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Abstract—In this paper, we present an Approximate Linear
Minimum Mean Square Error (ALMMSE) fast fading chan-
nel estimator for Orthogonal Frequency Division Multiplexing
(OFDM). The ALMMSE channel estimator utilizes the knowl-
edge of the structure of the autocorrelation matrix given by the
Kronecker product between the time correlation matrix and the
frequency correlation matrix. We separate the Linear Minimum
Mean Square Error (LMMSE) filtering matrix into two matrices
corresponding to individual filtering in frequency and time. The
eigenvalues of these two matrices are rank-one approximated by
the eigenvalues of the LMMSE filtering matrix. The complexity
of the ALMMSE estimator can be scaled by varying the number
of the considered number of eigenvalues. Simulation results show
that the proposed ALMMSE channel estimator looses only 0.1 dB
compared to the LMMSE channel estimator in realistic scenarios.

Index Terms—LTE, Channel Estimation, Fast Fading, OFDM.

I. INTRODUCTION

An essential part of modern wireless communications re-
ceivers is the channel estimator whose quality has a direct
impact on the data throughput. The complexity and imple-
mentation of a channel estimator strongly depends on the
statistics of the channel, in particular the coherence time. With
a coherence time longer than the typical transmission timing
interval, the channel appears as a block fading. In this case it
is sufficient to estimate the channel only once per transmission
block. On the other hand, if the coherence time is smaller than
the typical transmission timing interval, the channel appears as
fast fading channel. Accordingly, the channel estimation has
to adapt to this circumstance.

The channel estimation for Orthogonal Frequency Division
Multiplexing (OFDM) systems in case of block fading [1–
4] is a well studied topic for certain pilot symbol structures.
Exemplary estimator classes are the Least Squares (LS) and
the Linear Minimum Mean Square Error (LMMSE) channel
estimators, which for example have also been applied in Long
Term Evolution (LTE) for Universal Mobile Telecommunica-
tions System (UMTS) [5]. Today’s wireless communication
systems however are designed to provide high data rates also
to mobile users. The channel of a quickly moving user is
changing rapidly during a subframe, rendering the channel
coherence time small. Consequently, the utilization of block

fading channel estimators would result in a significant perfor-
mance loss. A suitable estimator in a fast fading environment
is the LMMSE fast fading channel estimator [6–8], which
however suffers from high computational complexity. Further-
more, the complexity of the proposed channel estimators is
fixed, independent of the actual requirements. In this work we
discuss the performance of the standard channel estimators
in case of the fast fading for LTE using the 3rd Generation
Partnership Project (3GPP) standardized pilot symbol pattern.
Furthermore, we propose an approximation of the LMMSE
fast fading channel estimator with scalable complexity, which
we call Approximate Linear Minimum Mean Square Error
(ALMMSE) estimator.

The paper is organized as follows. In Section II we describe
the pilot symbol structure of the LTE standard and the mathe-
matical system model. State-of-the-art channel estimator, such
as the LS for block fading, the LS for fast fading and the
LMMSE for fast fading, are presented in Section III. We
introduce our ALMMSE fast fading channel estimator in
Section IV. In Section V we evaluate the performance of
the explained channel estimators in terms of physical layer
data throughput and Mean Square Error (MSE). Finally, we
conclude the paper in Section VI.

II. SYSTEM MODEL

In this section, the structure of the pilot symbols for 3GPP
LTE is described. In the time domain, the LTE signal consists
of frames with a duration of Tframe = 10ms. Each frame
is split into ten equally long subframes and each subframe
into two equally long slots with a duration of Tslot = 0.5ms.
Depending on the cyclic prefix length, being either extended
or normal, each slot consists of Ns = 6 or Ns = 7 OFDM
symbols, respectively. In LTE, the subcarrier spacing is fixed
to 15 kHz. Twelve adjacent subcarriers of one slot are grouped
into a so-called resource block. The number of resource blocks
in an LTE slot ranges from 6 up to 100, corresponding to a
bandwidth from 1.4 MHz up to 20 MHz.

