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Abstract—The standard Capon beamformer (SCB) is known
to have better resolution and much better interference rejection
capability than the standard data-independent beamformer when
the array steering vector is accurately known. However, the major
problem of the SCB is that it lacks robustness in the presence of
array steering vector errors. In this paper, we will first provide
a complete analysis of a norm constrained Capon beamforming
(NCCB) approach, which uses a norm constraint on the weight
vector to improve the robustness against array steering vector
errors and noise. Our analysis of NCCB is thorough and sheds
more light on the choice of the norm constraint than what was
commonly known. We also provide a natural extension of the
SCB, which has been obtained via covariance matrix fitting, to the
case of uncertain steering vectors by enforcing a double constraint
on the array steering vector, viz. a constant norm constraint and
a spherical uncertainty set constraint, which we refer to as the
doubly constrained robust Capon beamformer (DCRCB). NCCB
and DCRCB can both be efficiently computed at a comparable
cost with that of the SCB. Performance comparisons of NCCB,
DCRCB, and several other adaptive beamformers via a number
of numerical examples are also presented.

Index Terms—Adaptive arrays, array errors, diagonal loading,
doubly restrained robust capon beamforming, robust adaptive
beamforming, robust capon beamforming, signal power estima-
tion, steering vector uncertainty set.

I. INTRODUCTION

ARRAY signal processing has wide applications in radar,
sonar, acoustics, astronomy, seismology, communica-

tions, and medicine. One of the most important tasks of array
processing is beamforming. The standard data-independent
beamformers include the delay-and-sum approach, which is
known to suffer from poor resolution and high sidelobe prob-
lems, as well as methods based on various data-independent
weight vectors for sidelobe control [1], [2] at the cost of even
poorer resolution. The data-dependent Capon beamformer
adaptively selects the weight vector to minimize the array
output power subject to the linear constraint that the signal
of interest (SOI) does not suffer from any distortion [1]–[4].
The Capon beamformer has better resolution and much better
interference rejection capability than the data-independent
beamformer, provided that the array steering vector corre-
sponding to the SOI is accurately known.
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However, the knowledge of the SOI steering vector can be
imprecise, which is often the case in practice due to differ-
ences between the assumed signal arrival angle and the true
arrival angle or between the assumed array response and the
true array response (array calibration errors). Whenever this
happens, the Capon beamformer may suppress the SOI as
an interference, which results in significantly underestimated
SOI power and drastically reduced array output signal-to-in-
terference-plus-noise ratio (SINR). Then, the performance of
the Capon beamformer may become worse than that of the
standard beamformers [5], [6].

The same happens when the number of snapshots is relatively
small (i.e., about the same as the number of sensors). In fact,
there is a close relationship between the cases of steering vector
errors and small-sample errors (see, for example, [7]) in the
sense that the difference between the sample covariance matrix

(estimated from a finite number of snapshots) and the cor-
responding theoretical (ensemble) covariance matrix can be
viewed as due to steering vector errors.

Many approaches have been proposed during the past three
decades to improve the robustness of the Capon beamformer,
and the literature on robust adaptive beamforming is extensive
(see, for example, [2] and [8]–[12] and the many references
therein). Among these robust approaches, diagonal loading (in-
cluding its extended versions) has been a popular and widely
used approach to improve the robustness of the Capon beam-
former (see, e.g., [13]–[23] and the references therein for more
early suggested methods). However, for most of the diagonal
loading methods, it is not clear how to choose the diagonal
loading level based on information about the uncertainty of the
array steering vector.

Only recently have some methods with a clear theoretical
background been proposed (see, for example, [10]–[12] and
[24]–[26]) which, unlike the early methods, make explicit use
of an uncertainty set of the array steering vector. In [24], a poly-
hedron is used to describe the uncertainty set, whereas spher-
ical and ellipsoidal (including flat ellipsoidal) uncertainty sets
are considered in [10]–[12] and [25]. The robust Capon beam-
forming approaches presented in [10] and [11] coupled the for-
mulation of the standard Capon beamformer (SCB) in [3] with
a spherical or ellipsoidal uncertainty set of the array steering
vector, whereas we coupled the formulation of SCB in [27] with
an ellipsoidal uncertainty set to obtain a Robust Capon Beam-
former (RCB) in [12] and [25]. Interestingly, the methods in
[10]–[12] and [25] turn out to be equivalent and to belong to
the extended class of diagonal loading approaches, but the cor-
responding amount of diagonal loading can be calculated pre-
cisely based on the ellipsoidal uncertainty set. However, our
RCB in [12] is simpler and computationally more efficient than
its equivalent counterparts, and its computational complexity is
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comparable to that of SCB (see [12] for details). Moreover, our
RCB gives a simple way of eliminating the scaling ambiguity
when estimating the power of the desired signal, whereas the
approaches in [10] and [11] did not consider the scaling ambi-
guity problem.

