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Doubly Asymptotic Trajeétories of Lagrangian Systems
in Homogeneous Force Fields (*).

M. L. BERTOTTI (**) - S. V. BOLOTIN (**%*)

Abstract. - We study Lagrangian systems with symmetry under the action of a constant gener-
alized force in the direction of the symmetry field. After Routh’s veduction, such systems be-
come nonautonomous with Lagrangion quadratic in time. We prove the existence of sol-
utions tending to an orbit of the symmetry group as t— + . As an example, we study
doubly asymptotic solutions for the Kirchhoff problem of a heavy rigid body in an infinite
volume of incompressible ideal fluid performing a potential motion.

1. — Introduction.

Before going into the mathematical formulation of the problem, we briefly describe
a general situation where systems of the type we study arise. In § 3 we will give a con-
crete physical example.

Consider a Lagrangian system with the configuration manifold N and kinetic en-
ergy T = T(q, ¢) of class C? which is a positive definite homogeneous quadratic form in
velocity ¢ e T, N. We assume also the presence of a generalized force Q of class C?,
which is a covector field on N. Thus Q(q) € T;* N for any g € N. The equations of motion
take the form

(1.1) —— - —=Q.

Recall that although this formula is written in local coordinates, the left hand side is a
well defined covector in 7' N independent of the choice of local coordinates.
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Suppose that the kinetic energy is invariant under a one-parameter transformation
group R. Thus there exists a smooth free group action of R on N conserving 7. The
transformation group is called a symmetry group and the corresponding vector field v
on N is called a symmetry field. We assume that the force field @ = V¢ is potential and
invariant under the action of the symmetry group. Moreover, the projection ' = (@, v)
of the force field on v is a nonzero constant. Hence the potential ¢ isn’t invariant. We
call such force fields @ homogeneous. An example is provided by the homogeneous
gravitational force field.

Under the assumptions above, the fibration of N to the orbits of the group action
turns out to be trivial. Namely, N is diffeomorphic to M{x} x R{y}, where M is a
smooth manifold, and the group action corresponds to the translation (x, y) e M x R—
—(x, ¥y +5)eM X R, seR. From now on we identify N with M x R. Then ¢ = V(x) + Fy
and the force field @ takes the form

Qz, y) = (VW(x), F)e TFM xR,

where V is a C? function on M. Thus we have a constant generalized force ¥ in the di-
rection of the coordinate y. Due to this fact and since the kinetic energy doesn’t depend
on y, the coordinate y can be actually ignored in determining x along the solutions. For
that reason, we will refer to y as to a cyclic coordinate.

Specifically, T is a C? function on TM X R:

12 T=T(x, 1) = %(A(x)a'c, &)+ (b(@), )9 + %c(x)?'/z ,

where for all te M, A(x): T,M — TF M is a symmetric positive definite operator, b is a
covector field on M, b(x) e T} M and ¢ is a positive function on M. By (-, -) we denote
the formal scalar product T M X T, M —R.

Let p, be the generalized momentum corresponding to the coordinate y or, equiva-
lently, the Noether integral corresponding to the symmetry group:

= (T v)= ﬁ = (b(x), ) + c(x) ¥ .
9y

Then Lagrange’s equations (1.1) take the form
(1.3) _ - = p,=F.

The second equation (1.3) yields p,(#) = Ft + p,(0). Performing a time shift, without
loss of generality, we can put p,(t) = Ft.

An important role will be played by the function U on M defined by the
formula

FZ

(1.4) Ulx) = — @)

, rxeM.
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Note that —t2U(x) is the kinetic energy of the motion along the orbit I', = {x} x Rc N
of the symmetry group with the momentum p, (f) = Ft.

Let M be a compact manifold. Then U has a minimum on M. Suppose that there
exists a unique minimum point xy € M and it is nondegenerate. Without loss of generali-
ty, we can assume that b(x,) =0 and Vw(x,) is an antisymmetric operator, where
w(x) = b(x)/c(x). Indeed, if this isn’t so, it is sufficient to perform the transformation of
the cyclic coordinate y—y — f(x), where fe C*(M) is a function such that Vf(z,) =
=w(x,) and the operator VZf(x,) — Vu(x,) is antisymmetric. Denote

2
Wix) = — i . welM.
2(c(x) — (A "1 (@) bz), b(x)))

The goal of this paper is to prove the following

THEOREM 1.1. — Suppose that x, is a point of strict nondegenerate minimum of the
Sfunction W on M. Then there exists an infinite number of trajectories of the system
(1. 3) such that x(t) —xy and &(t) —0 as t— = wo. Thus these trajectories tend to Iy,
as t— = o,

Of course, we identify trajectories obtained by a time shift or a translation of the co-
ordinate y. Note that in general I, isn’t a trajectory, unless some additional assump-
tions below are satisfied. If I", is a trajectory, then, in classical mechanics, it is called a
stationary solution [1]. Physically, I, is the orbit of the symmetry group such that the
kinetic energy of the motion with % =1 is minimal.

To understand the meaning of the function W, it is convenient to use Routh’s
reduction.

2. — Routh’s reduction and reformulation of the main result.

We will apply the classical Routh method of ignoring a cyclic coordinate ¥ to reduce
the system to a time dependent Lagrangian system with the configuration space M.
Since T is positive definite in the velocity, the equation p, = Ft can be solved for % in
terms of x, & and ¢

§ =g, &, t) = (Ft — (b(x), £)/c(x).
Define the Routh function L = L(x, &, t) on TM X R by the standard formula

@1 L@, & t) =min{T - p, )} + V= (T, & 3) ~ Ft9) |3 w3, 0 + V().
Y

By the Routh theorem [1], the trajectories of system (1.3) such that Py (t) = F't satisfy
the Routh equations

(2.2) ———‘—=0.
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Thus we obtain a nonautonomous Lagrangian system with the Lagrangian L and con-
figuration space M. This system is called the reduced Lagrangian system.

