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Doubly Robust Internal Benchmarking and False
Discovery Rates for Detecting Racial Bias

in Police Stops
Greg RIDGEWAY and John M. MACDONALD

Allegations of racially biased policing are a contentious issue in many communities. Processes that flag potential problem officers have

become a key component of risk management systems at major police departments. We present a statistical method to flag potential problem

officers by blending three methodologies that are the focus of active research efforts: propensity score weighting, doubly robust estimation,

and false discovery rates. Compared with other systems currently in use, the proposed method reduces the risk of flagging a substantial

number of false positives by more rigorously adjusting for potential confounders and by using the false discovery rate as a measure to flag

officers. We apply the methodology to data on 500,000 pedestrian stops in New York City in 2006. Of the nearly 3,000 New York City Police

Department officers regularly involved in pedestrian stops, we flag 15 officers who stopped a substantially greater fraction of black and

Hispanic suspects than our statistical benchmark predicts.

KEY WORDS: Propensity score weighting; Racial profiling; Risk management systems.

1. INTRODUCTION

Race is at the forefront of most discussions of police
behavior (Kennedy 1997; Russell-Brown 1998). Numerous
departments face expensive civil litigation as a result of high
profile police use of force incidents and allegations of systemic
patterns of racially biased police practices. These include
United States Department of Justice oversight of settlement
agreements in several cities including Los Angeles, Wash-
ington DC, and Cincinnati. These agreements often involve
extensive data collection efforts and analyses to assess evi-
dence of racially biased policing. Whereas the data collection
efforts are producing large, detailed datasets, the extent to
which current methodologies can adequately capture bias in
police decisions on which citizens to stop and question (e.g.,
racial profiling) and other routine activities remains a matter of
debate (National Research Council 2003). Plaintiffs seek
methods that can pinpoint problems in departments and seek
remedies. Departments are eager to find civil liability risks,
such as problem officers, before any incidents arise.

There have been many efforts to assess whether entire police
forces have racially biased practices. The majority of methods
used to assess biased police behavior focus on comparisons of a
given police department’s rate of stops, searches, or arrests of
nonwhites against some form of external benchmark (Fagan
and Davies 2000; Fridell 2004; Gelman, Fagan, and Kiss
2007). Studies have compared the race distribution of indi-
viduals that officers have stopped with the race distribution of
residents reported in the census (Steward 2004; Weiss and
Grumet-Morris 2005), the race distribution of not-at-fault
drivers in traffic accidents (Alpert, Smith, and Dunham 2004),
the race distribution of those cited using race blind detection
such as photographic stoplight enforcement (Montgomery

County Department of Police 2002) or by aerial patrols
(McConnell and Scheidegger 2001), and the race distribution
of a sample of drivers or pedestrians in public (Lamberth
1994). Studies have also focused on ‘‘outcomes tests’’ from
police searches conducted during motor vehicle stops
(Knowles, Persico, and Todd 2001; Ayres 2002; Persico 2002;
Hernández-Murillo and Knowles 2004). If searches of non-
white drivers are less productive (have a lower likelihood of
yielding contraband) then this suggests police might be
applying a lower standard of suspicion to nonwhite drivers.
More recently, Grogger and Ridgeway (2006) used changes to
and from Daylight Savings Time to detect whether the ability
to identify race in advance of the stop influenced the race
distribution of drivers that were stopped.

All of these methods focus on the police departments as a
whole and report whether there is or is not evidence of racially
biased policing. Some police executives have suggested that if
there are problems then they stem from ‘‘a few bad apples.’’
These sentiments are consistent with prior research that has
found that a small fraction of police officers in a given
department contribute to a disproportionate share of cases of
abuse of authority (Sherman 1978).

If racial bias is the result of a few ‘‘problem officers’’ then
the previously discussed methods that examine bias at the
departmental level will not be likely to detect the problem and,
even if somehow they have the statistical power to detect the
problem, they cannot help to identify potential problem offi-
cers. Walker (2001, 2002, 2003b) conceptualized an ‘‘internal
benchmark’’ method that compares officers’ stop decisions
with decisions made by other officers patrolling the same area
at the same time. The comparison of decisions made in the
same areas and times is critical. Research notes that police
officer behavior varies as a function of location and time of the
day and that those officers working in ‘‘troubled’’ areas with
heavier workloads become more vigilant about intervening
when a situation appears suspicious (Klinger 1997).