In this paper, we will first provide a complete analysis of
a norm constrained Capon beamforming (NCCB) approach,
which uses a norm constraint on the weight vector to improve
the robustness against array steering vector errors and noise.
Our analysis is thorough and sheds more light on the choice
of the norm constraint than what was previously known [13].
We also provide a natural extension of SCB, which has been
obtained via covariance matrix fitting, to the case of uncer-
tain steering vectors by enforcing a double constraint on the
steering vector, viz. a constant norm constraint and a spherical
uncertainty set constraint, which we refer to as the doubly
constrained robust Capon beamformer (DCRCB). We show
that the DCRCB algorithm provides an exact solution to the
aforementioned constrained optimization problem, which is not
convex, whereas the RCB algorithm in [12] and [25] provides
an approximate solution by first solving a convex optimization
problem without the norm constraint and then imposing the
norm constraint by possibly violating the uncertainty set con-
straint. We also show that like RCB, both NCCB and DCRCB
can be efficiently computed at a comparable cost with that of
SCB. Additionally, we provide insights into the choice of the
smallest spherical uncertainty set for the SOI steering vector.
Performance comparisons of NCCB, DCRCB, and RCB via
a number of numerical examples are also presented. For the
comparison with the eigenspace beamformer, see the numerical
examples in [10].

Our paper is organized as follows. In Section II, we formulate
the problem of interest. In Section III, we provide a complete
analysis of NCCB. In Section IV, we present the DCRCB al-
gorithm and explain its relationship to RCB. We also explain
how to choose the smallest spherical uncertainty set for the
SOI steering vector. Numerical examples comparing the perfor-
mance of SCB, NCCB, RCB, and DCRCB are given in Sec-
tion V. Finally, Section VI presents our conclusions.

II. PROBLEM FORMULATION

Consider an array comprising sensors, and let denote
the theoretical covariance matrix of the array output vector. We
assume that (positive definite) has the following form:

(1)

where are the powers of the uncorrelated
signals impinging on the array, are the so-called
steering vectors that depend on the array geometry and are func-
tions of the location parameters of the sources emitting the sig-
nals [e.g., their directions-of-arrival (DOAs)], denotes the
conjugate transpose, and is the noise covariance matrix [the
“noise” comprises nondirectional signals, and hence, usually
has full rank as opposed to the other terms in (1) whose rank is
equal to one]. In what follows, we assume that the first term in

(1) corresponds to the signal-of-interest (SOI) and the remaining
rank-one terms to interferences. To avoid ambiguities, we as-
sume that

(2)

where denotes the Euclidean norm. We note that the above
expression for holds for both narrowband and wideband sig-
nals; in the former case, is the covariance matrix at the carrier
frequency, and in the latter case, is the covariance matrix at
the center of a given frequency bin. In practical applications,
is replaced by the sample covariance matrix , where

(3)

with denoting the number of snapshots and representing
the th snapshot.

The robust beamforming problem that we will deal with in
this paper can now be briefly stated as follows: Extend the
Capon beamformer in order to be able to accurately determine
the power of SOI, even when only an imprecise knowledge of
its steering vector is available. More specifically, we assume
that the only knowledge we have about is that it belongs to
the following uncertainty sphere:

(4)

where and are given ( is the assumed steering vector of
SOI, and is a user parameter whose choice will be discussed
later on). We also assume that the steering vector satisfies the
same norm constraint as of (2):

(5)

The assumption that (we choose ) is reasonable
for many scenarios including the cases of the look direction
error and phase perturbations. It is violated when the array re-
sponse vector also has gain perturbations. However, if the gain
perturbations are small, the norm constraint still holds approxi-
mately (as in Section V for the numerical examples).

In this paper, we focus on the problem of estimating the SOI
power from (or more practically ) when the knowledge
of is imprecise. However, the beamforming approaches we
present herein can also be used for other applications, including
signal waveform estimation.

