
Annali di Matematica pura ed applicata 
(IV), Vol. CLXXIV (1998), pp. 253-275 

Doubly Asymptotic Trajectories of Lagrangian Systems 
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A b s t r a c t .  - We study Lagrangian systems with symmetry under the action of a constant gener- 
alized force in the direction of the symmetry field. After Routh's reduction, such systems be- 
come nonautonomous with Lagrangian quadratic in time. We prove the existence of sol- 
utions tending to an orbit of the symmetry group as t---> +_ oo. As an example, we study 
doubly asymptotic solutions for the Kirchhoff problem of a heavy rigid body in an infinite 
volume of incompressible ideal fluid performing a potential motion. 

1. - I n t r o d u c t i o n .  

Before going into the mathematical formulation of the problem, we briefly describe 

a general situation where systems of the type we study arise. In w 3 we will give a con- 

crete physical example. 

Consider a Lagrangian system with the configuration manifold N and kinetic en- 

ergy T = T(q, q) of class C 2 which is a positive definite homogeneous quadratic form in 

velocity ~ e TqN. We assume also the presence of a generalized force Q of class C 1, 

which is a covector field on N. Thus Q(q) e T~ N for any q e N. The equations of motion 

take the form 

(1.1) d 8T 8T _ Q . 

dt 8~1 8q 

Recall that although this formula is written in local coordinates, the left hand side is a 

well defined covector in Tq* N independent of the choice of local coordinates. 

(*) Entrata in Redazione il 17 settembre 1996. 
Indirizzo degli AA.: M. L. BERTOTTI: Department of Mechanical and Structural Engineering, 

Trento University, Trento 38050, Italy. E-maih MariaLetizia.Bertotti@ing.unitn.it; S. V. BOLO- 
TIN: Department of Mathematics and Mechanics, Moscow State University, Moscow 119899, Rus- 
sia. E-maih Bolotin@mech.math.msu.su 

AMS Subject Classifications: 58F05, 58E05, 34C37, 70H05, 34C35. 
(**) Supported by GNFM and by MURST (40%: ,,Equazioni di evoluzione .... ). 

(***) Supported by Russian Foundation of Basic Research and by INTAS. 



254 M . L .  BERTOTTI - S. V. BOLOTIN: Doubly asymptot ic  trajectories, etc. 

Suppose that the kinetic energy is invariant under a one-parameter transformation 

group R. Thus there exists a smooth free group action of R on N conserving T. The 

transformation group is called a symmetry group and the corresponding vector field v 

on N is called a symmetry field. We assume that the force field Q = Vq~ is potential and 

invariant under the action of the symmetry group. Moreover, the projection F = (Q, v} 

of the force field on v is a nonzero constant. Hence the potential q~ isn't invariant. We 

call such force fields Q homogeneous. An example is provided by the homogeneous 

gravitational force field. 

Under the assumptions above, the fibration of N to the orbits of the group action 

turns out to be trivial. Namely, N is diffeomorphic to M { x }  • R{y}, where M is a 

smooth manifold, and the group action corresponds to the translation (x, y) EM • F~---~ 

--~ (x, y + s) e M • R, s e R. From now on we identify N with M • R. Then ~ = V(x) + F y  

and the force field Q takes the form 

Q(x, y) = (VV(x), F) ~ T* M • R ,  

where V is a C 2 function on M. Thus we have a constant generalized force F in the di- 

rection of the coordinate y. Due to this fact and since the kinetic energy doesn't depend 

on y, the coordinate y can be actually ignored in determining x along the solutions. For 

that reason, we will refer to y as to a cyclic coordinate. 

Specifically, T is a C 2 function on T M  • •: 

(1.2) 

where for all x e M,  A(x): T~M---> T* M is a symmetric positive definite operator, b is a 

covector field on M, b(x) ~ T * M  and c is a positive function on M. By (., -} we denote 

the formal scalar product T * M  • T~M--~R.  

Let py be the generalized momentum corresponding to the coordinate y or, equiva- 

lently, the Noether integral corresponding to the symmetry group: 

= v )  - 

~T 
- (b(x) ,  ~} + c(x)~].  

Then Lagrangds equations (1.1) take the form 

d 9T 3T SV 
(1.3) 

dt $~ Sx 9x -Y 

The second equation (1.3) yields p y ( t ) =  F t  +py(0). Performing a time shift, without 

loss of generality, we can put p~(t) = Ft. 

An important role will be played by the function U on M defined by the 

formula 

F 2 
(1.4) U(x) - , x e M .  

2c(x) 
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Note that - t  2 U(x) is the kinetic energy of the motion along the orbit Fx = {x} • R c  N 

of the symmetry group with the momentum py(t) = Ft. 
Let M be a compact manifold. Then U has a minimum on M. Suppose that there 

exists a unique minimum point x0 e M and it is nondegenerate. Without loss of generali- 

ty, we can assume that b(xo)= 0 and Vw(x0) is an antisymmetric operator, where 
w(x) = b(x)/c(x). Indeed, if this isn't so, it is sufficient to perform the transformation of 

the cyclic coordinate y - - + y - f ( x ) ,  where f e C a ( M )  is a function such that Vf(xo)= 
=W(Xo) and the operator V2f(xo)- Vw(x0) is antisymmetric. Denote 

F 2 

W(x) = - x e M .  
2(c(x) - ( A - l ( x )  b(x), b(x))) ' 

The goal of this paper is to prove the following 

THEOREM 1.1. - Suppose that Xo is a point of strict nondegenerate m i n i m u m  of the 

function W on M. Then there exists an infinite number of trajectories of the system 

(1 .3 )  such that x( t ) --+ Xo and 3c( t ) -+ 0 as t --+ +_ r162 Thus these trajectories tend to F xo 
a s  t---+ +-- oo. 

Of course, we identify trajectories obtained by a time shift or a translation of the co- 

ordinate y. Note that in general Fxo isn't a trajectory, unless some additional assump- 
tions below are satisfied. If F,0 is a trajectory, then, in classical mechanics, it is called a 

stationary solution [1]. Physically, F,o is the orbit of the symmetry group such that the 
kinetic energy of the motion with ?~ = 1 is minimal. 

To understand the meaning of the function W, it is convenient to use Routh's 
reduction. 

2. - R o u t h ' s  reduct ion  and r e f o r m u l a t i o n  o f  the  m a i n  result .  

We will apply the classical Routh method of ignoring a cyclic coordinate y to reduce 

the system to a time dependent Lagrangian system with the configuration space M. 
Since T is positive definite in the velocity, the equation py = Ft can be solved for ?~ in 
terms of x, 3c and t: 

~1 = g(x, 3c, t) = (Ft - (b(x), ~c))/c(x). 