The positions of the pilot symbols in the time-frequency
grid depend on the number of transmit antenna ports [9].
Whenever there is a pilot symbol located within the time-
frequency grid at one transmit antenna port, this position on
the remaining transmit antenna ports is not used. We call the
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Fig. 1. Structure of the pilot symbols within one resource block if four
transmit antenna ports and normal cyclic prefix are employed

corresponding symbols zero-symbols in the following. Figure 1
depicts the structure of the pilot symbols within one resource
block if four transmit antenna ports and normal cyclic prefix
are employed. The colored squares correspond to the pilot
symbols at a particular antenna port and crosses correspond
to the zero-symbols. Each resource block at the 1st and the
2nd transmit antenna port contains four pilot symbols. At the
3rd and 4th transmit antenna port just two pilot symbols are
available per resource block. It is obvious that with increasing
number of antenna ports, the overhead for pilot symbols and
zero-symbols is increasing. This fact results in decreasing
spectral efficiency with increasing number of transmit antenna
ports; that is, in case of four transmit antenna ports 14.3%
of all symbols are reserved just for channel estimation. The
applied pilot symbol pattern allows to estimate a Multiple
Input Multiple Output (MIMO) channel as independent Single
Input Single Output (SISO) channels, if spatial correlation is
neglected or assumed to be low.

The n-th received OFDM symbol yn at one receive antenna
port can be written as

yn = Xnhn + wn, (1)

where the vector hn contains the channel coefficients in
the frequency domain and wn is additive white zero mean
Gaussian noise with variance σ2

w. The diagonal matrix Xn =
diag (xn) comprises the data symbols xd,n and the pilot
symbols xp,n permuted by a permutation matrix P on the
main diagonal

xn = P
[
xT

p,n xT
d,n

]T
. (2)

The length of the vector xn is K corresponding to the
number of subcarriers. Note that according to Equation (2),
also the vectors yn, hn and wn can be divided into two parts
corresponding to the pilot symbol positions and to the data
symbol positions.

III. STATE-OF-THE-ART CHANNEL ESTIMATION

In this section, we present three typical state-of-the-art
channel estimators that are used as a benchmark for our novel
ALMMSE channel estimator introduced in the next section.

A. LS Channel Estimation

The LS channel estimator [1] for the pilot symbol positions
is given as the solution to the minimization problem

ĥLS
p = arg min

ĥp

∥∥∥yp − Xp ĥp

∥∥∥2

2
= X−1

p yp. (3)

At the non-pilot symbol positions, the remaining channel coef-
ficients have to be obtained by two dimensional interpolation.
In this work, we use linear interpolation. The LS channel
estimator does not require knowledge about the channel and
noise statistics and can be implemented with low complexity.

In case block fading is assumed, the LS channel estimator
can be simplified even further. First, the channel estimates for
time-frequency grid positions with pilot symbols are calculated
by using Equation (3). Utilizing the assumption that the chan-
nel stays constant during the transmission of one subframe,
the pilot positions channel estimates at different points in
time can be averaged. The remaining channel coefficients
in the frequency domain then have to be obtained by only
one dimensional interpolation. In this work, we use linear
interpolation.

B. LMMSE Channel Estimation

The LMMSE channel estimator requires the second order
statistics of the channel and the noise. It can be shown that
the LMMSE channel estimate is obtained by multiplying the
LS estimate with a filtering matrix ALMMSE [5]

ĥLMMSE = ALMMSEĥLS
p . (4)

In order to find the LMMSE filtering matrix, the MSE

ε = E

{∥∥∥h − ALMMSEĥLS
p

∥∥∥2

2

}
, (5)

has to be minimized, leading to

ALMMSE = Rh,hp

(
Rhp,hp + σ2

wI
)−1

, (6)

where the matrix Rhp,hp = E
{
hphH

p

}
is the channel au-

tocorrelation matrix at the pilot symbols, and the matrix
Rh,hp = E

{
hhH

p

}
is the channel crosscorrelation matrix.

