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Doubly Robust Policy Evaluation and
Optimization1

Miroslav Dudík, Dumitru Erhan, John Langford and Lihong Li

Abstract. We study sequential decision making in environments where re-
wards are only partially observed, but can be modeled as a function of ob-
served contexts and the chosen action by the decision maker. This setting,
known as contextual bandits, encompasses a wide variety of applications
such as health care, content recommendation and Internet advertising. A cen-
tral task is evaluation of a new policy given historic data consisting of con-
texts, actions and received rewards. The key challenge is that the past data
typically does not faithfully represent proportions of actions taken by a new
policy. Previous approaches rely either on models of rewards or models of the
past policy. The former are plagued by a large bias whereas the latter have a
large variance.

In this work, we leverage the strengths and overcome the weaknesses of
the two approaches by applying the doubly robust estimation technique to
the problems of policy evaluation and optimization. We prove that this ap-
proach yields accurate value estimates when we have either a good (but not
necessarily consistent) model of rewards or a good (but not necessarily con-
sistent) model of past policy. Extensive empirical comparison demonstrates
that the doubly robust estimation uniformly improves over existing tech-
niques, achieving both lower variance in value estimation and better policies.
As such, we expect the doubly robust approach to become common practice
in policy evaluation and optimization.

Key words and phrases: Contextual bandits, doubly robust estimators,
causal inference.

1. INTRODUCTION

Contextual bandits (Auer et al., 2002/03; Langford
and Zhang, 2008), sometimes known as associative re-
inforcement learning (Barto and Anandan, 1985), are
a natural generalization of the classic multiarmed ban-
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dits introduced by Robbins (1952). In a contextual ban-
dit problem, the decision maker observes contextual in-
formation, based on which an action is chosen out of a
set of candidates; in return, a numerical “reward” sig-
nal is observed for the chosen action, but not for others.
The process repeats for multiple steps, and the goal of
the decision maker is to maximize the total rewards in
this process. Usually, contexts observed by the decision
maker provide useful information to infer the expected
reward of each action, thus allowing greater rewards
to be accumulated, compared to standard multi-armed
bandits, which take no account of the context.

Many problems in practice can be modeled by con-
textual bandits. For example, in one type of Internet
advertising, the decision maker (such as a website) dy-
namically selects which ad to display to a user who
visits the page, and receives a payment from the ad-
vertiser if the user clicks on the ad (e.g., Chapelle and
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Li, 2012). In this case, the context can be the user’s
geographical information, the action is the displayed
ad and the reward is the payment. Importantly, we find
only whether a user clicked on the presented ad, but
receive no information about the ads that were not pre-
sented.

Another example is content recommendation on
Web portals (Agarwal et al., 2013). Here, the decision
maker (the web portal) selects, for each user visit, what
content (e.g., news, images, videos and music) to dis-
play on the page. A natural objective is to “personalize”
the recommendations, so that the number of clicks is
maximized (Li et al., 2010). In this case, the context
is the user’s interests in different topics, either self-
reported by the user or inferred from the user browsing
history; the action is the recommended item; the re-
ward can be defined as 1 if the user clicks on an item,
and 0 otherwise.

Similarly, in health care, we only find out the clin-
ical outcome (the reward) of a patient who received a
treatment (action), but not the outcomes for alternative
treatments. In general, the treatment strategy may de-
pend on the context of the patient such as her health
level and treatment history. Therefore, contextual ban-
dits can also be a natural model to describe personal-
ized treatments.

The behavior of a decision maker in contextual ban-
dits can be described as a policy, to be defined precisely
in the next sections. Roughly speaking, a policy is a
function that maps the decision maker’s past observa-
tions and the contextual information to a distribution
over the actions. This paper considers the offline ver-
sion of contextual bandits: we assume access to histor-
ical data, but no ability to gather new data (Langford,
Strehl and Wortman, 2008; Strehl et al., 2011). There
are two related tasks that arise in this setting: policy
evaluation and policy optimization. The goal of policy
evaluation is to estimate the expected total reward of a
given policy. The goal of policy optimization is to ob-
tain a policy that (approximately) maximizes expected
total rewards. The focus of this paper is on policy eval-
uation, but as we will see in the experiments, the ideas
can also be applied to policy optimization. The of-
fline version of contextual bandits is important in prac-
tice. For instance, it allows a website to estimate, from
historical log data, how much gain in revenue can be
achieved by changing the ad-selection policy to a new
one (Bottou et al., 2013). Therefore, the website does
not have to experiment on real users to test a new pol-
icy, which can be very expensive and time-consuming.
Finally, we note that this problem is a special case of

off-policy reinforcement learning (Precup, Sutton and
Singh, 2000).

Two kinds of approaches address offline policy eval-
uation. The first, called the direct method (DM), esti-
mates the reward function from given data and uses this
estimate in place of actual reward to evaluate the pol-
icy value on a set of contexts. The second kind, called
inverse propensity score (IPS) (Horvitz and Thomp-
son, 1952), uses importance weighting to correct for
the incorrect proportions of actions in the historic data.
The first approach requires an accurate model of re-
wards, whereas the second approach requires an accu-
rate model of the past policy. In general, it might be dif-
ficult to accurately model rewards, so the first assump-
tion can be too restrictive. On the other hand, in many
applications, such as advertising, Web search and con-
tent recommendation, the decision maker has substan-
tial, and possibly perfect, knowledge of the past pol-
icy, so the second approach can be applied. However, it
often suffers from large variance, especially when the
past policy differs significantly from the policy being
evaluated.

In this paper, we propose to use the technique of dou-
bly robust (DR) estimation to overcome problems with
the two existing approaches. Doubly robust (or doubly
protected) estimation (Cassel, Särndal and Wretman,
1976; Robins, Rotnitzky and Zhao, 1994; Robins and
Rotnitzky, 1995; Lunceford and Davidian, 2004; Kang
and Schafer, 2007) is a statistical approach for estima-
tion from incomplete data with an important property:
if either one of the two estimators (i.e., DM or IPS) is
correct, then the estimation is unbiased. This method
thus increases the chances of drawing reliable infer-
ence.

We apply the doubly robust technique to policy eval-
uation and optimization in a contextual bandit setting.
The most straightforward policies to consider are sta-
tionary policies, whose actions depend on the current,
observed context alone. Nonstationary policies, on the
other hand, map the current context and a history of
past rounds to an action. They are of critical interest be-
cause online learning algorithms (also known as adap-
tive allocation rules), by definition, produce nonsta-
tionary policies. We address both stationary and non-
stationary policies in this paper.

In Section 2, we describe previous work and con-
nect our setting to the related area of dynamic treatment
regimes.

In Section 3, we study stationary policy evaluation,
analyzing the bias and variance of our core technique.
Unlike previous theoretical analyses, we do not assume
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that either the reward model or the past policy model
are correct. Instead, we show how the deviations of
the two models from the truth impact bias and vari-
ance of the doubly robust estimator. To our knowledge,
this style of analysis is novel and may provide insights
into doubly robust estimation beyond the specific set-
ting studied here. In Section 4, we apply this method
to both policy evaluation and optimization, finding that
this approach can substantially sharpen existing tech-
niques.

In Section 5, we consider nonstationary policy evalu-
ation. The main approach here is to use the historic data
to obtain a sample of the run of an evaluated nonsta-
tionary policy via rejection sampling (Li et al., 2011).
We combine the doubly robust technique with an im-
proved form of rejection sampling that makes better
use of data at the cost of small, controllable bias. Ex-
periments in Section 6 suggest the combination is able
to extract more information from data than existing ap-
proaches.

2. PRIOR WORK

2.1 Doubly Robust Estimation

Doubly robust estimation is widely used in statisti-
cal inference (see, e.g., Kang and Schafer, 2007, and
the references therein). More recently, it has been used
in Internet advertising to estimate the effects of new
features for online advertisers (Lambert and Pregibon,
2007; Chan et al., 2010). Most of previous analysis of
doubly robust estimation is focused on asymptotic be-
havior or relies on various modeling assumptions (e.g.,
Robins, Rotnitzky and Zhao, 1994; Lunceford and Da-
vidian, 2004; Kang and Schafer, 2007). Our analysis is
nonasymptotic and makes no such assumptions.

Several papers in machine learning have used ideas
related to the basic technique discussed here, although
not with the same language. For benign bandits, Hazan
and Kale (2009) construct algorithms which use reward
estimators to improve regret bounds when the variance
of actual rewards is small. Similarly, the Offset Tree
algorithm (Beygelzimer and Langford, 2009) can be
thought of as using a crude reward estimate for the
“offset.” The algorithms and estimators described here
are substantially more sophisticated.

Our nonstationary policy evaluation builds on the
rejection sampling approach, which has been previ-
ously shown to be effective (Li et al., 2011). Relative
to this earlier work, our nonstationary results take ad-
vantage of the doubly robust technique and a carefully
introduced bias/variance tradeoff to obtain an empirical
order-of-magnitude improvement in evaluation quality.

2.2 Dynamic Treatment Regimes

Contextual bandit problems are closely related to
dynamic treatment regime (DTR) estimation/optimiza-
tion in medical research. A DTR is a set of (possi-
bly randomized) rules that specify what treatment to
choose, given current characteristics (including past
treatment history and outcomes) of a patient. In the
terminology of the present paper, the patient’s current
characteristics are contextual information, a treatment
is an action, and a DTR is a policy. Similar to contex-
tual bandits, the quantity of interest in DTR can be ex-
pressed by a numeric reward signal related to the clin-
ical outcome of a treatment. We comment on similari-
ties and differences between DTR and contextual ban-
dits in more detail in later sections of the paper, where
we define our setting more formally. Here, we make a
few higher-level remarks.

Due to ethical concerns, research in DTR is often
performed with observational data rather than on pa-
tients. This corresponds to the offline version of con-
textual bandits, which only has access to past data but
no ability to gather new data. Causal inference tech-
niques have been studied to estimate the mean response
of a given DTR (e.g., Robins, 1986; Murphy, van der
Laan and Robins, 2001), and to optimize DTR (e.g.,
Murphy, 2003; Orellana, Rotnitzky and Robins, 2010).
These two problems correspond to evaluation and op-
timization of policies in the present paper.

In DTR, however, a treatment typically exhibits a
long-term effect on a patient’s future “state,” while in
contextual bandits the contexts are drawn IID with no
dependence on actions taken previously. Such a differ-
ence turns out to enable statistically more efficient es-
timators, which will be explained in greater detail in
Section 5.2.

Despite these differences, as we will see later, con-
textual bandits and DTR share many similarities, and
in some cases are almost identical. For example, anal-
ogous to the results introduced in this paper, doubly
robust estimators have been applied to DTR estimation
(Murphy, van der Laan and Robins, 2001), and also
used as a subroutine for optimization in a family of
parameterized policies (Zhang et al., 2012). The con-
nection suggests a broader applicability of DTR tech-
niques beyond the medical domain, for instance, to the
Internet-motivated problems studied in this paper.

3. EVALUATION OF STATIONARY POLICIES

3.1 Problem Definition

We are interested in the contextual bandit setting
where on each round:
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1. A vector of covariates (or a context) x ∈ X is re-
vealed.

2. An action (or arm) a is chosen from a given set A.
3. A reward r ∈ [0,1] for the action a is revealed, but

the rewards of other actions are not. The reward may
depend stochastically on x and a.

We assume that contexts are chosen IID from an un-
known distribution D(x), the actions are chosen from a
finite (and typically not too large) action set A, and the
distribution over rewards D(r|a, x) does not change
over time (but is unknown).

The input data consists of a finite stream of triples
(xk, ak, rk) indexed by k = 1,2, . . . , n. We assume that
the actions ak are generated by some past (possibly
nonstationary) policy, which we refer to as the explo-
ration policy. The exploration history up to round k is
denoted

zk = (x1, a1, r1, . . . , xk, ak, rk).

Histories are viewed as samples from a probabil-
ity measure μ. Our assumptions about data generation
then translate into the assumption about factoring of μ

as

μ(xk, ak, rk|zk−1)

= D(xk)μ(ak|xk, zk−1)D(rk|xk, ak),

for any k. Note that apart from the unknown dis-
tribution D, the only degree of freedom above is
μ(ak|xk, zk−1), that is, the unknown exploration pol-
icy.

When zk−1 is clear from the context, we use a short-
hand μk for the conditional distribution over the kth
triple

μk(x, a, r) = μ(xk = x, ak = a, rk = r|zk−1).

We also write Pμ
k and Eμ

k for Pμ[ · |zk−1] and
Eμ[ · |zk−1].