Define the Routh function L = L(x,  3c, t) on TM x R by the standard formula 

(2.1) L(x ,  Sc, t ) = m i n { T - p y ( t ) ~ }  + V=(T(x ,3c ,~) -Ft[ j ) l~=g(x , t , t )+  V(x ) . 
y 

By the Routh theorem [1], the trajectories of system (1.3) such that py(t) = Ft  satisfy 
the Routh equations 

d S L  9 L  
(2.2) dt 93c 3~ = O . 
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Thus we obtain a nonautonomous Lagrangian system with the Lagrangian L and con- 
figuration space M. This system is called the reduced Lagrangian system. 

REMARK. - It is well known that in general the Routh reduction isn't an invariantly 
defined procedure: it depends on the choice of the diffeomorphism of N and M • R. 
Moreover, when the symmetry group is a circle S 1 and the fibration of N to the orbits of 

the group is topologically nontrivial, it is impossible to define the Routh function glob- 
ally [1]. Thus, in this case, the Routh equations are only locally Lagrangian and the 

Routh function has no physical meaning. However, for our system N = M • R and so 

the Routh function L is well defined. However, since the cyclic coordinate y is defined 

up to a shift y - ~ , y - f ( x ) ,  the Routh function isn't unique. 
To obtain an explicit expression for the Routh function, we use the formula (1.2) for 

the kinetic energy T. Then L takes the form 

1 (  (b(x), ~) 2 ) (b(x), ~) F 2 
L(x ,  Jc, t) = (A(x)  3c, ~) c(x) + c(x-----~ Ft  - 2 c(x----~ t2 + V(x) .  

Denote w = Fb/c and let U be the function (1.4). Then we obtain 

(2.3) L(x ,  ~, t) = K(x ,  5c) + t(w(x),  ~c} + t 2 U(x) + V(x)  , 

where K(x,  3c)= (B(x)Jc, ~}/2 is a positive definite quadratic form in ~ E TxM. 

From now on we forget about the origin of the Lagrangian (2.3). Thus we consider a 

reversible Lagrangian system (2.2) with compact configuration manifold M and the La- 
grangian L ~ C2(TM • R) of the form (2.3). Explicitly, system (2.2) takes the form 

(2.4) B(x)  Dt~c + tG(x)2c +w(x)  - t2VU(x)  - VV(x) = 0, 

where Dt is the covariant derivative with respect to the metric K and G = Vw - (Vw) T. 

A trajectory will always mean a solution of the Lagrangian system (2.2) or (2.4). 
System (2.4) has no equilibria unless the equations 

VU(x) = 0,  VV(x) = w(x)  

have a common solution. Even if this is not the case, there exist solutions similar to 

equilibria. For example, the following result hold. 

LEMMA 2.1. - Let Xo be a nondegenerate critical point  of  U. Suppose for  simplicity 
that L e C% Then there exists a solution x(t) such that x(t) -->Xo and ~c(t) -~0  as t--) 
--) ~.  By  reversibility, x ( - t )  is a solution asymptotic to Xo as t--) - ~.  

PROOF [11]. - There exists a unique formal solution of the equation (2.4) of the 

form 

2 - !  ( 2 . 5 )  x(t):x0+ .(Xo)) (.(Xo)-V.(x0)),  
k = 2 t  

where we use a local chart around x0 [11]. The coefficients ak are obtained recursively. 
In general, the series is divergent, even if the system is analytic. However, by the 
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Kuznetsov theorem [12], there exists a C ~ solution with the asymptotic expansion (2.5), 

tending to x0 as t -*  ~.  Note that in general this solution isn't unique. . �9 

A similar result holds for L e C 2. However, we will not prove this, since for the 

points Xo we study the existence of asymptotic solutions can be obtained easier by varia- 

tional methods. 
Note that if, following [10], we perform a transformation of time ~ = t2/2, then equa- 

tion (2.4) takes the form 

B(x) D~x' + G(x) x '  - VU(x) + ~ (w(x) - VV(x) + B(x) x '  ) = O . 

Hence in the 
Lagrangian 

limit v---> ~ we obtain an autonomous Lagrangian system with the 

L~(x ,  x ' )  = K(x, x ' )  + (w(x), x'> + U(x). 

Thus any critical point x0 of U may be thought of as an equilibrium at infinity and it 

makes sense to look for homoclinic solutions. Under the condition on the function W in 
the next theorem, there always exist homoclinic solutions of the system with the La- 

grangian L ~ (see, for example, [3], [4]). However, in general the existence of an infinite 

number of homoclinics isn't proved, since the PS sequences are divergent in gener- 
al [7]. For our system (2.4), this difficulty disappears. 

Now we reformulate Theorem 1.1. Let x0 be the unique minimum point of U. Sup- 

pose that it is nondegenerate. Recall that the Lagrangian is defined up to addition of a 
time derivative. This makes it possible to calibrate L in such a way that W(Xo) = 0 and 

Vw(x0) is an antisymmetric operator. This calibration is equivalent to a shift of the 

cyclic coordinate y in the previous section. Let f e  C~(M) be any function such that 

Vf(xo) = W(Xo). Then 

t<w(x),  ~> = d ( t f ( x )  ) - f ( x )  + t<w(x) - Vf(x), ~>. 

Being a total time derivative, the first term on the right hand side doesn't change La- 

grange's equations. The second term can be added to V(x) and treated together. Hence 
w - Vf plays the role of the original field w. Choosing f appropriately, we can also kill 
the symmetric part in Vw(x0). 

Define a function W on M by the formula 

(2.6) 
1 

W(x) = V ( x ) -  ~<w(x), B(x)-lw(x)>. 

This is an analog of the Hagedorn function [8], which appears in the sufficient condi- 
tions for instability of an equilibrium of a system with the Lagrangian L~. Of course, W 

depends on the choice of the function f. A similar nonuniqueness arises for the Hage- 
dorn function. The point x0 is a critical point of W, but not necessarily a mini- 

mum. 
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THEOREM 2.1. - Let xo ~ M be a nondegenerate unique minimum point of W. Then 
there exist infinitely many trajectories of the system (2 .2)  such that x(t)---~xo and 
~(t)-~O as t ~  +_ ~. 

Obviously, this theorem implies Theorem 1.1. Theorem 2.1 is proved in w167 4-5 by 

variational methods. In the next section we discuss an application to a classical mechan- 
ical system. 

REMARKS. - 1) If w is a gradient, we can put W = U. For example, this is so if the co- 

efficient b in the kinetic energy (1.2) is zero. In classical mechanics, such systems are 

called gyroscopically disconnected. 

2) If x0 is a point of nondegenerate minimum of the function U, but not of W, then 

it is possible that there exist no homoclinic solutions. Indeed, in the example below, x0 is 

a point of nondegenerate minimum of U and it is an equilibrium. Moreover, for almost 

all solutions x(t) close to x0 we have x(t)--~xo as t -~  _+ ~. However, for all these sol- 

utions except the trivial one, lim sup I~(t) I = ~ as t -~  -+ ~. Thus there are no doubly 

asymptotic solutions. This example also shows that in general it isn't true that if x(t) --~ 
--~x0 as t--~ ~,  then ~(t)-~0. However, if W has a nondegenerate minimum at x0, then 

this is so. The proof is contained in w 4. 