REMARK. — It is well known that in general the Routh reduction isn’t an invariantly
defined procedure: it depends on the choice of the diffeomorphism of N and M x R.
Moreover, when the symmetry group is a circle S* and the fibration of N to the orbits of
the group is topologically nontrivial, it is impossible to define the Routh function glob-
ally [1]. Thus, in this case, the Routh equations are only locally Lagrangian and the
Routh function has no physical meaning. However, for our system N =M X R and so
the Routh function L is well defined. However, since the cyclic coordinate y is defined
up to a shift y—y —f(x), the Routh function isn’t unique.

To obtain an explicit expression for the Routh function, we use the formula (1.2) for
the kinetic energy T. Then L takes the form

o . .
(b(zx), & N (b(x), &) Fi— F

t2 4+ V(x).
() e(x) 2e(x)

Lz, & 1) =—;~ (A@)#, ) -

Denote w = Fb/c and let U be the function (1.4). Then we obtain
2.3) L(x, %, t) = K(x, ¥) + t{w(x), ) + t2 Ux) + V(x),

where K(x, %) = (B(x) %, &)/2 is a positive definite quadratic form in & e T, M.

From now on we forget about the origin of the Lagrangian (2.3). Thus we consider a
reversible Lagrangian system (2.2) with compact configuration manifold M and the La-
grangian L e C2(TM X R) of the form (2.3). Explicitly, system (2.2) takes the form

(24) B(x) D& +tG(x) & +w(x) — t2VU(x) — VV(2) =0,

where D, is the covariant derivative with respect to the metric K and G = Vw — (V)™
A trajectory will always mean a solution of the Lagrangian system (2.2) or (2.4).
System (2.4) has no equilibria unless the equations

VU(x) =0, VV{(x) = w(x)

have a common solution. Even if this is not the case, there exist solutions similar to
equilibria. For example, the following result hold.

LEMMA 2.1. — Let x, be a nondegenerate critical point of U. Suppose for simplicity
that L e C>. Then there exists a solution x(t) such that x(t) —x, and &) —0 as t—
— o, By reversibility, x(—1) is o solution asymptotic to xy as t— — ®.

Proor [11]. — There exists a unique formal solution of the equation (2.4) of the
form

2.5) w) =t S 2 = (VUG ) — TW)),
k=2 tk

where we use a local chart around x, [11]. The coefficients a; are obtained recursively.
In general, the series is divergent, even if the system is analytic. However, by the
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Kuznetsov theorem [12], there exists a C * solution with the asymptotic expansion (2.5),
tending to x, as {— . Note that in general this solution isn’t unique. ™

A similar result holds for L e C2. However, we will not prove this, since for the
points %, we study the existence of asymptotic solutions can be obtained easier by varia-
tional methods.

Note that if, following [10], we perform a transformation of time 7 = ¢2/2, then equa-
tion (2.4) takes the form

B(x)D,x' +G(x)x' —VU(x) + zi(w(x) - VVix)+B(x)x')=0.
T

Hence in the limit 7—  we obtain an autonomous Lagrangian system with the
Lagrangian

L,(x,z"y=K(x,z")+ (w(x), ')+ Ulx).

Thus any critical point x, of U may be thought of as an equilibrium at infinity and it
makes sense to look for homoclinic solutions. Under the condition on the function W in
the next theorem, there always exist homoclinic solutions of the system with the La-
grangian L., (see, for example, [3], [4]). However, in general the existence of an infinite
number of homoclinics isn’t proved, since the PS sequences are divergent in gener-
al[7]. For our system (2.4), this difficulty disappears.

Now we reformulate Theorem 1.1. Let %, be the unique minimum point of U. Sup-
pose that it is nondegenerate. Recall that the Lagrangian is defined up to addition of a
time derivative. This makes it possible to calibrate L in such a way that w(x,) =0 and
Vu(ax,) is an antisymmetric operator. This calibration is equivalent to a shift of the
cyclic coordinate y in the previous section. Let fe C*(M) be any function such that
Vf(xy) = w(xy). Then

Hanl), 3) = %(tf(x)) ~ fla) + ool — V@), &)

Being a total time derivative, the first term on the right hand side doesn’t change La-
grange’s equations. The second term can be added to V() and treated together. Hence
w — Vf plays the role of the original field w. Choosing f appropriately, we ean also kill
the symmetric part in Vau(x,). '

Define a function W on M by the formula

1
2.6) W(x) = Ulx) — —2-<’M)(96), B(x) tw(x)).

This is an analog of the Hagedorn function [8], which appears in the sufficient condi-
tions for instability of an equilibrium of a system with the Lagrangian L. Of course, W
depends on the choice of the function f. A similar nonuniqueness arises for the Hage-
dorn function. The point x, is a critical point of W, but not necessarily a mini-
mum.
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THEOREM 2.1. — Let xoe M be a nondegenerate unique minimum point of W. Then
there exist infinitely many trajectories of the system (2. 2) such that x(t) —x, and
() —0 as t— + oo, '

Obviously, this theorem implies Theorem 1.1. Theorem 2.1 is proved in §§ 4-5 by
variational methods. In the next section we discuss an application to a classical mechan-
ical system.

REMARKS. - 1) If w is a gradient, we can put W = U. For example, this is so if the co-
efficient b in the kinetic energy (1.2) is zero. In classical mechanics, such systems are
called gyroscopically disconnected.

2) If @, is a point of nondegenerate minimum of the function U, but not of W, then
it is possible that there exist no homoclinic solutions. Indeed, in the example below, , is
a point of nondegenerate minimum of I/ and it is an equilibrium. Moreover, for almost
all solutions x(¢) close to xy; we have x(t) —x, as t— * », However, for all these sol-
utions except the trivial one, lim sup | &(¢) | = « as t— = . Thus there are no doubly
asymptotic solutions. This example also shows that in general it isn’t true that if () —
—x, as t— oo, then &(t) — 0. However, if W has a nondegenerate minimum at x,, then
this is so. The proof is contained in § 4.