This basic internal benchmark strategy has been adopted as a
part of several ‘‘early warning systems’’ (Walker 2003a). At the
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Los Angeles Police Department (LAPD), the TEAMS II Risk
Management Information System places officers in one of 33
peer groups (Birotte 2007). Officers in the same peer group
presumably are expected to conduct similar policing activities.
If an officer exceeds certain thresholds compared with a peer
group, such as being in the top 1% on number of complaints or
number of use-of-force incidents, the system generates an
‘‘action item’’ for follow-up. However, officer roles in LAPD
are certainly more diverse than 33 groups can capture and the
system generates more action items than reasonably can be
investigated. For example, an estimated 16% of the action
items occurred after an officer had a single complaint or a
single use-of-force incident. The risk of false positives seems
high. Similar problems are likely in other audit systems, like
Pittsburgh’s Performance Assessment and Review System,
Cincinnati’s Risk Management System, and Phoenix’s Per-
sonnel Assessment System, which compute a ‘‘peer-officer-
based formula’’ to flag officers (Walker 2003a), but do not take
into account the different environments where officers in the
same peer group work.

This article describes a method for constructing a custom-
ized internal benchmark for each officer, comparing the race
distribution of suspects stopped by the officer in question with
the race distribution of suspects stopped by other officers at the
same times, places, and contexts. Rather than forming peer
groups, this method creates a unique set of comparison stops
for each officer, customized to the individual officer’s unique
assignment and patrol patterns. Our internal benchmark anal-
ysis blends three statistical methodologies that are the focus of
active research efforts: propensity score weighting, doubly
robust estimation, and false discovery rates. We use propensity
score weighting to construct each officer’s internal benchmark,
doubly robust estimation to remove any residual bias and
reduce variance, and a false discovery rate analysis to flag
potential problem officers. We apply the internal benchmarking
methodology to data on 500,000 pedestrian stops that New
York City Police Department (NYPD) officers made in 2006 to
flag officers who have anomalous patterns. The method flags
15 NYPD officers who appear to be stopping an unusually
large fraction of nonwhite pedestrians and flags 13 officers who
appear to be stopping substantially fewer nonwhite pedestrians
than expected. We show how these three contemporary stat-
istical methods present compelling evidence for that conclusion.

2. DATA, METHODS, AND ANALYSIS

In February 2007, the NYPD released statistics indicating
that approximately 500,000 pedestrians had been stopped on
suspicion of a crime in New York City in 2006. Almost 90% of
the stops involved nonwhites. The number of stops and the
apparent lopsided representation of nonwhites among those
stopped generated concerns about a systematic pattern of
racially biased police practices (New York Civil Liberties
Union 2007). Ridgeway (2007a) showed that time, place, and
context of the stops could explain much of the racial disparity
but also found unexplainable disparities in some areas. The
method presented in this article addresses one aspect of this
question, namely whether the data suggest that specific indi-
vidual officers are stopping a disproportionate number of

nonwhite pedestrians relative to similarly situated stops made
by other officers.

The fundamental goal of internal benchmarking is to com-
pare stops made by a particular officer with stops made by
other officers occurring at the same times, places, and contexts.
The latter stops form the officer’s internal benchmark. The
officer’s stops and the benchmark stops can be compared on
features such as the percentage involving nonwhite suspects or
the percentage involving some use of force. Accounting for
time, place, and context in the benchmark construction assures
us that both the officer and the benchmark are exposed to
similar sets of offenses and offenders. In our analysis, we
account for month, day of week, time of day, precinct, (x,y)
coordinates of the stop location, whether it was a transit or
public-housing location, the officer’s assigned command,
whether the officer was in uniform, and whether the stop was a
result of a radio run (i.e., officers were dispatched to a location
in response to a report or emergency call).