3) If x0 is a point of nondegenerate maximum for U and w = 0, then under weak 

additional assumptions most of the trajectories x(t) tend to Xo as t--~ _+ ~. The proof of 

this result involves Lyapunov type arguments [11] and is much simpler than the proof 

of Theorem 2.1. However, lira sup l~(t) i = ~ and so these solutions can't be called 

asymptotic, t ~ § 

4) Suppose that there exist a finite number of minimum points x~ of U. We cali- 

brate w so that w(xi) = 0 for all i and Vw(xi) is antisymmetric. Suppose that the points 

x~ are nondegenerate minimum points for the function W in (2 .6)  and that the function 

V takes the same value at all points xi. Then there exist heteroclinics joining any two 

points xi and xj. For i ~ j ,  the proof is simpler than that of Theorem 2.1 since it involves 

only minimization of the action functional. Moreover, for each pair x~, xj (also with i = 

= j), there exist an infinite number of heteroclinic trajectories connecting xi with xj. The 

proof of this result is similar to the proof of Theorem 2.1. 

5) We will show that the number of doubly asymptotic trajectories is at least 

cat t2(M), where tg(M) is the loop space of M. By Serre's theorem [16], cat t2(M) is infi- 

nite for a compact manifold M. 

The existence of cat ~9(M) trajectories with the properties claimed in Theorem 2.1 

can be obtained also for noncompact M if certain additional completeness assumptions 

are satisfied. For example, it is sufficient that the distance d on M defined by the Rie- 
mannian metric K is complete, V is bounded from below and W(q)d2(q, Xo) 1> c > 0 for 

all q outside a small neighborhood of Xo. 
Next we give an example showing that in general, if x0 is a nondegenerate minimum 

of U, but not of W, then Theorem 2.1 doesn't hold. 
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EXAMPLE. - Suppose that in the local coordinates x ~ R 2 in a neighborhood of x0 the 

Lagrange function has rotational symmetry, for example 

1 12 t 2 12 
L = - I & + at(Jx,  3c) + -~ lx , 

2 

where J is the standard symplectic matrix. We can always assume that L is defined on 
TM • R with compact M. For example, we can explicitly extend L to TS 2 • R conserv- 

ing rotational symmetry. We have 

1 12 1 U - - - I x  , W = - ( 1 - a 2 )  lxl 2. 
2 2 

Thus x = 0 is a nondegenerate minimum for U, and it is a nondegenerate minimum for 

W if l al < 1. It is easy to show that for a > 1 and any solution x(t) ~ O, we have 
limx(t) = 0 and lim sup 1 &(t) I = ~ as t---> ~.  Thus for a > 1 there exist no asymptotic 

solutions to the equilibrium x = 0. 
Indeed, perform the transformation of variables x = e x p ( -  (at2~2)J)y .  Then 

1 12 t 2 L = - I ~  + ( 1 - a  2) ly] 2 
2 2- ' 

and the result follows from the WKB approximation [11]. 

3. - K i r c h h o f f  problem.  

This paper was motivated by the following classical problem of the rigid body dy- 

namics. Consider a rigid body moving in an infinite volume of incompressible ideal 
fluid. We assume that the fluid is at rest at infinity and has zero vorticity, so that the 
flow is potential. Then the motion of the fluid is completely determined by the motion of 

the body. Thus the system of the body and the fluid has six degrees of freedom and the 

configuration space N is diffeomorphic to the Euclidean group E(3), which is a semidi- 

rect product S 0 ( 3 )  • R 8. Since the system of the body and the fluid is Lagrangian, the 
motion of the body is described by a Lagrangian system with the configuration space 

N. 
Let -P~/, where ~ is the unit vertical vector, be the sum of the weight of the body 

and the Archimedus force. Depending of the density of the body, P can be positive or 
negative. Denote by O the point of the body where the force PX is applied. Let o~, v e R s 
be the angular velocity of the body and the velocity of the point O represented in some 
coordinate frame el, e2, e3 connected to the body. Since the kinetic energy of the sys- 
tern body-fluid is a positive definite quadratic form, invariant under the action of the 
group E(3) on itself by left translations, we obtain [9], [13] 

(3.1) 
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where the matrices A, B, C are constant and the symmetric matrices A, C and 

(3.2) D = A - B~'C-1B 

are positive definite. The matrix A is a sum of the inertia tensor of the body and an ad- 

ditional inertia tensor corresponding to the liquid. The eigenvalues of the matrix C are 

sums of the mass of the body and the so called additional masses describing inertial 
properties of the fluid [13]. 

Introducing Euler angles and the Cartesian coordinates of the point 0 in some 

fLxed coordinate frame, it is possible to write down the equations of motion in the ordi- 

nary Lagrangian form. However, they turn out to be quite complicated. It is simpler to 

rewrite these equations in a moving coordinate frame el, e2, e~. Then we obtain Kirch- 

hoffs equations [9] 

(3.3) { /5+~o x p  = - P T ,  p = T v  

J + c o x J + v x p = O ,  J = T ~ ,  

where the unit vertical vector 7 e S 2 is represented in the coordinate frame el, e2, e3. 

Equations (3.3) follow, for example, from the theorem on momentum and angular too- 

mentum respectively in a moving coordinate frame. Let a and fl be two horizontal fixed 

vectors, again written in the coordinate frame el, e2, e~ connected with the body. They 

satisfy the Poisson equations 

(3.4) ~+oxa=O, ~+~x~=O, ~+~x~=O. 

Equations (3.3) and (3.4) form a complete system of equations of motion of the 

body. 

REMARK. - Equations (3.3) are a particular case of the general Poincar6 equations of 

a Lagrangian system obtained by projecting the ordinary Lagrange equations to some 

basis vector fields on the configuration space N. In our case, these fields are the left in- 

variant vector fields on the group N = E(3). They correspond to the translations of the 

body with unit velocity in the directions of the basis vectors el, e2, e~ and the rotations 

of the body with unit angular velocity about the same vectors. 