III. NORM CONSTRAINED CAPON BEAMFORMING

The common formulation of the adaptive beamforming
problem that leads to SCB, when is assumed known, is as
follows (see, e.g., [1], [3], [4]):

a) Determine the 1 vector that is
the solution to the following linearly
constrained quadratic problem:

subject to (6)

b) Use as an estimate of .
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The solution to (6) is easily derived:

(7)

Using (7) in Step b) above yields the fol-
lowing estimate of :

(8)

The SCB adaptively selects the weight vector to minimize
the array output power subject to the linear constraint that SOI
does not suffer from any distortions [1]–[4]. SCB has better res-
olution and much better interference rejection capability than
data-independent beamformers, provided that is accurately
known. However, the knowledge of can be imprecise, which
is often the case in practice due to the differences between the as-
sumed signal arrival angle and the true arrival angle or between
the assumed array response and the true array response (array
calibration errors). Whenever this happens, we use the assumed

in lieu of the true in the SCB, and the performance of SCB
may become worse than that of the standard beamformers [5],
[6]; specifically, in such a case, SCB may attempt to suppress
the SOI as if it were an interference. Since is usually close
to , the Euclidean norm of the resulting weight vector (which
equals the white noise gain at the array output) can become very
large in order to satisfy the distortionless constraint
and at the same time cancels the SOI, i.e., (note that
the previous two conditions on imply , which
can hold only if whenever is relatively
small).

The goal of NCCB is to impose an additional constraint on
the Euclidean norm of for the purpose of improving the ro-
bustness of the Capon beamformer against SOI steering vector
errors and noise (see, e.g., [13]–[17] and the references therein).
Consequently, the beamforming problem is formulated as fol-
lows:

subject to

(9)

The problem with NCCB is that the choice of is not easy to
make. In particular, this choice is not directly linked to the in
(4) or the uncertainty of the SOI steering vector. The DCRCB
algorithm that we will present in Section IV, on the other hand,
does not suffer from this problem.

A solution to (9) was found in [13] using the Lagrange multi-
plier methodology. We provide herein a more thorough analysis
of the optimization problem in (9), which provides new insights
into the choice of and prepares the grounds for solving the
DCRCB optimization problem, which will be discussed later
on.

Let be the set defined by the constraints in (9). In addition,
let

(10)

where and are the real-valued Lagrange multipliers with
being arbitrary and satisfying so that

can be minimized with respect to . (This optimiza-
tion problem is somewhat similar to the one in [28].) Then

for any (11)

with equality on the boundary of .
Consider the condition

(12)

When the condition in (12) is satisfied, the SCB solution in (7)
with replaced by , i.e.,

(13)

satisfies the norm constraint in (9) and, hence, is also the NCCB
solution. For this case, and the norm constraint in (9) is
inactive.

Otherwise, we have the condition

(14)

which is an upper bound on so that NCCB is different from
SCB. To deal with this case, we note that (10) can be written as

(15)

Hence, the unconstrained minimizer of , for fixed
and , is given by

(16)

Clearly, we have

(17)

for any (18)

The maximization of with respect to gives

(19)

and

(20)

The maximization of the above function with respect to gives

(21)

We show in Appendix A that, under (14), we have a unique
solution to (21) (see also [13]) and that the left side
of (21) is a monotonically decreasing function of (see also
[23]), and hence, can be obtained efficiently via, for example,
a Newton’s method.
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Note that using (19) in (16) yields

(22)

which satisfies

(23)

and

(24)

Hence, belongs to the boundary of . Therefore, is our
sought solution. Note that in (22) has the form of a diagonally
loaded Capon beamformer.

We now provide some insights into the choice of for NCCB.
From the distortionless constraint in (9), we have

(25)

and hence, we get a lower bound on (see also [2]):

(26)

If is less than this lower bound, there is no solution to the
NCCB problem. Hence, should be chosen in the interval de-
fined by the inequalities in (14) and (26).

Next, we derive an upper bound on . Let

(27)

where the columns of contain the eigenvectors of , and the
diagonal elements of the diagonal matrix ,

are the corresponding eigenvalues. Let

(28)

and let denote the th element of . Then, (21) can be
written as (see also [13])

(29)

Hence, we have

(30)

which gives the following upper bound on :

(31)

We remark that the computations needed by the search for
via a Newton’s method are negligible compared with those

required by the eigendecomposition of the Hermitian matrix
(or ). Hence, the major computational demand of NCCB

comes from the eigendecomposition of (or ), which re-
quires flops. Therefore, the computational complexity
of NCCB is comparable with that of the SCB, which also re-
quires flops.

To summarize, NCCB consists of the following steps.
The NCCB Algorithm
Step 1) Compute the eigendecomposition of (or, in prac-

tice, of ).
Step 2) If (14) is satisfied, solve (29) for , e.g., by a

Newton’s method, using the knowledge that the
solution is unique and it is lower bounded by 0 and
upper bounded by (31); otherwise, set .

