. For example, in the camera network, for some
reasons, the camera may temporarily fail, or be blocked by
some objects, making the instance missing. Another example
is in document clustering, different languages of the docu-
ments represent multiple views. However, we may not get all
the documents translated into each language. All the above-
mentioned cases lead to the incompleteness of multi-view da-
ta. As a result, the lack of the whole row or column makes the
traditional instance imputation methods fail. So how to make
full use of the complementary knowledge hidden in differen-
t views and reduce the impact of missing instances are the
most challenging problems of incomplete multi-view learn-
ing. Recently, some incomplete multi-view clustering meth-
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ods have been proposed, for example, [Li et al., 2014] pro-
poses PVC by utilizing the information of instance alignment
to learn a common latent subspace for aligned instances and
a private latent representation for unaligned instances via N-
MF. Borrowing this idea, [Zhao et al., 2016] proposes IMG
by integrating PVC and manifold learning to learn the global
structure over the entire data instances across all views. How-
ever, PVC and IMG can only deal with the two-view incom-
plete multi-view clustering, limiting their application scope.
A method for clustering more than two incomplete views is
proposed in [Shao et al., 2015](MIC) by filling the missing
instances with the average feature values in each incomplete
view, then handling the problem with the help of weight-
ed NMF and L2,1-Norm regularization [Kong et al., 2011;
Wu et al., 2018]. However, such a simple imputation will
cause a great deviation when the missing ratio is large. As a
result, incomplete multi-view clustering still faces significant
challenges.

In this paper, we propose the Doubly Aligned Incomplete
Multi-view Clustering (DAIMC) to meet the challenges. By
integrating semi-NMF [Ding et al., 2010] and L2,1-Norm reg-
ularized regression model, DAIMC tries to learn a common
latent feature matrix for all the views from two aspects of in-
stances aligned and the basis matrix aligned.

Compared with the existing methods around the incom-
plete multi-view clustering, besides inheriting the strength of
semi-NMF with ability to handle negative entries, DAIMC
mainly has the following advantages:
1. DAIMC extends PVC. Borrowing the idea of the weighted
NMF, DAIMC introduces a respective weight matrix for each
incomplete view to assign the missing instances zero weights
and the presented instances one weights in each view, mak-
ing it able to be easily and straightforwardly extended to the
scenario with more than two incomplete views.
2. Besides the instance alignment, DAIMC considers the
global information by enforcing the basis matrices of indi-
vidual views being aligned with the help of the L2,1-Norm
regularized regression model, which further reduces the in-
fluence of missing instances on clustering performance.
3. An iterative optimization algorithm for DAIMC with con-
vergent guarantee is proposed. Experimental results on four
real-world datasets demonstrate its advantages.

The rest of this paper is organized as follows. In Section
2, we overview some related work on semi-NMF and incom-
plete multi-view clustering. Section 3 proposes our DAIMC
and an efficient iterative algorithm of solving it in detail, re-
spectively. Extensive experimental results and analysis are
reported in Section 4. Section 5 concludes this paper with
future research directions.

2 Related Work

2.1 Semi-nonnegative Matrix Factorization

The semi-NMF [Ding et al., 2010] is an effective latent fac-
tor learning method , which is the extension of NMF. Giv-
en an input data matrix X ∈ R

M×N , each column of X is
an instance vector. The semi-NMF aims to find a matrix
U ∈ R

M×K and a nonnegative matrix V ∈ R
N×K whose

product can well approximate the original matrix X. To fa-

cilitate discussion, we call U the basis matrix and V the
latent feature matrix. Thus we can get the following min-
imization problem

min ‖X− UVT ‖2F
s.t. V ≥ 0

(1)

Similar to NMF, the objective function in (1) is biconvex.
Therefore, it is unrealistic to expect an algorithm to find the
global minimum. [Ding et al., 2010] proposes an iterative
updating algorithm to find the locally optimal solution as fol-
lows:
Update U (while fixing V) using the rule

U = XV(VT V)−1 (2)

Update V (while fixing U) using

Vjk ← Vjk

√

√

√

√

(XT U)+jk + [V(UT U)−]jk

(XT U)−jk + [V(UT U)+]jk
(3)

where we separate the positive and negative parts of a matrix
A as:

A+
jk = (|Ajk|+ Ajk)/2, A−

jk = (|Ajk| − Ajk)/2. (4)

2.2 Incomplete Multi-view Clustering

Given a dataset with N instances, C categories, nv views

{X(i), i = 1, 2, ..., nv}, where X(v) ∈ R
dv×N is the v-th

view of the dataset. An indicator matrix M ∈ R
nv×N for

incomplete multi-view clustering problem is defined as:

Mij =

{

1 if j-th instance is in the i-th view

0 otherwise
(5)

where each row of M is the instance presence for corre-
sponding view. If every view contains all the instances, then
the matrix M is an all one matrix. And if the v-th view is in-
complete, the data matrix X(v) will have a number of column

missing, i.e.,
∑N

j=1 Mvj < N.
The aim of the incomplete multi-view clustering is to inte-

grate all the incomplete views to cluster the N instances into
C clusters.