The kinetic energy T admits a symmetry group S0(3) x R s acting on the configur- 

ation space by rotations and translations. Obviously, the force field - P 7  is invariant 
under the action of the group S 1 X ]~3, where S 1 c S0(3) corresponds to rotations about 

the vertical. Thus we are in the situation of w 1. The force of magnitude P plays the role 

of the homogeneous generalized component F of the force in w 1 and the coordinate y is 

now the height of the point O. The only difference is that the symmetry group is S 1 x 

x R 3 and so there are additional integrals of motion. Let 

pa=(p,~), p~=(p,Z>, p~=(p,y> 

be the components of momentum. Then p~, p~ and p~ + Pt are integrals of motion. For 

simplicity we assume that the horizontal momentum is zero: Pa = PZ = 0. Without loss of 

generality we can put P7 = - P t .  We also assume that the integral of vertical angular 
momentum J~ = (J, 7} is zero. 
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By using the last Poisson equation (3.4), equations 

Pa = PZ = Jr = O, P7 = - Pt 

can be resolved in v, w: 

(8.5) v = - C - I ( p t ?  + Beo), 

The reduced configuration space 

:Y •  + Ptv(BTC-I~ ,, y) 
(.O: 

(D7, y) 

M =  (SO(3) • Rs)/(SI • RS) = S 2= {y ERS: [7,[ = 1 }  

is the Poisson sphere. Substituting equations (3.5) in the kinetic energy, we obtain the 

Routh function (2.1) on TS 2 x R. After a simple vector algebra calculation, L takes the 

form 

p2t2 
(3.6) L ( y , ~ , t ) = T + P t < v , y > =  <Do, w>-  2 (C- lY,  Y) -P t<  C-1B~ 7 )=  

detD ( D . - 1 y ,  :V) p t ( D y x B T C - l y , ~ )  
+ t2 U(y) ,  

2 (Dy, y) (Dr,  75 

where D is the matrix (3.2) and we denoted 

p2( 
(3.7) U(y) - 2 (C -1 ~/, ~]> _[_ 

(C-1B~, 7} 2 ) .  

(Dy, 7) 

The function U coincides with the function (1.4). 

REMARK. - The subsequent results can be generalized to the case of nonzero Pa and 

pz, only the Routh function becomes more complicated. However, if J7 = c ~ 0, then the 

variational methods don't work. Indeed, since the projection 

S0(3)- ->S0(3) /S  1 = S  2 

is a nontrivial Hopf fibration, the Routh function isn't a well defined function on TS 2 • 

• R for c ~ 0 [i]. The reduced system is a system with gyroscopic forces and the differen- 

tial 2-form ~9 of gyroscopic forces is nonexact on S 2. Indeed, it is well known that  

[ [ = [11 Thus the reduced system is only locally Lagrangian and the variation  
S 2 

methods don't work. 
The function (3.7) on the sphere S 2 is even and so it is natural to regard it as a func- 

tion on the projective plane RP 2. On S 2, the function (3.7) has at least cat (RP 2) = 3 

pairs of critical points. Let  ~ _+ e S  2, y _ = - y  + be a pair of minimum points of U. We 
assume that it is unique. The doubly asymptotic trajectories are divided into two class- 

es: doubly asymptotic to the same point y + or ? _ as t--> _+ oo, or connecting different 

points ~ + and 7 - .  The latter solutions may be called heteroclinics. 

The doubly asymptotic solutions correspond to the following motions of the rigid 
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body [10]. As t--* ~ ,  the body is falling down in the fluid (or floating up, depending on 

whether  P is positive or negative), its mass center moves asymptotically along a 

straight line and the solid doesn't rotate. The same holds for t - +  - ~ ,  with reversed 

time direction. In general, these straight lines for t--~ ~ and t--* - ~ are different. 

The homoclinic and heteroclinic trajectories differ in the following way: for homoclinic 

solutions the orientation of the body is the same, up to a rotation about the vertical, as 

t--* -+ ~ and for heteroclinic ones the body turns upside down as - ~ < t < ~ .  

Since the function W in (2.6) turns out to be ra ther  complicated and it is also not 

easy to describe the critical points of the function (3.7) explicitly, for simplicity we as- 

sume that  B = 0. Then the Routh function (3.6) takes the simple form 

p2 
(3.8) L(7 ,  :/, t) - detA (A -~/ ,  f/> + t2 U(7),  U(7) : - -  -'2"-< - 1 7  

2 (AT, 7> 2 - C  
y>. 

Thus, L ( - y ,  - : / ,  t . )=L(7 ,  ~, t) and we obtain a Lagrangian system on RP 2. 

In this case, there  exist six equilibrium points which are the critical points of the 

quadratic form U on S 2. Le t  c~ be the eigenvalues of the matrix C and e~ the correspond- 

ing unitary eigenvectors. If  c~ is the smallest eigenvalue and c~ < c2, 3, then 7 _+ = -+ e~ 

are the equilibrium points corresponding to the minimum of U on S 2. We obtain 

PROPOSITION 3.1. - I f B  = 0 and cl < c2, 3, there exists an infinite number  of homo- 

clinic motions of  the body such that y ( t ) ~  e~ and f / ~  0 as t ~ +- ~ and also an infi- 

nite number  of  heteroclinic motions such that ~(t) ~ +- e I and ~ ~ 0 as t---> +- oo. 

Physically, the direction of el and - el is those, in which the resistance of the fluid is 

minimal. 

PROOF. - The existence of heteroclinic trajectories from y to y + is practically obvi- 

ous: they are obtained by minimizing the action functional on the set of curves connect- 

ing y _ with ~ § on S 2 and so the proof doesn't even need the manifold structure on the 

space of curves. On RP 2, heteroclinic trajectories correspond to homotopically nontriv- 

ial homoclinic trajectories. 
The existence of an infinite number of heteroclinic trajectories from ~ _ to 7 § and 

an infinite number  of homoclinic trajectories to one and the same point 7 § or ~ _ fob 

lows from Theorem 2.1, applied to the system on RP 2. Indeed, both connected compo- 

nents of the loop space of RP  2 are isomorphic to the loop space of S 2 and so their  cate- 

gory is infinite. [] 

EXAMPLE. - Suppose that  the body has three orthogonal symmetry  planes and the 

distribution of masses is also symmetric. Then B = 0 and the Routh function takes the 

form (3.8), where the matrices A and C can be diagonalized simultaneously: 

A = d i a g ( a l ,  a2, as),  C = d i a g ( c l ,  c2, cs). 

Hence Lagrange's  equations with the Lagrangian (3.8) have three invariant submani- 

folds 

N~ = {(7, ,6)e TS2: y~=  ~'i= 0},  i : 1 , 2 , 3  
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in the phase space TS 2. For  example, on N8 we can use the generalized coordinate 

q~ mod 2 z defined by 

~/1 : COS (~ , ~' 2 = sin @. 

Passing to the projective plane means performing the transformation 0 = 2q~. Then, up 

to a function of t and a constant multiplier, the Lagrangian L~ = L IN ~ takes the 

form 

L~= - ~  + k t 2 ( 1 - c o s O ) ,  k = P  2 (c2 Cl) 
2 cl c2 a3 

The equation of motion is as follows: 

(3.9) 0 = kt 2 sin 0 .  

This equation was first obtained and studied by Chaplygin [5]. The qualitative proper- 

ties of the solutions were analyzed by Kozlov [11]. 