IV. ALMMSE CHANNEL ESTIMATION

In the following section, we present a novel fast fading
channel estimator, which approximates the LMMSE channel
estimator. The main idea is to make use of the structure of the
channel autocorrelation matrix, assumed to be given by

Rh � Rtime ⊗ Rfreq, (7)

where Rtime is the time correlation matrix and Rfreq is the
frequency correlation matrix. The Kronecker structure assump-
tion of the channel autocorrelation matrix Rh corresponds to
independent time- and frequency-correlation.



The standard LMMSE estimate is obtained by minimizing
the error in Equation (5). Let us consider the following
problem instead

min
Bfreq,Ctime

E

{
‖H − BfreqĤLSCT

time‖2
F

}
, (8)

with the channel H = [h0, · · · ,hNs−1] and the LS channel
estimate ĤLS = [ĥLS

0 , · · · , ĥLS
Ns−1]. Here, Ns denotes the

number of OFDM symbols, Bfreq and Ctime are matrices of
dimension K×K and Ns×Ns, respectively. ‖·‖F refers to the
Frobenius norm. The approach in Equation (8) corresponds to
a separate filtering of the LS estimate in time and frequency.
After applying the vec(·) operator [10] in Equation (8) by

using h = vec (H), ĥLS = vec
(
ĤLS

)
, and

vec
(
BfreqĤLSCT

time

)
= (Ctime ⊗ Bfreq) vec

(
ĤLS

)
, (9)

we obtain

min
Bfreq,Ctime

E

{
‖h − (Ctime ⊗ Bfreq) ĥLS‖2

2

}
. (10)

The problems formulated in Equation (5) and Equation (10)
are equivalent. However, in general ALMMSE cannot always
be decomposed into Ctime ⊗Bfreq. Instead, we are searching
for the best approximation

ALMMSE ≈ Ctime ⊗ Bfreq. (11)

Due to the pilot symbols pattern utilized in LTE, that is
not equidistant in the time and frequency, the structure from
Equation (7) cannot be exploited in Rhp,hp and Rh,hp .
Therefore, we replace the auto- and crosscorrelation matrices
in Equation (6) by the channel autocorrelation matrix Rh.
Therefore, instead of filtering the LS estimate at the pilot
symbols position, the interpolated LS estimate has to be
filtered. The dimension of filtering matrix in Equation (6)
is changed from KNs × Np to KNs × KNs, where Np

is the number of the pilot symbols. In the Signal to Noise
Ratio (SNR) range of interest, such an estimator performs
close to the true LMMSE channel estimator. For pilot symbol
pattern that is equidistant in time frequency, the structure from
Equation (7) can be exploited. Using Equations (6) and (7),
the matrix ALMMSE is given by

ALMMSE = Rtime ⊗ Rfreq

(
Rtime ⊗ Rfreq + σ2

wI
)−1

. (12)

The symmetric matrices Rtime and Rfreq can be rewritten
using the eigenvalue decomposition as

Rtime = UtimeDtimeUH
time, Rfreq = UfreqDfreqUH

freq,

where Dtime and Dfreq are diagonal matrices, with their
corresponding eigenvalues ordered from largest to smallest on
the main diagonal. Utime and Ufreq are unitary matrices com-
prising the eigenvectors of the given matrices. Furthermore,
due to the Kronecker product properties, one can write

Rtime ⊗ Rfreq = (Utime ⊗ Ufreq)Dh (Utime ⊗ Ufreq)
H

,

where Dh is a diagonal matrix with eigenvalues of the matrix
Rtime⊗Rfreq, being equal to Dtime⊗Dfreq. Inserting the last

equation into Equation (12) and after some linear algebra, the
filtering matrix becomes

ALMMSE =

(Utime ⊗ Ufreq)Dh

(
Dh + σ2

wI
)−1

(Utime ⊗ Ufreq)
H

.

A. Rank-One Approximation

Let us assume that Bfreq and Ctime have the same eigen-
vectors as Rfreq and Rtime. Then Equation (11) can be
approximated by

ALMMSE =

UhDh

(
Dh + σ2

wI
)−1

UH
h ≈ UhDCtime⊗BfreqU

H
h , (13)

with Uh = Utime ⊗ Ufreq. The matrix DCtime⊗Bfreq is
a diagonal matrix comprising the eigenvalues of the matrix
Ctime ⊗ Bfreq.