Given input data zn, we study the stationary policy
evaluation problem. A stationary randomized policy
ν is described by a conditional distribution ν(a|x) of
choosing an action on each context. The goal is to use
the history zn to estimate the value of ν, namely, the
expected reward obtained by following ν:

V (ν) = Ex∼DEa∼ν( · |x)Er∼D( · |x,a)[r].
In content recommendation on Web portals, for exam-
ple, V (ν) measures the average click probability per
user visit, one of the major metrics with critical busi-
ness importance.

In order to have unbiased policy evaluation, we
make a standard assumption that if ν(a|x) > 0 then
μk(a|x) > 0 for all k (and all possible histories zk−1).
This clearly holds for instance if μk(a|x) > 0 for all
a. Since ν is fixed in our paper, we will write V for
V (ν). To simplify notation, we extend the conditional
distribution ν to a distribution over triples (x, a, r)

ν(x, a, r) = D(x)ν(a|x)D(r|a, x)

and hence V = Eν[r].
The problem of stationary policy evaluation, defined

above, is slightly more general than DTR analysis in a
typical cross-sectional observational study, where the
exploration policy (known as “treatment mechanism”
in the DTR literature) is stationary; that is, the con-
ditional distribution μ(ak|xk, zk−1) is independent of
zk−1 and identical across all k, that is, μk = μ1 for
all k.

3.2 Existing Approaches

The key challenge in estimating policy value in con-
textual bandits is that rewards are partially observable:
in each round, only the reward for the chosen action is
revealed; we do not know what the reward would have
been if we chose a different action. Hence, the data col-
lected in a contextual bandit process cannot be used di-
rectly to estimate a new policy’s value: if in a context
x the new policy selects an action a′ different from the
action a chosen during data collection, we simply do
not have the reward signal for a′.

There are two common solutions for overcoming this
limitation (see, e.g., Lambert and Pregibon, 2007, for
an introduction to these solutions). The first, called the
direct method (DM), forms an estimate r̂(x, a) of the
expected reward conditioned on the context and action.
The policy value is then estimated by

V̂DM = 1

n

n∑
k=1

∑
a∈A

ν(a|xk)r̂(xk, a).

Clearly, if r̂(x, a) is a good approximation of the true
expected reward ED[r|x, a], then the DM estimate is
close to V . A problem with this method is that the es-
timate r̂ is typically formed without the knowledge of
ν, and hence might focus on approximating expected
reward in the areas that are irrelevant for ν and not suf-
ficiently in the areas that are important for ν (see, e.g.,
the analysis of Beygelzimer and Langford, 2009).

The second approach, called inverse propensity
score (IPS), is typically less prone to problems with
bias. Instead of approximating the reward, IPS forms
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an approximation μ̂k(a|x) of μk(a|x), and uses this
estimate to correct for the shift in action proportions
between the exploration policy and the new policy:

V̂IPS = 1

n

n∑
k=1

ν(ak|xk)

μ̂k(ak|xk)
· rk.

If μ̂k(a|x) ≈ μk(a|x), then the IPS estimate above will
be, approximately, an unbiased estimate of V . Since we
typically have a good (or even accurate) understanding
of the data-collection policy, it is often easier to ob-
tain good estimates μ̂k , and thus the IPS estimator is
in practice less susceptible to problems with bias com-
pared with the direct method. However, IPS typically
has a much larger variance, due to the increased range
of the random variable ν(ak|xk)/μ̂k(ak|xk). The issue
becomes more severe when μ̂k(ak|xk) gets smaller in
high probability areas under ν. Our approach alleviates
the large variance problem of IPS by taking advantage
of the estimate r̂ used by the direct method.

3.3 Doubly Robust Estimator

Doubly robust estimators take advantage of both the
estimate of the expected reward r̂ and the estimate of
action probabilities μ̂k(a|x). A similar idea has been
suggested earlier by a number of authors for different
estimation problems (Cassel, Särndal and Wretman,
1976; Rotnitzky and Robins, 1995; Robins and Rot-
nitzky, 1995; Murphy, van der Laan and Robins, 2001;
Robins, 1998). For the setting in this section, the esti-
mator of Murphy, van der Laan and Robins (2001) can
be reduced to

V̂DR = 1

n

n∑
k=1

[
r̂(xk, ν)(3.1)

+ ν(ak|xk)

μ̂k(ak|xk)
· (

rk − r̂(xk, ak)
)]

,

where

r̂(x, ν) = ∑
a∈A

ν(a|x)r̂(x, a)

is the estimate of Eν[r|x] derived from r̂ . Informally,
the doubly robust estimator uses r̂ as a baseline and
if there is data available, a correction is applied. We
will see that our estimator is unbiased if at least one of
the estimators, r̂ and μ̂k , is accurate, hence the name
doubly robust.

In practice, quite often neither ED[r|x, a] or μk is
accurate. It should be noted that, although μk tends to
be much easier to estimate than ED[r|x, a] in appli-
cations that motivate this study, it is rare to be able to

get a perfect estimator, due to engineering constraints
in complex applications like Web search and Internet
advertising. Thus, a basic question is: How does the
estimator V̂DR perform as the estimates r̂ and μ̂k devi-
ate from the truth? The following section analyzes bias
and variance of the DR estimator as a function of errors
in r̂ and μ̂k . Note that our DR estimator encompasses
DM and IPS as special cases (by respectively setting
μ̂k ≡ ∞ and r̂ ≡ 0), so our analysis also encompasses
DM and IPS.

3.4 Analysis

We assume that r̂(x, a) ∈ [0,1] and μ̂k(a|x) ∈
(0,∞], but in general μ̂k does not need to represent
conditional probabilities (our notation is only meant
to indicate that μ̂k estimates μk , but no probabilistic
structure). In general, we allow r̂ and μ̂k to be random
variables, as long as they satisfy the following inde-
pendence assumptions:

• r̂ is independent of zn.
• μ̂k is conditionally independent of {(x�, a�, r�)}�≥k ,

conditioned on zk−1.

The first assumption means that r̂ can be assumed fixed
and determined before we see the input data zn, for ex-
ample, by initially splitting the input dataset and using
the first part to obtain r̂ and the second part to evalu-
ate the policy. In our analysis, we condition on r̂ and
ignore any randomness in its choice.

The second assumption means that μ̂k is not allowed
to depend on future. A simple way to satisfy this as-
sumption is to split the dataset to form an estimator
(and potentially also include data zk−1). If we have
some control over the exploration process, we might
also have access to “perfect logging”, that is, recorded
probabilities μk(ak|xk). With perfect logging, we can
achieve μ̂k = μk , respecting our assumptions.2

Analogous to r̂(x, a), we define the population quan-
tity r∗(x, a)

r∗(x, a) = ED[r|x, a],
and define r∗(x, ν) similarly to r̂(x, ν):

r∗(x, ν) = Eν[r|x].

2As we will see later in the paper, in order to reduce the variance
of the estimator it might still be advantageous to use a slightly in-
flated estimator, for example, μ̂k = cμk for c > 1, or μ̂k(a|x) =
max{c,μk(a|x)} for some c > 0.
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Let �(x,a) and �k(x, a) denote, respectively, the
additive error of r̂ and the multiplicative error of μ̂k :

�(x,a) = r̂(x, a) − r∗(x, a),

�k(x, a) = μk(a|x)/μ̂k(a|x).

We assume that for some M ≥ 0, with probability one
under μ:

ν(ak|xk)/μ̂k(ak|xk) ≤ M

which can always be satisfied by enforcing μ̂k ≥ 1/M .
To bound the error of V̂DR, we first analyze a single

term:

V̂k = r̂(xk, ν) + ν(ak|xk)

μ̂k(ak|xk)
· (

rk − r̂(xk, ak)
)
.

We bound its range, bias, and conditional variance as
follows (for proofs, see Appendix A):

LEMMA 3.1. The range of V̂k is bounded as

|V̂k| ≤ 1 + M.

LEMMA 3.2. The expectation of the term V̂k is

Eμ
k [V̂k] = E

(x,a)∼ν

[
r∗(x, a) + (

1 − �k(x, a)
)
�(x,a)

]
.

LEMMA 3.3. The variance of the term V̂k can be
decomposed and bounded as follows:

Vμ
k [V̂k](i)

= V
x∼D

[
E

a∼ν( · |x)

[
r∗(x, a)

+ (
1 − �k(x, a)

)
· �(x,a)

]]
− E

x∼D

[
E

a∼ν( · |x)

[
�k(x, a)�(x, a)

]2
]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)

· �k(x, a) · V
r∼D( · |x,a)

[r]
]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)

· �k(x, a)�(x, a)2
]
.

Vμ
k [V̂k](ii)

≤ V
x∼D

[
r∗(x, ν)

]
+ 2 E

(x,a)∼ν

[∣∣(1 − �k(x, a)
)
�(x,a)

∣∣]

+ M E
(x,a)∼ν

[
�k(x, a)

· E
r∼D( · |x,a)

[(
r − r̂(x, a)

)2]]
.

The range of V̂k is controlled by the worst-case ra-
tio ν(ak|xk)/μ̂k(ak|xk). The bias of V̂k gets smaller
as � and �k become more accurate, that is, as � ≈ 0
and �k ≈ 1. The expression for variance is more com-
plicated. Lemma 3.3(i) lists four terms. The first term
represents the variance component due to the random-
ness over x. The second term can contribute to the de-
crease in the variance. The final two terms represent
the penalty due to the importance weighting. The third
term scales with the conditional variance of rewards
(given contexts and actions), and it vanishes if rewards
are deterministic. The fourth term scales with the mag-
nitude of �, and it captures the potential improvement
due to the use of a good estimator r̂ .

The upper bound on the variance [Lemma 3.3(ii)]
is easier to interpret. The first term is the variance of
the estimated variable over x. The second term mea-
sures the quality of the estimators μ̂k and r̂—it equals
zero if either of them is perfect (or if the union of re-
gions where they are perfect covers the support of ν

over x and a). The final term represents the importance
weighting penalty. It vanishes if we do not apply im-
portance weighting (i.e., μ̂k ≡ ∞ and �k ≡ 0). With
nonzero �k , this term decreases with a better quality of
r̂—but it does not disappear even if r̂ is perfect (unless
the rewards are deterministic).

3.4.1 Bias analysis. Lemma 3.2 immediately yields
a bound on the bias of the doubly robust estimator, as
stated in the following theorem. The special case for
stationary policies (second part of the theorem) has
been shown by Vansteelandt, Bekaert and Claeskens
(2012).

THEOREM 3.4. Let � and �k be defined as above.
Then the bias of the doubly robust estimator is∣∣Eμ[V̂DR] − V

∣∣
= 1

n

∣∣∣∣∣Eμ

[
n∑

k=1
E

(x,a)∼ν

[(
1 − �k(x, a)

)
�(x,a)

]]∣∣∣∣∣.
If the exploration policy μ and the estimator μ̂k are
stationary (i.e., μk = μ1 and μ̂k = μ̂1 for all k), the
expression simplifies to∣∣Eμ[V̂DR] − V

∣∣ = ∣∣Eν

[(
1 − �1(x, a)

)
�(x,a)

]∣∣.
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PROOF. The theorem follows immediately from
Lemma 3.2. �

In contrast, we have (for simplicity, assuming sta-
tionarity of the exploration policy and its estimate)∣∣Eμ[V̂DM] − V

∣∣ = ∣∣Eν

[
�(x,a)

]∣∣,∣∣Eμ[V̂IPS] − V
∣∣ = ∣∣Eν

[
r∗(x, a)

(
1 − �1(x, a)

)]∣∣,
where the first equality is based on the observation that
DM is a special case of DR with μ̂k(a|x) ≡ ∞ (and
hence �k ≡ 0), and the second equality is based on
the observation that IPS is a special case of DR with
r̂(x, a) ≡ 0 (and hence � ≡ r∗).

In general, neither of the estimators dominates the
others. However, if either � ≈ 0, or �k ≈ 1, the ex-
pected value of the doubly robust estimator will be
close to the true value, whereas DM requires � ≈ 0
and IPS requires �k ≈ 1. Also, if ‖�k − 1‖p,ν � 1 [for
a suitable Lp(ν) norm], we expect that DR will outper-
form DM. Similarly, if �k ≈ 1 but ‖�‖p,ν � ‖r∗‖p,ν ,
we expect that DR will outperform IPS. Thus, DR can
effectively take advantage of both sources of informa-
tion to lower the bias.

3.4.2 Variance analysis. We argued that the ex-
pected value of V̂DR compares favorably with IPS and
DM. We next look at the variance of DR. Since large-
deviation bounds have a primary dependence on vari-
ance; a lower variance implies a faster convergence
rate. To contrast DR with IPS and DM, we study a
simpler setting with a stationary exploration policy,
and deterministic target policy ν, that is, ν( · |x) puts
all the probability on a single action. In the next sec-
tion, we revisit the fully general setting and derive a
finite-sample bound on the error of DR.