In this case, Theorem 2.1 yields the following 

PROPOSITION 3.2. - For any m ~ Z there exists a solution O(t) of equation (3.9) such 

that lim O(t) = 0 and lim O(t) = 2:~m. Thus the body performs m/2 ful l  rotations 
t - - - ~  - o o  t - - - - ~  o o  

around a horizontal axis. For even m these solutions are homoclinic trajectories and 

for odd m heteroclinic ones. 

In fact, since the configuration space is a circle, Proposition 3.2 has an elementary 

proof based on minimizing of the Hamilton action. For  m = 1, Proposition 3.2 was 

proved in [10]. 

4. - The  v a r i a t i o n a l  prob lem.  

In this section we reformulate the statement of Theorem 2.1 in a variational form. 

Let  x0 e M be the unique minimum point of U on M and let it be nondegenerate.  With- 

out loss of generality, we can assume that 

(4.1) W(Xo) = VU(x0) = 0 ,  U(xo) = V(xo) = 0 ,  Vw(x0) = - (Vw(x0))  T . 

Indeed, adding a constant to U or V doesn't change Lagrange's  equations. 

To prove Theorem 2.1, we represent  doubly asymptotic solutions as critical points of 

the action functional on a suitable function space. The manifold M can be smoothly era- 

bedded in R N for N = 2 n + 1 and, up to a translation, x0 can be assumed to coincide with 

the origin of R N. Denote by (., .) = I" ]2 the the Euclidean metric in R N, and also its re- 

striction to M. Then we can identify TxM with T * M  for any x e M .  

REMARK. - I t  is standard [14] to embed M into some R N isometrically by using 

Nash's theorem. Then K(x ,  ~) = I~ 12/2, which simplifies the notations. However, this 

approach requires that  K E C 5 and also it isn't natural from the physical point of 

view. 
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Denote 

:)C= {veAC(R,  RN): I[v]l < ~ } ,  

where AC(R, ]~N) iS the set of absolutely continuous curves in R y and 

livtl 2= f (li~(t)]2 +t2lv(t)12) dt" 
- - c r  

Denote by ~ the Sobolev space W ~' 2(R, R N) with the norm 

zr  

Hu]]  = f (I  (t)I 2 + lu(t)I 2) d t .  

I t  is easy to see that 3Cc ~ and 

(4.2) i[ull~ ~< V~]tull for all u e 3 C .  

Recall that ~ is continuously embedded into C~ R N) and 

(4.3) tlull~=suplu(t)l <~HuH, for all u E ~ .  
t e R  

LEMMA 4.1. - The set 3C is a Hilbert space. 

PROOF. - Only the completeness needs to be proved. Let  { q~ } be a Cauchy sequence 
in 3C By (4.2), {q~} is also a Cauchy sequence in & Since ~ is complete, there is q c  

such that, up to a subsequence, I]% - qlll --->0 as n--~ ~ .  We can then extract a subse- 

quence, always denoted {q.}, such that I1%- qll=--~0 and ~,---> ~ almost everywhere. 
By the assumption and the Fatou lemma, for any e > 0, there exists m~ e N such that if 

n > m~, then 

J l i r n ( l ~ ( t ) - ~ , ~ ( t ) 1 2 +  t 2 ]q~(t)- q~(t)]2) dt <<. lim_inf[]q~- qml] 2~< e 2. 

Hence ]lqn- qll < e. And this means that Ilq~- qll--*O as n--* ~ .  " 

P R O P O S I T I O N  4.1. - The set 

gE= {qe3C: q(t) e M  for all t e R }  

is a complete Hitbe~r submanifold in 2C and its tangent space at any point q ~ 3~ is 
given by 

Tq3~= { v E 3 C :  v(t) eTq(oM for all te]~}. 

PROOF. - From (4.2)-(4.3) it follows that 3E is a closed subset  in 3C. The proof of the 
fact that ~ is a manifold is standard. We skip the definition of the manifold structure 
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here since later we will use another representation of the Hilbert manifold structure on 

:~ which follows from the decomposition in Lemma 4.3 below. �9 

The Hamilton action I is defined on g~ as 

cr 

(4.4) I(q) = ~ L(q(t), ~(t), t )dt .  
- -  ~ z  

Since K(x, 5c) is a homogeneous quadratic form in ~, by (4.1) there exist constants 

a, fl > 0 such that 

IK(x,~)+t(w(x),Sc)+t2U(x)l  <~a(13cl2+t21xl2), IV(x) l <~filxl 

for all (x, ~) E TM. Since 

f ]q(t)]dt<~ -~d t  I t2]q(t) l~dt <~2Hql], 
Itl~>l It1-1 ] \ltl ~>1 

the integral (4.4) is convergent for any q ~ g~. 

LEMMA 4.2. - For any c > 0 there exists cl > 0 such that 

(4.5) Ilqll 2 ~ Cl, 

for all qe:XC= {qeg~:  I(q) <c}. 

suptlq(t) 12 <- 4cl 
t eR  

Here and henceforth by ci we denote positive constants depending only on c. 

PROOF. - Take sufficiently small 5 > 0 and let C(x): TxM----> Tx* M be the symmetric 
positive definite operator such that 

1 12 (4.6) g(x,  5c) = ~(C(x) 3c, ~) + 513c . 

Since the function (2.6) has a strict nondegenerate minimum at xo, for sufficiently small 

5 > 0 we have 

(4.7) F(x) = U(x ) -  l (w(x), C(x)-lw(x)) >~51xl 2 for all x E i .  

Thus, denoting for simplicity y = ~ +tC(x)-lw(x), w e  have 

L(x, 3c, t) = ~ l ~ ]2 + l (c(x)y ' y) + t2F(x) + V(x) >1 5(1~ 12 + t 2 Ixl 2) + V(x). 
z 
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In turn, this gives 

i L(q,q,t) dt>~5 f 
3 

itl~<l i t l -<l  

([ q [ 2 + t2 [ql 2) dt + 2 m i n V ,  

f ( ) L ( q , ~ , t )  dt>~ f 61(~[2+ tq[2+ [q[2_fl[q[ dt>~ 
!~1 > 1 Iq > I 2 2 

~t~ ~ 2 )  ~ f t 2 ~2 >~ t alO12+ e Iql 2 - -  dt~>- (,~12+ Iql2)dt - -  
!tl ~ 1 2 5 t  2 2 Itt > 1 6 

Those estimates, together with the assumption I(q) <<. c, yield the first inequality (4.5). 

Now, using the Schwartz inequality and (4.2), we have 

0 - - a o  

+2 [~(s) 12ds s 2 [q(s)[eds <<- 4cl. " 

Next we are going to perform computations in a coordinate chart around x0. In or- 

der to simplify the notations, we embed M to R N in such a way that  some neighborhood 

of x0 in M is contained in the linear subspace R ~ c R N. We may also assume that  this 

neighborhood coincides with the ball 

B2= { x ~ :  lo~l <2} .  

