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Goal

In variational Bayesian inference we maximize the ELBO

max F(X) = max / q(0]\) log Z g’lf\; do —

= max o) log p(y, 0) + Hq(A)
which is equivalent to minimizing KL[g(@|\)||p(8]y)]

@ Often Eqx) log p(y, @) and its gradient V5 do not have
a closed-form expression.

@ Paisley et al. 2012 suggested a stochastic search method
to circumvent this difficulty.

@ The current paper proposes another method which is
more efficient and algorithmically simpler.
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Theory

o Consider the random vector z € R? with pdf ¢(z).
@ Assume ¢(z) exists in standard form with zero mean and
scale parameters set to 1. For example:
o standard Normal distribution
o standard t distribution
o product of standard logistic distributions
@ Assume ¢(z) permits straightforward simulation of
independent samples.
@ We can change the mean and correlations by applying an
invertible transformation

0=Cz+p

where C is a lower triangular psd matrix.
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Theory

The pdf for 8 takes the form

q(6]p, C) (C(6 — n))

1

]
This will be the variational approximation to the posterior
(generally correlated with free parameters p, C)

The authors focus on ¢(z) = N(z;0,1) for which
q(0|u, C) = N'(6; 1, CCT)

As in Challis & Barber (2011).
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Theory

Define g(6) = p(y, 0). The ELBO is given by

F(p.©) = [ a0ln.C)tog — £ a0

q(6p, C)
By variable transformation back to z = C™*(6 — p) we get
0 [

= Ey(5)[logg(Cz + p)] + log|C| +  Hy
—— —~—

>k log(Cuk)  Const(u,C)
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Theory

To fit the variational distribution we maximize F. We need to
compute

VuF(p,C) =Eyz)[Vyulog g(Cz + p)]
VC‘F(HH C) = IE(b(z) [VC |Og g(CZ + l’l‘)] + AC

where Ac = diag(1/ Gy, ....,1/Cpp). Alternatively, going back
to @ = Cz + p and using the chain rule we obtain

VuF(p,C) = Eq9)[Velog g(0)]
VeF (1, C) = Eq9)[Va log g(0) x (6 — p)"C 7] + Ac
N——

2T

where in the latter we take only the lower triangular part.



Doubly Stochastic Variational Bayes for non-Conjugate Inference (ICML 2014)

Doubly Stochastic Gradient Ascent

Use an unbiased Monte Carlo estimator for the expectation

s

1 s s ..
VuF = Eq6)[Velog g(0)] ~ 5 Z f(6°), 0° ~"' q(6)
()

Based on the theory of stochastic approximations (Robbins &
Monro, 1951) we use a sample instead of the full gradient

V,F — Vglogg(0) }0:05
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Algorithm

Algorithm 1 Doubly stochastic variational inference
Input: ¢, y, 0, Vlogg.
Initialise @, C©, ¢ = 0.
repeat
t=t+1;
z ~ $(z);
O(t—l) — C<t’1)z + “(t71);
p = p 4 pVelog g(8° V) ;
c® =tV 4y, (Vg log g(0% V) x 27 + Ac@_l));
until convergence criterion is met.

The learning rate (step sizes) {p;} must satisfy > . p; = 00
and )", p? < oo to guarantee convergence to a local
maximum (or global when F is concave).
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To appreciate the proposed Algorithm, let us review prior art:

@ Straightforward integration (Opper & Archambeau 2009,
Challis & Barber 2011,2013)

@ Variational Bayesian Inference with Stochastic Search
(Paisley, Blei, Jordan 2012)



Doubly Stochastic Variational Bayes for non-Conjugate Inference (ICML 2014)

Straightforward Integration

Gaussian Approximation g(8) = N'(0; u, X = CC") (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

F = /N(e; w, X) log[g(0)]d6 + % zj: log Cj

10/15
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Straightforward Integration

Gaussian Approximation q(8) = N(6; u, X = CC") (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

VaF = [ V(0. ) logle©)]d6 -

— [ N6: 1. D) gl (@) (6~ )b

10/15
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Straightforward Integration

Gaussian Approximation g(8) = N'(0; u, X = CC") (Opper
& Archambeau 2009, Challis & Barber 2011,2013)

if (6) = [Tn_, &n(hy ) I1; p(¢)) then
N
F = Z //\/(z; 0,1)gn(h] 4+ zh] Zh,)dz+
n=1
1
+ /N(Hj; 1y 2jy) log p(6)db; + 5 > log G
J J
Reduces to 1D integrals