THEOREM 3.5. Let � and �k be defined as above.
If exploration policy μ and the estimator μ̂k are sta-
tionary, and the target policy ν is deterministic, then
the variance of the doubly robust estimator is

Vμ[V̂DR]
= 1

n

(
V

(x,a)∼ν

[
r∗(x, a)

+ (
1 − �1(x, a)

)
�(x,a)

]
+ E

(x,a)∼ν

[
1

μ̂1(a|x)
· �1(x, a) · V

r∼D( · |x,a)
[r]

]

+ E
(x,a)∼ν

[
1 − μ1(a|x)

μ̂1(a|x)
· �1(x, a)�(x, a)2

])
.

PROOF. The theorem follows immediately from
Lemma 3.3(i). �

The variance can be decomposed into three terms.
The first term accounts for the randomness in x (note
that a is deterministic given x). The other two terms
can be viewed as the importance weighting penalty.
These two terms disappear in DM, which does not use
rewards rk . The second term accounts for randomness
in rewards and disappears when rewards are determin-
istic functions of x and a. However, the last term stays,
accounting for the disagreement between actions taken
by ν and μ1.

Similar expressions can be derived for the DM and
IPS estimators. Since IPS is a special case of DR with
r̂ ≡ 0, we obtain the following equation:

Vμ[V̂IPS]
= 1

n

(
V

(x,a)∼ν

[
�1(x, a)r∗(x, a)

]

+ E
(x,a)∼ν

[
1

μ̂1(a|x)
· �1(x, a) · V

r∼D( · |x,a)
[r]

]

+ E
(x,a)∼ν

[
1 − μ1(a|x)

μ̂1(a|x)
· �1(x, a)r∗(x, a)2

])
.

The first term will be of similar magnitude as the cor-
responding term of the DR estimator, provided that
�1 ≈ 1. The second term is identical to the DR estima-
tor. However, the third term can be much larger for IPS
if μ1(a|x) � 1 and |�(x,a)| is smaller than r∗(x, a)

for the actions chosen by ν.
In contrast, for the direct method, which is a special

case of DR with μ̂k ≡ ∞, the following variance is ob-
tained immediately:

Vμ[V̂DM] = 1

n
V

(x,a)∼ν

[
r∗(x, a) + �(x,a)

]
.

Thus, the variance of the direct method does not have
terms depending either on the exploration policy or the
randomness in the rewards. This fact usually suffices
to ensure that its variance is significantly lower than
that of DR or IPS. However, as mentioned in the previ-
ous section, when we can estimate μk reasonably well
(namely, �k ≈ 1), the bias of the direct method is typi-
cally much larger, leading to larger errors in estimating
policy values.

3.4.3 Finite-sample error bound. By combining
bias and variance bounds, we now work out a specific
finite-sample bound on the error of the estimator V̂DR.
While such an error bound could be used as a conser-
vative confidence bound, we expect it to be too loose in
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most settings (as is typical for finite-sample bounds).
Instead, our main intention is to explicitly highlight
how the errors of estimators r̂ and μ̂k contribute to the
final error.

To begin, we first quantify magnitudes of the addi-
tive error � = r̂ −r∗ of the estimator r̂ , and the relative
error |1 − �k| = |μ̂k − μk|/μ̂k of the estimator μ̂k :

ASSUMPTION 3.6. Assume there exist δ�, δ� ≥ 0
such that

E
(x,a)∼ν

[∣∣�(x,a)
∣∣] ≤ δ�,

and with probability one under μ:∣∣1 − �k(x, a)
∣∣ ≤ δ� for all k.

Recall that ν/μ̂k ≤ M . In addition, our analysis de-
pends on the magnitude of the ratio �k = μk/μ̂k and a
term that captures both the variance of the rewards and
the error of r̂ .

ASSUMPTION 3.7. Assume there exist er̂ , �max ≥
0 such that with probability one under μ, for all k:

E
(x,a)∼ν

[
E

r∼D( · |x,a)

[(
r̂(x, a) − r

)2]] ≤ er̂ ,

�k(x, a) ≤ �max for all x, a.

With the assumptions above, we can now bound the
bias and variance of a single term V̂k . As in the pre-
vious sections, the bias decreases with the quality of
r̂ and μ̂k , and the variance increases with the vari-
ance of the rewards and with the magnitudes of the
ratios ν/μ̂k ≤ M , μk/μ̂k ≤ �max. The analysis below
for instance captures the bias-variance tradeoff of using
μ̂k ≈ cμk for some c > 1: such a strategy can lead to
a lower variance (by lowering M and �max) but incurs
some additional bias that is controlled by the quality
of r̂ .

LEMMA 3.8. Under Assumptions 3.6–3.7, with
probability one under μ, for all k:∣∣Eμ

k [V̂k] − V
∣∣ ≤ δ�δ�,

Vμ
k [V̂k] ≤ Vx∼D

[
r∗(x, ν)

] + 2δ�δ� + M�maxer̂ .

PROOF. The bias and variance bound follow from
Lemma 3.2 and Lemma 3.3(ii), respectively, by Höl-
der’s inequality. �

Using the above lemma and Freedman’s inequality
yields the following theorem.

THEOREM 3.9. Under Assumptions 3.6–3.7, with
probability at least 1 − δ,

|V̂DR − V |
≤ δ�δ�

+ 2 max
{

(1 + M) ln(2/δ)

n
,

√
(Vx∼D[r∗(x, ν)] + 2δ�δ� + M�maxer̂ ) ln(2/δ)

n

}
.

PROOF. The proof follows by Freedman’s inequal-
ity (Theorem B.1 in Appendix B), applied to random
variables V̂k , whose range and variance are bounded
using Lemmas 3.1 and 3.8. �

The theorem is a finite-sample error bound that
holds for all sample size n, and in the limit the er-
ror converges to δ�δ�. As we mentioned, this result
gives a confidence interval for the doubly-robust esti-
mate V̂DR for any finite sample n. Other authors have
used asymptotic theory to derive confidence intervals
for policy evaluation by showing that the estimator is
asymptotically normal (e.g., Murphy, van der Laan and
Robins, 2001; Zhang et al., 2012). When using asymp-
totic confidence bounds, it can be difficult to know
a priori whether the asymptotic distribution has been
reached, whereas our bound applies to all finite sam-
ple sizes. Although our bound may be conservative for
small sample sizes, it provides a “safe” nonasymptotic
confidence interval. In certain applications like those
on the Internet, the sample size is usually large enough
for this kind of nonasymptotic confidence bound to
be almost as small as its asymptotic value (the term
δqδ� in Theorem 3.9), as demonstrated by Bottou et al.
(2013) for online advertising.

Note that Assumptions 3.6–3.7 rely on bounds of
|1 − �k| and �k which have to hold with probability
one. In Appendix C, we replace these bounds with mo-
ment bounds, and present analogs of Lemma 3.8 and
Theorem 3.9.

4. EXPERIMENTS: THE STATIONARY CASE

This section provides empirical evidence for the ef-
fectiveness of the DR estimator compared to IPS and
DM. We study these estimators on several real-world
datasets. First, we use public benchmark datasets for
multiclass classification to construct contextual bandit
data, on which we evaluate both policy evaluation and
policy optimization approaches. Second, we use a pro-
prietary dataset to model the pattern of user visits to
an Internet portal. We study covariate shift, which can
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be formalized as a special case of policy evaluation.
Our third experiment uses another proprietary dataset
to model slotting of various types of search results on
a webpage.

4.1 Multiclass Classification with Partial Feedback

We begin with a description of how to turn a K-
class classification dataset into a K-armed contextual
bandit dataset. Instead of rewards, we will work with
losses, specifically the 0/1-classification error. The ac-
tions correspond to predicted classes. In the usual mul-
ticlass classification, we can infer the loss of any action
on training data (since we know its correct label), so we
call this a full feedback setting. On the other hand, in
contextual bandits, we only know the loss of the spe-
cific action that was taken by the exploration policy,
but of no other action, which we call a partial feedback
setting. After choosing an exploration policy, our trans-
formation from full to partial feedback simply “hides”
the losses of actions that were not picked by the explo-
ration policy.

This protocol gives us two benefits: we can carry
out comparison using public multiclass classification
datasets, which are more common than contextual ban-
dit datasets. Second, fully revealed data can be used to
obtain ground truth value of an arbitrary policy. Note
that the original data is real-world, but exploration and
partial feedback are simulated.

4.1.1 Data generation. In a classification task, we
assume data are drawn IID from a fixed distribution:
(x, y) ∼ D, where x ∈ X is a real-valued covariate vec-
tor and y ∈ {1,2, . . . ,K} is a class label. A typical goal
is to find a classifier ν :X → {1,2, . . . ,K} minimizing
the classification error:

e(ν) = E
(x,y)∼D

[
I
[
ν(x) �= y

]]
,

where I [ · ] is an indicator function, equal to 1 if its
argument is true and 0 otherwise.

The classifier ν can be viewed as a deterministic sta-
tionary policy with the action set A = {1, . . . ,K} and
the loss function

l(y, a) = I [a �= y].

Loss minimization is symmetric to the reward max-
imization (under transformation r = 1 − l), but loss
minimization is more commonly used in classification
setting, so we work with loss here. Note that the distri-
bution D(y|x) together with the definition of the loss
above, induce the conditional probability D(l|x, a) in
contextual bandits, and minimizing the classification
error coincides with policy optimization.

To construct partially labeled data in multiclass clas-
sification, it remains to specify the exploration pol-
icy. We simulate stationary exploration with μk(a|x) =
μ1(a|x) = 1/K for all a. Hence, the original example
(x, y) is transformed into an example (x, a, l(y, a)) for
a randomly selected action a ∼ uniform(1,2, . . . ,K).
We assume perfect logging of the exploration policy
and use the estimator μ̂k = μk . Below, we describe
how we obtained an estimator l̂(x, a) (the counterpart
of r̂).

Table 1 summarizes the benchmark problems adop-
ted from the UCI repository (Asuncion and Newman,
2007).

4.1.2 Policy evaluation. We first investigate wheth-
er the DR technique indeed gives more accurate esti-
mates of the policy value (or classification error in our
context), compared to DM and IPS. For each dataset:

1. We randomly split data into training and evaluation
sets of (roughly) the same size;

2. On the training set, we keep full classification feed-
back of form (x, y) and train the direct loss min-
imization (DLM) algorithm of McAllester, Hazan
and Keshet (2011), based on gradient descent, to ob-
tain a classifier (see Appendix D for details). This
classifier constitutes the policy ν whose value we
estimate on evaluation data;

3. We compute the classification error on fully ob-
served evaluation data. This error is treated as the
ground truth for comparing various estimates;

4. Finally, we apply the transformation in Section 4.1.1
to the evaluation data to obtain a partially labeled set
(exploration history), from which DM, IPS and DR
estimates are computed.

TABLE 1
Characteristics of benchmark datasets used in Section 4.1

Dataset Ecoli Glass Letter Optdigits Page-blocks Pendigits Satimage Vehicle Yeast

Classes (K) 8 6 26 10 5 10 6 4 10
Sample size 336 214 20,000 5620 5473 10,992 6435 846 1484
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FIG. 1. Comparison of bias (left) and rmse (right) of the three estimators of classification error on partial feedback classification data.

Both DM and DR require estimating the expected
conditional loss for a given (x, a). We use a linear loss
model: l̂(x, a) = wa · x, parameterized by K weight
vectors {wa}a∈{1,...,K}, and use least-squares ridge re-
gression to fit wa based on the training set.

Step 4 of the above protocol is repeated 500 times,
and the resulting bias and rmse (root mean squared er-
ror) are reported in Figure 1.

As predicted by analysis, both IPS and DR are un-
biased, since the estimator μ̂k is perfect. In contrast,
the linear loss model fails to capture the classification
error accurately, and as a result, DM suffers a much
larger bias.

While IPS and DR estimators are unbiased, it is ap-
parent from the rmse plot that the DR estimator enjoys
a lower variance, which translates into a smaller rmse.
As we shall see next, this has a substantial effect on the
quality of policy optimization.

4.1.3 Policy optimization. This subsection deviates
from much of the paper to study policy optimization
rather than policy evaluation. Given a space of pos-
sible policies, policy optimization is a procedure that
searches this space for the policy with the highest
value. Since policy values are unknown, the optimiza-
tion procedure requires access to exploration data and
uses a policy evaluator as a subroutine. Given the su-
periority of DR over DM and IPS for policy evaluation
(in previous subsection), a natural question is whether
a similar benefit can be translated into policy optimiza-
tion as well. Since DM is significantly worse on all
datasets, as indicated in Figure 1, we focus on the com-
parison between IPS and DR.