Such an embedding can be easily constructed by a partition of unity. Thus we have x E 

e R '~ for any x ~ M c R N such that  Ix I < 2. 
Fix a constant c > 0. By Lemma 4.2, there exists T = T(c) > 0 such that  q(t) eBlCB2 

for all qegl[  c and Itl > T. Set A = W I ' 2 ( [ - T ,  T], M) and 

A = { q e A C ( ( -  ~ ,  -T ] ,  B~): Ilqll 2_ < ~ } ,  

A + = {qeAC([T ,  ~) ,  Ba): Ilqll% < ~ } ,  

where 

- T  

ilqil ~_ = f (t 2 Lq(t)12 + !~(t)12) dr, 

ao 

ttql[~+ = f (t 2 iq(t ) ]2 + i ~l(t) ]2) dt 
T 

and [ " I is the Euclidean metric in R "~ c tZ N. It  is well known that  A is a complete Hilbert 
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manifold [14], while A • are open sets in the Hilber t  spaces 

A _c~C_ = { v c A C ( ( -  :~, -T],  Rn): Ilvll < ~ } ,  

A +r = {vedC([T,  ~), Rn): IIvll2+ < ~ } .  

Define the mappings g• : g~--->A • and g: ~-- -~A as 

g-(q) = q l ( -~ ,  -T],  g(q)=ql[-T,T], g+(q)=ql[T, ~). 

LEMMA 4.3. - The mappings g• : :~--)A • and g: g~--~A are of class C ~. 

Since we skipped the definition of the smooth s tructure on g~, this lemma can be re- 

garded also as a definition of the s tructure of a Hilbert  manifold on g~. Indeed, the 

map 

g+ x g x g _ :  g~c---)A+ x A  x A _  

yields an identification of ~ with an open set in the Hilbert  submanifold 

{ ( q + , y , q _ ) e A + x A x A _ :  q• 

of codimension 2 n  in A + x A x A _. 

Define the functionals J •  A _+-~Bt and J :  A - - ) R  as 

- T  

J_ (q) = f L(q(t), ~(t), t) dr, 
- a r  

T 

J(q) = ~ L(q(t), ~(t), t)dt ,  
- T  

o v  

J+ (q) = f L(q(t), ~(t), t)dt.  
T 

I t  is convenient to split the restriction I I ~c of the action functional in the following 

way: 

I = J _  og_ + J o g + J +  og+. 

PROPOSITION 4.2. - The functional IeCl(g~)  and the derivative I '  is locally 
Lipschitz. 

Actually I e  C2(g[0, but  we won' t  use this. 

PROOF. - Take arb i t ra ry  c > 0, choose T = T(c) > 0 and define the sets A • and A, 

the mappings g• and g and the functionals J •  and J as above. In view of L e m m a  4.3, 

Proposition 4.2 follows if we prove that  J , J and J+ are of class C 1 with locally Lips- 

chitz derivative. 
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We start  showing that  J+ is differentiable on A +. Fix q EA § and take v e TqA + = 
= :~+ such that  ]Ivll2+ < 1/2. By (4.2) and (4.3), Ilvll ~ < 1. Hence q(t) + v(t) ~ B2 for all t > T, 

and it is possible working in R n. By Taylor's formula, 

L(q(t) + v(t), ~(t) + i~(t), t) = 

= L(q(t), ~(t), t) + <Lq (q(t), }t(t), t), v(t)> + {L~ (q(t), ~(t), t), ~(t)> + 

1 <L~(t ) ,  ~(t)}, + l<Lqqv(t), v(t)> + <Lq~(t), v(t)> + -~ 

where the second derivatives of L are evaluated at a point (q(t)+ O(t)v(t), ~(t)+ 
+ O(t) ~(t), t) with 0 ~< O(t) ~< I a measurable function. In view of (2.3), for any (q, ~, t) 

B2 • R ~ • R, we have 

(4.8) tlLqqll <~ c2(1 + t 2 + ]~ 12), []Lq~]l <- c2(t + I@1), IIL~II-< c2, 

where I1" H denotes the operator norm of a matrix. Since q(t) + O(t) v(t) ~ B2 for all t > T, 

by using (4.8) and the Schwartz inequality, we get 

jf<Lqqv(t), v(t)) dt i <~ Ic2( 1 + t2 + I ~(t) + O(t)~(t)12) Iv(t)12dt <<- 
T I '  

I 

~< c~ (3 I1~11~+ + 2 I1~11% (llqll& + Ilvlf~+ )) ~< c~ (3 + 4(llqll~+ + Ilvll~+))llvil& <~ c~ Ilvll~+, 

co  oo  

.[<L~i,(t), ~(t)> #t I ~< I c2(t + ! ~(t) + o(t)~(t) I)1 ~(t)Nv(t) l dt <~ 
t 

T T 
| 

-< ~ (11~11{ + IIvlloo (llqIl+ II~ll + + IIvll&)) -< c~ (1 + v~(llqll+ + Ilvll +))INI~+ ~< c~ II~ll{, 

T T 

These inequalities yield the differentiability of J+ on A +, providing at the same time 

an expression for J$  (q) v. Indeed, 

I 
o v  

I [(L(q(t)+ v(t), ~(t)+ ~(t), t ) -  L(q(t), ~(t), t) 
| 
T 

~(t), t), v(t)>- (L~(q(t), ~(t), t), ~(t)> ) ~t ] ~ ~ll~ll~. -- ~Lq ~ q ~  

Now we prove that  J'+ is locally Lipschitz. Let  ql, q2 e A + and v e :~+. Since ql and 
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q2 take values in B~ c R ~, we can write, denoting u = q 2 -  ql 

co 

(4.9) (J:~(q2), v } -  (J$ (ql), v> = I((Lq(q2(t), q2(t), t) -Lq(ql(t) ,  ~(t ) ,  t), v(t)>- 
T 

- ( L i  (q2(t), ~2(t), t ) -  Li (ql (t), ql( t ) ,  t), 5(t) > ) dt 

= I((Lqqu(t), v(t)> + (Lqiit(t), v(t)) + (Liqu(t), ~(t)> + (Liiit(t), i~(t)>) dt,  

T 

where the second derivatives of L are evaluated at a point (q l ( t )+s ( t )u ( t ) ,  ~l(t)+ 
+ s(t) it(t), t) with 0 ~< s(t) ~< I a measurable function. By using (4.8) and the Schwartz in- 

equality, we see that the right hand side in (4.9) is majorized by c6 Ilull§ Ilvll§ where c6 is 

a constant depending on Ilqlll+ and IIq211§ Consequently, 

j r  
II + (q2) - J$ (ql)ll+ ~ c6llq2 qlll+ 

and we conclude that J$  is locally Lipschitz. 
The functional J_  can be studied in a similar way. Finally, notice that the functional 

J acts on curves which are defined on a compact interval [ -  T, T]. Regularity of such 

functionals is well studied in the literature. See, for example, Eells [6], Palais and 
Smale [15] or Benci [2] for the fixed boundary value problem or the periodic boundary 

problem. The only difference in our case is that the boundary points are free. Exactly 
the same proof yields that J E C I ( A )  and has locally Lipschitz derivative. Proposi- 

tion 4.2 is proved. �9 

PROPOSITION 4.3. - Critical points of I correspond to the doubly asymptotic sol- 
utions such that q(t)-~Xo and ~t(t)~O as t--) +-~. 