2.1 Propensity Score Weighting

We match the joint distribution of the features of stops made
by other officers to the distribution of features of stops made by
the officer in question. Note that we are not matching indi-
vidual stops to one another, but rather matching the joint dis-
tribution of their features. We construct our internal benchmark
by reweighting the stops of potential benchmark stops so that
the joint distributions align. Specifically,

f ðx j t ¼ 1Þ ¼ wðxÞf ðx j t ¼ 0Þ ð1Þ
where x is the vector of stop features, t is a 0/1 indicator for a
stop involving the officer under examination, and w(x) is the
weight function, for which we solve to equalize the feature
distributions. Solving for w(x) and applying Bayes’s theorem to
the two conditional distributions of x yields

wðxÞ ¼ f ðt ¼ 1 j xÞ
f ðt ¼ 0 j xÞK ð2Þ

where K is a constant that does not depend on x and will cancel
in the outcomes analyses. The probability that a stop having
features x involves the officer in question, f(t ¼ 1|x), is the
propensity score (Rosenbaum and Rubin 1983). In traditional
propensity score analysis t is the treatment indicator; here,
stops made by the officer in question are deemed to be exposed
to the ‘‘treatment’’ and stops made by other officers are the
‘‘control’’ stops.

We will denote the propensity score for stop i as pi. Ac-
cording to (2), weighting the stops of other officers by pi/(1 – pi)
will align the distribution of all of their stop characteristics with
the distribution of the target officer’s stop characteristics. Those
stops having features (time, location, context) that are quite
different from the characteristics of stops that the target officer
makes will have propensity scores near 0 and therefore will
receive weights near 0. Stops with large propensity scores, on the
other hand, have features that are very similar to the target
officer’s stops and will have larger weights. These
contribute most to the target officer’s internal benchmark.
For more detailed analysis of propensity score weights see
Hirano and Imbens (2001), Wooldridge (2001, pp. 614–621),
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McCaffrey, Ridgeway, and Morral (2004), and Ridgeway
(2006).

We use the boosted logistic regression method described in
McCaffrey et al. (2004) to compute the propensity scores. This
method essentially estimates the propensity scores from a
logistic regression model constrained with an L1 penalty on the
size of the coefficients (Tibshirani 1995). The associated
penalized log-likelihood function is

‘ðaÞ ¼
Xn

i¼1

tia9hðxiÞ � log 1þ ea9hðxiÞ
� �

� l
XJ

j¼1

jajj ð3Þ

where h(x) is some suitable class of basis functions. The sec-
ond summation on the right side of the equation is a penalty
term that decreases ‘(a) when there are coefficients that are
large in absolute value. Setting l ¼ 0 returns the standard (and
potentially unstable) logistic regression estimates of a. Setting
l to be very large essentially forces all of the aj to be near 0 (the
penalty excludes a0). For a fixed value of l the estimated â can
have many coefficients exactly equal to 0, not just extremely
small but precisely 0, and only the most powerful predictors of
t will be nonzero. As a result the absolute penalty operates as a
coefficient shrinkage and variable selection penalty. In prac-
tice, if we have several predictors of t that are highly correlated
with each other, (3) tends to include several of them in the
model, shrinks their coefficients toward 0, and produces a
predictive model that utilizes all of the information in the
covariates, producing a model with greater out-of-sample
predictive performance than models fit using variable subset
selection methods.

We let h(x) be a large collection of piecewise constant
functions of the xj variables and their interactions. That is, in
h(x) we include indicator functions like I(month ¼ January),
I(location¼ transit), and interactions among them like I(month
¼ January) 3 I(location ¼ transit). This collection of basis
functions spans a plausible set of propensity score functions,
is computationally efficient, and is flat at the extremes of x,
thereby reducing the risk that the propensity score estimates are
spuriously near 0 and 1 (which can occur with linear basis
functions of x). Theoretically we can estimate the model in (3),
selecting a l small enough so that it will eliminate most of the
irrelevant terms and yield a parsimonious model with only
the most important main effects and interactions. Boosting
(Friedman 2001) effectively implements this strategy using a
computationally efficient method that Efron, Hastie, John-
stone, and Tibshirani (2004) showed is equivalent to optimizing
(3). We used the implementation in the generalized boosted
modeling package in R (Ridgeway 2007b). Whereas boosting
has the potential to underfit or overfit, selecting l using cross-
validation or to optimize balance between the target officer’s
stops and the benchmark stops, as we do, minimizes those
risks. Mease, Wyner, and Buja (2007) challenge the quality of
class probabilities computed from boosted logistic regression
models. However, they do not regularize the models or use
effective stopping rules like cross-validation. In constructing
the benchmark for each officer, we selected l so that the
resulting propensity score weights produced weighted marginal
feature distributions for the benchmark stops that matched the
marginal feature distributions for the officer’s stops.