Moreover, let λtime, λfreq, λCtime
and λBfreq

denote the
vectors of the eigenvalues of Rtime, Rfreq, Ctime and Bfreq,
respectively. By multiplying λtime with λT

freq, a matrix is
obtained that comprises all possible multiplications of the
elements of the vectors, and thus the eigenvalues of the
matrix Rtime ⊗ Rfreq. To solve the approximation problem
DCtime⊗Bfreq ≈ Dh

(
Dh + σ2

wI
)−1

, the eigenvalues of the
matrix Ctime ⊗ Bfreq have to be found. Those represent all
possible multiplications of the eigenvalues of the matrices
Ctime and Bfreq, given by λCtime

λT
Bfreq

. Using the matrices
λtimeλ

T
freq and λCtime

λT
Bfreq

, the problem can be reformulated
as

λtimeλ
T
freq./

(
λtimeλ

T
freq + σ2

w11T
)
≈ λCtime

λT
Bfreq

, (14)

where 1 is the all ones vector and ./ denotes element-wise
division. This is a so-called rank-one approximation, where
the best approximation is achieved when taking the left and
right eigenvectors corresponding to the largest singular value,
and having one of them scaled by it

λCtime
= σmaxumax, (15)

λBfreq
= vmax. (16)

Accordingly, the ALMMSE channel estimate utilizing the
rank-one approximation of Equation (14) is given by

ĤALMMSE = BfreqĤLSCT
time, (17)

where the matrices Bfreq and Ctime are given by

Bfreq = Ufreqdiag
(
λBfreq

)
UH

freq, (18)

Ctime = Utimediag
(
λCtime

)
UH

time. (19)

B. Complexity Scaling

By utilizing the truncated Singular Value Decomposition
(SVD) [11] on Rtime and Rfreq, Ntime and Nfreq largest
eigenvalues can be obtained, respectively. By using Equa-
tion (14), the vectors λCtime

and λBfreq
of length Ntime and



TABLE I
SIMULATOR SETTINGS FOR FAST FADING SIMULATIONS

Parameter Value
Bandwidth 1.4 MHz

Number of transmit antennas 4
Number of receive antennas 2

Receiver type SSD
Transmission mode Open-loop spatial multiplexing

Channel type ITU VehA [13]
CQI 10

coding rate 466/1024 = 0.455
symbol alphabet 64 QAM

number of subframes 2000

Nfreq are calculated. The matrices Bfreq and Ctime are the
same as if they would be calculated by

Bfreq = (Ufreq)1:Nfreq
diag

(
λBfreq

)
(Ufreq)

H
1:Nfreq

, (20)

Ctime = (Utime)1:Ntime
diag

(
λCtime

)
(Utime)

H
1:Ntime

, (21)

where (·)1:N creates a matrix, which consists of the first N
columns of the matrix. The main complexity is given by the
truncated SVD. Therefore, by varying Ntime and Nfreq the
complexity can be scaled according to the requirements.

V. SIMULATION RESULTS

In this section, we present simulation results and discuss
the performance of the different channel estimation tech-
niques. All results are obtained with the LTE Link Level
Simulator version ”1.2r533”, developed at the Vienna Uni-
versity of Technology [12], that can be downloaded from
www.nt.tuwien.ac.at/ltesimulator.1 We also calculated the 95%
confidence intervals for all simulated curves. All intervals
turned out to be smaller than the size of the markers plotted
in the figures. Table I presents the most important simulator
settings.

The time correlated channel was generated by an im-
plementation of the Rosa Zheng model with modifications
according to [14]. We generate a time correlated channel
impulse response for every sample of the baseband transmit
signal. Using a time-variant convolution the output signal of
the channel is calculated.

