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Doubly coprime factorization, reduced-order observers, and dynamic
state estimate feedback

ANDREW J. TELFORD7 and JOHN B. MOOREI

Doubly coprime factorization of the transfer function of a lumped linear time-
invariant system are a starting point for many of the results in the factorization
approach to multivariable control system analysis and synthesis. In work by Nett d
d,(1984), explicit state-space realizations of these factorization are derived using
results from state estimation/state feedback theory, Here new doubly coprime factor-
ization are developed based on minimal-order observers. Following on from this,
various extensions are noted, and it is proved that the class of all proper stabilizing
controllers for a given plant can be generated by dynamic feedback of the reduced-
order state estimate.

1. Introduction
A doubly coprime factorization of the transfer function of a lumped linear time-

invariant system is the starting point for many of the powerful results in the

factorization approach to multivariable control system analysis and synthesis

(Vidyasagar 1985). In an important work by Nett et al. ( 1984), explicit formulae are
given for state-space realizations of the Bezout identity elements. The results of Nett et

al. ( 1984) are based on ideas from the theory of state feedback and state estimation,
and use existing computational algorithms, namely pole-placement algorithms.

Recently, Hippe ( 1989) has derived modified factorization which are related to
compensators based on reduced-order observers, rather than full-order state ob-
servers. One problem with these factorization is that some of the Bezout identity
elements are non-proper, and consequently are not suitable for use with the
factorization approach, In $2 of the present work we derive doubly coprime
factorization related to minimal-order observers, with all Bezout identity elements

stable and proper.
In the work by Moore et al. ( 1988), the factorization of Nett et al. ( 1984) have

been generalized to allow for the possibility of dynamic state estimate feedback gains,
as well as dynamic state estimator gains. Section 3 of the present work generalizes the
factorization of $2 in a similar manner. To give an example of the utility of the
results, it is then proved that all stabilizing controllers for a given plant can be
structured as a minimal-order observer, with dynamic state estimate feedback gains.
Finally, some dual results are summarized in $4.
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2, Factorization related to minimal-order observers

2.1. Preliminaries

Consider the ring of real rational functions defined on the complex plane that are

stable and proper. Here a function F(s) is stable if there are no poles in the closed right
half-plane, and proper if lF(m)l is finite. (In this work, we deal exclusively with
continuous-time systems.) The class of matrix valued functions with entries in this ring

will be denoted by RHW. The symbol 1 will be used to represent a real identity matrix

of appropriate dimensions.

The following convenient notation for the state space realization of a transfer
function matrix will be used:

[+1AB
AC(SI– A)-’B+D

CD,

We shall make use of the following identities:

[++%=[-]

(2.2)

A plant/controUer pair G(s), K(s), as depicted in Fig. 1 will, be said to be well-
posed and internally stable if and only if

(2.3)[11 –K “
exists and belongs to RHX

–G 1

[mu, e,
This condition corresponds to the transfer functions from to being stable

u~ ez
and proper.

Plant

m
z

u,

Figure 1. Closed-loop system with positive feedback

The minimal-order observer for the rrr-input, p-output plant G(s), with n state

controllable and observable state-space realization C(S1 – A) ‘ 1B, will now be briefly

reviewed. The treatment is similar to that found in the work by O’Reilly ( 1983). The

observer equations are

;= Rz+Sy+TBu (2.4)

(2.5)
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where

C is full rank (2.6 u)

‘ym=[ly ‘]=Ko (2.6 b)

R = TA@, S = T.4Y (2.6 c)

A suitable selection of a full row rank matrix T results in (s1 – R) -1 e RHX, i.e. R is a

matrix with all eigenwdues in the open left half-plane Re [s] <0. For such selections,
the error in the state estimate .Y– i due to an incorrect initial value of z will approach

zero asymptotically.
Figure 2 shows the block diagram for an observer-based controller which uses

feedback of the state estimate i through a constant, real matrix F. The transfer

function matrix K(s) of an equivalent controller in the simple positive feedback
configuration of Fig. 1 is,

[

R + TBF@ S + TBFY
K(s) =

Fe 1FY ~
(2,7)

f’lmt

Figure 2. Minimal-order observer based control loop.