Here, we apply the data transformation in Sec-
tion 4.1.1 to the training data, and then learn a clas-
sifier based on the loss estimated by IPS and DR, re-
spectively. Specifically, for each dataset, we repeat the
following steps 30 times:

1. We randomly split data into training (70%) and test
(30%) sets;

2. We apply the transformation in Section 4.1.1 to the
training data to obtain a partially labeled set (explo-
ration history);

3. We then use the IPS and DR estimators to im-
pute unrevealed losses in the training data; that
is, we transform each partial-feedback example
(x, a, l) into a cost sensitive example of the form
(x, l1, . . . , lK) where la′ is the loss for action a′, im-
puted from the partial feedback data as follows:

la′ =
⎧⎪⎨
⎪⎩

l̂
(
x, a′) + l − l̂(x, a′)

μ̂1(a′|x)
, if a′ = a,

l̂
(
x, a′), if a′ �= a.

In both cases, μ̂1(a
′|x) = 1/K (recall that μ̂1 =

μ̂k); in DR we use the loss estimate (described be-
low), in IPS we use l̂(x, a′) = 0;

4. Two cost-sensitive multiclass classification algo-
rithms are used to learn a classifier from the losses
completed by either IPS or DR: the first is DLM
used also in the previous section (see Appendix D
and McAllester, Hazan and Keshet, 2011), the other
is the Filter Tree reduction of Beygelzimer, Lang-
ford and Ravikumar (2008) applied to a decision-
tree base learner (see Appendix E for more details);

5. Finally, we evaluate the learned classifiers on the
test data to obtain classification error.

Again, we use least-squares ridge regression to build
a linear loss estimator: l̂(x, a) = wa ·x. However, since
the training data is partially labeled, wa is fitted only
using training data (x, a′, l) for which a = a′. Note that
this choice slightly violates our assumptions, because l̂

is not independent of the training data zn. However, we
expect the dependence to be rather weak, and we find
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FIG. 2. Classification error of direct loss minimization (left) and filter tree (right). Note that the representations used by DLM and the trees
are very different, making any comparison between the two approaches difficult. However, the Offset Tree and Filter Tree approaches share
a similar tree representation of the classifiers, so differences in performance are purely a matter of superior optimization.

this approach to be more realistic in practical scenarios
where one might want to use all available data to form
the reward estimator, for instance due to data scarcity.

Average classification errors (obtained in Step 5
above) of 30 runs are plotted in Figure 2. Clearly, for
policy optimization, the advantage of the DR is even
greater than for policy evaluation. In all datasets, DR
provides substantially more reliable loss estimates than
IPS, and results in significantly improved classifiers.

Figure 2 also includes classification error of the Off-
set Tree reduction (Beygelzimer and Langford, 2009),
which is designed specifically for policy optimization
with partially labeled data.3 While the IPS versions of
DLM and Filter Tree are rather weak, the DR versions
are competitive with Offset Tree in all datasets, and in
some cases significantly outperform Offset Tree.

Our experiments show that DR provides similar im-
provements in two very different algorithms, one based
on gradient descent, the other based on tree induction,
suggesting the DR technique is generally useful when
combined with different algorithmic choices.

4.2 Estimating the Average Number of User Visits

The next problem we consider is estimating the av-
erage number of user visits to a popular Internet portal.
We formulate this as a regression problem and in our
evaluation introduce an artificial covariate shift. As in
the previous section, the original data is real-world, but
the covariate shift is simulated.

3We used decision trees as the base learner in Offset Trees to par-
allel our base learner choice in Filter Trees. The numbers reported
here are not identical to those by Beygelzimer and Langford (2009),
even though we used a similar protocol on the same datasets, prob-
ably because of small differences in the data structures used.

Real user visits to the website were recorded for
about 4 million bcookies4 randomly selected from all
bcookies during March 2010. Each bcookie is associ-
ated with a sparse binary covariate vector in 5000 di-
mensions. These covariates describe browsing behav-
ior as well as other information (such as age, gender
and geographical location) of the bcookie. We chose
a fixed time window in March 2010 and calculated
the number of visits by each selected bcookie dur-
ing this window. To summarize, the dataset contains
N = 3,854,689 data points: D = {(bi, xi, vi)}i=1,...,N ,
where bi is the ith (unique) bcookie, xi is the corre-
sponding binary covariate vector, and vi is the number
of visits (the response variable); we treat the empirical
distribution over D as the ground truth.

If it is possible to sample x uniformly at random
from D and measure the corresponding value v, the
sample mean of v will be an unbiased estimate of the
true average number of user visits, which is 23.8 in
this problem. However, in various situations, it may be
difficult or impossible to ensure a uniform sampling
scheme due to practical constraints. Instead, the best
that one can do is to sample x from some other distri-
bution (e.g., allowed by the business constraints) and
measure the corresponding value v. In other words, the
sampling distribution of x is changed, but the condi-
tional distribution of v given x remains the same. In
this case, the sample average of v may be a biased es-
timate of the true quantity of interest. This setting is
known as covariate shift (Shimodaira, 2000), where

4A bcookie is a unique string that identifies a user. Strictly speak-
ing, one user may correspond to multiple bcookies, but for simplic-
ity we equate a bcookie with a user.
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FIG. 3. Comparison of IPS and DR: rmse (left), bias (right). The ground truth policy value (average number of user visits) is 23.8.

data are missing at random (see Kang and Schafer,
2007, for related comparisons).

Covariate shift can be modeled as a contextual bandit
problem with 2 actions: action a = 0 corresponding to
“conceal the response” and action a = 1 correspond-
ing to “reveal the response.” Below we specify the
stationary exploration policy μk(a|x) = μ1(a|x). The
contextual bandit data is generated by first sampling
(x, v) ∼ D, then choosing an action a ∼ μ1( · |x), and
observing the reward r = a · v (i.e., reward is only re-
vealed if a = 1). The exploration policy μ1 determines
the covariate shift. The quantity of interest, ED[v], cor-
responds to the value of the constant policy ν which
always chooses “reveal the response.”

To define the exploration sampling probabilities
μ1(a = 1|x), we adopted an approach similar to
Gretton et al. (2008), with a bias toward the smaller
values along the first principal component of the distri-
bution over x. In particular, we obtained the first prin-
cipal component (denoted x̄) of all covariate vectors
{xi}i=1,...,N , and projected all data onto x̄. Let φ be the
density of a univariate normal distribution with mean
m + (m̄ − m)/3 and standard deviation (m̄ − m)/4,
where m is the minimum and m̄ is the mean of the pro-
jected values. We set μ1(a = 1|x) = min{φ(x · x̄),1}.

To control the size of exploration data, we randomly
subsampled a fraction f ∈ {0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05} from the entire dataset D and then
chose actions a according to the exploration policy. We
then calculated the IPS and DR estimates on this sub-
sample, assuming perfect logging, that is, μ̂k = μk .5

The whole process was repeated 100 times.

5Assuming perfect knowledge of exploration probabilities is fair
when we compare IPS and DR. However, it does not give implica-
tions of how DR compares against DM when there is an estimation
error in μ̂k .

The DR estimator required building a reward model
r̂(x, a), which, for a given covariate vector x and a =
1, predicted the average number of visits (and for a = 0
was equal to zero). Again, least-squares ridge regres-
sion was used on a separate dataset to fit a linear model
r̂(x,1) = w · x from the exploration data.

Figure 3 summarizes the estimation error of the two
methods with increasing exploration data size. For both
IPS and DR, the estimation error goes down with more
data. In terms of rmse, the DR estimator is consistently
better than IPS, especially when dataset size is smaller.
The DR estimator often reduces the rmse by a fraction
between 10% and 20%, and on average by 13.6%. By
comparing to the bias values (which are much smaller),
it is clear that DR’s gain of accuracy comes from a
lower variance, which accelerates convergence of the
estimator to the true value. These results confirm our
analysis that DR tends to reduce variance provided that
a reasonable reward estimator is available.

4.3 Content Slotting in Response to User Queries

In this section, we compare our estimators on a pro-
prietary real-world dataset consisting of web search
queries. In response to a search query, the search en-
gine returns a set of search results. A search result can
be of various types such as a web-link, a news snip-
pet or a movie information snippet. We will be eval-
uating policies that decide which among the different
result types to present at the first position. The reward
is meant to capture the relevance for the user. It equals
+1 if the user clicks on the result at the first position,
−1 if the user clicks on some result below the first po-
sition, and 0 otherwise (for instance, if the user leaves
the search page, or decides to rewrite the query). We
call this a click-skip reward.

Our partially labeled dataset consists of tuples of the
form (xk, ak, rk,pk), where xk is the covariate vec-
tor (a sparse, high-dimensional representation of the
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terms of the query as well as other contextual informa-
tion, such as user information), ak ∈ {web-link, news,
movie} is the type of result at the first position, rk is the
click-skip reward, and pk is the recorded probability
with which the exploration policy chose the given re-
sult type. Note that due to practical constraints, the val-
ues pk do not always exactly correspond to μk(ak|xk)

and should be really viewed as the “best effort” approx-
imation of perfect logging. We still expect them to be
highly accurate, so we use the estimator μ̂k(ak|xk) =
pk .

The page views corresponding to these tuples repre-
sent a small percentage of user traffic to a major web-
site; any visit to the website had a small chance of be-
ing part of this experiment. Data was collected over a
span of several days during July 2011. It consists of
1.2 million tuples, out of which the first 1 million were
used for estimating r̂ (training data) with the remainder
used for policy evaluation (evaluation data). The evalu-
ation data was further split into 10 independent subsets
of equal size, which were used to estimate variance of
the compared estimators.

We estimated the value of two policies: the explo-
ration policy itself, and the argmax policy (described
below). Evaluating exploration policy on its own ex-
ploration data (we call this setup self-evaluation)
serves as a sanity check. The argmax policy is based
on a linear estimator r ′(x, a) = wa · x (in general dif-
ferent from r̂), and chooses the action with the largest
predicted reward r ′(x, a) (hence the name). We fitted
r ′(x, a) on training data by importance-weighted linear
regression with importance weights 1/pk . Note that
both r̂ and r ′ are linear estimators obtained from the
same training set, but r̂ was computed without impor-
tance weights and we therefore expect it to be more
biased.

Table 2 contains the comparison of IPS, DM and
DR, for both policies under consideration. For busi-
ness reasons, we do not report the estimated reward
directly, but normalize to either the empirical average
reward (for self-evaluation) or the IPS estimate (for the
argmax policy evaluation).

The experimental results are generally in line with
theory. The variance is smallest for DR, although IPS
does surprisingly well on this dataset, presumably be-
cause r̂ is not sufficiently accurate. The Direct Method
(DM) has an unsurprisingly large bias. If we divide the
listed standard deviations by

√
10, we obtain standard

errors, suggesting that DR has a slight bias (on self-
evaluation where we know the ground truth). We be-
lieve that this is due to imperfect logging.

TABLE 2
The results of different policy evaluators on two standard policies
for a real-world exploration problem. In the first column, results

are normalized by the (known) actual reward of the deployed
policy. In the second column, results are normalized by the
reward reported by IPS. All ± are computed as standard
deviations over results on 10 disjoint test sets. In previous

publication of the same experiments (Dudík et al., 2012), we
used a deterministic-policy version of DR (the same as in Dudík,

Langford and Li, 2011), hence the results for self-evaluation
presented there slightly differ

Self-evaluation Argmax

IPS 0.995 ± 0.041 1.000 ± 0.027
DM 1.213 ± 0.010 1.211 ± 0.002
DR 0.974 ± 0.039 0.991 ± 0.026

5. EVALUATION OF NONSTATIONARY POLICIES

5.1 Problem Definition

The contextual bandit setting can also be used to
model a broad class of sequential decision-making
problems, where the decision maker adapts her action-
selection policy over time, based on her observed his-
tory of context-action-reward triples. In contrast to
policies studied in the previous two sections, such a
policy depends on both the current context and the cur-
rent history and is therefore nonstationary.

In the personalized news recommendation example
(Li et al., 2010), a learning algorithm chooses an arti-
cle (an action) for the current user (the context), with
the need for balancing exploration and exploitation.
Exploration corresponds to presenting articles about
which the algorithm does not yet have enough data
to conclude if they are of interest to a particular type
of user. Exploitation corresponds to presenting articles
for which the algorithm collected enough data to know
that they elicit a positive response. At the beginning,
the algorithm may pursue more aggressive exploration
since it has a more limited knowledge of what the users
like. As more and more data is collected, the algo-
rithm eventually converges to a good recommendation
policy and performs more exploitation. Obviously, for
the same user, the algorithm may choose different arti-
cles in different stages, so the policy is not stationary.
In machine learning terminology, such adaptive proce-
dures are called online learning algorithms. Evaluating
performance of an online learning algorithm (in terms
of average per-step reward when run for T steps) is an
important problem in practice. Online learning algo-
rithms are specific instances of nonstationary policies.
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Formally, a nonstationary randomized policy is de-
scribed by a conditional distribution π(at |xt , ht−1) of
choosing an action at on a context xt , given the history
of past observations

ht−1 = (x1, a1, r1), . . . , (xt−1, at−1, rt−1).