As an example, Table 1 presents the internal benchmark
calculated for one particular NYPD officer. This officer made
392 stops in 2006. The largest fraction of stops occurred on
Thursdays, mostly in precinct B, and mostly during the night
shift. This officer made few stops in January and never made
stops in public housing or transit locations. This officer’s stops
involved black pedestrians 83% of the time. To assess whether
83% is a reasonable fraction we construct a weighted set of
stops for the benchmark.

The ‘‘Internal Benchmark’’ column in Table 1 shows the
marginal distributions of features for stops made by other
officers weighted as in (2). The benchmark stops have almost

Table 1. Illustration of internal benchmarking for an example officer

Example
Officer (%)
(n ¼ 392)

Internal
Benchmark (%)
(ESS ¼ 3, 676)

Stop
Characteristic

Month January 3 3
February 4 4
March 8 9
April 7 5
May 12 12
June 9 9
July 7 7
August 8 9
September 10 10
October 11 10
November 11 11
December 9 10

Day of the week Monday 13 13
Tuesday 11 10
Wednesday 14 15
Thursday 22 21
Friday 15 16
Saturday 10 11
Sunday 15 14

Time of day 12–2 a.m. 11 11
2–4 a.m. 5 5
10 a.m.�12 p.m. 0 1
12–2 p.m. 12 13
2–4 p.m. 13 12
4–6 p.m. 9 10
6–8 p.m. 8 8
8–10 p.m. 23 23
10 p.m.�12 a.m. 17 17

Patrol borough Brooklyn North 100 100
Precinct A 0 0

B 98 98
C 1 1
D 1 0

Inside or outside Inside 4 6
Outside 96 94

Housing or transit Transit 0 0
Housing 0 0
Other 100 100

Command
assignment

Precinct B 100 100

In uniform Yes 99 97
Radio run Yes 1 3

NOTE: The precincts have been given random letter codes to mask the officer’s identity.
For the benchmark stops ESS represents the effective sample size, ESS ¼ Swið Þ2=Sw2

i :
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exactly the same distribution of features as the target officers;
they were made in the same places, times, and contexts. For our
purposes, the fact that we can balance the stop features as in
Table 1 is sufficient to show our method’s effectiveness.

Whereas Table 1 shows that the method matches univariate
marginal distributions for discrete stop features, distributions
of continuous stop features and higher dimensional marginal
distributions are also well matched. For example, we included
the latitude and longitude of the stops in the propensity score
model in addition to the discrete stop features listed in Table 1.
Figure 1 shows a map of NYPD precinct B with a few addi-
tional sectors of the adjacent precincts where the officer in
question made stops. The contours in Figure 1 show the dis-
tributions of the stop locations for the officer’s stops (left panel)
and the benchmark stops (right panel). This demonstrates that
not only the officer’s stops and the benchmark match in terms
of the percentage of stops in precinct B (as shown in Table 1),
but also the benchmark is further customized for the specific
parts of the precinct in which the officer patrols. The scale of
the map and the locations of the stops suggest that this officer
was on a foot patrol.

2.2 Outcome Analysis With a Propensity Score
Weighted Benchmark

Whereas 83% of the officer’s stops involved black pedes-
trians, the weighted benchmark stops involved black pedes-
trians 78% of the time. We need to resolve when these
differences from the benchmark warrant closer scrutiny. Sev-
eral of the early warning systems flag officers based on z
scores, which have been promoted as a measure for flagging
problem officers such as those officers exceeding standard
significance levels. Fridell (2004) suggests 2.0 and Smith
(2005) suggests 1.645. We argue later that such cutoffs gen-
erate too many false positives to be useful.