Step 3) Use the obtained in Step 2 to get

(32)

where the inverse of the diagonal matrix is
easily computed, and the vector is avail-
able from Step 2.

Step 4) Compute the SOI power estimate of NCCB

(33)

(which is obtained using ).
Consider the case where (or ) is singular. Let denote

the submatrix of containing the eigenvectors corresponding
to the zero eigenvalues of (or ). Then, the upper bound on

corresponding to (14) becomes

(34)

The above condition on prevents the trivial solution
that would give . To see this, observe
that gives and
also satisfies ; however, under (34), we have

, and hence, the previous violates
the norm constraint in (9). When the condition in (34) is satis-
fied, we still have for NCCB. Moreover, in the steps of
NCCB, there is no need that for all .
Hence, (or ) can be singular, under (34), and the NCCB is
still usable. In particular, this means that we can allow
to compute .

IV. DOUBLY CONSTRAINED ROBUST CAPON BEAMFORMING

We first consider below the derivation of DCRCB and then
explain its relationship with the RCB algorithm we presented in
[12] and [25].

A. DCRCB Algorithm

To derive DCRCB, we use the reformulation of the Capon
beamforming problem in [27] (also see [12] and [25]), to which
we append the uncertainty set in (4) and the norm constraint in
(2). Proceeding in this way, we directly obtain a robust estimate
of , without any intermediate calculation of a vector :

subject to

(35)
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Fig. 1. Power estimates and diagonal loading levels (usingR) versus the steering direction � when � = 1:0 and � = 6:0. The true powers of the incident signals
from �35 , �15 , 0 , 10 , and 40 are denoted by circles, and � = 1:0.

where is given and satisfies (5), and is also given and satisfies
. Note that the first line above can be interpreted as a co-

variance fitting problem: Given and , we wish to determine
the largest possible SOI covariance that can be a part of

under the natural constraint that the residual covariance ma-
trix be positive semidefinite; the solution to this problem coin-
cides with the Capon SOI power estimate in (8) (see [25] and
[27]).

Using the fact that, for given , the solution of (35) w.r.t.
is obtained by (as mentioned above),

the DCRCB problem in (35) can be reduced to the following
problem:

subject to

(36)

Let denote the solution to the above optimization problem.
The SOI power estimate is then calculated as

(37)

Using in (36), we get

subject to Re

(38)

This optimization problem somewhat resembles the NCCB
type of problem (see [13]). Consider first the problem (38)
without the uncertainty set:

subject to (39)

Let denote the first eigenvector in [see (27)]. The solution
to the above problem is the principal eigenvector corre-

sponding to the largest eigenvalue of , scaled so that

(40)

As the eigenvector of a matrix is unique only up to a scalar, we
can choose the phase of so that Re is maximum (which
is easily done, e.g., , where ). If
the so-obtained satisfies Re , then it is our
sought solution to (38), and the uncertainty set is an inactive
constraint.

If not, i.e., if

Re (41)

then is not our sought solution. For this case to occur, must
satisfy

Re (42)

where the second inequality above is due to Re . Let
be the set defined by the constraints in (38). To determine the

solution to (38) under (41), consider the function:

(43)
where and are the real-valued Lagrange multipliers with

and satisfying so that the above func-
tion can be minimized with respect to . Evidently, we have

for any with equality on the
boundary of . Equation (43) can be written as

(44)

Hence, the unconstrained minimization of w.r.t. ,
for fixed and , is given by

(45)

Clearly, we have

(46)

for any (47)
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Fig. 2. (a) For each steering direction �, � is chosen to make NCCB have the same diagonal loading levels as RCB with � = 1:0. (b) Power estimates versus the
steering direction � via the RCB and NCCB approaches. For RCB, � = 1:0. For NCCB, � is chosen as in (a). The true powers of the incident signals from�35 ,
�15 , 0 , 10 , and 40 are denoted by circles, and � = 1:0.

Fig. 3. Power estimates versus the steering direction � when (a) � = 0:7 and (b) � = 1:5. The true powers of the incident signals from �35 , �15 , 0 , 10 ,
and 40 are denoted by circles, and � = 1:0.

Maximization of with respect to gives

(48)

which indeed satisfies [see (42)]. Inserting (48) into (46),
we obtain

(49)

Maximization of the above function with respect to gives

(50)

where

(51)

and

(52)

Similarly to the proof in Appendix A, we can show that, under
(41), is a monotonically decreasing function of . More-

over, as , since . Further-

more, as , . Since
Re [see (41)], it follows that

. Hence, there is a unique solution
to (50), which can be obtained efficiently via, for example, a
Newton’s method. Using (48) in (45) yields

(53)
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which satisfies

Re (54)

and

(55)

Hence, belongs to the boundary of . Therefore, is the
sought solution.