We use the index t (instead of k), and write ht (instead
of zk) to make clear the distinction between the histo-
ries experienced by the target policy π versus the ex-
ploration policy μ.

A target history of length T is denoted hT . In our
analysis, we extend the target policy π(at |xt , ht−1)

into a probability distribution over hT defined by the
factoring

π(xt , at , rt |ht−1) = D(xt )π(at |xt , ht−1)D(rt |xt , at ).

Similarly to μ, we define shorthands πt(x, a, r), Pπ
t ,

Eπ
t . The goal of nonstationary policy evaluation is to

estimate the expected cumulative reward of policy π

after T rounds:

V1:T = E
hT ∼π

[
T∑

t=1

rt

]
.

In the news recommendation example, rt indicates
whether a user clicked on the recommended article, and
V1:T is the expected number of clicks garnered by an
online learning algorithm after serving T user visits.
A more effective learning algorithm, by definition, will
have a higher V1:T value (Li et al., 2010).

Again, to have unbiased policy evaluation, we as-
sume that if πt(a|x) > 0 for any t (and some his-
tory ht−1) then μk(a|x) > 0 for all k (and all possi-
ble histories zk−1). This clearly holds for instance if
μk(a|x) > 0 for all a.

In our analysis of nonstationary policy evaluation,
we assume perfect logging, that is, we assume access
to probabilities

pk := μk(ak|xk).

Whereas in general this assumption does not hold, it is
realistic in some applications such as those on the In-
ternet. For example, when a website chooses one news
article from a pool to recommend to a user, engineers
often have full control/knowledge of how to randomize
the article selection process (Li et al., 2010; Li et al.,
2011).

5.2 Relation to Dynamic Treatment Regimes

The nonstationary policy evaluation problem defined
above is closely related to DTR analysis in a longitu-
dinal observational study. Using the same notation, the
inference goal in DTR is to estimate the expected sum
of rewards by following a possibly randomized rule π

for T steps.6 Unlike contextual bandits, there is no as-
sumption on the distribution from which the data zn is
generated. More precisely, given an exploration policy
μ, the data generation is described by

μ(xk, ak, rk|zk−1)

= D(xk|zk−1)μ(ak|xk, zk−1)D(rk|xk, ak, zk−1).

Compared to the data-generation process in contextual
bandits (see Section 3.1), one allows the laws of xk

and rk to depend on history zk−1. The target policy
π is subject to the same conditional laws. The setting
in longitudinal observational studies is therefore more
general than contextual bandits.

IPS-style estimators (such as DR of the previous sec-
tion) can be extended to handle nonstationary policy
evaluation, where the likelihood ratios are now the ra-
tios of likelihoods of the whole length-T trajectories.
In DTR analysis, it is often assumed that the number
of trajectories is much larger than T . Under this as-
sumption and with T small, the variance of IPS-style
estimates is on the order of O(1/n), diminishing to 0
as n → ∞.

In contextual bandits, one similarly assumes n � T .
However, the number of steps T is often large, rang-
ing from hundreds to millions. The likelihood ratio for
a length-T trajectory can be exponential in T , result-
ing in exponentially large variance. As a concrete ex-
ample, consider the case where the exploration policy
(i.e., the treatment mechanism) chooses actions uni-
formly at random from K possibilities, and where the
target policy π is a deterministic function of the current
history and context. The likelihood ratio of any trajec-
tory is exactly KT , and there are n/T trajectories (by
breaking zn into n/T pieces of length T ). Assuming
bounded variance of rewards, the variance of IPS-style
estimators given data zn is O(T KT /n), which can be
extremely large (or even vacuous) for even moderate
values of T , such as those in the studies of online learn-
ing in the Internet applications.

6In DTR often the goal is to estimate the expectation of a com-
posite outcome that depends on the entire length-T trajectory.
However, the objective of composite outcomes can easily be re-
formulated as a sum of properly redefined rewards.
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In contrast, the “replay” approach of Li et al. (2011)
takes advantage of the independence between (xk, rk)

and history zk−1. It has a variance of O(KT/n), ig-
noring logarithmic terms, when the exploration policy
is uniformly random. When the exploration data is gen-
erated by a nonuniformly random policy, one may ap-
ply rejection sampling to simulate uniformly random
exploration, obtaining a subset of the exploration data,
which can then be used to run the replay approach.
However, this method may discard a large fraction
of data, especially when the historical actions in the
log are chosen from a highly nonuniform distribution,
which can yield an unacceptably large variance. The
next subsection describes an improved replay-based es-
timator that uses doubly-robust estimation as well as a
variant of rejection sampling.

5.3 A Nonstationary Policy Evaluator

Our replay-based nonstationary policy evaluator (Al-
gorithm 1) takes advantage of high accuracy of DR
estimator while tackling nonstationarity via rejection
sampling. We substatially improve sample use (i.e., ac-
ceptance rate) in rejection sampling while only mod-
estly increasing the bias. This algorithm is referred to
as DR-ns, for “doubly robust nonstationary.” Over the
run of the algorithm, we process the exploration history
and run rejection sampling [Steps (5)–(6)] to create a
simulated history ht of the interaction between the tar-
get policy and the environment. If the algorithm man-
ages to simulate T steps of history, it exits and returns
an estimate V̂DR-ns of the cumulative reward V1:T , and
an estimate V̂

avg
DR-ns of the average reward V1:T /T ; oth-

erwise, it reports failure indicating not enough data is
available.

Since we assume n � T , the algorithm fails with a
small probability as long as the exploration policy does
not assign too small probabilities to actions. Specifi-
cally, let α > 0 be a lower bound on the acceptance
probability in the rejection sampling step; that is, the
condition in Step (6) succeeds with probability at least
α. Then, using the Hoeffding’s inequality, one can
show that the probability of failure of the algorithm is
at most δ if

n ≥ T + ln(e/δ)

α
.

Note that the algorithm returns one “sample” of
the policy value. In reality, the algorithm continuously
consumes a stream of n data, outputs a sample of policy
value whenever a length-T history is simulated, and fi-
nally returns the average of these samples. Suppose we

Algorithm 1
DR-ns(π , {(xk, ak, rk,pk)}k=1,2,...,n, r̂ , q , cmax, T )
Input:

target nonstationary policy π

exploration data {(xk, ak, rk,pk)}k=1,2,...,n

reward estimator r̂(x, a)

rejection sampling parameters:
q ∈ [0,1] and cmax ∈ (0,1]

number of steps T for estimation

Initialize:

simulated history of target policy h0 ←∅

simulated step of target policy t ← 0
acceptance rate multiplier c1 ← cmax
cumulative reward estimate V̂DR-ns ← 0
cumulative normalizing weight C ← 0
importance weights seen so far Q ←∅

For k = 1,2, . . . consider event (xk, ak, rk,pk):

(1) V̂k ← r̂(xk,πt ) + πt (ak |xk)
pk

· (rk − r̂(xk, ak))

(2) V̂DR-ns ← V̂DR-ns + ct V̂k

(3) C ← C + ct

(4) Q ← Q ∪ { pk

πt (ak |xk)
}

(5) Let uk ∼ UNIFORM[0,1]
(6) If uk ≤ ctπt (ak |xk)

pk

(a) ht ← ht−1 + (xk, ak, rk)

(b) t ← t + 1
(c) if t = T + 1, go to “Exit”
(d) ct ← min{cmax, qth quantile of Q}

Exit: If t < T + 1, report failure and terminate;
otherwise, return:

cumulative reward estimate V̂DR-ns
average reward estimate V̂

avg
DR-ns := V̂DR-ns/C

aim to simulate m histories of length T . Again, by Ho-
effding’s inequality, the probability of failing to obtain
m trajectories is at most δ if

n ≥ mT + ln(e/δ)

α
.

Compared with naive rejection sampling, our ap-
proach differs in two respects. First, we use not only
the accepted samples, but also the rejected ones to es-
timate the expected reward Eπ

t [r] with a DR estimator
[see Step (1)]. As we will see below, the value of 1/ct

is in expectation equal to the total number of explo-
ration samples used while simulating the t th action of
the target policy. Therefore, in Step (2), we effectively
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take an average of 1/ct estimates of Eπ
t [r], decreasing

the variance of the final estimator. This is in addition
to lower variance due to the use of the doubly robust
estimate in Step (1).

The second modification is in the control of the ac-
ceptance rate (i.e., the bound α above). When simulat-
ing the t th action of the target policy, we accept ex-
ploration samples with a probability min{1, ctπt/pk}
where ct is a multiplier [see Steps (5)–(6)]. We will
see below that the bias of the estimator is controlled
by the probability that ctπt/pk exceeds 1, or equiva-
lently, that pk/πt falls below ct . As a heuristic toward
controlling this probability, we maintain a set Q con-
sisting of observed density ratios pk/πt , and at the be-
ginning of simulating the t th action, we set ct to the qth
quantile of Q, for some small value of q [Step (6)(d)],
while never allowing it to exceed some predetermined
cmax. Thus, the value q approximately corresponds to
the probability value that we wish to control. Setting
q = 0, we obtain the unbiased case (in the limit). By
using larger values of q , we increase the bias, but reach
the length T with fewer exploration samples thanks
to increased acceptance rate. A similar effect is ob-
tained by varying cmax, but the control is cruder, since
it ignores the evaluated policy. In our experiments, we
therefore set cmax = 1 and rely on q to control the ac-
ceptance rate. It is an interesting open question how to
select q and c in practice.

To study our algorithm DR-ns, we modify the def-
inition of the exploration history so as to include the
samples uk from the uniform distribution used by the
algorithm when processing the kth exploration sample.
Thus, we have an augmented definition

zk = (x1, a1, r1, u1, . . . , xk, ak, rk, uk).

With this in mind, expressions Pμ
k and Eμ

k include con-
ditioning on variables u1, . . . , uk−1, and μ is viewed as
a distribution over augmented histories zn.

For convenience of analysis, we assume in this sec-
tion that we have access to an infinite exploration his-
tory z (i.e., zn for n = ∞) and that the counter t in the
pseudocode eventually becomes T +1 with probability
one (at which point hT is generated). Such an assump-
tion is mild in practice when n is much larger than T .

Formally, for t ≥ 1, let κ(t) be the index of the t th
sample accepted in Step (6); thus, κ converts an index
in the target history into an index in the exploration
history. We set κ(0) = 0 and define κ(t) = ∞ if fewer
than t samples are accepted. Note that κ is a determin-
istic function of the history z (thanks to including sam-
ples uk in z). We assume that Pμ[κ(T ) = ∞] = 0. This

means that the algorithm (together with the exploration
policy μ) generates a distribution over histories hT ; we
denote this distribution π̂ .

Let B(t) = {κ(t − 1) + 1, κ(t − 1) + 2, . . . , κ(t)}
for t ≥ 1 denote the set of sample indices between
the (t − 1)st acceptance and the t th acceptance. This
set of samples is called the t th block. The contribu-
tion of the t th block to the value estimator is denoted
V̂B(t) = ∑

k∈B(t) V̂k . After completion of T blocks, the
two estimators returned by our algorithm are

V̂DR-ns =
T∑

t=1

ct V̂B(t), V̂
avg
DR-ns =

∑T
t=1 ct V̂B(t)∑T
t=1 ct |B(t)| .

5.4 Bias Analysis

A simple approach to evaluating a nonstationary pol-
icy is to divide the exploration data into
several parts, run the algorithm separately on each
part to generate simulated histories, obtaining es-
timates V̂

(1)
DR-ns, . . . , V̂

(m)
DR-ns, and return the average∑m

i=1 V̂
(i)
DR-ns/m.7 Here, we assume n is large enough

so that m simulated histories of length T can be gener-
ated with high probability. Using standard concentra-
tion inequalities, we can then show that the average
is within O(1/

√
m) of the expectation Eμ[V̂DR-ns].

The remaining piece is then bounding the bias term
Eμ[V̂DR-ns] − Eπ [∑T

t=1 rt ].8
Recall that V̂DR-ns = ∑T

t=1 ct V̂B(t). The source of
bias are events when ct is not small enough to guar-
antee that ctπt (ak|xk)/pk is a probability. In this case,
the probability that the kth exploration sample includes
the action ak and is accepted is

pk min
{

1,
ctπt (ak|xk)

pk

}
= min

{
pk, ctπt (ak|xk)

}
,(5.1)

which may violate the unbiasedness requirement of re-
jection sampling, requiring that the probability of ac-
ceptance be proportional to πt(ak|xk).