3) If &, is a point of nondegenerate maximum for U and w = 0, then under weak
additional assumptions most of the trajectories x(t) tend to xy as ¢ — + «. The proof of
this result involves Lyapunov type arguments [11] and is much simpler than the proof
of Theorem 2.1. However, lim sup |&(¢)| =  and so these solutions can’t be called
asymptotic. to=e

4) Suppose that there exist a finite number of minimum points «; of U. We cali-
brate w so that w(x;) = 0 for all 7 and Vu(x,) is antisymmetric. Suppose that the points
x; are nondegenerate minimum points for the function Win (2. 6) and that the function
V takes the same value at all points x;. Then there exist heteroclinics joining any two
points x; and x;. For ¢ # j, the proof is simpler than that of Theorem 2.1 since it involves
only minimization of the action functional. Moreover, for each pair x;, «; (also with 1 =
=j), there exist an infinite number of heteroclinic trajectories connecting x; with x;. The
proof of this result is similar to the proof of Theorem 2.1.

5) We will show that the number of doubly asymptotic trajectories is at least
cat Q(M), where £2(M) is the loop space of M. By Serre’s theorem [16], cat Q(M) is infi-
nite for a compact manifold M.

The existence of cat Q(M) trajectories with the properties claimed in Theorem 2.1
can be obtained also for noncompact M if certain additional completeness assumptions
are satisfied. For example, it is sufficient that the distance d on M defined by the Rie-
mannian metric K is complete, V is bounded from below and W(q)d?(q, xo) = ¢ > 0 for
all ¢ outside a small neighborhood of x.

Next we give an example showing that in general, if #, is a nondegenerate minimum
of U, but not of W, then Theorem 2.1 doesn’t hold.
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EXAMPLE. — Suppose that in the local coordinates # e R? in a neighborhood of x, the
Lagrange function has rotational symmetry, for example

. ., B
L==|&|*+ a{Juw, &) + —2—|9c|2,

Do

where J is the standard symplectic matrix. We can always assume that L is defined on
TM x R with compact M. For example, we can explicitly extend L to T7S? X R conserv-
ing rotational symmetry. We have

) 1
U=—|z|*, W= E(l—a2)|ac|2.

Thus z = 0 is a nondegenerate minimum for U, and it is a nondegenerate minimum for
W if |a| <1. It is easy to show that for ¢ >1 and any solution x(f) # 0, we have
lima(¢) = 0 and lim sup | #(¢) | =  as t—> . Thus for a > 1 there exist no asymptotic
solutions to the equilibrium % = 0.

Indeed, perform the transformation of variables & = exp( — (at%/2) J)y. Then

L—1|'|2+(1—a2)t21 |2
519 PHLAR

and the result follows from the WKB approximation [11].

3. — Kirchhoff problem.

This paper was motivated by the following classical problem of the rigid body dy-
namics. Consider a rigid body moving in an infinite volume of incompressible ideal
fluid. We assume that the fluid is at rest at infinity and has zero vorticity, so that the
flow is potential. Then the motion of the fluid is completely determined by the motion of
the body. Thus the system of the body and the fluid has six degrees of freedom and the
configuration space N is diffeomorphic to the Euclidean group Z(3), which is a semidi-
rect product SO(3) x R®. Since the system of the body and the fluid is Lagrangian, the
motion of the body is described by a Lagrangian system with the configuration space
N.

Let — Py, where vy is the unit vertical vector, be the sum of the weight of the body
and the Archimedus force. Depending of the density of the body, P ean be positive or
negative. Denote by O the point of the body where the forece Py is applied. Let w, ve R®
be the angular velocity of the body and the velocity of the point O represented in some
coordinate frame ¢, ¢,, e; connected to the body. Since the kinetic energy of the sys-
tem body-fluid is a positive definite quadratic form, invariant under the action of the
group E(3) on itself by left translations, we obtain [9], [13]

3.1) T=%(Aw,w)—!—(Bw,v)-F%(Cv,v),
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where the matrices 4, B, C are constant and the symmetric matrices A, C and
(3.2) D=A-B'C'R

are positive definite. The matrix A is a sum of the inertia tensor of the body and an ad-
ditional inertia tensor corresponding to the liquid. The eigenvalues of the matrix C are
sums of the mass of the body and the so called additional masses describing inertial
properties of the fluid [13].

Introducing Euler angles and the Cartesian coordinates of the point O in some
fixed coordinate frame, it is possible to write down the equations of motion in the ordi-
nary Lagrangian form. However, they turn out to be quite complicated. It is simpler to
rewrite these equations in a moving coordinate frame ¢;, ¢, ¢;. Then we obtain Kirch-
hoff’'s equations [9]

p+wxXp=—Py, =T,
(3.3) pro=p=—ty P
{JtoxJ+vxp=0, J=T,,

where the unit vertical vector y € S? is represented in the coordinate frame e;, e, €.
Equations (3.3) follow, for example, from the theorem on momentum and angular mo-
mentum respectively in a moving coordinate frame. Let a and 8 be two horizontal fixed
vectors, again written in the coordinate frame e, ¢,, e; connected with the body. They
satisfy the Poisson equations

(3.4) dt+toxa=0, B+oxB=0, j+oxy=0.

Equations (3.3) and (3.4) form a complete system of equations of motion of the
body.

REMARK. — Equations (3.3) are a particular case of the general Poincaré equations of
a Lagrangian system obtained by projecting the ordinary Lagrange equations to some
basis vector fields on the configuration space N. In our case, these fields are the left in-
variant vector fields on the group N = K(3). They correspond to the translations of the
body with unit velocity in the directions of the basis vectors e;, ¢, €5 and the rotations
of the body with unit angular velocity about the same vectors.