To derive an upper bound on , rewrite (50) as

(56)

Hence, we have

(57)

which gives the following upper bound on :

(58)

To summarize, DCRCB consists of the following steps.
The DCRCB Algorithm
Step 1) Compute the eigendecomposition of (or, more

practically, of ).
Step 2) If (41) is satisfied, solve (56) for , e.g., by a

Newton’s method, using the knowledge that the
solution is unique and it is lower bounded by
and upper bounded by (58), and then continue to
Step 3; otherwise, compute [which is
obtained by using in (37)], and stop.

Step 3) Use the obtained in Step 2 to get

(59)

where the inverse of the diagonal matrix is
easily computed, and is available from
Step 2.

Step 4) Compute the SOI power estimate of DCRCB using

(60)

Note that the steps above of DCRCB do not require that
for all . Hence, (or ) can also be singular

in the DCRCB, which means that we can allow to
compute .

We also note that, like for NCCB, the major computational
demand of DCRCB comes from the eigendecomposition of
(or ). Therefore, the computational complexity of DCRCB is

also comparable to that of SCB. Moreover, like RCB, DCRCB
can be modified for recursive implementation. By using the re-
cursive eigen-decomposition updating, we can update the power
and waveform estimates with flops (see [12] and the ref-
erences therein).

In many applications, such as in communications or the
global positioning system, the focus is on SOI waveform
estimation. Let denote the waveform of the SOI. Then,
once we have estimated the SOI steering vector with DCRCB,

can be estimated like in the SCB as follows:

(61)

where in (53) is in lieu of in (7) to obtain :

(62)

(63)

Note that the DCRCB weight vector also has the form associated
with the diagonal loading approach, except for the real-valued
scaling factor in (63) as well as the fact that the diagonal loading
level in (63) can be negative. However, the scaling factor is not
really important since the quality of the SOI waveform estimate
is typically measured by the signal-to-interference-plus-noise
ratio (SINR)

SINR (64)

which is independent of the scaling of the weight vector.

B. RCB Algorithm

To make this paper self contained, we also briefly discuss
the RCB algorithm presented in [12] and [25] and explain its
relationship with the DCRCB algorithm devised in the previous
subsection.

Due to the constant norm constraint on , the constraint set
in (35) is not convex. The problem (35) without the norm con-
straint on is convex. The RCB algorithm obtains an approx-
imate solution to (35) by first finding a solution to the easier
convex problem in (35) without the norm constraint on and
subsequently imposing the norm constraint on the solution by
possibly violating the other constraint in (35). More specifi-
cally, RCB is derived by first solving the following optimization
problem:

subject to (65)

The solution to the above optimization problem can also be
determined by using the Lagrange multiplier method, and it has
the form (see [12] and [25] for details):

(66)
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where is the Lagrange multiplier that can be obtained via
a Newton’s method as the unique solution to the equation

(67)

After has been obtained, the norm constraint is
imposed when estimating the SOI power

(68)

(69)

Note that RCB also allows (or ) to be singular, and it also
requires flops for implementation. For SOI waveform
estimation, the RCB weight vector has the form

(70)

Comparing the in (53) and in (63) with the in (66)
and in (70), we note that, aside from some real-valued scalar
factors, the main difference between RCB and DCRCB is in the
diagonal loading levels for the former and for the latter. The
latter diagonal loading level can be negative, whereas the former
cannot.

Even though RCB is an approximate solution to (35), it has
been shown to have excellent performance [12], [25]. Moreover,
in the case of RCB, the spherical uncertainty set in (35) can be
readily generalized to both nondegenerate and flat ellipsoidal
uncertainty sets. However, it appears that DCRCB is not as easy
to generalize to the case of ellipsoidal uncertainty sets as such
a generalization would require a two-dimensional search to de-
termine the Lagrange multipliers and .

C. Smallest Possible Spherical Uncertainty Set

For both RCB and DCRCB, the choice of should be made as
small as possible since when is chosen too large, the ability of
both RCB and DCRCB to suppress interferences that are close
to the SOI will degrade. Toward this end, we note that an extra
phase on will not change the cost function or the
norm constraint . Hence, should be chosen as small
as possible but such that

(71)

for all possible SOI steering vectors associated with the true
SOI steering vector . This analysis explains why it was ob-
served in [12] and [25] that RCB can work well even when

. We note that although a phase error in the
estimate or will not affect the SOI power estimate or the
array output SINR, the SOI waveform estimate will contain a
phase error. In applications such as communications, a training
sequence can be used to estimate the phase error and then com-
pensate it out.