Conditioned on zk−1 and the induced target history
ht−1, define the event

Ek := {
(x, a) : ctπt (a|x) > μk(a|x)

}
,

which contributes to the bias of the estimate, because
it corresponds to cases when the minimum in equation

7We only consider estimators for cumulative rewards (not av-
erage rewards) in this section. We assume that the division into
parts is done sequentially, so that individual estimates are built from
nonoverlapping sequences of T consecutive blocks of examples.

8As shown in Li et al. (2011), when m is constant, making T

large does not necessarily reduce variance of any estimator of non-
stationary policies.



DOUBLY ROBUST POLICY EVALUATION AND OPTIMIZATION 501

(5.1) is attained by pk . Associated with this event is
the “bias mass” εk , which measures (up to scaling by
ct ) the difference between the probability of the bad
event under πt and under the run of our algorithm:

εk := P(x,a)∼πt [Ek] − P(x,a)∼μk
[Ek]/ct .

Notice that from the definition of Ek , this mass is non-
negative. Since the first term is a probability, this mass
is at most 1. We will assume that this mass is bounded
away from 1, that is, that there exists ε such that for all
k and zk−1

0 ≤ εk ≤ ε < 1.

The following theorem analyzes how much bias is in-
troduced in the worst case, as a function of ε. It shows
how the bias mass controls the bias of our estimator.

THEOREM 5.1. For T ≥ 1,∣∣∣∣∣Eμ

[
T∑

t=1

ct V̂B(t)

]
− Eπ

[
T∑

t=1

rt

]∣∣∣∣∣
≤ T (T + 1)

2
· ε

1 − ε
.

Intuitively, this theorem says that if a bias of ε is in-
troduced in round t , its effect on the sum of rewards
can be felt for T − t rounds. Summing over rounds, we
expect to get an O(εT 2) effect on the estimator of the
cumulative reward. In general a very slight bias can re-
sult in a significantly better acceptance rate, and hence
more replicates V̂

(i)
DR-ns.

This theorem is the first of this sort for policy evalua-
tors, although the mechanics of its proof have appeared
in model-based reinforcement-learning (e.g., Kearns
and Singh, 1998).

To prove the main theorem, we state two technical
lemmas bounding the differences of probabilities and
expectations under the target policy and our algorithm
(for proofs of lemmas, see Appendix F). The theorem
follows as their immediate consequence. Recall that π̂

denotes the distribution over target histories generated
by our algorithm (together with the exploration policy
μ).

LEMMA 5.2. Let t ≤ T , k ≥ 1 and let zk−1 be such
that the kth exploration sample marks the beginning of
the t th block, that is, κ(t − 1) = k − 1. Let ht−1 and
ct be the target history and acceptance rate multiplier
induced by zk−1. Then:∑

x,a

∣∣Pμ
k [xκ(t) = x, aκ(t) = a] − πt(x, a)

∣∣ ≤ 2ε

1 − ε
,

∣∣ctE
μ
k [V̂B(t)] − Eπ

t [r]∣∣ ≤ ε

1 − ε
.

LEMMA 5.3.∑
hT

∣∣π̂ (hT ) − π(hT )
∣∣ ≤ (2εT )/(1 − ε).

PROOF OF THEOREM 5.1. First, bound |Eμ[ct ·
V̂B(t)] − Eπ [rt ]| using the previous two lemmas, the
triangle inequality and Hölder’s inequality:∣∣Eμ[ct V̂B(t)] − Eπ [rt ]

∣∣
= ∣∣Eμ

[
ctE

μ
κ(t)[V̂B(t)]] − Eπ [rt ]

∣∣
≤ ∣∣Eμ

[
Eπ

t [rt ]] − Eπ

[
Eπ

t [rt ]]∣∣ + ε

1 − ε

=
∣∣∣∣ E
ht−1∼π̂

[
Eπ

t

[
r − 1

2

]]
− E

ht−1∼π

[
Eπ

t

[
r − 1

2

]]∣∣∣∣
+ ε

1 − ε

≤ 1

2

∑
ht−1

∣∣π̂(ht−1) − π(ht−1)
∣∣ + ε

1 − ε

≤ 1

2
· 2ε(t − 1)

1 − ε
+ ε

1 − ε
= εt

1 − ε
.

The theorem now follows by summing over t and using
the triangle inequality. �

6. EXPERIMENTS: THE NONSTATIONARY CASE

We now study how DR-ns may achieve greater sam-
ple efficiency than rejection sampling through the use
of a controlled bias. We evaluate our estimator on the
problem of a multiclass multi-label classification with
partial feedback using the publicly available dataset
rcv1 (Lewis et al., 2004). In this data, the goal is
to predict whether a news article is in one of many
Reuters categories given the contents of the article.
This dataset is chosen instead of the UCI benchmarks
in Section 4 because of its bigger size, which is helpful
for simulating online learning (i.e., adaptive policies).

6.1 Data Generation

For multi-label dataset like rcv1, an example has
the form (x̃, Y ), where x̃ is the covariate vector and
Y ⊆ {1, . . . ,K} is the set of correct class labels.9 In
our modeling, we assume that any y ∈ Y is the cor-
rect prediction for x̃. Similar to Section 4.1, an example
(x̃, Y ) may be interpreted as a bandit event with con-
text x̃ and loss l(Y, a) := I (a /∈ Y), for every action

9The reason why we call the covariate vector x̃ rather than x

becomes in the sequel.
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a ∈ {1, . . . ,K}. A classifier can be interpreted as a sta-
tionary policy whose expected loss is its classification
error. In this section, we again aim at evaluating ex-
pected policy loss, which can be understood as negative
reward. For our experiments, we only use the K = 4
top-level classes in rcv1, namely {C,E,G,M}. We
take a random selection of 40,000 data points from the
whole dataset and call the resulting dataset D.

To construct a partially labeled exploration dataset,
we simulate a stationary but nonuniform exploration
policy with a bias toward correct answers. This is
meant to emulate the typical setting where a baseline
system already has a good understanding of which ac-
tions are likely best. For each example (x̃, Y ), a uni-
formly random value s(a) ∈ [0.1,1] is assigned inde-
pendently to each action a, and the final probability of
action a is determined by

μ1(a|x̃, Y, s) = 0.3 × s(a)∑
a′ s(a′)

+ 0.7 × I (a ∈ Y)

|Y | .

Note that this policy will assign a nonzero probability
to every action. Formally, our exploration policy is a
function of an extended context x = (x̃, Y, s), and our
data generating distribution D(x) includes the genera-
tion of the correct answers Y and values s. Of course,
we will be evaluating policies π that only get to see
x̃, but have no access to Y and s. Also, the estimator l̂

(recall that we are evaluating loss here, not reward) is
purely a function of x̃ and a. We stress that in a real-
world setting, the exploration policy would not have
access to all correct answers Y .

6.2 Evaluation of a Nonstationary Policy

As described before, a fixed (nonadaptive) classi-
fier can be interpreted as a stationary policy. Similarly,
a classifier that adapts as more data arrive is equivalent
to a nonstationary policy.

In our experiments, we evaluate performance of an
adaptive ε-greedy classifier defined as follows: with
probability ε = 0.1, it predicts a label drawn uniformly
at random from {1,2, . . . ,K}; with probability 1 − ε,
it predicts the best label according to a linear score (the
“greedy” label):

argmax
a

{
wt

a · x̃}
,

where {wt
a}a∈{1,...,K} is a set of K weight vectors at

time t . This design mimics a commonly used ε-greedy
exploration strategy for contextual bandits (e.g., Li
et al., 2010). Weight vectors wt

a are obtained by fit-
ting a logistic regression model for the binary classi-
fication problem a ∈ Y (positive) versus a /∈ Y (nega-
tive). The data used to fit wt

a is described below. Thus,

the greedy label is the most likely label according to
the current set of logistic regression models. The loss
estimator l̂(x̃, a) is also obtained by fitting a logistic
regression model for a ∈ Y versus a /∈ Y , potentially
on a different dataset.

We partition the whole data D randomly into three
disjoint subsets: Dinit (initialization set), Dvalid (valida-
tion set), and Deval (evaluation set), consisting of 1%,
19%, and 80% of D, respectively. Our goal in this ex-
periment is to estimate the expected loss, V1:T , of an
adaptive policy π after T = 300 rounds.

The full-feedback set Dinit is used to fit the loss esti-
mator l̂.

Since Dvalid is a random subset of D, it may be used
to simulate the behavior of policy π to obtain an unbi-
ased estimate of V1:T . We do this by taking an average
of 2000 simulations of π on random shuffles of the set
Dvalid. This estimate, denoted V̄1:T , is a highly accu-
rate approximation to (the unknown) V1:T , and serves
as our ground truth.

To assess different policy-value estimators, we ran-
domly permute Deval and transform it into a partially
labeled set as described in Section 6.1. On the result-
ing partially labeled data, we then evaluate the policy
π up to round T , obtaining an estimate of V1:T . If the
exploration history is not exhausted, we start the eval-
uation of π again, continuing with the next exploration
sample, but restarting from empty target history (for T

rounds), and repeat until we use up all the exploration
data. The final estimate is the average across thus ob-
tained replicates. We repeat this process (permutation
of Deval, generation of exploration history, and policy
evaluation until using up all exploration data) 50 times,
so that we can compare the 50 estimates against the
ground truth V̄1:T to compute bias and standard devia-
tion of a policy-value estimator.

Finally, we describe in more detail the ε-greedy
adaptive classifier π being evaluated:

• First, the policy is initialized by fitting weights w0
a

on the full-feedback set Dinit (similarly to l̂). This
step mimics the practical situation where one usually
has prior information (in the form of either domain
knowledge or historical data) to initialize a policy,
instead of starting from scratch.

• After this “warm-start” step, the “online” phase be-
gins: in each round, the policy observes a randomly
selected x̃, predicts a label in an ε-greedy fashion (as
described above), and then observes the correspond-
ing 0/1 prediction loss. The policy is updated every
15 rounds. On those rounds, we retrain weights wt

a
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for each action a, using the full feedback set Dinit as
well as all the data from the online phase where the
policy chose action a. The online phase terminates
after T = 300 rounds.

6.3 Compared Evaluators

We compared the following evaluators described ear-
lier: DM for direct method, RS for the unbiased eval-
uator based on rejection sampling and “replay” (Li
et al., 2011), and DR-ns as in Algorithm 1 (with cmax =
1). We also tested a variant of DR-ns, which does
not monitor the quantile, but instead uses ct equal to
minD μ1(a|x); we call it DR-ns-wc since it uses the
worst-case (most conservative) value of ct that ensures
unbiasedness of rejection sampling.

6.4 Results

Table 3 summarizes the accuracy of different eval-
uators in terms of rmse (root mean squared error),
bias (the absolute difference between the average es-
timate and the ground truth) and stdev (standard devia-
tion of the estimates across different runs). It should be
noted that, given the relatively small number of trials,
the measurement of bias is not statistically significant.
However, the table provides 95% confidence interval
for the rmse metric that allows a meaningful compari-
son.

It is clear that although rejection sampling is guar-
anteed to be unbiased, its variance is usually the dom-
inating part of its rmse. At the other extreme is the di-
rect method, which has the smallest variance but of-
ten suffers large bias. In contrast, our method DR-ns is
able to find a good balance between the two extremes
and, with proper selection of the parameter q , is able to
make the evaluation results much more accurate than
others.

It is also clear that the main benefit of DR-ns is its
low variance, which stems from the adaptive choice
of ct values. By slightly violating the unbiasedness
guarantee, it increases the effective data size signifi-
cantly, hence reducing the variance of its evaluation.
For q > 0, DR-ns was able to extract many more tra-
jectories of length 300 for evaluating π , while RS and
DR-ns-wc were able to find only one such trajectory
out of the evaluation set. In fact, if we increase the
trajectory length of π from 300 to 500, both RS and
DR-ns-wc are not able to construct a complete trajec-
tory of length 500 and fail the task completely.