Obviously, if I ' ( q ) =  0 for some q e g~, then q(t) satisfies Lagrange's equations. 

Thus Proposition 4.3 follows from 

LEMMA 4.4. - I f  q: [T, cr )--)M is a trajectory of the system such that q(t)-->Xo as 
t ---> ~, then }t(t) --+ 0 and 

(4.10) ]]q][2+ = J '(Iq 12 + t2 ]q]2) dt < 

T 

PROOF. - Changing T if necessary, we can assume that q(t) E B1 c R ~ for t i> T. Then 

Lagrange's equations (2.4) take the form 

B(q)~ + F(q, ~) + tG(q) ~ +w(q) - t2VU(q) - VV(q) = 0 ,  

where F i s  quadratic in ~. Denote B = B(0), E = Vw(0) = G(0)/2 and D = V 2 U(0). Then 
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(4.6) and (4.7) yield the inequal i ty  

(4.11) ~I(Bv,  v } + ( E u ,  v } + I ( D u ,  u } ~ 6 ( i u l 2 + ] v t  2) for  all u , v ~ R  ~ 

Fi r s t  we prove (4.10). Le t  f ( t ) =  (Bq(t), q(t)}/2. Then  j~= (q, B~). Using (4.11), for  

sufficiently large  t we obtain a vers ion of the well known L a g r a n g e  inequali ty 

(4.12) " f > ~ ( B ~ , ~ } - 2 t ( q , E ~ } + t 2 ( D q ,  q } - a i q ] ( l ~ t ] 2 + t  2]q]2)-f i]q]>1 

~c~(l@]2+t2]q12)_~lql>16(t~12+t2]q]e) ~z 
26 t  2 ' 

where  a and fi are  positive constants.  Since f(t)---)0, we have lira inf]j~(t)] = 0. Inte-  

g ra t ing  inequal i ty  (4.12), we ge t  (4.10) as in the proof  of (4.5). We ~ also obtain 

(4.13) "f >~ t2 8f  fi2 
2 26t2 , ~ = I I B [ I .  

Now we show tha t  t2f(t) --~0 as t---> ~ .  F ix  e > 0 and suppose tha t  t he re  exists a se- 

quence tk--) ~ with t~2f(tk) > e. Pu t  s = tk. Wi thout  loss of general i ty ,  we can assume 

tha t  

(4.14) s > - -  + 3 .  

Suppose,  for. example,  tha t  jr(s) ~< 0. The  case j~(s) 1> 0 is similar. Inequali t ies  (4.13) and 

(4.14) yield f ( t )  >t 0 and f ( t )  ~< 0 for  all t e  [s - 1, s]. H e n c e f ( t )  >~f(s) > es -2 for  all t e  

e [s - 1, s]. Thus  

f t elq(t  )ledt>1 2e t 2dt>1 e 
82--y y .  

s - 1  s - 1  

Taking a sum over  infinitely many  s = tk, we obtain a contradict ion to (4.10). 

To show tha t  ~(t) -->0 as t---~ ~ ,  w e u s e  the ene rgy  theorem.  L e t  H = K - t 2 U - V. 

Then  

~I = - L  t = -<w(q) ,  q> - 2tU(q). 

Thus for any T < to < tl we have 

tt 

IH]t~ - H]to ] <- c7f( Fql [q]  § tJq] 2) dt <. 2c7 Hqrl~+, 

to to 

where  c7 is some positive constant .  Thus  the re  exists the limit of H as t---~ ~ .  Since 
t 2 Iq12---)0 as t---> ~ ,  we obtain ~(t)--~0. " 
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In next section we'll prove that  the functional I satisfies the Palais-Smale condition, 

which implies Theorem 2.1. 

5. - T h e  P a l a i s - S m a l e  c o n d i t i o n .  

PROPOSITION 5.1. - The action functional I satisfies the Palais-Smale condition. 

This means [15] that  any PS sequence, i.e. any sequence {qn} r ~ ,  for which I(q~) is 

bounded and I'(q~)--~0 as n--> ~ ,  possesses a convergent subsequence. 

PROOF. - Let  {qn } r 3E be a PS sequence. We know that  q. �9 3E c for some c > 0 and 

so, by Lemma 4.2, IIqn II is uniformly bounded. Also, up to a subsequence, q~ converges 

uniformly to some curve q~ �9 L ~ (R, M): 

(5.1) IIq. - q~ I1~ ---~0 as n---> 

To the constant c, we can associate some T > 0, the sets A • and A, the mappings g~ 

and g and the functionals J•  and J introduced in w 4. In fact, for any ~ > 0, we can take 

T= T~ > 0 so large that q~(t) � 9  n and Iq~(t) I < ~ for all Itl > T and all n s N .  Plainly, 

this still holds true if a larger T is chosen. Later  on, we'll take ~ > 0 sufficiently small 

and T > 0 sufficiently large. 

Denote 

On = g-  (q~): ( -- ~ ,  -- T] --~B~, 

7~ = g(q,~): ( - T, T] -->M, 

+ 
On = g+ (q~): (T, ~ )  -~B~.  

Thus 7 ~ � 9  and ~r � 9  +. Since I'(q~)-->O as n - - - )~ ,  we have, 

I(I'(qn), V) I ~<E~IlVll for all v � 9  

with e ~-~ 0 as n--> ~ .  For  any v �9 Tq, ~ such that  v I a\E T, Tl -= O, we have 

(I'(qn), V)= ( J ' ( 7~ ) ,  viE-r, rl}. 

Similarly, by taking v �9 Tq~ 3E such that v(t) =- 0 for all t ~< T, we have 

t + (I'(q~), v} = (J+(o~), vtEr, ~)) 

and an analogous statement holds true for the functional J_.  Thus 

(5.2) (J' (r v) I1 11 

for all v e  Tr, A such that  v ( _ T )  = 0 with en--~O as u--> ~ .  Here  IIv]l means the norm in 

Tr A. Similarly 

(5.3) ( J ~  ( o  n ), V) ~ 8 n IlVl]- + 

for all v �9 ~+  such that  v( -+ T) = 0. 
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Let  ~ ~, o 7o and ~*~ be the restrictions of q~ to [ - T, T], ( - ~ ,  - T] and [T, ~ ) re- 

spectively. F rom (5.1) it follows that  ~n---~y ~ and ~ - - > a ~  uniformly. 

LEMMA 5.1. - If J(~/n) is uniformly bounded, y n-o y ~ uniformly and (5.2) holds 
true, then { y n } has a subsequence converging in A to y ~. 