The z-score for our proposed benchmark constructed using
propensity score weights can be obtained as z ¼ b̂1=seðb̂1Þ from
maximizing the weighted logistic regression log-likelihood

‘ðbÞ ¼
Xn

i¼1

wi yiðb0 þ b1tiÞ � log 1þ eb0þb1ti
� �� �

ð4Þ

where yi is the 0/1 indicator of whether the stop involved, for
example, a black pedestrian. Another outcome of interest could
be used for yi, such as whether the stop involved a member of
another racial group, involved use of force, resulted in a
complaint, or resulted in a commendation. The target officer’s
stops receive wi ¼ 1 and the stops made by other officers
receive wi¼ pi/(1 – pi) as in (2). The standard error of b1 can be
estimated with a sandwich estimator to account for the weights
(Huber 1967). For the officer described in Table 1, z ¼ 2.4.

If the propensity score weights are effective at equating the
distribution of the officer’s stop features, f(x|t ¼ 1), with the
distribution of the benchmark stop features, w(x)f(x|t¼ 0), then
the z statistics will not contain the potential confounding effect
of x. If differences remain between f(x|t¼ 1) and w(x)f(x|t¼ 0)
then additional regression adjustment can be effective at re-
moving small differences and producing doubly robust estimates.

2.3 Doubly Robust Estimation

Achieving balance in the feature distributions of the officer’s
stops and the benchmark stops is critical to a fair internal
benchmark analysis. For most officers the propensity score
weights construct a convincing comparison set of stops,
although for 10% of the officers at least one stop feature dif-
fered from the benchmark stops by more than 5%; the largest
difference was 12%. If those features on which the officer’s
stops and benchmark stops differ are strongly associated with
the suspect’s race, then the analysis can be biased. Doubly
robust methods (Bang and Robins 2005; Kang and Schafer
2007) for estimating effects can reduce the risk of bias. We
obtain a doubly robust estimate of the benchmark minority stop
rate by expanding (4) to include covariates. We fit a weighted
logistic regression model, obtaining b that maximizes the
propensity score weighted log-likelihood

‘ðbÞ ¼
Xn

i¼1

wi yisðti; xijbÞ � log 1þ esðti;xijbÞ
� �� �

ð5Þ

where s(t,x|b) is a regression function for which we use a linear
model, b0 þ b1t þ g9x, but more flexible options are possible.
If either the propensity score weights accurately match the
officer and benchmark stop feature distributions or the
regression model, s, correctly specifies the relationship
between (t, x) and log P(y ¼ 1|t, x)/P(y ¼ 0|t, x), then the
estimator

�yDR
0 ¼

Xn

i¼1

ti
1

1þ e�sð0;xijb̂Þ
ð6Þ

is a consistent estimator of the benchmark minority stop rate
(the percentage of the officer’s stops that we would have
expected to have been minorities based on the minority stop
rate of other officers patrolling under the same conditions).

The expression in (6) computes what is commonly referred
to as the ‘‘recycled prediction’’ estimate of the benchmark
outcome. The model in (5) can be fit using a weighted logistic
regression program that treats the wi as survey weights (e.g.,
R’s survey package, Stata’s svy: logit, SAS’s PROC SUR-
VEYREG). If s(t,x|b) has no interactions between t and x then
the z-statistic for b1 is an appropriate measure of the difference

Figure 1. Maps of the locations of the officer’s stops (left) and the
locations of the benchmark stops (right). The contours show the region
that has the highest concentration of stops. This demonstrates that the
propensity score based benchmark can also match on continuous stop
features and on higher dimensional marginal distributions.
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between the officer’s stops and the benchmark, though the next
section indicates that N(0, 1) might not be the appropriate
reference distribution.

If s(t,x|b) includes interactions between t and x, then we
would estimate the officer’s departure from the benchmark
with the regression adjusted difference as

û ¼
Xn

i¼1

ti
1

1þ expð�sð1; xijb̂ÞÞ
� 1

1þ expð�sð0; xijb̂ÞÞ

 !
:

ð7Þ
The z-statistic would then be û=seðûÞ. To compute seðûÞ we
would use the subset of the data containing just the officer’s
stops (stops with t ¼ 1). We would append to that dataset a
replicate of the officer’s stops except setting t ¼ 0. With the
fitted logistic regression model we would generate predictions
for this dataset with 2

P
ti observations, storing the covariance

matrix of the predictions as S. We would then estimate VarðûÞ
as a0Sa where a has length 2

P
ti with the first

P
ti elements

equal to 1 and the last
P

ti elements equal to – 1. For the officer
described in Table 1, the regression adjustment yields z ¼ 2.2,
slightly less than the z-score computed without regression
adjustment (2.4).