TABLE 3
Nonstationary policy evaluation results

Evaluator rmse (±95% C.I.) bias stdev

DM 0.0329 ± 0.0007 0.0328 0.0027
RS 0.0179 ± 0.0050 0.0007 0.0181
DR-ns-wc 0.0156 ± 0.0037 0.0086 0.0132
DR-ns (q = 0) 0.0129 ± 0.0034 0.0046 0.0122
DR-ns (q = 0.01) 0.0089 ± 0.0017 0.0065 0.0062
DR-ns (q = 0.05) 0.0123 ± 0.0017 0.0107 0.0061
DR-ns (q = 0.1) 0.0946 ± 0.0015 0.0946 0.0053

7. CONCLUSIONS

Doubly robust policy estimation is an effective tech-
nique which virtually always improves on the widely
used inverse propensity score method. Our analysis
shows that doubly robust methods tend to give more
reliable and accurate estimates, for evaluating both sta-
tionary and nonstationary policies. The theory is cor-
roborated by experiments on benchmark data as well
as two large-scale real-world problems. In the future,
we expect the DR technique to become common prac-
tice in improving contextual bandit algorithms.

APPENDIX A: PROOFS OF LEMMAS 3.1–3.3

Throughout proofs in this appendix, we write r̂ and
r∗ instead of r̂(x, a) and r∗(x, a) when x and a are
clear from the context, and similarly for � and �k .

LEMMA 3.1. The range of V̂k is bounded as

|V̂k| ≤ 1 + M.

PROOF.

|V̂k| =
∣∣∣∣r̂(xk, ν) + ν(ak|xk)

μ̂k(ak|xk)
· (

rk − r̂(xk, ak)
)∣∣∣∣

≤ ∣∣r̂(xk, ν)
∣∣ + ν(ak|xk)

μ̂k(ak|xk)
· ∣∣rk − r̂(xk, ak)

∣∣
≤ 1 + M,

where the last inequality follows because r̂ and rk are
bounded in [0,1]. �

LEMMA 3.2. The expectation of the term V̂k is

Eμ
k [V̂k] = E

(x,a)∼ν

[
r∗(x, a) + (

1 − �k(x, a)
)
�(x,a)

]
.

PROOF.

Eμ
k [V̂k] = E

(x,a,r)∼μk

[
r̂(x, ν) + ν(a|x)

μk(a|x)
· �k · (r − r̂)

]
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= E
x∼D

[
r̂(x, ν)

]

+ E
x∼D

[∑
a∈A

μk(a|x) E
r∼D( · |x,a)

[
ν(a|x)

μk(a|x)

· �k · (r − r̂)

]]

= E
x∼D

[
r̂(x, ν)

]

+ E
x∼D

[∑
a∈A

ν(a|x) E
r∼D( · |x,a)

[
�k · (r − r̂)

]]

= E
(x,a)∼ν

[r̂] + E
(x,a,r)∼ν

[
�k · (r − r̂)

]
= E

(x,a)∼ν

[
r∗ + (

r̂ − r∗) + �k · (
r∗ − r̂

)]
(A.1)

= E
(x,a)∼ν

[
r∗ + (1 − �k)�

]
. �

LEMMA 3.3. The variance of the term V̂k can be
decomposed and bounded as follows:

Vμ
k [V̂k](i)

= V
x∼D

[
E

a∼ν( · |x)

[
r∗(x, a)

+ (
1 − �k(x, a)

)
�(x,a)

]]
− E

x∼D

[
E

a∼ν( · |x)

[
�k(x, a)�(x, a)

]2]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k(x, a) · V

r∼D( · |x,a)
[r]

]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k(x, a)�(x, a)2

]
.

Vμ
k [V̂k](ii)

≤ V
x∼D

[
r∗(x, ν)

]
+ 2 E

(x,a)∼ν

[∣∣(1 − �k(x, a)
)
�(x,a)

∣∣]
+ M E

(x,a)∼ν

[
�k(x, a)

· E
r∼D( · |x,a)

[(
r − r̂(x, a)

)2]]
.

PROOF.

Eμ
k

[
V̂ 2

k

] = E
(x,a,r)∼μk

[(
r̂(x, ν) + ν(a|x)

μk(a|x)
· �k

· (r − r̂)

)2]

= E
x∼D

[
r̂(x, ν)2]

+ 2 E
(x,a,r)∼μk

[
r̂(x, ν)

· ν(a|x)

μk(a|x)
· �k · (r − r̂)

]

+ E
(x,a,r)∼μk

[
ν(a|x)

μk(a|x)

· ν(a|x)

μ̂k(a|x)
· �k · (r − r̂)2

]

= E
x∼D

[
r̂(x, ν)2]

(A.2)

+ 2 E
(x,a,r)∼ν

[
r̂(x, ν) · �k · (r − r̂)

]

+ E
(x,a,r)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · (r − r̂)2

]

= E
(x,a)∼ν

[(
r̂(x, ν) − �k�

)2]
(A.3)

− E
(x,a)∼ν

[
�2

k�
2] + E,

where E denotes the term

E := E
(x,a,r)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · (r − r̂)2

]
.

To obtain an expression for the variance of V̂k , first note
that by equation (A.1),

Eμ
k [V̂k] = E

(x,a)∼ν

[
r̂(x, ν) − �k�

]
.(A.4)

Combining this with equation (A.3), we obtain

Vμ
k [V̂k] = V

(x,a)∼ν

[
r̂(x, ν) − �k�

]
− E

(x,a)∼ν

[
�2

k�
2] + E

= V
x∼D

[
E

a∼ν( · |x)

[
r̂(x, ν) − �k�

]]
+ E

x∼D

[
V

a∼ν( · |x)

[
r̂(x, ν) − �k�

]]
− E

x∼D

[
V

a∼ν( · |x)
[�k�]]

− E
x∼D

[
E

a∼ν( · |x)
[�k�]2] + E

= V
x∼D

[
E

a∼ν( · |x)

[
r∗ + (1 − �k)�

]]
+ E

x∼D

[
V

a∼ν( · |x)
[�k�]]

− E
x∼D

[
V

a∼ν( · |x)
[�k�]]

− E
x∼D

[
E

a∼ν( · |x)
[�k�]2] + E
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= V
x∼D

[
E

a∼ν( · |x)

[
r∗ + (1 − �k)�

]]
− E

x∼D

[
E

a∼ν( · |x)
[�k�]2] + E.

We now obtain part (i) of the lemma by decomposing
the term E:

E = E
(x,a,r)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · (

r − r∗)2
]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · (

r∗ − r̂
)2

]

= E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · V

r∼D( · |x,a)
[r]

]

+ E
(x,a)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k�

2
]
.

To prove part (ii) of the lemma, first note that

r̂(x, ν)2 = (
r∗(x, ν) + E

a∼ν( · |x)

[
�(x,a)

])2

= r∗(x, ν)2 + 2r∗(x, ν) E
a∼ν( · |x)

[
�(x,a)

]

+ E
a∼ν( · |x)

[
�(x,a)

]2

= r∗(x, ν)2 + 2r̂(x, ν) E
a∼ν( · |x)

[
�(x,a)

]

− E
a∼ν( · |x)

[
�(x,a)

]2

≤ r∗(x, ν)2 + 2r̂(x, ν) E
a∼ν( · |x)

[
�(x,a)

]
.

Plugging this in equation (A.2), we obtain

Eμ
k

[
V̂ 2

k

] = E
x∼D

[
r̂(x, ν)2]

+ 2 E
(x,a,r)∼ν

[
r̂(x, ν) · �k · (r − r̂)

] + E

≤ E
x∼D

[
r∗(x, ν)2]

+ 2 E
x∼D

[
r̂(x, ν) E

a∼ν( · |x)
[�]]

+ 2 E
(x,a)∼ν

[
r̂(x, ν) · (−�k) · �] + E

= E
x∼D

[
r∗(x, ν)2]

(A.5)

+ 2 E
(x,a)∼ν

[
r̂(x, ν) · (1 − �k) · �] + E.

On the other hand, equation (A.4) can be rewritten as

Eμ
k [V̂k] = E

(x,a)∼ν

[
r∗(x, ν) + (1 − �k)�

]
.

Combining with equation (A.5), we obtain

Vμ
k [V̂k] ≤ V

x∼D

[
r∗(x, ν)

]
+ 2 E

(x,a)∼ν

[
r̂(x, ν) · (1 − �k)�

]
− 2 E

x∼D

[
r∗(x, ν)

]
E

(x,a)∼ν

[
(1 − �k)�

]

− E
(x,a)∼ν

[
(1 − �k)�

]2 + E

≤ V
x∼D

[
r∗(x, ν)

]
+ 2 E

(x,a)∼ν

[(
r̂(x, ν) − 1

2

)
(1 − �k)�

]
− 2 E

x∼D

[
r∗(x, ν) − 1

2

]
E

(x,a)∼ν

[
(1 − �k)�

]
+ E

≤ V
x∼D

[
r∗(x, ν)

] + E
(x,a)∼ν

[∣∣(1 − �k)�
∣∣]

+ ∣∣ E
(x,a)∼ν

[
(1 − �k)�

]∣∣ + E,

where the last inequality follows by Hölder’s inequality
and the observations that |r̂ − 1/2| ≤ 1/2 and |r∗ −
1/2| ≤ 1/2. Part (ii) now follows by the bound

E = E
(x,a,r)∼ν

[
ν(a|x)

μ̂k(a|x)
· �k · (r − r̂)2

]

≤ M E
(x,a)∼ν

[
�k E

r∼D( · |x,a)

[
(r − r̂)2]]

. �

APPENDIX B: FREEDMAN’S INEQUALITY

The following is a corollary of Theorem 1 of
Beygelzimer et al. (2011). It can be viewed as a ver-
sion of Freedman’s inequality Freedman’s (1975). Let
y1, . . . , yn be a sequence of real-valued random vari-
ables. Let Ek denote E[ · |y1, . . . , yk−1] and Vk condi-
tional variance.

THEOREM B.1. Let V,D ∈ R such that

n∑
k=1

Vk[yk] ≤ V,

and for all k, |yk − Ek[yk]| ≤ D. Then for any δ > 0,
with probability at least 1 − δ,∣∣∣∣∣

n∑
k=1

yk −
n∑

k=1

Ek[yk]
∣∣∣∣∣ ≤ 2 max

{
D ln(2/δ),

√
V ln(2/δ)

}
.
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APPENDIX C: IMPROVED FINITE-SAMPLE ERROR
BOUND

In this appendix, we analyze the error of V̂DR in esti-
mating the value of a stationary policy ν. We generalize
the analysis of Section 3.4.3 by replacing conditions on
the ranges of variables by conditions on the moments.

For a function f :X × A → R and 1 ≤ p < ∞, we
define the Lp(ν) norm as usual:

‖f ‖p,ν = E(x,a)∼ν

[∣∣f (x, a)
∣∣p]1/p

.

For p = ∞, ‖f ‖∞,ν is the essential supremum of |f |
under ν.

As in Section 3.4.3, we first simplify Lemmas 3.1–
3.3, and then apply Freedman’s inequality to obtain a
specific error bound.

LEMMA C.1. Let 1 ≤ p,q ≤ ∞ be such that
1/p + 1/q = 1. Assume there are finite constants
M,er̂ , δ�, δ�, �max ≥ 0 such that with probability one
under μ, for all k:

ν(ak|xk)/μ̂k(ak|xk) ≤ M,

‖�‖q,ν ≤ δ�,

‖1 − �k‖p,ν ≤ δ�,

‖�k‖p,ν ≤ �max,

E
(x,a)∼ν

[
E

r∼D( · |x,a)

[(
r̂(x, a) − r

)2]q]1/q ≤ er̂ .

Then with probability one under μ, for all k:∣∣Eμ
k [V̂k] − V

∣∣ ≤ δ�δ�,

Vμ
k [V̂k] ≤ Vx∼D

[
r∗(x, ν)

] + 2δ�δ� + M�maxer̂ .

PROOF. The bias and variance bound follow from
Lemma 3.2 and Lemma 3.3(ii), respectively, by Höl-
der’s inequality. �

THEOREM C.2. If assumptions of Lemma C.1
hold, then with probability at least 1 − δ,

|V̂DR − V |
≤ δ�δ�

+ 2 max
{

(1 + M) ln(2/δ)

n
,

√
(Vx∼D[r∗(x, ν)] + 2δ�δ� + M�maxer̂ ) ln(2/δ)

n

}
.

PROOF. The proof follows by Freedman’s inequal-
ity (Theorem B.1 in Appendix B), applied to random
variables V̂k , whose range and variance are bounded
using Lemma 3.1 and C.1. �

APPENDIX D: DIRECT LOSS MINIMIZATION

Given cost-sensitive multiclass classification data
{(x, l1, . . . , lK)}, we perform approximate gradient de-
scent on the policy loss (or classification error). In the
experiments of Section 4.1, policy ν is specified by
K weight vectors θ1, . . . , θK . Given x ∈ X , the policy
predicts as follows: ν(x) = argmaxa∈{1,...,K}{x · θa}.