PROOF.- Denote x• =y~(___T). I f  the boundary points yn(-+T)  of the curves ~'n 

were fixed, %hen Lemma 5.1 would coincide with the well known fact that  the Palais- 

Smale condition holds for the Hamilton functional J on 

~2= { F ~ W I ' 2 ( [ - T ,  T], M): F( +_T)=x• }. 

In our case, the proof goes with some small modifications. However, also the reduction 

to the case Y n(--+ T) = x• is possible. For  the convenience of the reader  we outline the 

proof. 

There  exists a sequence of smooth families of maps f~, t: M--~M, depending on 

t ~ [ - T, T], such that  fn, • ~( --+ T)) = x• and the sequence f~, t tends to idM in the C 2 

topology. For  example, the map fn, t can be defined as follows. Let  ~] n be the affine map 
from [ -  T, T] to R N such that 

r]n(+-T) : 7 n ( - + T ) - x _ + .  

Then [[~]n [iC 2--> 0. Le tA ,  ~(x) be the point in M closest to the point x - ~] n(t). I f n  is suffi- 

ciently large, the map fn, t is well defined and satisfies the stated conditions. 

Now define the sequence w n e ~9 by the formula ~o n (t) = fn, t (Y n(t)). Since []w n - 

- -  ~ /n  [[---> 0 and the map x---> dfn, t(x): T~ M---> Tf~, ~(~)M tends to the map x---> idioM in the 

C ~ topology, we obtain 

[ < J ' ( ~ ) ,  u ) -  ( J ' (Yn) ,  v)[ ~ ~nllull, 

for any u e T ~ , ~ .  Here  v(t)=dfn, t(Yn(t)) l u ( t ) .  Since v(+_T)=O, by (5.2) o ~ n e ~  

is a PS sequence and hence it converges to ~ ~. Hence y n is also converging to ~, 

in A. [] 

Since the behaviour of the sequences { ~  } and { ~  } can be studied in a similar 

+ and ~ ~ + way, below we carry out the details for {G~ + } and write an = an = a ~. 

LEMMA 5.2. - Along a subsequence, Ilan - ~ ~ I1+ -->0 as n---~ ~. 

PROOF. - I t  is very  similar to the proof of the PS condition in [14]. I t  is sufficent to 

show that  {an} is a Cauchy sequence with respect  to the norm II'll+- 

For  r e [ T ,  ~)  put 

.... (t) = a,~(t) - an( t )  and ~n,~(t) = (T2/t 2) ~n,~(T). 

We point out that ~n,~(T)-~n,~(T)=0 and I1~,~11+--~0 as n,  m--* .c. By (5.3), 

(J~(an),~n,~-~n,~)--->O. Since llJ~(an)ll is bounded, also (J$ (an), ~n,~)--~0 as 

n,  m---> ~ .  We can extract  a subsequence such that  the sequence J+ (an) is converging. 
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Hence 

T~m=J+(<~m)-J+(<~)-<J~_(~),~nm}---+O as n , m - - - + ~ .  

That {On} is a Cauchy sequence will follow from an estimate on ~ m  which we are 
going to establish next. We estimate separately the terms in the integral ~nm corre- 
sponding to the terms in the Lagrangian (2.3). 

We assume that s > 0 is so small that 

(5.4) BIB(x) - BII ~< 5/2, iiVw(x) - Eli ~ 5/2, HI V2 U(x) - oil ~ 5/2 

for all x such that Ix I < e. 
First we estimate the terms in u involving K by using (5.4) and the fact that 

i (~n( t )  I < e  for all t ~ [ T ,  ~): 

(5.5) K((~m, 5m) - K(a~, ~ )  - {Kq(a~, &~), ~m} - {Ki(a~, 5~), ~nm> = 

= K ( ~ ,  }~m) + <K~(~nm, bin), ~m> - <K~(~, ~ ) ,  ~m>/> 

1 ~ �9 i 2 _  12 . >1-(B$~m,$~m>- I~m Cl(Iam + lanl~)l~ml 2 

Here and in (5.6)-(5.8) we denote by T~( t )  some intermediate point between a~(t) and 

am(t). By ci we denote some fixed positive constants independent of e. 
For the linear in velocity term in L, we have by (5.4) 

(5.6) <W(O'm), Urn> -- (W(Un), ~n> -- (VW((Tn)~nm, ~n> -- <W(O'n), ~nm> = 

: <VW(Tnm)~nm, Urn>-- <VW((Yn) ~nm, Un> ~ (~W(Un) ~nm, ~nm>- c2iTnm- (Tn i i~nm i I ~Ymi ~ 

I> <Z~m, $~m>- ~ I~m I I $~m I -c~ t~m I ~ I~ml. 

For the term involving U, we have 

(5.7) U(am) -- U(on) - (VU((Yn) , ~nm) : 

= (v2g(Tnm)~nm,,~nm>>~ ( ,D~m,~m>--~ l~ l  2 

Finally, 

(5.8) 
1 

V(am) - Y(a~) - (VV(a~), ~m> = ~(V2Y(~m)~m,  ~m)  I> -c~ I~m I z" 
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Putting together (5.5)-(5.8) and using (4.11), we obtain 

( 1 �9 t 2 
~[Inm >I "~<B~nm; ~nm> + t(E~nm, ~nm> + -~(D~m, ~m} - 

. t 2 _ 1 2  - 

r ) 
( ) 2 2 T2d I ~  12 d r -  O~m, 

where we denoted 

F 2 

Since I[~,,~N~-~0 as n,  m--> cr and nl~ll+ is bounded, we have O~m--->O. 

As already noticed, we can choose T as large as we like. Let  T > 2 ~ / d .  

Then 

~ Ii~nm I1% ~ YYnm - -  0 n m  -- -> 0 

as n,  m - ~  ~ .  Hence a s  is a Cauchy sequence. [] 

Lemmas 5.1-5.2 imply that, up to a subsequence, q~---~q~ in ~:  Proposition 5.1 is 

proved. [] 

PROOF OF THEOREM 2.1. - The manifold :gO is homotopically equivalent to the loop 

space 

t)(M) = {qcC~ 1], M): q(O) = Xo = q(1)}. 

We recall that  since M is a compact manifold, cat D(M) = ~ .  Indeed, if z 1 (M) is finite, 

then the universal covering 2~r is a compact simply connected manifold. By Serre's theo- 

rein [16], cat t2(ikr)= ~ .  A simple argument  then shows that  also c a t t ? ( M ) =  ~ .  If  

~ I ( M )  is infinite, then t?(M) has infinitely many connected components and so again 

cat#2(M) = :r 
This fact together with Propositions 4.1, 4.2 and 5.1 implies that  the action function- 

al I defined on gg has infinitely many critical points. By Proposition 4.3, each of them 

corresponds to a solution q(t) of system (2.2) such that  q(t)---~Xo and ~(t)-->0 as 
t----> _ co. [ ]  
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