2.2. Fucforizations

The main factorization result will now be stated.

Theorem 1

Consider the plant G(s) = C(SI – A) -‘ B, with (A, B) controllable and (A, C)
observable. Choose F and T such that (sI – A -- BF) -‘, (s1 – R) -1 ~ RH’, where R
and T are described by the observer equations (2.4)–(2.6). With arbitrary A such that
(s1 – A)-’ e RHT-, define

(2.8)

(2.9)
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Then the following hold:

(a) all transfer function matrices described by (2.8), (2.9) are stable and proper;

(b) M, N, K ~ have proper inverses;

(c) G= NM’l=&’if

(d) K =UV’1 = ~-1 ~ where K is the observer-based controller given by (2.7);

(e)

[:. :1[:3=K3 (2.10)

Proof

Considering (a), the transfer function matrices (2.8) and (2.9) are inherently
proper. Since F is chosen such that (s1 – A – BF) -1 e Rlla, (2.8) is stable, and
furthermore, to see that (2.9) is stable, apply a similarity transformation and use

(2.6 b),

‘oT+yAc=[T[:C:@l[:](2.11)

Since the similarity transformation leaves the eigenvalues unchanged, the eigenvalues
of A@T + WAC are simply equal to the eigenvalues of A, a matrix chosen such that its
eigenvalues lie in the left half-plane, together with the eigenvalues of R, which lie in the
left half-plane by virtue of the T selection.

It can be decuded from (2.2) that a square proper transfer function matrix has a
proper inverse if its direct-feedthrough term D is non-singular. Considering (b), it
follows that M, M, ~ ~ have proper inverses, because they have unity direct-
feed through matrices. Application of (2.1) and (2.2) shows that (c), (d), and (e) hold.
As an example of the proof technique, observe that

~-1~=
[ ‘@T+’AC!-(A-’Ac)’l-’rA!EN_lIl

c I OJT

by (2.2)
r

L-II
A AYC– YAC 0

= O A@ T+YAC B by (2.1)

c c 0,

[
A@T+ WAC AYC – ‘?” OII

=~~~, (bychangeofbasis)

[+1AB
. = G (by the removal of unobservable modes) n

COT
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Note that these factorization, like those of Nett et al. (1984), are still nth order

even though they are based on a minimal-order observer design. In this sense, they are
non-minimal, as arc the factorization of Hippe ( 1989). We will now attempt to gain
more intuition about the results, by comparing their properties with known properties

of the full-order factorization (Nett et al. 1984, Moore et al. 1988).

2.3. Tbe class of’ uII stabilizing controllers

Once doubly coprime factorization for the plant G(s) have been found, it is
possible to parametrize the class of all proper stabilizing controllers in terms of an
arbitrary Q(s) s RH1 (Vidyasagar 1985), Such a class {K(Q) IQ ~ RHX } can be
written in terms of linear fractional transformations as

K(Q) =( U+ MQ)(V+NQ) -’=(~+Q~)-’(~+Qti)

=~~-l+~-lQ(~+~-’~Q)-’l-l (2.12)

or diagrammatically as in Fig. 3, where based on the third equality in (2.1 2),

‘=[: -:J (2.13)

With the factorization (2.8) and (2.9),

[

A C(A + BF)@ C(A + BF – YAC)Y CB

o 7-(A + BF)@ T(,4 + BF)W TB
J=

o F@

1

(2.14)
FY I

–1 o I o ~

Plm[

m
B“-’
~...-..

K(Q) 1’!
r \,

C!

@ Eli-\. ...—— ____ ._

Figure 3. Class of all stabilizing controllers for G

The scheme of Fig. 3 with J given by (2. 14) has an interesting interpretation. To
lead us into this, recall that if J is formed according to (2. 13), and the doubly coprime

factorization of Nett et al, ( 1984) arc used, then the scheme of Fig. 3 can be

interpreted as in F“ig. 4, That is, the class of all stabilizing controllers
\ K(Q) IQ e RH’ } for G(s) can be generated by the use of an observer-based
controller, with an additional internal feedback loop involving stable dynamics

Q(s)—see the work by Doyle ( 1984). The residuals r = (y – j) are filtered by Q to form
.s, which is added to F.i to give the control signal u.