V. NUMERICAL EXAMPLES

We provide numerical examples in this section to compare the
performances of the delay-and-sum beamformer, SCB, NCCB,
RCB, and DCRCB. In all of the examples considered below,
we assume a uniform linear array with sensors and
half-wavelength sensor spacing and a spatially white Gaussian
noise whose covariance matrix is given by . For NCCB,
we set , where ( ) is a user parameter. The
larger the , the closer NCCB is to SCB. On the other hand, the
smaller the , the closer NCCB is to the delay-and-sum beam-
former. When , NCCB becomes the delay-and-sum beam-
former, and hence, it uses the assumed array steering vector di-
vided by as the weight vector. We define the true steering
vector error , where is the true
steering vector, and is the assumed one. Unless otherwise
stated, we use the beamforming methods with the theoretical
array covariance matrix .

First, we consider an imaging example where we wish to de-
termine the incident signal power as a function of the signal ar-
rival angle relative to the array normal. We assume that there
are five incident signals with powers 30, 60, 40, 35, and 10 dB
from directions , , 0 , 10 , and 40 , respectively. To
simulate the array calibration error (the sensor amplitude and
phase error as well as the sensor position error), each element
of the steering vector for each incident signal is perturbed with
a zero-mean circularly symmetric complex Gaussian random
variable normalized so that . The perturbing Gaussian
random variables are independent of each other. For RCB and
DCRCB, we use . For NCCB, we choose so
that the peak widths of the NCCB and DCRCB are about the
same. Fig. 1(a) shows the signal power estimates as functions of
the arrival angle obtained by using the delay-and-sum beam-
former, SCB, NCCB, and DCRCB methods. The small circles
in the figure denote the true (direction of arrival, power)-coor-
dinates of the five incident signals. Since the power estimates of
RCB and DCRCB are almost the same for this example, only
the DCRCB power estimates are shown in the figure. Note that
SCB can give good direction-of-arrival estimates for the inci-
dent signals based on the peak locations. However, the SCB
estimates of the incident signal powers are way off. NCCB is
more robust than SCB but still substantially underestimates the
signal powers. On the other hand, our DCRCB provides ex-
cellent power estimates of the incident sources. As expected,
the delay-and-sum beamformer has poorer resolution than the
other beamformers. Moreover, the sidelobes of the former re-
sult in false peaks. Fig. 1(b) shows the diagonal loading levels
of the NCCB, RCB, and DCRCB approaches. Depending on
whether the condition of (14) is satisfied or not, NCCB can
have a nonzero or zero diagonal loading level. This results in
the discontinuities in the NCCB diagonal loading level curve.
The discontinuity in the DCRCB diagonal loading level curve
is due to the fact that around the strongest signal, the condition
of (41) is not satisfied. As a result, DCRCB is no longer a diag-
onal loading approach around the strongest signal.

For each steering angle in Fig. 2(a), is chosen to make
NCCB have the same diagonal loading level as RCB when

is used in RCB. We note that for NCCB and RCB to have
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Fig. 4. Comparison of the RCB and DCRCB approaches for each incident signal, as � varies, when � = 1:0.
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Fig. 5. Comparison of the RCB and DCRCB approaches with (a), (b) � = 1:0 and (c), (d) � = 2:0 when � (the direction of arrival of the fourth signal) is
changing from 20 to 60 . The SOI power is 10 dB, and � = 1:0.

the same diagonal level, must be chosen in a complicated
manner depending on both and the data itself. Fig. 2(b)
shows the signal power estimates as functions of obtained
via using NCCB and RCB with the in NCCB chosen so
that NCCB and RCB have the same diagonal loading levels.
We note that the RCB signal power estimates are much more
accurate than those obtained using NCCB, and hence, the norm
constraint imposed on in (68) is very helpful for accurate
SOI power estimation.

Fig. 3(a) and (b) show the power estimates as functions of
obtained via using RCB and DCRCB with and ,
respectively, for the example in Fig. 1. Note that when

, the RCB and DCRCB signal power estimates are not as
accurate as when , but the peaks are sharper.

