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Goal

In variational Bayesian inference we maximize the ELBO

max
λ

F(λ) = max
λ

∫

q(θ|λ) log
p(y, θ)

q(θ|λ)
dθ =

= max
λ

Eq(θ|λ) log p(y, θ) +Hq(λ)

which is equivalent to minimizing KL[q(θ|λ)||p(θ|y)]

Often Eq(θ|λ) log p(y, θ) and its gradient ∇λ do not have
a closed-form expression.

Paisley et al. 2012 suggested a stochastic search method
to circumvent this difficulty.

The current paper proposes another method which is
more efficient and algorithmically simpler.
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Theory

Consider the random vector z ∈ R
D with pdf φ(z).

Assume φ(z) exists in standard form with zero mean and
scale parameters set to 1. For example:

standard Normal distribution

standard t distribution

product of standard logistic distributions

Assume φ(z) permits straightforward simulation of
independent samples.

We can change the mean and correlations by applying an
invertible transformation

θ = Cz+ µ

where C is a lower triangular psd matrix.
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Theory

The pdf for θ takes the form

q(θ|µ,C) =
1

|C|
φ(C−1(θ − µ))

This will be the variational approximation to the posterior
(generally correlated with free parameters µ,C)

The authors focus on φ(z) = N (z; 0, I) for which

q(θ|µ,C) = N (θ;µ,CCT )

As in Challis & Barber (2011).
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Theory

Define g(θ) = p(y, θ). The ELBO is given by

F(µ,C) =

∫

q(θ|µ,C) log
g(θ)

q(θ|µ,C)
dθ

By variable transformation back to z = C−1(θ − µ) we get

F(µ,C) =

∫

φ(z) log
g(Cz+ µ)|C|

φ(z)
dz

= Eφ(z)[log g(Cz+ µ)] + log |C|
︸ ︷︷ ︸

∑
k log(Ckk )

+ Hφ
︸︷︷︸

Const(µ,C)
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Theory

To fit the variational distribution we maximize F . We need to
compute

∇µF(µ,C) = Eφ(z)[∇µ log g(Cz+ µ)]

∇CF(µ,C) = Eφ(z)[∇C log g(Cz+ µ)] + ∆C

where ∆C = diag(1/C11, ...., 1/CDD). Alternatively, going back
to θ = Cz+ µ and using the chain rule we obtain

∇µF(µ,C) = Eq(θ)[∇θ log g(θ)]

∇CF(µ,C) = Eq(θ)[∇θ log g(θ)× (θ − µ)TC−T

︸ ︷︷ ︸

zT

] + ∆C

where in the latter we take only the lower triangular part.
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Doubly Stochastic Gradient Ascent

Use an unbiased Monte Carlo estimator for the expectation

∇µF = Eq(θ)[∇θ log g(θ)
︸ ︷︷ ︸

f (θ)

] ≈
1

S

S∑

s=1

f (θs), θs ∼i .i .d q(θ)

Based on the theory of stochastic approximations (Robbins &
Monro, 1951) we use a sample instead of the full gradient

∇µF → ∇θ log g(θ)
∣
∣
θ=θs
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Algorithm

The learning rate (step sizes) {ρt} must satisfy
∑

t ρt = ∞
and

∑

t ρ
2
t < ∞ to guarantee convergence to a local

maximum (or global when F is concave).
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To appreciate the proposed Algorithm, let us review prior art:

Straightforward integration (Opper & Archambeau 2009,
Challis & Barber 2011,2013)

Variational Bayesian Inference with Stochastic Search
(Paisley, Blei, Jordan 2012)
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Straightforward Integration

Gaussian Approximation q(θ) = N (θ;µ,Σ = CCT ) (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

F =

∫

N (θ;µ,Σ) log[g(θ)]dθ +
1

2

∑

j

logCjj
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Straightforward Integration

Gaussian Approximation q(θ) = N (θ;µ,Σ = CCT ) (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

∇µF =

∫

∇µN (θ;µ,Σ) log[g(θ)]dθ =

=

∫

N (θ;µ,Σ) log[g(θ)]Σ−1(θ − µ)dθ
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Straightforward Integration

Gaussian Approximation q(θ) = N (θ;µ,Σ = CCT ) (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

if g(θ) =
∏N

n=1 gn(h
T
n θ)

∏

j p(θj) then

F =
N∑

n=1

∫

N (z ; 0, 1)gn(h
T
n µ+ zhT

n Σhn)dz+

+
∑

j

∫

N (θj ;µj ,Σjj) log p(θj)dθj +
1

2

∑

j

logCjj

Reduces to 1D integrals
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Review of Paisley, Blei, Jordan 2012

∇λEq(θ|λ)[f (θ)] = ∇λ

∫

f (θ)q(θ|λ)θ

=

∫

f (θ)∇λq(θ|λ)
︸ ︷︷ ︸

dθ =

∫

f (θ) q(θ|λ)∇λ log q(θ|λ)
︸ ︷︷ ︸

dθ

= Eq(θ|λ)[f (θ)∇λ log q(θ|λ)] ≈
1

S

S∑

s=1

f (θs)∇λ log q(θ
s |λ)

where θs ∼i .i .d q(θ|λ).

f can be any distribution and log q must be smooth

Paisley’s method has high variance → requires control
variates (complicates the algorithm)
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Comparison

Bayesian logistic regression on the Pima diabetes dataset.
Integration: 16 likelihood evaluations with L-BFGS.
DSVI: 500 evaluations (×3 more time)
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Illustrative Convergence Analysis

Very simple example:
The model f (θ) = log p(y, θ) = log(const×N (θ;m, I))
Approximate posterior q(θ) = N (θ;µ, I) so µ∗ = m
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Illustrative Convergence Analysis

Very simple example:
The model f (θ) = log p(y, θ) = log(const×N (θ;m, I))
Approximate posterior q(θ) = N (θ;µ, I) so µ∗ = m

DSVI uses µ(t) = µ(t−1) + ρt(m− θs)
Paisley/Direct uses µ(t) = µ(t−1) + ρt [f (θ

s)(θs − µ(t−1))]
where θs ∼ N (θ;µ(t−1), I)
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Illustrative Convergence Analysis

Very simple example:
The model f (θ) = log p(y, θ) = log(const×N (θ;m, I))
Approximate posterior q(θ) = N (θ;µ, I) so µ∗ = m

DSVI uses µ(t) = µ(t−1) + ρt(m− θs)
Paisley/Direct uses µ(t) = µ(t−1) + ρt [f (θ

s)(θs − µ(t−1))]
where θs ∼ N (θ;µ(t−1), I)

E
L
B
O

iteration
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Variable Selection in Logistic Regression

The authors propose a DSVI-ARD algorithm.
q(θ;µ, c) =

∏D

d=1 q(θd ;µd , cd) with prior p(θ) = N (θ; 0,Λ)
with Λ = diag(ℓ21, ..., ℓ

2
D)

F(µ,C,Λ) = Eφ(z)[log g̃(c ◦ z+ µ)] +
1

2

D∑

d=1

log c2d+

−
1

2

D∑

d=1

log ℓ2d −
1

2

D∑

d=1

c2d + µ2
d

ℓ2d
+

D

2

The point estimate for the hyperparameters is
(ℓ2d)

∗ = c2d + µ2
d . Substituting this we obtain

Eφ(z)[log g̃(c ◦ z+ µ)] +
1

2

D∑

d=1

log(c2d )−
1

2

D∑

d=1

log(c2d + µ2
d)
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Variable Selection in Logistic Regression
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