The kinetic energy T admits a symmetry group SO(3) X R? acting on the configur-
ation space by rotatlons and translations. Obviously, the force field — Py is invariant
under the action of the group S! X R3, where S'c SO(3) corresponds to rotations about
the vertical. Thus we are in the situation of § 1. The force of magnitude P plays the role
of the homogeneous generalized component F' of the force in § 1 and the coordinate y is
now the height of the point O. The only difference is that the symmetry group is S*! x
x R? and so there are additional integrals of motion. Let

pa:<p: a): pﬁ=<p7ﬁ>’ p7=<]0,}/>

be the components of momentum. Then p,, ps and p, + Pt are integrals of motion. For
simplicity we assume that the horizontal momentum is zero: p, = pg = 0. Without loss of
generality we ean put p, = —Pt. We also assume that the integral of vertical angular
momentum J, = (J, ) is zero.
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By using the last Poisson equation (3.4), equations
pazpﬂ—_"!]yzo’ py:—Pt

can be resolved in v, w:

8.5) v=—C "' (Pty + Bw), w= ¥ xDy + PtyB"C 1y, )
(Dy, v)

The reduced configuration space
M= (SO(3) x R®)/S'x R} =8%= {yeR®: |y| =1}

is the Poisson sphere. Substituting equations (3.5) in the kinetic energy, we obtain the
Routh function (2.1) on TS? x R. After a simple vector algebra calculation, L takes the
form

2t2

2

3.6) L(y,)'/,t)=T+Pt(v,y>=%(Dw,a)>~P (C~'y, y) = PHC 'Bw, y) =

_detD (D', 7) _pt (Dy x BTC 'y, )
2 (Dy,y) (Dy, v)

where D is the matrix (3.2) and we denoted

+t2U(y),

(C'By, v}

3.7 Uly) =
7 (Dy, )

PZ
—‘2—(<C“1V,V>+

The function U coincides with the function (1.4).

REMARK. — The subsequent results can be generalized to the case of nonzero p, and
g, only the Routh function becomes more complicated. However, if J, = ¢ # 0, then the
variational methods don’t work. Indeed, since the projection

S0(3) —S80(3)/S*=S*

is a nontrivial Hopf fibration, the Routh function isn’t a well defined function on 7'S2 x
X R for ¢ # 0 [1]. The reduced system is a system with gyroscopic forces and the differen-
tial 2-form Q of gyroscopic forces is nonexact on SZ Indeed, it is well known that

j J Q2 = 47c [1]. Thus the reduced system is only locally Lagrangian and the variational
2
niethods don’t work.

The function (3.7) on the sphere S is even and so it is natural to regard it as a func-
tion on the projective plane RP% On S? the function (3.7) has at least cat(RP?) =3
pairs of critical points. Let y . € S% y _ = —y . be a pair of minimum points of U. We
assume that it is unique. The doubly asymptotic trajectories are divided into two class-
es: doubly asymptotic to the same point y .. or y _ as t—> + o, or connecting different
points y , and y _. The latter solutions may be called heteroclinics.

The doubly asymptotic solutions correspond to the following motions of the rigid
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body [10]. As £—> oo, the body is falling down in the fluid (or floating up, depending on
whether P is positive or negative), its mass center moves asymptotically along a
straight line and the solid doesn’t rotate. The same holds for {— — «, with reversed
time direction. In general, these straight lines for {—> o and {— — o are different.
The homoclinic and heteroclinic trajectories differ in the following way: for homoclinic
solutions the orientation of the body is the same, up to a rotation about the vertical, as
t— + o and for heteroclinic ones the body turns upside down as — o0 <§< o,

Since the function W in (2.6) turns out to be rather complicated and it is also not
easy to describe the critical points of the function (3.7) explicitly, for simplicity we as-
sume that B = 0. Then the Routh function (3.6) takes the simple form

detA (A7, )
2 (Ay,y)

Thus, L(—y, — 7, t) = L(y, 7, t) and we obtain a Lagrangian system on RPZ

In this case, there exist six equilibrium points which are the critical points of the
quadratic form U on S% Let ¢; be the eigenvalues of the matrix C and e; the correspond-
ing unitary eigenvectors. If ¢; is the smallest eigenvalue and ¢; < ¢y 3, then y . = +¢;
are the equilibrium points corresponding to the minimum of U on S We obtain

88  Ly,nt=

PZ
+12UGy), Uly)= —?<C‘1y, V).

PROPOSITION 8.1. ~ If B =0 and ¢, < ¢y, 3, there exists an infinite number of homo-
clinic motions of the body such that y(t) —e, and y —0 as t— = < and also an nfi-
nite number of heteroclinic motions such that y(t)— *e; and y —0 as t— + .

Physically, the direction of ¢; and —e; is those, in which the resistance of the fluid is
minimal.

Proor. — The existence of heteroclinic trajectories from y _ to y . is practically obvi-
ous: they are obtained by minimizing the action functional on the set of curves connect-
ing ¥ _ with v , on S* and so the proof doesn’t even need the manifold structure on the
space of curves. On RP?, heteroclinic trajectories correspond to homotopically nontriv-
ial homoclinic trajectories.

The existence of an infinite number of heteroclinic trajectories from y _ to y . and
an infinite number of homoclinic trajectories to one and the same point y , or y _ fol-
lows from Theorem 2.1, applied to the system on RPZ Indeed, both connected compo-
nents of the loop space of RP? are isomorphic to the loop space of S% and so their cate-
gory is infinite. m

EXAMPLE. — Suppose that the body has three orthogonal symmetry planes and the
distribution of masses is also symmetric. Then B = 0 and the Routh function takes the
form (3.8), where the matrices A and C can be diagonalized simultaneously:

A:diag(alya%a/?»)a C:diag(ChCZ, c3)-

Hence Lagrange’s equations with the Lagrangian (3.8) have three invariant submani-
folds

N;={(y,?)eTS*% y;=p;=0}, i=1,2,3
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in the phase space T'SZ For example, on N3 we can use the generalized coordinate
¢pmod2x defined by

yi=cosg, yp=sing.

Passing to the projective plane means performing the transformation 6 = 2¢. Then, up
to a function of ¢ and a constant multiplier, the Lagrangian L;=L|y, takes the
form

(eg—¢1)

1.
Ly==6*+kt?’(1 ~cos@), k=P?
2 C1Ca0g

The equation of motion is as follows:

(3.9 0 = kt%sing .