In Fig. 4, we compare the SINRs and the signal power esti-
mates for the five incident signals, as functions of , obtained
via using RCB and DCRCB. Fig. 4(a), (c), (e), (g), and (i) show
the SINRs of the five signals as functions of . Fig. 4(b), (d),
(f), (h), and (j) show the power estimates of the five signals as
functions of , with the horizontal dotted lines denoting the true
signal powers. Note that except for the fourth signal, the SINR of

DCRCB is in general higher than that of RCB when is not too
far from . Hence, for applications requiring waveform estima-
tion, the former may be preferred over the latter if is known
reasonably accurately. For the second signal in Fig. 4(c), the
condition of (41) is not satisfied, and hence, DCRCB uses the
scaled principal eigenvector as the estimated steering vector. For
this case, DCRCB is always better than RCB, no matter how is
chosen. On the other hand, for signal power estimation, RCB in
general outperforms DCRCB and hence may be preferred in ap-
plications such as acoustic imaging, where only the signal power
distribution as a function of angle or location is of interest. We
also note that the larger the , the more RCB and DCRCB will
overestimate the signal power. Therefore, if possible, should
not be chosen much larger than .

In the next examples, we concentrate on the fifth signal from
40 , which is treated as the signal of interest (SOI). The other
four signals are considered to be interferences. In the following
figures for the SOI power estimates, the dotted lines correspond
to the true SOI power.

First, we consider a scenario where the fourth signal changes
its direction of arrival from 20 to 60 with the directions of
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Fig. 6. Comparison of the RCB and DCRCB approaches, as the snapshot number varies, when (a), (b) � = 0:6 and (c), (d) � = 2:0. The SOI power is 10 dB,
and � = 0:5603 (corresponding to � = 2:0 ).

arrival of the SOI and the other three interfering signals fixed.
The array suffers from the same calibration error as in Fig. 1.
Note from Fig. 5 that when the direction of arrival of an inter-
ference signal becomes too close to that of the SOI, both RCB
and DCRCB suffer from severe performance degradations in
both SINR and SOI power estimation accuracy. As expected,
the larger the used, the weaker the interference suppression
capability of both methods when an interfering signal is nearby
the SOI.

We next consider the effect of the number of snapshots
on the SINR and SOI power estimation accuracy of RCB and
DCRCB when the sample covariance matrix in (3) is used
in lieu of the theoretical array covariance matrix . We as-
sume that the steering vector error is due to an error in the SOI
pointing angle, which we assume to be , where is the
true arrival angle of the SOI. In this example, cor-
responds to . We use 100 Monte Carlo simulations
to obtain the mean SINR and SOI power estimates. It is worth
noting that both RCB and DCRCB allow to be less than the
number of array elements . We use and for

the case in this example. For DCRCB, when the con-
dition of (41) is not satisfied, we calculate the SOI power es-
timate by (as explained in Step 2 of the DCRCB
algorithm). Note from Fig. 6 that the convergence properties of
both methods are quite good and somewhat similar. Since the
errors between and can be viewed as equivalent steering
vector errors, should be chosen larger than , especially for
small .

We now compare the performances of RCB and DCRCB
when the power of the fourth signal is varying. As in the pre-
vious example, we have corresponding to

. The INR in Fig. 7 refers to the ratio between the fourth
signal power and the noise power. Note from Fig. 7(a) that the
SINR of DCRCB is much better than that of RCB when .
However, when is large, for example, when as in
Fig. 7(c), and when the INR is comparable to the SNR of the
SOI, DCRCB has lower SINR than RCB. From the diagonal
loading levels of the methods shown in Fig. 7(e) and (f), it is
interesting to note that the diagonal loading level of RCB when

is about the same as that of DCRCB when .
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Fig. 7. Comparison of the RCB and DCRCB approaches with (a), (b), (e) � = 0:6 and (c), (d), (f) � = 2:0. The SOI power is 10 dB, and � = 0:5603

(corresponding to � = 2:0 ).

As a result, the SINR and SOI power estimate of RCB when
are about the same as those of DCRCB when .

Note also from Fig. 7 that when the INR becomes close to the
SNR, there is a performance drop in the array output SINR. One
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Fig. 8. Comparison of the RCB and DCRCB approaches as SNR varies when (a), (b) � = 0:1474, (c), (d) � = 0:5939, and (e), (f) � = 1:2289, corresponding
to � = �1:0 , �2:0 , and 3.0 , respectively. The SOI power is 10 dB, and � = 0:6.

possible explanation is that when the INR is much smaller than
the SNR, its impact on the SOI is small. As the INR increases,
it causes the SINR to drop. As the INR becomes much stronger
than the SNR, the adaptive beamformers start to form deep and

accurate nulls on the interference, and as a result, the SINR im-
proves again and then becomes stable.

Next, we consider the case where the SOI power varies.
We choose and consider three cases: ,
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Fig. 9. Comparison of the RCB and DCRCB approaches in 100 Monte Carlo trials when (a), (b) � = 0:6, (c), (d) � = 2:0, and (e), (f) � = 3:0. The direction of
arrival of the fifth signal is uniformly distributed between 38 and 42 , and its assumed angle is 40 . The SOI power is 10 dB, and 0 � � � 0:5939.