3 Proposed Approach

In this section, we present our Doubly Aligned Incomplete
Multi-view Clustering(DAIMC) in detail. We model the
DAIMC as a joint weighted semi-NMF problem and use L2,1-
norm regularized regression to enforce the basis matrix of in-
dividual views being aligned. In the following, we propose
our model in two aspects and then give a unified objective
function for implementing DAIMC.

3.1 Weighted Semi-NMF for Incomplete
Multi-view Data

For the v-th view, similarly to the weighted NMF, the weight-

ed semi-NMF factorizes the data matrix X(v) ∈ R
dv×N into

two matrix U(v) and V(v), where U(v) ∈ R
dv×K , V(v) ∈

R
N×K ,while giving different weights to the reconstruction
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errors of different instances. K denotes dimension of sub-
space. In the experiments of previous works [Shao et al.,
2015; Zhao et al., 2016], for multi-view clustering, the K

is set to the number of the categories of the data matrix X(v),
i.e., K = C. As a result, the weighted semi-NMF optimiza-
tion problem is formulated as:

min ‖(X(v) − U(v)V(v)T )W(v)‖2F

s.t. V(v) ≥ 0
(6)

where the weight matrix W(v) ∈ R
N×N is a diagonal matrix.

W
(i)
jj =

{

1 if j-th instance is in the i-th view

0 otherwise
(7)

Note that W
(v)
jj indicates the weight of the j-th instance in

view v. If the j-th instance is missing, then the loss of this
instance will be ignored.

However, (6) only independently decomposes differen-
t views without considering their consistency information. To
address this issue, we assume that different views have dis-
tinct basis matrices {U(i)}nv

i=1 , but share the same latent fea-
ture space V. As a result, (6) is rewritten as follows:

min

nv
∑

i=1

‖(X(i) − U(i)VT )W(i)‖2F

s.t. V ≥ 0

(8)

By solving (8), we can obtain a common representation V for
multiple incomplete-view instances.

3.2 L2,1-Norm Regularized Regression with Basis
Matrix

To further reduce the influence of the missing instances,
DAIMC attempts to incorporate the global information a-
mong views. In multi-view data, different views have d-
ifferent representations for a same data matrix. Thus, we

can align the different basis matrices {U(i)}nv

i=1 of individu-
al views with the help of regression by solving the following
problem for the basis matrices intended to be aligned.

min

nv
∑

i=1

‖B(i)T U(i) − U(∗)‖2F + β‖B(i)‖2,1 (9)

where B(i) ∈ R
di×K is the regression coefficient matrix for

view i. The L2,1-norm regularization term is here introduced

for ensuring B(i) sparse in rows. In this way, B(i) performs
a feature selection during the alignment process. The matrix

U(∗) ∈ R
P×K is the same low dimensional representation for

the basis matrices of all the views. P denotes dimension of
subspace. The value of P will affect the result. Instead of

looking for an appropriate P , we simply set the matrix U(∗)

equal to a K dimensional identity matrix IK , whose columns
correspond to the cluster encodings. For such a setting, our
experiments later confirm its effectiveness. As a result, (9) is
rewritten as:

min

nv
∑

i=1

‖B(i)T U(i) − I‖2F + β‖B(i)‖2,1 (10)

where β is the trade-off hyper-parameter between sparsity
and accuracy of regression for the i-th view, ‖.‖2,1 is the L2,1

norm and defined as:

‖B(v)‖2,1 =

dv
∑

i=1

√

√

√

√

K
∑

i=1

B
(v)
ij

2

3.3 Unified Objective Function

Considering the objective for instance alignment information
as well as the basis matrix alignment information simultane-
ously, we minimize the following objective function

J =

nv
∑

i=1

{

‖(X(i) − U(i)VT )W(i)‖2F

+ α(‖B(i)T U(i) − I‖2F + β‖B(i)‖2,1)
}

s.t. V ≥ 0

(11)

where α is nonnegative hyper-parameter that controls the
trade-off between the aforementioned two objectives.