In the following simulations, we fixed Nfreq = 5 and
Ntime = 2 to reduce the complexity of the ALMMSE fast
fading channel estimator. In Figure 2 the throughput of the
LTE system at SNR = 20 dB is plotted with different channel
estimators as a function of user velocity. It can be observed
that with increasing velocity the throughput is decreasing. The
LMMSE estimator outperforms the remaining channel estima-
tors. Up to a certain velocity of about v = 175 km/h, the
performance of the proposed ALMMSE channel estimator is
close to the LMMSE estimator. After exceeding this velocity,
the energy of the time correlation is spread over more than two
eigenvalues, therefore the performance is suffering. However,
a user is able to move 25 km/h faster while achieving the same

1All figures can be obtained by running a script file with name
LTE sim batch michal wsa 2010
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Fig. 2. Comparison of the throughput of the LTE system with different
channel estimators over user velocity.
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Fig. 3. Comparison of the MSE of the LTE system with different channel
estimators over user velocity.

data throughput, if the ALMMSE estimator is utilized instead
of the LS estimator.

When the LMMSE channel estimator is employed, the
performance of the system is close to knowing the channel
perfectly up to a velocity of about 150 km/h. With a further
increase of the user velocity, the performance is decreasing.

Figure 3 shows the MSE for the same scenario. Up to a
certain user velocity of about v = 20 km/h, the MSE of the
LS block fading estimator is lower than that of the LS fast
fading estimator. This is because the block fading estimator
inherently assumes that the channel stays constant during the
transmission of one subframe and thus it performs averaging
over time. At a user velocity of 25 km/h, the ALMMSE
channel estimator shows a peak in the MSE which is due
to numerical problems because of a small eigenvalue.

Figure 4 shows the data throughput over SNR using differ-
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Fig. 4. Throughput of the LTE system using different channel estimators at
user speed of 60 km/h.
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Fig. 5. Mean square error of the different channel estimators at user speed
of 60 km/h

ent channel estimators. At 90% of the maximum throughput,
the performance loss of the ALMMSE estimator with respect
to the LMMSE estimator is approximately 0.1 dB. We measure
the the performance loss at 90% of the maximum throughput,
because it is operating point, where the mobile operator would
like to operate their systems. In the low SNR region, the
LS block fading estimator slightly outperforms the LS fast
fading estimator due its averaging over time, which effectively
suppresses noise.

Correspondingly, Figure 5 depicts the MSE of the pre-
sented channel estimators for a user velocity of 60 km/h.
With increasing SNR, the difference in MSE between the
ALMMSE estimator and the LMMSE estimator, is decreasing.
Furthermore, it can be observed that the MSE of the LS
block fading estimator saturates. The MSE of all other channel
estimators is decreasing with increasing SNR.
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Fig. 6. Throughput of the LTE system using ALMMSE channel estimator
with different number of eigenvalues over user speed

In Figure 6 the throughput as a function user velocity
at SNR = 20 dB is depicted for the ALMMSE channel
estimator using different Nfreq and Ntime. By varying the
number of considered eigenvalues, the complexity of the
ALMMSE channel estimator can be adjusted; however, also
the achievable performance is affected. For the case Nfreq = 1
and Ntime = 1, the performance is limited that much that
no throughput is achieved. This is caused by ignoring large
eigenvalues.

Finally, in Figure 7 we present the throughput of LTE at
SNR=30 dB using cqi=14 over user velocity. It can be seen,
that with increasing user velocity the throughput is decreasing
even with perfect channel knowledge. This is due to Inter
Carrier Interference (ICI) that is not taken care of at the
receiver. Under the user velocity axis, a Signal to Interference
and Noise Ratio (SINR) axis is shown. It illustrate the decrease
of the SINR with increasing user velocity, even though the
SNR is constant. At an SNR of 20 dB, shown in Figure 2, there
is no performance degradation with perfect channel knowledge
with increasing velocity.

VI. CONCLUSION

In this paper, we proposed an ALMMSE channel esti-
mator and compared it to several state-of-the-art fast fading
channel estimators. Although the MSE performance of the
LS fast fading estimator is only slightly decreasing with
increasing user velocity, the throughput performance is af-
fected more dramatically. The proposed ALMMSE channel
estimator is able to outperform the LS estimator and achieves
a throughput performance with only 0.1 dB loss compared to
the LMMSE estimator. Furthermore, the complexity of the
proposed scheme can be adjusted by varying the number of
considered eigenvalues, however, at the cost of estimation
accuracy and consequently data throughput.
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