, and 3.0 , with the corresponding being 0.1474,
0.5939, and 1.2289, respectively. Fig. 8 shows that as long
as is greater than and the SOI SNR is medium or

high, the SOI power estimates of RCB and DCRCB are
excellent. Their SINR curves are also quite high, but they
drop when the SOI SNR approaches the INR of one of
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Fig. 10. Comparison of the RCB and DCRCB approaches in the presence of potentially significant array calibration errors. The SOI power is 10 dB, and 0 �

� � 1.

the interfering signals. One possible explanation is given at
the end of the previous paragraph. From Fig. 8(e) and (f),
we see that when is smaller than , the performances of
both RCB and DCRCB drop drastically as the SOI SNR
increases from moderate to high. This is because the SOI is
suppressed as an interference for this case. Note that RCB
and DCRCB significantly outperform SCB in SINR and SOI
power estimates.

Finally, in the last two examples, we use 100 Monte Carlo
simulations to compare the statistical performances of RCB and
DCRCB. First, the true arrival angle of the fifth signal is uni-
formly distributed between 38 and 42 , but it is assumed to
be 40 . Fig. 9 compares the SINR and the SOI power estimates
of RCB and DCRCB obtained in the 100 Monte Carlo trials.
We note that the SINR mean of DCRCB is about the same as
that of RCB, but the SINR variance of DCRCB is much smaller
than that of RCB (especially when , which is quite tight
since ). Hence, this example shows again that
DCRCB may be preferred over RCB when higher array output
SINR for waveform estimation is needed. On the other hand,

the bias and the variance of the SOI power estimates of RCB
are smaller than those of DCRCB. This is especially so for large
; note that a large is not a problem here since the interfering

signals are quite far away from the SOI. Hence, this example
also shows that RCB may be preferred over DCRCB in applica-
tions requiring accurate SOI power estimation including radar,
acoustic, and ultrasound imaging.

We next consider an example of array calibration error that
consists of perturbing each element of the steering vector for
each incident signal with a zero-mean circularly symmetric
complex Gaussian random variable with a variance equal to
0.1. The perturbing Gaussian random variables are independent
of each other. The calibration error is not scaled or normalized
in any way, and hence, . In Fig. 10, we compare
the means and variances of the SINR and SOI power estimates
of RCB and DCRCB, as functions of . The figure shows
once again that with a reasonable choice of , DCRCB may
be preferred for applications requiring high SINR, whereas
RCB may be favored for applications demanding accurate SOI
power estimation.
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(76)

VI. CONCLUSIONS

We have presented several ways of making the adaptive Capon
beamformerrobustagainstarraysteeringvectorswhileatthesame
timepreserving itsappealingpropertiesofhighresolutionandex-
cellent interference rejection capabilities. We have shown that it
is difficult to choose the norm constraint parameter in the com-
monlyusednorm-constrainedCaponbeamformer(NCCB)based
on the knowledge of the array steering vector error alone, as such
a choice should also be data-dependent. We have presented a new
doubly constrained robust Capon beamformer (DCRCB), which
was derived by directlyaddressing thesteering vector uncertainty
problem. We have shown that for a spherical uncertainty set of
the array steering vector, the NCCB, our previous robust Capon
beamformer (RCB), and our new DCRCB are all related to the di-
agonal loading-based approach and, in addition, that they all re-
quire a comparable computational cost with that associated with
SCB. However, the diagonal loading levels of these approaches
are different. As a result, RCB and DCRCB can be used to ob-
tainmuchmoreaccuratesignalpowerestimatesthanNCCBunder
comparable conditions. We have explained the relationship be-
tweenRCBandDCRCBinthat theformerisanapproximatesolu-
tion, whereas the latter is the exact solution of the same optimiza-
tionproblem.Ournumericalexampleshavedemonstratedthat,for
a reasonably tight spherical uncertainty set of the array steering
vector, DCRCB is the preferred choice for applications requiring
high SINR, whereas RCB is the favored one for applications de-
manding accurate signal power estimation.

APPENDIX

ANALYSIS OF (21)

Let

(72)

For any matrix function of , we have

(73)

and

(74)

Letting

(75)

for which , we get (76), shown at the top of the page.
For , we have . It follows that

(77)

and therefore, for . Hence, is a mono-
tonically decreasing function of . As ,

, according to (26). From (14), since is
equal to the right side of (14). This shows that, indeed, (21) has
a unique solution under (14) and (26).
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