A reasonable question to ask is whether, analogously to the full state estimator

based scheme of Fig. 4, the class of all stabilizing controllers can be obtained with a



2588 A. J. Teljord and J. B. Moore

minimal-order observer-based compensator with added stable dynamics. There cannot
be a direct analogue since the residuals (y – j), obtained by defining j = Ci, are equal

to zero, as follows:

[1

r=y–j=y– Ci=y– C[Y ~1 y

z

H=y–[~O] y =0 by(.2.6b)
z

u
Y

J~

I
I /

I

i ‘4
I
I

l.. _.
J

s

{
Q(s)

I

~=Y-f

Q(S)=RII’”
Figure 4. Controller class [K(Q) IQ e RH’ } based on full-order observer

Consider instead residuals r A (} – },,), where the estimate y,, of } is, for the case
A = O, the integration of an estimate of the derivative j. More generally, when A is

chosen such that its eigenvalues lie in the closed left half-plane, }’,,is the solution of

j, – A-r,, = C(A.f + Bu) – A~ = C(A + BF).f – A}
(2.15)Here C(A.i + Bu) is an estimate of j, From (2.15), we can obtain J,, explicitly by

filtering a linear combination of the minimal-order st:ite estimate .f and the plant

u

J.. ——... - .-_ —____ ..——_... —_______ ._

J A+BI:

\

r=, .\.,

(\I-A)‘GRII”
Figure 5. Controller class [K(Q) IQ = RH’ } based on minimal-order observer
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y~=(sl– A)-l[C(A+BF)i– Ay] (2.16)

residuals r = y – y., and referring to Fig. 3, it is reasonable to propose a
minimal-order observer-based- scheme as in Fig. 5. E~aluating the transfer func~ion of
the J block defined according to Fig. 5 gives precisely the J of (2.14).

In summary, we have found a minimal-order observer based compensator, with

added stable dynamics, that generates the class of all stabilizing controllers for G as

Q(s) varies over Rflx. Notice that the McMillan degree of J in (2.14) is (n – p) +
p = n, which is the same as for the J in the full-order s herne of Fig. 4.

3. Dynamic state estimate feedback
From this point onwards, we will generalize the state estimate feedback gain F to

be a proper, rational transfer function matrix, which may possibly be unstable.
Assume that a left coprime factorization F = ~~-1~~ has been found: state-space
realizations for such factorization are readily available with the use of the doubly

coprime factorization given in $2. It will be necessary to generalize the notation for a
state-space realization so that, for example,

[%H-%%17=F(s)[s1 – /4 – BF(s)]-’B~~-’ (s) + pF-’(S) (3.1)

To take account of the dynamic state estimate feedback, new doubly coprime
factorization will be defined.

In { 2, a constant F is chosen so that (s1 – .4 – BF) -1 ● RHX, or equivalently, so
that F is a stabilizing controller for the system (s1 – A) -1 B. Generalizing to the case
when F is a transfer function matrix, we require F(s) to be a stabilizing controller for
the system G~ ~ (.sf – ,4) -1 B.

3.1. l%cfori:afion.s

Tbtwrem 2: Doubly coprirne ,factorizations @ G~

Given a plant G~ A (s1 – .4) -1 B with (A, B) controllable, a proper
controller F(s) with a left coprime factorization ~~- 1~~, arbitrary Al
(s1,, – Al)- ‘ e RHX, and defining,

[ 1[A + BF(s)
ME U,

— F(s)
N,. V, –

1

BPF-t (s) A + BF(s) –A

PF- ‘ (s) F(s)

o I

–(A– YAIC)

–uF(s)
1

1 J7

stabilizing

such that

(3.2)

(3.3)

Then the following apply:

(a) the transfer matrices defined by (3.2) and (3,3) are stable and proper;

(b) M, M, K ~ have proper inverses;
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(c) G,= N, M; ’=ti;’fi,, F= U, V;’

(d)

(3.4)