This equation was first obtained and studied by Chaplygin [5]. The qualitative proper-
ties of the solutions were analyzed by Kozlov [11].
In this case, Theorem 2.1 yields the following

PROPOSITION 3.2. — For any m e Z theve exists a solution 6(t) of equation (3.9) such
that tlim 0(t) =0 and tlim 0(t) =2zm. Thus the body performs m/2 full rotations

around o horizontal axis. For even m these solutions are homoclinic trajectories and
Sfor odd m heteroclinic ones.

In fact, since the configuration space is a circle, Proposition 3.2 has an elementary
proof based on minimizing of the Hamilton action. For m =1, Proposition 8.2 was
proved in [10].

4. — The variational problem.

In this section we reformulate the statement of Theorem 2.1 in a variational form.
Let xy € M be the unique minimum point of &/ on M and let it be nondegenerate. With-
out loss of generality, we can assume that

40 w(xy) =VU(xg) =0,  Ulwy) =WViwg) =0,  Va(zg) = — (Vaw(ay))” .

Indeed, adding a constant to U or V doesn’t change Lagrange’s equations.

To prove Theorem 2.1, we represent doubly asymptotic solutions as critical points of
the action functional on a suitable function space. The manifold M can be smoothly em-
bedded in RY for N = 2% + 1 and, up to a translation, 2, can be assumed to coincide with
the origin of RY. Denote by (-, -) = | - |% the the Euclidean metric in RY, and also its re-
striction to M. Then we can identify T,M with T,F M for any xeM.

REMARK. — It is standard [14] to embed M into some RY isometrically by using
Nash’s theorem. Then K(x, #) = | & |?/2, which simplifies the notations. However, this
approach requires that Ke(C® and also it isn't natural from the physical point of
view.
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Denote
9= (v AC(R, RY): o] < =},

where AC(R, RY) is the set of absolutely continuous curves in RY and

@

ol = [ (19 |2+ 2 |0t |?) dt

— 0

Denote by & the Sobolev space W 2(R, RY) with the norm

el = [ (it 2+ Juih) |?) dt

It is easy to see that 3€c & and
4.2) lul: < V2l for all wedc.
Recall that § is continuously embedded into C°(R, RY) and

(4.3) lull = sup |u(t) | S|pfy for all wes.
teR

LEMMA 4.1. - The set 3 1s a Hilbert space.

PRrOOF. — Only the completeness needs to be proved. Let {g, } be a Cauchy sequence
in 9. By (4.2), {g,} is also a Cauchy sequence in &. Since § is complete, there is ge 8
such that, up to a subsequence, |lg, — gll; —0 as n—> . We can then extract a subse-
quence, always denoted {gq,}, such that |lg, — ¢l|. —0 and §,—> ¢ almost everywhere.
By the assumption and the Fatou lemma, for any £ > 0, there exists m, € N such that if
n > m,, then

5]

[ Jim, (1 (8 = 3(8) |2 + £ 10,0 = 4, ®)|?) db < lim inf lg, - [P < €2

-~ 00

Hence ||g, — q|| < &. And this means that |jg, — ¢|| >0 as n— . =

ProrosiTiON 4.1. — The set
M= {qed: qlt)eM for all teR}

18 a complete Hilbert submanifold in 3¢ and its tangent space at any point q e IN 1s
gtven by

T, M= {vedl: v(t)eT,yM for all teR}.

Proor. - From (4.2)-(4.8) it follows that 91 is a closed subset in 3. The proof of the
fact that 91 is a manifold is standard. We skip the definition of the manifold structure
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here since later we will use another representation of the Hilbert manifold structure on
I which follows from the decomposition in Lemma 4.3 below. =

The Hamilton action I is defined on N as

o

(4.4) I(g) = j Lig(®), §(t), D) dt .

—

Since K(x, %) is a homogeneous quadratic form in &, by (4.1) there exist constants
a, f>0 such that

|K(z, ©) + tw(x), &) + 2 U@) | <a(| 2|2+ 8% |2]®), |[V(@)| <B|z|

for all (x, %) e TM. Since

1 12
[ |q<t>|dts( [ pdt) ( [t2|q<t>|2dt)“2<z||qn,

[t =1 MES! HES!
the integral (4.4) is convergent for any ¢ e .
LEMMA 4.2. — For any c >0 there exists ¢; > 0 such that

4.5) P <er, supt|(t) |?<4e
te

for all ge M = {qen: I(g) <c}.
Here and henceforth by c; we denote positive constants depending only on c.

Proor. — Take sufficiently small 6 > 0 and let C(x): T, M — T.¥ M be the symmetric
positive definite operator such that

46) Kz, &) = %(C(x) B a4 0| &2

Since the function (2.6) has a strict nondegenerate minimum at x;, for sufficiently small
6 >0 we have

1
4.7 F(x) = Ulx) - E(w(x), Clx) ' w(x)y = 6|x|® for all xeM .
Thus, denoting for simplicity ¥ = & +tC(x) " *w(x), we have

Lz, 2, t)=06|a |+ %(C(x)y, y)+ 2 F(x) + Viw) 2 6(| |2+ t% 2| + Vix).
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In turn, this gives

Lig, ¢, 1) dt =0 j (1412+t%|g|?) dt +2minV,

j
J
it <1 [t <1

: i, O 6
[ Lg gz | (6iqiz+§t2!ezlz+ Etzlqlz—ﬁlql)dtB

1t >1 6] >1

=

= |
5 2
: 20t 2

|} >1

/
. 0 2 S . 2
(é|q|2+§t2|q|2—————ﬂ )dta— [ Gare+eigda-

) >1

Those estimates, together with the assumption I(q) < ¢, yield the first inequality (4.5).
Now, using the Schwartz inequality and (4.2), we have

t

Jr(lq(é) {2 +25(q(s), q(s))) ds

0

Hlg(t) |2 <

< j lg(s)|? ds +

— 00

* 12{ = 1/2
+2( f [@’(S)IQdS) (j82|q(8)|2ds) <4c,.