In 2006, 15,855 officers completed at least one stop. Of those
officers, 3,034 officers had more than 50 pedestrian stops. We
constructed benchmarks only for those officers who made at
least 50 stops in 2006, focusing the analysis on those officers
most frequently involved in pedestrian stops. This restriction
provides a minimum level of statistical power for detecting
differences if they exist. For each officer, in turn, we con-
structed a separate internal benchmark like the one shown in
Table 1, one specifically tailored for each officer’s patterns of
stops. For 278 of those officers, a suitable set of benchmark
stops could not be constructed. For these officers, the best set of
benchmark stops differed from the given officer’s stops by
more than 10% on some observable factors. These officers
generally made fewer stops and had uncommon assignments
(e.g., not in uniform, making stops in precincts in which few
other officers make stops). Our final set for analysis includes
2,756 officers. These officers represent 7% of NYPD officers
and 17% of those involved in stops, but collectively they made
54% of all the stops for the NYPD. After computing the 2,756 z
scores, we compute for each officer the probability that, given
their z-score, the officer’s stop pattern differs from the benchmark.

2.4 False Discovery Rates

An officer’s z-statistic is a measure of the degree to which the
racial distribution of the officer’s stops differs from those of the
officer’s benchmark. Issues of multiple testing clearly arise
when attempting to infer statistical differences based on 2,756
z-statistics. Benjamini and Hochberg (1995) pioneered the use
of the false discovery rate (fdr) as an alternative multiple
comparison adjustment technique. The fdr is the probability of
no difference between the officer and the benchmark given the
value of an observed test statistic, z. Our method flags those
officers who have values of z that suggest a high probability of
exceeding their benchmark.

If one conceptualizes that an officer is either ‘‘problematic’’
(the racial distribution of the officer’s stops does not match that

of the corresponding benchmark) or ‘‘not problematic’’ (the
racial distribution of the officer’s stops matches that of the
benchmark), then one can derive the probability of an officer
being problematic as

PðproblemjzÞ ¼ 1� Pðno problemjzÞ

¼ 1� f ðzjno problemÞf ðno problemÞ
f ðzÞ

$ 1� f 0ðzÞ
f ðzÞ

ð8Þ

where f0(z) is the distribution of z for nonproblem officers and
f(z) is the distribution of z for all officers (Efron 2004). The
expression in (8) is 1 – fdr. If most officers are not problem
officers (e.g., f(no problem) > 0.90) then the bound in (8) is
near equality.

Figure 2 shows a histogram of the 2,756 z scores computed
for the NYPD data. In standard circumstances, f0(z) would be
an N(0, 1) density. However, in a collection of 2,756 z scores,
each of which is correlated with the other, the empirical dis-
tribution of the z statistics may be much wider than an N(0, 1)
(Efron 2007). As shown in Figure 2, the N(0, 1) overlaid is
much narrower than the histogram of the z scores. Following
Efron (2004), we estimate f0(z) with the empirical null assumed
to be normal with parameters estimated using the location and
curvature of the central part of the histogram, resulting in an
N(0.1, s ¼ 1.4) density. We estimate f(z) with a nonparametric
density estimate. We used the locfdr R package for these
computations (Efron, Turnbull, and Narasimhan 2008).

Officers with z > 4.2, representing five of the 2,756 NYPD
officers, have probability in excess of 0.50 of having a dis-
tribution of stops more extreme than that of the benchmark
(e.g., higher proportion of stops of black pedestrians). The
choice of 0.50 as a threshold implies that the cost of failing to
identify a problem officer equals the cost of flagging a good
officer, which may not be the case. We recommend to
departments to start with those above 0.50, assess issues related
to those officers, and if the process identifies substantive
concerns then proceed through the list until a meaningful false-
positive risk suggests that it would be appropriate to stop. Table
2 summarizes the five officers with fdr < 0.50. In each case
these officers appear to be making a substantially higher
fraction of stops of black pedestrians than their benchmark. On

Figure 2. The distribution of the 2,756 z-statistics and the estimated
reference distribution. The N(0.1, 1.4) density is the estimated f0(z),
the distribution of the z scores of officers who match their benchmark
assuming normality. The downward pointing arrows mark the value of
z for which the P(problem|z) ¼ 0.5.
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the left side of the distribution we also find 12 officers with
z < �4.0 who stopped many fewer black suspects than their
benchmarks suggest. Repeating the analysis for stops of His-
panic pedestrians identifies 10 officers who appear to be
overstopping and four who appear to be understopping His-
panic pedestrians.