3.4 Optimization

The objective function in Eq.(11) is not convex over all vari-

ables {U(i)}nv

i=1, V, {B(i)}nv

i=1, simultaneously. To solve this
optimization problem, we propose an alternating iteration
procedure.

Subproblem of {U(i)}nv

i=1. With {B(i)}nv

i=1 and V fixed, for

each U(i), we need to minimize the following objective func-
tion:

J (U(i)) = ‖(X(i) − U(i)VT )W(i)‖2F + α‖B(i)T U(i) − I‖2F
(12)

The partial derivation of J (U(i)) with respect to U(i) is

∂J

∂U(i)
=2(U(i)VT − X(i))W(i)W(i)T V+

2αB(i)(B(i)T U(i) − I)

(13)

From the definition of W(i), we can see W(i) = W(i)W(i)T .
Let ∂J /∂U(i) = 0, we get the following equation:

(U(i)VT − X(i))W(i)V + αB(i)(B(i)T U(i) − I) = 0 (14)

Eq.(14) is called the continuous Sylvester equation with

respect to U(i), which often arises in control theory. When
both di and K are small, we can solve Eq.(14) via vectoriza-

tion and get the following updating rule for U(i):

vec(U(i)) =[IK ⊗ (αB(i)B(i)T ) + (VT W(i)V)⊗ Idi
]−1

vec(X(i)W(i)V + αB(i))
(15)

And when both di and K are large, we instead solve it via
Conjugate Gradient. In our experiments, we use the lyap
function of MATLAB to solve Eq.(14).

Subproblem of V. With {B(i)}nv

i=1 and {U(i)}nv

i=1 fixed, we
need to minimize the following objective function:

J (V) =

nv
∑

i=1

‖(X(i) − U(i)VT )W(i)‖2F

s.t. V ≥ 0

(16)
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The partial derivation of J (V) with respect to V is

∂J

∂V
=

nv
∑

i=1

{

2W(i)VU(i)T U(i) − 2W(i)X(i)T U(i)
}

(17)

Similar to the optimization of semi-NMF, using the KKT
complementary condition for the nonnegativity of V, we get

(

nv
∑

i=1

W(i)VU(i)T U(i) −

nv
∑

i=1

W(i)X(i)T U(i))jkVjk = 0

(18)
Based on this equation, we can write the updating rule for V
as:

Vjk ← Vjk
√

√

√

√

∑nv

i=1

{

[W(i)(X(i)T U(i))+]jk + [W(i)V(U(i)T U(i))−]jk
}

∑nv

i=1

{

[W(i)(X(i)T U(i))−]jk + [W(i)V(U(i)T U(i))+]jk
}

(19)

It is worth to note that if {U(i)}nv

i=1 and V are a solution of

Eq.(11), then {U(i)Q}nv

i=1 and VQ−1 will form another solu-
tion for any invertible matrix Q. With these requirements, the

normalization imposed on {U(i)}nv

i=1 and V are achieved by

V← VQ−1

U(i) ← U(i)Q
(20)

where Q is a diagonal matrix formally defined as[Wang et al.,
2016a]:

Q = diag(
∑

i

Vi1,
∑

i

Vi2, ...,
∑

i

ViK). (21)

Subproblem of {B(i)}nv

i=1. With {U(i)}nv

i=1 and V fixed, for

each B(i), we need to minimize the following objective func-
tion:

J (B(i)) = ‖B(i)T U(i) − I‖2F + β‖B(i)‖2,1 (22)

The partial derivation of J (B(i)) with respect to B(i) is

∂J

∂B(i)
= 2U(i)(U(i)T B(i) − I) + βD(i)B(i) (23)

Where D(i) is a diagonal matrix with the j-th diagonal ele-
ment given by

D
(i)
jj =

1

‖B
(i)
j: ‖2

(24)

where B
(i)
j: is the j-th row of matrix B(i). Let ∂J /∂B(i) = 0,

we get the following updating rule for B(i):

B(i) = [U(i)U(i)T + 0.5βD(i)]−1U(i) (25)

Generally, in real-world dataset, di ≫ K, thus U(i)U(i)T +

0.5βD(i) is close to singular. In order to avoid inaccurate
results and reduce the complexity of the algorithm, we use

Algorithm 1 Optimization of DAIMC

Input: Data matrices for incomplete views X(1), ...,X(nv),

weight matrices W(1), ...,W(nv), hyper-parameters α, β,
number of clusters K.

1: Initialize V ∈ R
N×K , U(i) ∈ R

di×K and B(i) ∈ R
di×K

i = 1, ..., nv .
2: repeat
3: for i = 1 to nv do

4: Update U(i) by Eq.(14) and lyap function.