Next we are going to perform computations in a coordinate chart around ;. In or-
der to simplify the notations, we embed M to RY in such a way that some neighborhood
of 2, in M is contained in the linear subspace R"c RY. We may also assume that this
neighborhood coincides with the ball

By ={xeR": |x| <2}.

Such an embedding can be easily constructed by a partition of unity. Thus we have x €
eR" for any xe M cRY such that |x| <2.

Fix a constant ¢ > 0. By Lemma 4.2, there exists 7 = T(c) > 0 such that ¢(¢t) e B, C B,
for all e 9N° and |t| > T. Set A =WH2([-T, T], M) and

A, = {quC((—OO, —T]y Bl): HqHZ* < OO},

A, ={geAC(T, »), By): llgli < =},

where

-7
lal? = [ (¢21a® >+ 40)]%) dt ,

0

gl = [(¢2 1a® 1+ 1a0) ?) @t

and |- | is the Euclidean metric in R*c RY. It is well known that A is a complete Hilbert
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manifold [14], while A . are open sets in the Hilbert spaces
A_ca ={veAC((— oo, =T R"): |pf < o},
A, ca, ={weAC(T, »), R"): b} < =}.
Define the mappings g.: M—A . and g: M—A as
9 D=9, -1, ID=qli-r.115 9+ (@D =9|i1, )

LEMMA 4.3. — The mappings g.: M—>A . and g: M—A are of class C*.

Since we skipped the definition of the smooth structure on I, this lemma can be re-
garded also as a definition of the structure of a Hilbert manifold on JN. Indeed, the
map

g XgXg 1 M—>A . XAXA_
yields an identification of I° with an open set in the Hilbert submanifold
{(qe, v, 9-) A XAXA_: g (=T)=p(=D}

of eodimension 27 in A . XA XA_.
Define the functionals J.: A . —R and J: A—R as
-7

J_(q)= [ Ligtt), i, v)dt,

—

T
J@ = [ Lg®, qw), vt
=T

T (@) = [Lig), (o), dt .
T

It is convenient to split the restriction |- of the action functional in the following
way:

I=J_og_+Jog+J, ofy .

PROPOSITION 4.2. — The functional TeC1(9M) and the dervivative I’ is locally
Lipschitz.

Actually I e C?(91), but we won’t use this.

ProorF. — Take arbitrary ¢ > 0, choose 7 = T(c¢) > 0 and define the sets A . and A,
the mappings g. and g and the functionals J. and J as above. In view of Lemma 4.3,
Proposition 4.2 follows if we prove that J _, J and J, are of class C* with locally Lips-
chitz derivative.
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We start showing that J., is differentiable on A ,. Fix ge A , and take ve T, A , =
= 3¢, such that [[v]? < 1/2. By (4.2) and (4.3), [|v]|.. < 1. Henee q(t) + v(t) e By for allt > 7,
and it is possible working in R*. By Taylor’s formula,

Lg(t) + o), g(t) + t), t) =

= L(g(®), §(®), 1) + (L, (g(D), §(8), B), v(®)) + (L3 (q(?), 4(8), ©), 0(2)) +

1 . 1 T
+ E(quv(t), () + (Lgg (D), v(t)) + E(L;ﬁv(t), o(t)),

where the second derivatives of L are evaluated at a point (qg(t) + 6(¢) v(t), g(t) +
+ 6(t) 9(t), t) with 0 < 6(t) <1 a measurable function. In view of (2.3), for any (¢, ¢, t) €
eBy x R" X R, we have

(4.8) Lgllseal+t2+141®), |Igllset+ gD, ILyglsc,

where ||-|| denotes the operator norm of a matrix. Since ¢(t) + 6(¢) v(t) € B, for all t > T,
by using (4.8) and the Schwartz inequality, we get

@ @

j(quv(t), v(t))dt[ < fc2(1 + 12+ | 4 + 0 () |2) |u(t) |2dE <
T T

<Gl +2[l gl + o3 ) < 2B+ 4dlglt + [RIEDIPIE < esllolft

I j (L 0(t), v(t))dti < j e (t + | (t) + @) D) | 9D w(t) | dt <
T ! T

< e (ot + floll ol + llol3 ) < e2 @+ V2diglls + ol Dl < el

[{Layio), 30) de l < [ 150 |2dt < co ol
T

T

These inequalities yield the differentiability of J, on A ., providing at the same time
an expression for J (¢) v. Indeed,

©

[(Lia®) + o), 40 + 0), ) ~ Lig(0), 4(0), 1) -
T

— (L, (q(®), §(®), ), v()) — (Ly (g(8), §(@), 1), b(t») dt ' < cslolf% .

Now we prove that J is locally Lipschitz. Let ¢;, gz 4 , and ve (.. Since ¢; and
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q; take values in B;cR", we can write, denoting u=¢;— ¢,

©

@9 (Jig), v)—{Jil(q), v) = J (L (g2(1), 42 (1), 1) — Lo (@1 (&), ¢, (B, 1), v(D)) —
T

—(Lg(g2(0), Go(8), ©) — Ly (@ (1), ¢u (0), 1), B(D))) dt

= [((Laq 2D, 9D + (Lgyidt), 0(0) + (L u®), 30)) + (Laziat), 5(4)))
T

where the second derivatives of L are evaluated at a point (g;(¢) + s(f)u(t), ¢:(¢) +
+ s(t) w(t), t) with 0 < s(t) < 1 a measurable function. By using (4.8) and the Schwartz in-
equality, we see that the right hand side in (4.9) is majorized by cg|lull- [0]., where ¢ is
a constant depending on |j¢;]|. and [lgz]|.. Consequently,

T4 (g2) = T2 (gDl + < csllgz — qa |+

and we conelude that J. is locally Lipschitz.