Proof

Statements (b), (c) and (d) can be proved by simple manipulations using (2.1) and
(2.2). It remains to show that the transfer function matrices (3.2) and (3.3) are stable,
since together with (d) this implies that the factorization are coprime in RHX. First

note that ~, and fi, are stable, since (s1 – A ~) -1 e RH’. Consider then arbitrary
stable proper stable factorization G~ = .,4~..~~ L, F = -Z~7‘~’. Since F stabilizes G~,
then the standard arguments (Vidyasagar 1985) give that

[::l=[:J(pF-uFGF)-’= [:l(pFtiF-oF’’’RHxRHx ’35)

[1[1

v, 1

[1

(tiF-~FF)-’= ; (fiF+F- fi~@~)-LERHx’ (3.6)
UF=F f

u

A generalization of Theorem 1 follows.

Theorem 3: Doubly coprime ,jiuctorizutions for G

Consider a plant G = C(SI – ,4) -‘B with (A, B) controllable and (A, C) ob-
servable. Choose T such that (s1 – R) -1 e RH’, and proper F(s), with arbitrary right

coprime factorization ~,- 1~,, such that F(s) stabilizes G,= (.s1 – ,4) -1 B—the
matrices R and T are defined by the observer equations (2.4)–(2.6). With arbitrary A2
such that (sIP – AZ) -1 c RHX define

A + BF(.Y) B~F” l(s) (/4 + I?F(.Y)– YA2C)Y

[: :I=[*]T (3.’7,

[:N -i”]=[mlT (3.8)

Then the following apply:

(u) the transfer functions defined by (3.7) and (3.8) are stable and proper;

(b) M, fi, Z ~ have proper inverses;
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(c) G= NM-’= i@’fi

(d) K = UV-’ = ~-’ ~ where K is the observer based controller given by (2.7);

[1

10
.

01
(3.9)

As in previous theorems, (c)-(e) can be proved by application of (2.1) and (2.2).

Evaluation of M -1, ~-1 shows that M, ~ have proper inverses, because ~~ is proper
with a proper inverse. Similarly, since ~ ~ have unity direct-feedthrough matrices,

V-l M-1 are proper, completing the proof of(b). Itremains only to prove that all of
the t’ransfer functions are proper and stable. Consider first Z

~= ~@ T(sl-A@T- YA2C)-1(-B)+ ~~ (3.10)

Since (s1 – A@T – YA2 C) -1 c RH@, ~ is formed from the sum and product of stable
proper transfer functions. It follows that ~ is also proper and stable. The same can be
seen of ~, ~, ~. From the previous theorem, we have stable proper transfer functions
ME, N~, and

El=cX:l’RH”
(3.11)

[1

u
To establish that is stable requires some intermediate results. Since F(s)

v
stabilizes G~(s),

[

I – F(s)-

–G~(s) I _

1-l

(3.12)

[1

F(s)
*S {s1 – A – BF(s)} -1 B c RHm (by differentiation)

I

‘[ 1

F(s)

[1

F(s)
{sI-A-BF(s)} -’{A+ BF(s)}B + B=

I I
RHm

H H-]
A + BF(s) BF(s)

F(s)
* {S1-A-BF(S)}-lAB+ F(s) F(s) B e RH=

I
I IT

[1F(s)
+ {S] - A - BF(s)}-l AB e RH~ by (3.12)

1
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Repeated differentiation leads to

[1F(s)
{sI– A–BF(s)}’l[B Al? ,42 B..., B]e RHc RHc

1

-[ 1

F(s)
{s1 - A - BF(s)}-’ c RHr ([A, B] controllable) (3.13)

I

Finally, with the following decomposition:

&m!_lEQl
F(s)

1

F(s) Y

1 OT

‘[::l[F~l

{sI-A-BF(s)} -’(,4 -YA2C)W (3.14)

the first and second terms are proper stable transfer functions by virtue of (3. 12) and
(3. 13), respectively. Thus U, Ve RHT, and the proof of (a) is complete. n

Observe that when F(s) equals a constant F, then (3.7) and (3.8) me identical to (2.8)
and (2.9), and Theorem 3 specializes to Theorem 1.

The previous two theorems lead to the following corollary.