The procedure currently being advocated to police depart-
ments of flagging officers with z > 2.0 selects 9% of the officers
and the z > 1.645 selects 13% of the officers. Of the 242 officers
with z > 2.0, 217 (90%) of them have fdr estimated to be greater
than 0.999, indicating that they are unlikely to truly deviate
from their benchmark. This analysis provides clear evidence
that standard auditing methods create too many false positives
to be useful.

3. LIMITATIONS OF THE ANALYSIS

There are several limitations and cautions warranted when
utilizing the proposed internal benchmark for flagging officers.
Omitted variable bias is possible in all studies using observa-
tional data. If there is a confounding variable (besides racial
bias) that is associated with both the officer and the likelihood
of stopping a nonwhite pedestrian, then the estimated race
effect will be biased. The analysis uses all observable features
of time, place, and assignment that are clearly confounding
variables, but an unmeasured variable may explain the ob-
served differences. There also may be legitimate reasons for
some of the observed officer differences, such as an idiosyn-
cratic assignment. Our analysis, however, indicates that the
racial differences in stops for the outlying officers observed is
not because of their unique exposure to a racial distribution of
offenses and offenders by place, time, reason for the stop, or
random chance. At this stage we do not know whether these
flagged officers are engaged in racially biased policing, but the
patterns observed suggest the need to audit these officers’ stop
decisions.

Implicit in the proposed framework, which draws on a
multiple-comparison idea relevant to hypothesis testing, is an
assumption that numerous officers have the same level of bias,
which is either near zero or identically equal to zero. Although
the method compares officers to their peers, it is not necessarily
the case that their peers are unbiased. If, for example, all of the
officers in a precinct act in a racially biased manner then when
each is compared with the others, none of the officers in this
precinct will be flagged as problematic. Only in the case that
most officers are unbiased and only a few are problematic, the
setting several police executives have suggested, will the
method actually measure race bias among officers. An alternative

conception of the problem, based on assuming a distribution of
bias for the officers, might be able to improve upon this
framework. Select comparisons might be able to inform us
about this distribution. For example, if some of the officers
from the highly biased precinct made stops outside of their
precinct, we could compare those stops to stops made by
officers from the adjacent precinct. This would suggest esti-
mates of the bias for those in the problematic precinct to be
relatively larger than for those officers in the adjacent precinct.
Further development of such ideas may result in an fdr cal-
culation that deconvolves the race bias distribution from the
reference distribution.

An additional limitation to this analysis is the possible
practice of systematic under-reporting of stops. If certain
officers systematically under- or over-report their stops of
nonwhite pedestrians, the estimated race effect will be biased.
The NYPD has multiple layers of auditing to ensure that
pedestrian stops are documented completely and contain valid
and sufficiently detailed entries to each question. The NYPD
audit system, however, does not address whether undocu-
mented stops are occurring among specific officers. Because
officers have an incentive to demonstrate productivity through
stops, most stops should be documented. However, particularly
problematic stops may not be recorded. Ridgeway (2007a)
recommended a study of radio communications, monitoring
them for a fixed period in a few randomly selected precincts,
and determining whether stop forms exist that match the times
and places of reported street encounters. Ridgeway, Schell,
Riley, Turner, and Dixon (2006) audited Cincinnati PD traffic
stops, comparing them with dispatch logs and found that
completion rates were above 96%.

Our analysis computed benchmark comparisons for only
those officers making more than 50 stops. Whereas these
officers cover the majority of pedestrian stops, this cutoff
prevents the analysis from detecting biases in those officers
making fewer than 50 stops. There is limited statistical power
to detect differences in minority stop rates when an officer has
fewer than 50 stops, and it is conceivable that an officer could
simply make fewer stops to underpower his or her benchmark
to avoid the possibility of being flagged. Combining data
across years could address this problem within the proposed
framework. A hierarchical modeling framework that smooths
estimates of racial bias could also be considered to accom-
modate officers with fewer than 50 stops; we would not expect
such an approach to flag many additional officers, but it is
conceivable that an officer with fewer than 50 stops but a large
racial discrepancy from benchmark predictions would stand
out using such a method.