The functional J_ can be studied in a similar way. Finally, notice that the functional
J acts on curves which are defined on a compact interval [ -7, T'1. Regularity of such
functionals is well studied in the literature. See, for example, Eells [6], Palais and
Smale [15] or Benci [2] for the fixed boundary value problem or the periodic boundary
problem. The only difference in our case is that the boundary points are free. Exactly
the same proof yields that JeC!(A) and has locally Lipschitz derivative. Proposi-
tion 4.2 is proved. ®

PROPOSITION 4.3. — Critical points of I correspond to the doubly asymptotic sol-
utions such that q(t) —xy and ¢(t)—0 as t— = «.

Obviously, if 7'(¢) =0 for some qe N, then q(¢) satisfies Lagrange’s equations.
Thus Proposition 4.3 follows from

LEMMA 4.4. - If q:[T, ) — M is a trajectory of the system such that q(t) —>x, as
t— o, then ((t)—0 and

(4.10) gl = (1|2 + e |gl® di< oo .
T

Proor. — Changing T if necessary, we can assume that q(f) e B;cR" for t = T. Then
Lagrange’s equations (2.4) take the form

B(q)§ + I(q, §) + 1G(g) ¢ +w(q) —t2VU(g) — VV(g) =0,

where I'is quadratic in §. Denote B = B(0), E = Vu(0) = G(0)/2 and D = V> U(0). Then
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(4.6) and (4.7) yield the inequality
, 1 ! 12 2
(4.11) —2—(31}, v)+ {Eu, v)+ E(Du, w)yZo(ju|*+ |v|?) for all u,veR".

First we prove (4.10). Let f(¢) = (Bg(t), g(t))/2. Then f= (¢, B§). Using (4.11), for
sufficiently large ¢ we obtain a version of the well known Lagrange inequality

(412)  f=(B§ 4 ~2Kq, B +2(Dq, )~ alq|(|§]*+12|g|) - Blg| =

ﬂz
26t% "’

. 1.,
Z0([q 1"+ t*1q1) — Blal = S o[ * +2* ¢ ~

where a and § are positive constants. Since f(¢) —0, we have lim inf | ft) | =0. Inte-
grating inequality (4.12), we get (4.10) as in the proof of (4.5). We also obtain

t2of  B®
yl 26t2’

(4.13) f= A=|B.

Now we show that t2f(t) —0 as t— . Fix ¢ > 0 and suppose that there exists a se-
quence f,— o with tZ2f(t,) > . Put s =t,. Without loss of generality, we can assume
that

BVA +3.
5V2e
Suppose, for example, that f(s) <0. The case j‘(s) = 0 is similar. Inequalities (4.13) and

(4.14) yield f(t) =0 and f(¢) <O for all te [s — 1, s]. Hence f(¢) = f(s) >es 2forall te
els—1, sl Thus

(4.14) s>

8 26 8
2 2 2
Jt lg®)] at> = flt dt =

s—1

&
7
Taking a sum over infinitely many s = ¢,, we obtain a contradiction to (4.10).

To show that ¢(f) —0 as t— o, we use the energy theorem. Let H =K —t2U - V.
Then

H=~L=~(wg),q)~2tU(q).

Thus for any T < i, <i{; we have
: 2c
Hly=Hlu| e [Calld] +tal*) de< =l
t 0

where ¢; is some positive constant. Thus there exists the limit of H as {— . Since
t2 IQI2~*>0 as t— «, we obtain ¢(t)—0. =
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In next section we'll prove that the functional I satisfies the Palais-Smale condition,
which implies Theorem 2.1.

5. — The Palais-Smale condition.
ProroSITION 5.1. — The action functional I satisfies the Palais-Smale condition.

This means [15] that any PS sequence, i.e. any sequence {g, } c 9%, for which I(g,) is
bounded and I'(q,)—0 as n—> o, possesses a convergent subsequence.

PRrOOF. - Let {g, } c M be a PS sequence. We know that ¢, € ° for some ¢ > 0 and
so, by Lemma 4.2, |l¢, || is uniformly bounded. Also, up to a subsequence, ¢, converges
uniformly to some curve ¢, eL (R, M):

(5.1) lgn — qolle =0 as n—> o .

To the constant ¢, we can associate some 7 > 0, the sets 4 . and A, the mappings ¢..
and g and the functionals J. and J introduced in § 4. In fact, for any ¢ > 0, we can take
T=T,> 0 so large that g,(t) e R" and |q,(t) | <e for all |¢| > T and all » e N, Plainly,
this still holds true if a larger T is chosen. Later on, we'll take ¢ > 0 sufficiently small
and T > 0 sufficiently large.

Denote

0p =9-(q): (=, —T]—=B,,
Va=9(q.): (=T, T1>M,
05 =94+(g.):(T, ©)—>B,.
Thus y,eA and o; €A .. Since I'(g,)—0 as n— =, we have,
[(I'(gu), v)| S e, for all veT, om
with ¢,—0 as n— «. For any ve T, I such that v|g\_7, 7 =0, we have
<I,(qn)’ v)={(J"(¥n), ’U|[—T, T]>-
Similarly, by taking ve T, 9 such that v(t) =0 for all {<T, we have
(1'(qa), v) ={(JL(ay), V|7, «))
and an analogous statement holds true for the functional J_. Thus
(5.2) (' () v) <, [l

for all ve T, A such that v(+T) = 0 with ¢,,— 0 as n— . Here |Jv|| means the norm in
T, A. Similarly

(5.3) (Jilop), vy<se,lol.
for all ve 3¢, such that v(+=T) =0.



272 M. L. BerrorTi - S. V. BOLOTIN: Doubly asymptotic trajectories, etc.

Lety ., 0, and 0% be the restrictions of ¢, to [ T, T], (— o, —T]and [T, «) re-
spectively. From (5.1) it follows that y,—v . and o — o uniformly.

LemMma 5.1, — If J(yv ) ts uniformly bounded, y,— vy . uniformly and (5.2) holds
true, then {y.} has a subsequence converging in A to y .

ProoF. - Denote x. =y (=T). If the boundary points v ,(+=1) of the curves y,
were fixed, then Lemma 5.1 would coincide with the well known fact that the Palais-
Smale eondition holds for the Hamilton functional J on

Q={yeW\ ([ -T,T), M): y(=T)=w.}.