Corollary 1

Consider a plant G = C(sl – A)”’ B with (A, 1?) controllable and (,4, C) ob-
servable. Choose T such that the corresponding R results in a stable observer design.
The controller for G obtained by dynamic state estimate feedback, via a proper F(s),
will be stabilizing if F(s) is a proper stabilizing controller for G~.

Proof’

Start with an arbitrary F(s) which stabilizes G~ (see Fig. 6). Choose a left coprime

factorization p~”’ ~F for F, and construct the doubly coprime factorization (3.7) and

(3.8). A standard result from factorization theory (Vidyasagar 1985) is that ~-’ ~
will be a stabilizing controller for ~ -1 ~. Since G = C(SI – A) -1 B = ~-’ ~, and
K = ~-’ ~ is the observer based controller given by (2.7)—see Fig. 7—the corollary
is proved.

B

q(s)

GF=(s1-A)”’B

F(s)

Figure 6. Controller F(\) to stabilize plant Gp(s),

A natural question to ask is the converse: Would the controller of Fig. 7 be

destabilizing for G if F did not stabilize G~? The answer to this question is not

straight-forward, because the coprime factorization of Theorem 3 rely on F to be
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stabilizing for G~. Tbe next section tackles this problem, and demonstrates the utility

of the new factorization at the same time.

m

G(s)
u Y

r

F(s) Obs
K

i
.“—.—— .—...——.—. — ~

Figure7, Observer-based controlller with dynamic state estimate feedback,

3.2. Alistabilizing controllers asminimal-order obseruer-based control/cr.~

Theparameterization of theclass ofallproper stabilizing controllers for G will

now be restated, thus

K(Q)= (~+ Q~)”’(ti+Qfi), QERHX (3.15)

Here ~, ~, ~, ~ now refer to the factorization of Theorem 3, and can be thought of
as functions of F(s). At this point, it is convenient to introduce a new notation—
instead of K(Q) we will write K[Q, F], to note explicitly the dependence of K on the
choice of F(s). The controller K = ~- 1~ will be written as KIO, F]. Making use of the
doubly coprime factorization of Theorem 2, the class of all proper stabilizing
controllers for Gp can be written as

F(Q~)=(~~+ Q~~~)-l(~~+Qpfi~) Q~ERHx (3.16)

What we wish to show is that the class of all proper stabilizing controllers

{K[Q, F] IQ e RHX } is the same as the class of proper observer-based controllers
{KCO, F(Q~)] IQ~ e RHZ }. The proof of this requires an alternative representation of
KIO, F(Q, )],

Lemma 1

An observer-based controller KIO, F(Q~)l can be restructured as a linear
fractional transformation,

KIO, F(QF)]=( ~+ QF~O)-1(fj+QFA70)

where

[–N() A20]=

(3.17)

“AOT– YA2C B (A– YA2C)Y-

/fi,(s)@T
(3,18)

– lvF(s) A7F(S)WJ

[1

MU
[0 Y]=[-NO A70] ~ ~ (3.19)

(3.20)
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Proof
.-

KIO, F(QF)] = V-l ~lF=F(QF)=(VF+ Q, N,) I(u, +Q,ti,)

[

A@ T+ YA2C –B

1

–1

——

(OF(S) + QF(s)~,(s))@T ~,(s) + QF(s)~F(s) =

[

A@ T+ WA, C (A – YA, C)V
x

1( ~~(s) i- QF(s)~F(s))@T (fl~(s) + QF(s)~F(s))~ ,

‘{F%=I-%H?
‘QF(s)[~lJ

where No and NO are as defined above.
Finally, (3. 19), (3.20) can be proved by application of (2.1) and (2.2). o

The main result is then as follows.

Theorem 4

The class stabilizing observer-based controllers

{KIO, F(QF)] IQF ~ R;f= } ;“%e class of all proper stabilizing controllers

{K[Q, F]IQ E RH~} for G.