Our analysis also dropped 278 officers for whom we could
not construct an adequate benchmark. The problem occurs
when some officers had very unique assignments. For example,
there might be one officer who was essentially the only officer
to make stops in a particular public housing complex. As a
result the method could not identify similarly situated stops
made by other officers. Technically, we could still compute a
doubly estimate, but its accuracy would rely heavily on the
regression model’s ability to extrapolate correctly. For exam-
ple, if an officer made 70% of his stops in a particular neigh-
borhood but less than 60% of the benchmark consisted of stops

Table 2. Internal benchmark analysis for stop rates of black suspects

Officer Benchmark

Black (%) Stops (n) Black (%) Stops (n) fdr

86 151 55 773 0.03
85 218 67 473 0.38
77 237 56 1,081 0.14
75 178 51 483 0.22
64 59 20 695 0.02
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in that neighborhood then we are relying heavily on the
regression model to adjust for the difference. We, as well as
police managers we have worked with, are skeptical of relying
on regression models too heavily when there are variables
(such as neighborhood) that, even after weighting, are strongly
associated with both officer and pedestrian race. We selected
10% as the cutoff to drop officers because we felt it generated a
certain level of suspicion among police management that the
benchmark was inadequate and not useful. Again, combining
data across years or more sophisticated regression models may
be able to relax this restriction.

Further, the estimate of f0(z), the distribution of z for non-
problem officers, requires a large number of officers. NYPD
has a sufficient number to estimate this reasonably well, but
without strong assumptions on f0(z), an internal benchmark
analysis for smaller departments could not yield reliable esti-
mates of the probability of being a problematic officer.

4. DISCUSSION

This study was predicated on the notion that methodological
approaches for detecting racial bias in police decision-making
need to be sensitive to the environmental context in which
officers carry out their daily work and make stops. Prior
research suggested that officers should behave differently
depending on the location in which they are working. The
internal benchmark method controlled for this potential con-
founding factor on police officers’ decisions to stop pedes-
trians. It compares officers patrolling the same areas at the
same times, assuming that conditioning on these factors would
result in officers being exposed to the same population of
offenders. If the officers all had the same duties, then we would
expect the race distribution of their stops to be similar, if not the
same. After using a doubly robust benchmark construction to
compare the racial distribution of the stops of 2,756 officers,
we found five officers who appeared to be stopping a significantly
larger fraction of black pedestrians and 10 officers stopping an
excessive fraction of Hispanic pedestrians when compared with
stops other officers made at the same times and places.

The results from this study suggest that ‘‘problematic offi-
cers’’ might be apparent when accounting for the environ-
mental context in which officers perform their stops. Importantly,
the differences observed in the current study are not likely
the result of chance differences or differences in the exposure
to unique times or locations in New York City. This analysis
gives police management useful tools to identify potential
problem officers whose work performance may need closer
inspection. As opposed to officers monitored with other risk
management systems currently in operation, the proposed
methodology has a much lower risk of generating ‘‘false pos-
itives,’’ subjecting some officers to unnecessary scrutiny and
potentially concealing problem officers among large numbers
of false positives.

Whereas this analysis is limited to within-agency variation in
racial differences in pedestrian stop decisions, we think this is
an important avenue for future legal and empirical inquiry on
racial bias in police decision-making. The internal benchmark
approach used here moves the debate away from discussions
about the relevant aggregate benchmarks and focuses on

providing a rigorous method for comparing officers to each
other. This methodology could also be expanded to evaluate the
volume of complaints, the use of arrest authority, and other
aspects of the legal decision-making for police officers.

Software implementing this method was deployed at the
Cincinnati PD in 2007 and is now run quarterly as a standard part
of every patrol officer’s review. Accordingly, we expect there
would be substantial public-policy interest in future evaluations
of this program, which we hope will be forthcoming.

[Received July 2008. Revised November 2008.]
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