In our case, the proof goes with some small modifications. However, also the reduction
to the case y ,(£T) = x. is possible. For the convenience of the reader we outline the
proof.

There exists a sequence of smooth families of maps f, ;: M — M, depending on
te[—T, T], such that f, .r(y,(£7T)) =x. and the sequence f, , tends to idy, in the C*
topology. For example, the map f,, ; can be defined as follows. Let 7, be the affine map
from [~T, T1 to RY such that

N lxT) =y (=T)—x. .

Then |, |lcz— 0. Let £, ; (%) be the point in M closest to the point & — 7,,(¢). If n is suffi-
ciently large, the map f, , is well defined and satisfies the stated conditions.

Now define the sequence w, e Q2 by the formula w,(t) =f, ;(y,(¢)). Since ||lo, —
— 7 .||—0 and the map x— df, (x): T,M — T )M tends to the map x—>idy y in the
C! topology, we obtain '

[T (@), u) = (T (), v)| <O, llull, 6,—0,

for any uwe T, . Here v(t) =df,, ;(y,.(t)) 'u(t). Since w(=T) =0, by (6.2) w,eQ
is a PS sequence and hence it converges to y ... Hence y, is also converging to y
in A4, m

Since the behaviour of the sequences {o, } and {0, } can be studied in a similar
way, below we carry out the details for {0, } and write 0,=0, and 0, =07.

LEMMA 5.2. — Along a subsequence, |6, — 0 |, —0 as n—> o.

PROOF. — It is very similar to the proof of the PS condition in [14]. It is sufficent to
show that {o,} is a Cauchy sequence with respect to the norm |-|,.
For te[T, ») put

Snm(t) = Gm(t) - Un(t) and Cnm(t) = (Tz/tz) ‘Snm(T)

We point out that &,,,(T) —E,(T) =0 and ||&,./ls —0 as n, m— <. By (5.3),
(J(00), Epm = Cum)—0. Since |J1(0,)|| is bounded, also (J.(0,), &Emm)—0 as
n, m—> ». We can extract a subsequence such that the sequence J, (¢,,) is converging.
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Hence
anm=J+(am)——J+(O-n)_<J-l+(on)’ gnm>_)0 as n, m—> o .

That {0,} is a Cauchy sequence will follow from an estimate on ¥, which we are
going to establish next. We estimate separately the terms in the integral ¥, corre-
sponding to the terms in the Lagrangian (2.3).

We assume that £ >0 is so small that
(5.4) |B(x)—Bl|<d2, |Vw)-E|<d2, |V2U®)-D|<d2
for all x such that |z| <e.

First we estimate the terms in ¥, involving K by using (5.4) and the fact that
|o,(t)| <e for all te[T, »):

(55) K(Omy 6m) - K(Un: 6%) - <Kq(0n’ &n)a gnm) - <K¢}(Un; (}n)a énm} =

=K(o,, énm) + <Kq(rnm, 6m)y énm) - <Kq(0n’ (‘Tn)’ gnm> =
> l EOE oy é Eog2_ < 42 .2
= 2<B§nm7‘§nm> 4|§nm| Cl(loml +|On| )[Enm'

Here and in (5.6)-(5.8) we denote by 7,,,(t) some intermediate point between o,,(¢) and
o (t). By ¢; we denote some fixed positive constants independent of e.
For the linear in velocity term in L, we have by (5.4)

(56) <w(0m)7 ém) - <w(0n)) én) - <Vw(0n)§nm» &n> - <7/U(O'n), énm> =

= <Vw(fnm)‘§nm’ 6'm>__ (V’I/U(O'n) 'Enmv C.fn> = <Vw(0n) gnm, énm>_02|7:nm—o'n| |§nm| |&m | =

= <E§nm’ énm>_ glgnmllénml —C ]gﬂm |2|(}m | .

For the term involving U, we have

(57) U(Gm) - U(Gn) - <VU(U’I’L)’ gnm> =

1
<V2 U(Tnm)gnmy En’m) = E(Dgnm, Enm) - g‘ |§nm |2 .

Do | =

Finally,

(58) V(Om) - V(O'n) - (VV(Un)y Enm) = %<V2V(Tnm)§nm1 gnm> = _c3 |§nm |2 .
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Putting together (5.5)-(5.8) and using (4.11), we obtain

1, . . t2
p,o 2= , — ~
n TJ’ > (Bluns &) + UBE s Eun) + — (D s £

o .
_E(lgnmiz_!_tzlgnm!z)_% 1&%71@|2)dt_@mn2

7
©

0 . 1 c
= [ =& |2+ 082 = — =
j(2|§ | (2 T%5

T

)lgmn Iz) dt — @nmf

where we denoted

0 = 10| + o n B wnlle + calllolls + llon | llorall 18 el -

Since €]l —>0 as #, m— © and |jo,|, is bounded, we have @,,,—0.
As already noticed, we can choose T as large as we like. Let T > 2v/c3/d.
Then

o)

as n, m— . Hence ¢, is a Cauchy sequence. =

Lemmas 5.1-5.2 imply that, up to a subsequence, ¢,—q. in 3. Proposition 5.1 is
proved. ™

Proor oF THEOREM 2.1. — The manifold 91 is homotopically equivalent to the loop
space

QM) = {geC°(10, 1], M): ¢(0) = =g(1)}.

We recall that since M is a compact manifold, cat (M) = . Indeed, if 7, (M) is finite,
then the universal covering M is a compact simply connected manifold. By Serre’s theo-
rem [16], cat Q(M) = . A simple argument then shows that also cat Q(M) = . If
7 1(M) is infinite, then Q(M) has infinitely many connected components and so again
cat QUM) = co.

This fact together with Propositions 4.1, 4.2 and 5.1 implies that the action function-
al I defined on I has infinitely many critical points. By Proposition 4.3, each of them
corresponds to a solution q(t) of system (2.2) such that ¢(¢) —ux, and ¢(t) —0 as

t—> =+ 0, B
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