5: Update B(i) by Eq.(26).
6: end for
7: repeat
8: Update V by Eq.(19).
9: until Eq.(16) converges

10: Normalize U(i)s and V by Eq.(20).
11: until Eq.(11) converges
12: Apply K-means on V to get the clustering results.

13: Output: Basis matrices U(1), ...,U(nv), regression co-

efficient matrices B(1), ...,B(nv), the common latent fea-
ture matrix V and clustering results.

the matrix inverse equation [Bishop and Nasrabadi, 2007], to

reformulate the update rules for B(i):

B(i) =
2

β
[D(i)−1

− D(i)−1

U(i)(U(i)T D(i)−1

U(i) + 0.5βI)−1

U(i)T D(i)−1

]U(i)

(26)
The entire optimization procedure for DAIMC is summarized
in Algorithm 1.

3.5 Convergence and Complexity

Convergence Analysis. As shown by Algorithm 1, the op-
timization of DAIMC can be divided into three subproblems,
each of which is convex w.r.t one variable. Thus, by finding
the optimal solution for each subproblem alternatively, our
algorithm can at least find a locally optimal solution.
Complexity Analysis. The time complexity of DAIMC is
dominated by matrix multiplication and inverse operations.
In each iteration, the lyap function costs O(d3i ) and the ma-
trix inversion in Eq.(27) costs O(K3). The complexities of

multiplication operations in updating U(i), V and B(i) are
O(d2iK + diN +KN), O(M(diKN + diK

2 +K2N)) and
O(K3+d2iK) respectively, where M is the iteration times of
the inner loop. In general, K ≤ di and N . Suppose L, dmax

are the iteration times of the outer loop and the largest dimen-
sionality of all the views respectively, thus the time complex-
ity of DAIMC is O(nvLd

3
max + LMdmaxKN).

4 Experiments and Analysis

Datasets: The experiments are conducted on four real-world
multi-view datasets. The important statistics of these datasets
are given in the Table 1.
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(f) NMIs for Flowers

Figure 1: Performance of clustering on Wikipedia, Digit and Flowers.

Dataset # instances # views # clusters

Wikipedia1 693 2 10

Digit2 2000 5 10

3Sources3 416 3 6
Flowers 1360 3 17

Table 1: Statistics of the datasets

Compared methods: In the experiments, DAIMC is com-
pared with the following state-of-the-art multi-view cluster-
ing methods. (1)MultiNMF: Multi-view NMF [Liu et al.,
2013] seeks a common latent subspace based on joint NMF.
However, this method can not deal with the incomplete multi-
view data, in our experiment, we therefore first fill the missing
instances in each incomplete view with average feature val-
ues. (2)PVC: Partial multi-view clustering [Li et al., 2014] is
one of the state-of-art incomplete multi-view clustering meth-
ods, which learns a common latent subspace for the aligned
instances and a private latent subspace for the unaligned in-
stances. (3)IMG: Incomplete multi-modal visual data group-
ing [Zhao et al., 2016] integrates PVC and manifold learning,
which bridges the connection of missing instance data from
different views by learning a complete graph Laplacian term.
(4)MIC: Multiple incomplete views clustering via weighted
NMF [Shao et al., 2015] is a feasible method for incomplete
multi-view clustering, which first fills the missing instances in
each incomplete view with average feature values, then learns

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://archive.ics.uci.edu/ml/datasets.html
3http://mlg.ucd.ie/datasets/3sources.html

a common latent subspace with L2,1-norm regularization. All
of the hyper-parameters of these methods are selected through
grid-search.

For the evaluation metric, we follow [Li et al., 2014], us-
ing Normalized Mutual Information (NMI). Besides, preci-
sion of clustering result is also reported to give a comprehen-
sive view. Similarly to [Shao et al., 2015], for the complete
datasets, we randomly remove some instances from each view
to make the views incomplete. The incomplete rate is from
0 (all the views are complete) to 0.5 (all the views have 50%
instances missing). It is also worth to note that 3Sources is
naturally incomplete. Also since PVC and IMG can only
deal with two incomplete views, in order to compare PVC
and IMG with other methods, we train these models on all
the two-views combinations and report the best result.

4.1 Experimental Results

Table 2 and Figure 1 report the AC and NMI values on image
and text datasets with different incomplete rates, respectively.
From these table and figures, we can get the following results.