10/15
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Review of Paisley, Blei, Jordan 2012

VAEq(o[f(8)] = ¥ / F(6)q(617)8

7

:/f(o) VAg(0|\) d0:/f(e)g(elA)VAVIqu(GIA) do

= Eqo[F(0)Valog q(8IN)] ~ ¢ 3 £(6)V log q(6°|\)

0|~
1M

where 6° ~/4 g(9|\).
@ f can be any distribution and log g must be smooth

@ Paisley's method has high variance — requires control
variates (complicates the algorithm)
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Comparison

Method Relevant Models | Approximation to Speed Computation
the Posterior

* numerical integration

Integration | Separable w.r.t. might be required for
data pts (to Gaussian Fastest function and gradient
reduce integrals evaluations
to 1D) « simple when integrals

are analytic
smooth log
Doubly priors and log Also non- Moderate Only gradient of the joint pdf
Stochastic | likelihoods Gaussian

+ gradient of the

* Smooth log Slowest approximate posterior
posterior (due to slow « Compute sample
Paisley Any « easytodraw | convergence) variances and
covariances (control
variates)

Bayesian logistic regression on the Pima diabetes dataset.
Integration: 16 likelihood evaluations with L-BFGS.
DSVI: 500 evaluations (x3 more time)
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lllustrative Convergence Analysis

Very simple example:

The model £(0) = log p(y, 8) = log(const x N(0; m,1))
Approximate posterior g(8) = N(0; 1) so p* = m
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lllustrative Convergence Analysis

Very simple example:

The model £(0) = log p(y, 8) = log(const x N(0; m,1))
Approximate posterior g(8) = N(0; 1) so p* = m
DSVI uses pu® = p(t=1) 4+ p,(m — 6°)

Paisley /Direct uses pu(*) = pt=1) + p,[f(0°)(0° — nt=1)]
where 8° ~ N(6; u(t=1 1)
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lllustrative Convergence Analysis

Very simple example:

The model £(0) = log p(y, 8) = log(const x N(0; m,1))
Approximate posterior g(8) = N(0; 1) so p* = m
DSVI uses pu® = p(t=1) 4+ p,(m — 6°)

Paisley /Direct uses pu(*) = pt=1) + p,[f(0°)(0° — nt=1)]
where 8° ~ N(6; u(t=1 1)

% s 0 700 a0 %0 100
iteration
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Variable Selection in Logistic Regression

The authors propose a DSVI-ARD algorithm.

q(6; 1, €) = [1g_, a(0a; 1a, ca) with prior p(6) = N'(6;0, A)
with A = diag(¢3, ..., (3)

D
1
F(1.C.N) = Egllog g(coz+ p)] + 5 > logci+
d=1

D D
1 I—ci+u3 D
- | 62'—'— d d nd
2;1 0gly—52. z T3

d=1

The point estimate for the hyperparameters is
(€2)* = ¢ + u3. Substituting this we obtain

D D
N 1 1
Eyllogg(eoz+p)] + 7 ) log(c3) — 5 > " log(c3 + 13)

d=1 d=1
14/15
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Variable Selection in Logistic Regression

Table 1. Size and number of features of each cancer data set.

Data set #Train ~ #Test D
Colon 42 20 2,000
Leukemia 38 34 7,129
Breast 38 4 7.129

Table 2. Train and test errors for the three cancer datasets and for
each method: CONCAV is the original DSVI algorithm with a
fixed prior, whereas ARD is the feature-selection version.

Problem Train Error  Test Error
Colon (ARD) 0/42 120
Colon (CONCAV) 0/42 0/20
Leukemia (ARD) 0/38 3/34
Leukemia (CONCAV) 0/38 12/34
Breast (ARD) 0/38 2/4
Breast (CONCAV) 0/38 0/4

Table 4. Test error rates for DSVI-ARD and /£, -logistic regression

Table 3. Size and sparsity level of each large-scale data set. on three large-scale data sets.

Data set #Train #Test D #Nonzeros Data set DSVIARD  Log. Reg. X
a9%a 32,561 16,281 123 451,592

revi 20242 677,399 47236 49,556,258 3231 g(')i?z 85% p
Epsilon 400,000 100,000 2,000 800,000,000 i ride

Epsilon 0.1014 0.1011 05
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