To optimize θa , we adapt the “toward-better” version
of the direct loss minimization method of McAllester,
Hazan and Keshet (2011) as follows: given any data
point (x, l1, . . . , lK) and the current weights θa , the
weights are adjusted by

θa1 ← θa1 + ηx,

θa2 ← θa2 − ηx,

where a1 = argmaxa{x · θa − εla}, a2 = argmaxa{x ·
θa}, η ∈ (0,1) is a decaying learning rate, and ε > 0 is
an input parameter.

For computational reasons, we actually perform
batch updates rather than incremental updates. Updates
continue until the weights converge. We found that the
learning rate η = t−0.3/2, where t is the batch iteration,
worked well across all datasets. The parameter ε was
fixed to 0.1 for all datasets.

Furthermore, since the policy loss is not convex in
the weight vectors, we repeat the algorithm 20 times
with randomly perturbed starting weights and then re-
turn the best run’s weight according to the learned pol-
icy’s loss in the training data. We also tried using a
holdout validation set for choosing the best weights out
of the 20 candidates, but did not observe benefits from
doing so.

APPENDIX E: FILTER TREE

The Filter Tree (Beygelzimer, Langford and Raviku-
mar, 2008) is a reduction from multiclass cost-sensitive
classification to binary classification. Its input is of the
same form as for Direct Loss Minimization, but its out-
put is a Filter Tree: a decision tree, where each in-
ner node is itself implemented by some binary clas-
sifier (called base classifier), and leaves correspond
to classes of the original multiclass problem. As base
classifiers we used J48 decision trees implemented in
Weka 3.6.4 (Hall et al., 2009). Thus, there are 2-class
decision trees in the nodes, with the nodes arranged
as per a Filter Tree. Training in a Filter Tree proceeds
bottom-up, but the classification in a trained Filter Tree
proceeds root-to-leaf, with the running time logarith-
mic in the number of classes. We did not test the all-
pairs Filter Tree, which classifies examples in the time
linear in the number of classes, similar to DLM.
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APPENDIX F: PROOFS OF LEMMAS 5.2 AND 5.3

LEMMA 5.2. Let t ≤ T , k ≥ 1 and let zk−1 be such
that the kth exploration sample marks the beginning of
the t th block, that is, κ(t − 1) = k − 1. Let ht−1 and
ct be the target history and acceptance rate multiplier
induced by zk−1. Then:∑

x,a

∣∣Pμ
k [xκ(t) = x, aκ(t) = a] − πt(x, a)

∣∣(F.1)

≤ 2ε

1 − ε
,

∣∣ctE
μ
k [V̂B(t)] − Eπ

t [r]∣∣ ≤ ε

1 − ε
.(F.2)

PROOF. We begin by showing equation (F.1). Con-
sider the mth exploration sample (x, a) ∼ μm and as-
sume that this sample is in the t th block. The probabil-
ity of accepting this sample is

Pu∼μm( · |x,a)

[
u ≤ ctπt (a|x)

μm(a|x)

]

= I
[
(x, a) ∈ Em

] + ctπt (a|x)

μm(a|x)
I
[
(x, a) /∈ Em

]
,

where I [ · ] is the indicator function equal to 1 when
its argument is true and 0 otherwise. The probability of
seeing and accepting a sample (x, a) from μm is

acceptm(x, a)

:= μm(x, a)

(
I
[
(x, a) ∈ Em

]

+ ctπt (a|x)

μm(a|x)
I
[
(x, a) /∈ Em

])

= μm(x, a)I
[
(x, a) ∈ Em

]
+ ctπt (x, a)I

[
(x, a) /∈ Em

]
= ctπt (x, a)

− (
ctπt (x, a) − μm(x, a)

)
I
[
(x, a) ∈ Em

]
and the marginal probability of accepting a sample
from μm is

acceptm(∗) := ∑
x,a

acceptm(x, a)

= ct − ctεm = ct (1 − εm).

In order to accept the mth exploration sample, sam-
ples k through m − 1 must be rejected. The probability
of eventually accepting (x, a), conditioned on zk−1 is

therefore

Pμ
k (xκ(t) = x, aκ(t) = a)

= Eμ
k

[ ∞∑
m≥k

acceptm(x, a)

m−1∏
k′=k

(
1 − acceptk′(∗)

)]

= ctπt (x, a)(F.3)

· Eμ
k

[ ∞∑
m≥k

m−1∏
k′=k

(
1 − acceptk′(∗)

)]

− Eμ
k

[ ∞∑
m≥k

(
ctπt (x, a) − μm(x, a)

)
(F.4)

· I [
(x, a) ∈ Em

]

·
m−1∏
k′=k

(
1 − acceptk′(∗)

)]
.

To bound |Pμ
k [xκ(t) = x, aκ(t) = a] − πt(x, a)| and

prove equation (F.1), we first need to bound equations
(F.3) and (F.4). Note that from the definition of Em, the
expression inside the expectation of equation (F.4) is
always nonnegative. Let E1(x, a) denote the expres-
sion in equation (F.3) and E2(x, a) the expression in
equation (F.4). We bound E1(x, a) and E2(x, a) sepa-
rately, using bounds 0 ≤ εm ≤ ε:

E1(x, a) = ctπt (x, a)Eμ
k

[ ∞∑
m≥k

m−1∏
k′=k

(
1 − acceptk′(∗)

)]

≤ ctπt (x, a)Eμ
k

[ ∞∑
m≥k

m−1∏
k′=k

(
1 − ct (1 − ε)

)]

= πt(x, a)

1 − ε
,

E1(x, a) ≥ ctπt (x, a)Eμ
k

[ ∞∑
m≥k

m−1∏
k′=k

(1 − ct )

]

= πt(x, a),

E2(x, a) = Eμ
k

[ ∞∑
m≥k

(
ctπt (x, a) − μm(x, a)

)

· I [
(x, a) ∈ Em

]

·
m−1∏
k′=k

(
1 − acceptk′(∗)

)]



508 DUDÍK, ERHAN, LANGFORD AND LI

≤ Eμ
k

[ ∞∑
m≥k

(
ctπt (x, a) − μm(x, a)

)

· I [
(x, a) ∈ Em

]
· (

1 − ct (1 − ε)
)m−k

]
.

Now we are ready to prove equation (F.1):∑
x,a

|Pμ
k [xκ(t) = x, aκ(t) = a] − πt(x, a)|

= ∑
x,a

|E1(x, a) − πt(x, a) − E2(x, a)|

≤ ∑
x,a

|E1(x, a) − πt(x, a)| + ∑
x,a

E2(x, a)

≤ ∑
x,a

πt (x, a)ε

1 − ε

+ Eμ
k

[ ∞∑
m≥k

∑
x,a

(
ctπt (x, a) − μm(x, a)

)

· I [
(x, a) ∈ Em

](
1 − ct (1 − ε)

)m−k

]

= ε

1 − ε
+ Eμ

k

[ ∞∑
m≥k

ct εm

(
1 − ct (1 − ε)

)m−k

]

≤ 2ε

1 − ε

proving equation (F.1).
Let reachm denote the indicator of the event that the

mth sample is in block t (i.e., samples k, k+1, . . . ,m−
1 are rejected). Then

Eμ
k [V̂B(t)] =

∞∑
m=k

Eμ
k [V̂m reachm]

=
∞∑

m=k

Eμ
k

[
Eμ

m[V̂m reachm]]

=
∞∑

m=k

Eμ
k

[
reachm Eμ

m[V̂m]],(F.5)

where equation (F.5) follows because the event of
reaching the mth sample depends only on the preced-
ing samples, and hence it is a deterministic function of
zm−1. Plugging Lemma 3.2 in equation (F.5), we obtain

ctE
μ
k [V̂B(t)]

= ct E
r∼πt

[r]
∞∑

m=k

Eμ
k [reachm]

= ct E
r∼πt

[r]Eμ
k

[ ∞∑
m=k

m−1∏
k′=k

(
1 − acceptk′(∗)

)]

(because Er∼πt [r] is a deterministic function of zk−1).
This can be bounded, similarly as before, as

E
r∼πt

[r] ≤ ctE
μ
k [V̂B(t)] ≤ Er∼πt [r]

1 − ε

yielding equation (F.2). �
LEMMA 5.3.∑

hT

∣∣π̂(hT ) − π(hT )
∣∣ ≤ (2εT )/(1 − ε).

PROOF. We prove the lemma by induction and
the triangle inequality (essentially following Kakade,
Kearns and Langford, 2003). The lemma holds for
T = 0 since there is only one empty history (and hence
both π̂ and π are point distributions over h0). Now as-
sume the lemma holds for T − 1. We prove it for T :∑

hT

∣∣π̂(hT ) − π(hT )
∣∣

= ∑
hT −1

∑
(xT ,aT ,rT )

∣∣π̂(hT −1)π̂T (xT , aT , rT )

− π(hT −1)πT (xT , aT , rT )
∣∣

≤ ∑
hT −1

∑
(xT ,aT ,rT )

(∣∣π̂(hT −1)π̂T (xT , aT , rT )

− π̂ (hT −1)πT (xT , aT , rT )
∣∣

+ ∣∣π̂(hT −1)πT (xT , aT , rT )

− π(hT −1)πT (xT , aT , rT )
∣∣)

= E
hT −1∼π̂

[ ∑
(xT ,aT ,rT )

∣∣π̂T (xT , aT , rT )

− πT (xT , aT , rT )
∣∣]

+ ∑
hT −1

∣∣π̂(hT −1) − π(hT −1)
∣∣

≤ 2ε

1 − ε
+ 2ε(T − 1)

1 − ε
= 2εT

1 − ε
. �

APPENDIX G: PROGRESSIVE VALIDATION
POLICY

In Section 4.1.3, we showed how the stationary DR
estimator can be used not only for policy evaluation,
but also for policy optimization by transforming the
contextual bandit problem into a cost sensitive classifi-
cation problem.
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In this appendix, we show how the nonstationary
DR estimator, when applied to an online learning al-
gorithm, can also be used to obtain a high-performing
stationary policy. The value of this policy concentrates
around the average per-step reward estimated for the
online learning algorithm. Thus, to the extent that the
online algorithm achieves a high reward, so does this
stationary policy. The policy is constructed using the
ideas behind the “progressive validation” error bound
(Blum, Kalai and Langford, 1999), and hence we call
it a “progressive validation policy.”

Assume that the algorithm DR-ns successfully ter-
minates after generating T blocks. The progressive val-
idation policy is the randomized stationary policy πPV
defined as

πPV(a|x) :=
T∑

t=1

ct |B(t)|
C

π(a|x,ht−1).

Conceptually, this policy first picks among the histo-
ries h0, . . . , hT −1 with probabilities c1|B(1)|/C, . . . ,

ct |B(T )|/C, and then executes the policy π given the
chosen history. We extend πPV to a distribution over
triples

πPV(x, a, r) = D(x)πPV(a|x)D(r|x, a).

We will show that the average reward estimator
V̂

avg
DR-ns returned by our algorithm estimates the ex-

pected reward of πPV with an error O(1/
√

N) where
N is the number of exploration samples used to gen-
erate T blocks. Thus, assuming that the nonstationary
policy π improves with more data, we expect to ob-
tain the best-performing progressive validation policy
with the most accurate value estimate by running the
algorithm DR-ns on all of the exploration data.

The error bound in the theorem below is proved by
analyzing range and variance of V̂k using Lemma 3.8.
The theorem relies on the following conditions (mir-
roring the assumptions of Lemma 3.8):

• There is a constant M > 0 such that πt(ak|xk)/pk ≤
M .

• There is a constant er̂ > 0 such that E(x,a)∼πt[ED[(r̂ − r)2
∣∣ x, a]] ≤ er̂ .

• There is a constant vr > 0 such that Vx∼D

[Er,a∼πt ( ·,· |x)[r]] ≤ vr .

These conditions ensure boundedness of density ratios,
squared prediction error of rewards, and variance of a
conditional expected reward, respectively. It should be
noted that, since rewards are assumed to be in [0,1],
one can always choose er̂ and vr that are no greater
than 1.

THEOREM G.1. Let N be the number of explo-
ration samples used to generate T blocks, that is, N =∑T

t=1 |B(t)|. Assume the above conditions hold for all
k and t (and all histories zk−1 and ht−1). Then, with
probability at least 1 − δ,∣∣V̂ avg

DR-ns − E
r∼πPV

[r]∣∣
≤ Ncmax

C

· 2 max
{
(1 + M) ln(2/δ)

N
,

√
(vr + Mer̂) ln(2/δ)

N

}
.

PROOF. The proof follows by Freedman’s inequal-
ity (Theorem B.1 in Appendix B), applied to ran-
dom variables ct V̂k , whose range and variance can be
bounded using Lemma 3.8 and the bound ct ≤ cmax. In
applying Lemma 3.8, note that δ� = 0 and �max = 1,
because μ̂k = μk . �
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