From Figure 1(a) and Figure 1(d), we can see that on
Wikipedia dataset, DAIMC raises the performance around
8.65% in NMI with different incomplete rate settings. And
in AC, the performance of DAIMC and MIC are close for in-
complete rates from 0.2 to 0.5 with the interval of 0.1, the
difference between the two methods is just 1%. But when the
incomplete rate varies from 0 to 0.1, DAIMC outperforms all
the other methods by about 3.53%.

From Figure 1(b) and Figure 1(e), we can see that on Digit
dataset, the experimental results of DAIMC are much bet-
ter than those of other methods. Especially when the incom-
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Methods
BBC-Guardian BBC-Reuters Guardian-Reuters 3Sources

NMI AC NMI AC NMI AC NMI AC

DAIMC 0.4264 0.5399 0.4482 0.5641 0.3805 0.5124 0.4733 0.5963
MIC 0.3813 0.4988 0.3814 0.4912 0.3800 0.4612 0.4512 0.5631
PVC 0.2412 0.4334 0.2931 0.4252 0.2488 0.4145 \ \
IMG 0.2614 0.4511 0.3612 0.4624 0.3411 0.4384 \ \

MultiNMF 0.3647 0.4693 0.3687 0.4517 0.3487 0.4281 0.4134 0.4756

Table 2: The NMIs and ACs of different methods on various subsets of 3Sources.

plete rates are large(0.4 and 0.5), DAIMC raises the perfor-
mance around 60.78% in NMI and 64.67% in AC, respec-
tively. The main reason for this phenomenon is due to that
the Digit dataset contains 5 views. DAIMC effectively uses
information from different views, reduces the impact of miss-
ing samples, and obtains better experimental results.

On Flowers dataset, from Figure 1(c) and Figure 1(f), we
can easily see that DAIMC raises the performance around
10.29% in NMI and 20.37% in AC, respectively. Besides,
IMG performs very well when the incomplete rate is small (0-
0.4), the main reason is due to that Flowers dataset contains
a terrible view D texturegc, which plays a negative role in
clustering results. Thus, the performances of MIC and mult-
iNMF are bad. In spite of this, DAIMC still performs good
with the help of aligning basis matrices.

Table 2 shows the results on the 3Sources dataset, we con-
duct the experiment on all the two-views combinations and
the whole dataset. From Table 2, we can also observe that
DAIMC outperforms all the other methods in both NMI and
AC.

In summary, when dealing with text data or multi-view data
that contains less alignment information, IMG often gets poor
result. Meanwhile, although MIC can handle the clustering
problem with more than two-views, simply filling the missing
instances with the global feature average will lead to a devia-
tion, especially when the incomplete rate is large. By utiliz-
ing the information of instance alignment and enforcing the
alignment among basis matrices, the proposed DAIMC can
get better performances no matter whether it is text dataset or
image dataset. Especially when the number of views is large,
DAIMC yields more better results.

4.2 Convergence Study

For the convergence study, we conduct an experiment on Dig-
it dataset with the incomplete rate of 0.4 and set the hyper-
parameters {α, β} as {1e1, 1e-1} respectively. In Figure 2(a),
we show the convergence curve and the NMI values with re-
spect to the number of iterations. The blue curve shows the
value of the objective function and the red dashed line indi-
cates the NMI of our method. As can be seen, the algorithm
has converged just after 30 iterations.

4.3 View Number Study

In order to demonstrate that the proposed method DAIMC
can effectively exploit the information of multiple views, we
conduct an experiment on Digit dataset with different view
numbers. Similar to convergence study, we set incomplete

rate and hyper-parameters {α, β} as 0.5 and {1e1, 1e0} re-
spectively. The results are shown in Figure 2(b). Obviously,
with the increase of the available view number, we get much
better result.

4.4 Hyper-parameter Study

The proposed DAIMC method contains two hyper-
parameters {α, β}. We conduct the hyper-parameter
experiments on Digit dataset. We set the incomplete rate
as 0.3 and 0.5 respectively, and report the clustering per-
formance of DAIMC by ranging α and β within the set of
{1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3}. As shown in
Figure 2(c) and Figure 2(d), DAIMC obtains a relatively
good performance when α = 1e1 and β = {1e-1, 1e0, 1e1}.

5 Conclusion

In this paper, we proposed an effective method to deal with
incomplete multi-view clustering problem by considering the
instance alignment information and enforcing different basis
matrices being aligned simultaneously. The experimental re-
sults on four real-world multi-view datasets demonstrate the
effectiveness of our method. In the future, large scale data
will be considered by introducing online learning and incre-
mental learning strategies into our model.
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Figure 2: Convergence, view number and hyper-parameter studies
on the Digit dataset.
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