Proof

Let us consider F(QF), with arbitrary Q~ ~ RHX. This is an arbitrary stabilizing
controller for G~. Define Q = QFV E RHX, then

Q= QFfioti-l by (3.20)

eQfi=QFtiO

-Q[– N ti] = QF[–l$O TdO] (multiplication by [– G 1])

+(~+Qfi) -’(~+ Qfi)=(~+Q~fiO)-l(~ +QF~O) by(2.12)and (3.17)

*K[Q, F] = K[o, F(QF)I

SO the observer-based controller K[(), F(QF)] is a stabilizing controller K[Q, F] for G.

Conversely, suppose we have an arbitrary stabilizing controller K for G, and we find
Q E RHX such that K = K[Q, F]. Then defining QF by

QF = Q(YTV) - ‘ V’
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it is clear that Qp satisfies

Q= QF~FRHx

-K[Q, F] = KIO, F(Q~)] (as above)

This completes the proof, by showing that the arbitrary stabilizing controller K[Q, F]
can be structured as an observer-based controller KIO, F(Q~)], where F(QF ) is

stabilizing for G~. [-1

4. The minimal-order dual observer
The reader may have noticed that Lemma 1 and Theorem 4 deal primarily with

left coprime factorization of K[Q, F] and F(Q~). Are there dual results related to
right coprime factorization? In fact, we can exploit the dual minimal-order observer
(0’Reilly 1983). Whereas the role of the observer is to make full use of the system
information in the system outputs, the dual observer takes advantage of the fact that

the system can be excited from more than one input. We claim that all of the results of
this work can be derived in terms of the dual observer. To give an illustration of this, a

dual version of Theorem 1 will be stated. The dual observer equations are

~= Dz+(Hw, w=y+CSz, u= Lz+r/Hw (4.1)

where B is full rank and

‘s‘][:l=[!l[s ‘]=[: :1

D=~AS, L=qAS

(4.2)

(4.3)

The transfer function matrix K(s) of an equivalent controller for G is

K(s)= [=], (4.4)

Theorem 5

Consider the plant G(s) = C(SI – ,4) -‘B with (A, @ controllable and (A, C)

observable. Choose H and S such that (s1 – A – HC) -1, (s1 – D)’1 E RH7- where H
and S are described by the observer equations (4.1 )–(4.3). With arbitrary r such that
(s1 – r] -‘ F RH’, define

(4.5)
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Then, the following apply:

(a) all transfer functions defined by (4.5) and (4.6) are stable and proper;

(b) M, ti, Z ? have proper inverses;

(c) G= NM-’= fi-’~;

(d) K = f,JV-’ = ~-1 ~ where K is the observer-based controller given by (2.7);

(e)

(4.7)

Close comparison of Theorem 1 and Theorem 5 shows that the corresponding
factorization are natural duals of each other. We can write down a dual to the
controller-class of Fig. 5, with m integrators required to realize the transfer function
(sl – r) -‘. The full-order observer-based class of Fig. 4 has no dual, as can be seen in

the inherent symmetry of the block diagram.

5. Conclusions
For brevity, the results of the work have been obtained in terms of the minimal-

order observer, which has McMillan degree n – p (p > 1). As shown in Fig. 2, the state
estimate has an additive term Vy involving direct-feedthrough of all plant outputs.
The results can also be obtained in terms of a reduced-order observer of order n – ~,
with ~ < p. As shown in Fig. 8, the reduced-order observer-based controller has direct
feedthrough to i of only ~ plant outputs, the plant outputs being divided as follows:

‘=CX=[21X=H
with a (p —Z) x 1 vector yl and a x x 1 vector yz.

u

Y> iz+J-T’
Figure 8. Reduced order observer-based control loop.

The case ~ = p corresponds to the results of this work, while the ~ = O leads to the
results of Nett et al. ( 1984), with F constant, and the results of Moore et al. ( 1988),
with F dynamic. The requirement that C be full rank is not restrictive, since in practice

C can always be made full rank by ignoring certain plant outputs, and deleting the

corresponding rows of C.
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Finally, it has been shown that an observer-based controller c}ass

{KIO, F(Q,)]IQ, CRHW’} is exactly the class of all proper stabilizing controllers
{K [Q F] IQ e RH” } for G. Trivial extensions show that this is identical to the more
general class {K[Q, F(Q~)] IQ, Q~ e RHx’ }.
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