Doubly Stochastic Variational Bayes for non-Conjugate Inference (ICML 2014)

Michalis K. Titsias, Miguel Lázaro-Gredilla

Discussion led by Yan Kaganovsky Duke University

イロト 不得 トイヨト イヨト

Goal

In variational Bayesian inference we maximize the ELBO

$$egin{aligned} &\max_{oldsymbol{\lambda}} \mathcal{F}(oldsymbol{\lambda}) = \max_{oldsymbol{\lambda}} \int q(oldsymbol{ heta}|oldsymbol{\lambda}) \log rac{p(oldsymbol{y},oldsymbol{ heta})}{q(oldsymbol{ heta}|oldsymbol{\lambda})} doldsymbol{ heta} = \ &\max_{oldsymbol{\lambda}} \mathbb{E}_{q(oldsymbol{ heta}|oldsymbol{\lambda})} \log p(oldsymbol{y},oldsymbol{ heta}) + \mathcal{H}_q(oldsymbol{\lambda}) \end{aligned}$$

which is equivalent to minimizing $\mathsf{KL}[q(\theta|\boldsymbol{\lambda})||p(\theta|\mathbf{y})]$

- Often E_{q(θ|λ)} log p(y, θ) and its gradient ∇_λ do not have a closed-form expression.
- Paisley et al. 2012 suggested a stochastic search method to circumvent this difficulty.
- The current paper proposes another method which is more efficient and algorithmically simpler.

- Consider the random vector $\mathbf{z} \in \mathbb{R}^D$ with pdf $\phi(\mathbf{z})$.
- Assume φ(z) exists in standard form with zero mean and scale parameters set to 1. For example:
 - standard Normal distribution
 - standard t distribution
 - product of standard logistic distributions
- Assume φ(z) permits straightforward simulation of independent samples.
- We can change the mean and correlations by applying an invertible transformation

$$oldsymbol{ heta} = \mathbf{C}\mathbf{z} + oldsymbol{\mu}$$

where C is a lower triangular psd matrix.

The pdf for heta takes the form

$$q(oldsymbol{ heta}|oldsymbol{\mu}, oldsymbol{\mathsf{C}}) = rac{1}{|oldsymbol{\mathsf{C}}|} \phi(oldsymbol{\mathsf{C}}^{-1}(oldsymbol{ heta}-oldsymbol{\mu}))$$

This will be the variational approximation to the posterior (generally correlated with free parameters μ , **C**)

The authors focus on $\phi(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$ for which

$$q(oldsymbol{ heta}|oldsymbol{\mu}, oldsymbol{\mathsf{C}}) = \mathcal{N}(oldsymbol{ heta};oldsymbol{\mu}, oldsymbol{\mathsf{C}}oldsymbol{\mathsf{C}}^{ oldsymbol{ heta}})$$

As in Challis & Barber (2011).

Define $g(\theta) = p(\mathbf{y}, \theta)$. The ELBO is given by

$$\mathcal{F}(oldsymbol{\mu}, oldsymbol{\mathsf{C}}) = \int q(oldsymbol{ heta} | oldsymbol{\mu}, oldsymbol{\mathsf{C}}) \log rac{g(oldsymbol{ heta})}{q(oldsymbol{ heta} | oldsymbol{\mu}, oldsymbol{\mathsf{C}})} doldsymbol{ heta}$$

By variable transformation back to $\mathsf{z}=\mathsf{C}^{-1}(heta-\mu)$ we get

$$egin{aligned} \mathcal{F}(oldsymbol{\mu},oldsymbol{\mathsf{C}}) &= \int \phi(oldsymbol{\mathsf{z}}) \log rac{g(oldsymbol{\mathsf{C}}oldsymbol{x}+oldsymbol{\mu})|oldsymbol{\mathsf{C}}|}{\phi(oldsymbol{\mathsf{z}})} doldsymbol{z} \ &= \mathbb{E}_{\phi(oldsymbol{\mathsf{z}})}[\log g(oldsymbol{\mathsf{C}}oldsymbol{x}+oldsymbol{\mu})] + \underbrace{\log|oldsymbol{\mathsf{C}}|}_{\sum_k \log(oldsymbol{\mathcal{C}}_{kk})} + \underbrace{\mathcal{H}_{\phi}}_{Const(oldsymbol{\mu},oldsymbol{\mathsf{C}})} \end{aligned}$$

To fit the variational distribution we maximize $\ensuremath{\mathcal{F}}.$ We need to compute

$$egin{aligned}
abla_{\mu}\mathcal{F}(oldsymbol{\mu},oldsymbol{\mathsf{C}}) &= \mathbb{E}_{\phi(oldsymbol{\mathsf{z}})}[
abla_{\mu}\log g(oldsymbol{\mathsf{C}}oldsymbol{z}+oldsymbol{\mu})] \
abla_{oldsymbol{\mathsf{C}}}\mathcal{F}(oldsymbol{\mu},oldsymbol{\mathsf{C}}) &= \mathbb{E}_{\phi(oldsymbol{\mathsf{z}})}[
abla_{oldsymbol{\mathsf{C}}}\log g(oldsymbol{\mathsf{C}}oldsymbol{z}+oldsymbol{\mu})] + \Delta_{oldsymbol{\mathsf{C}}} \end{aligned}$$

where $\Delta_{\mathbf{C}} = \text{diag}(1/C_{11}, ..., 1/C_{DD})$. Alternatively, going back to $\boldsymbol{\theta} = \mathbf{C}\mathbf{z} + \boldsymbol{\mu}$ and using the chain rule we obtain

$$egin{aligned}
abla_{\mu}\mathcal{F}(oldsymbol{\mu},oldsymbol{\mathsf{C}}) &= \mathbb{E}_{q(oldsymbol{ heta})}[
abla_{ extsf{ heta}}\log g(oldsymbol{ heta})] \
abla_{ extsf{ heta}}\mathcal{F}(oldsymbol{\mu},oldsymbol{\mathsf{C}}) &= \mathbb{E}_{q(oldsymbol{ heta})}[
abla_{oldsymbol{ heta}}\log g(oldsymbol{ heta}) imes \underbrace{(oldsymbol{ heta}-oldsymbol{\mu})^{ oldsymbol{ heta}} \mathbf{C}^{- oldsymbol{ heta}}}_{\mathbf{z}^{ oldsymbol{ heta}}}] + \Delta_{ extsf{ heta}} \end{aligned}$$

where in the latter we take only the lower triangular part.

6/15

Doubly Stochastic Gradient Ascent

Use an unbiased Monte Carlo estimator for the expectation

$$\nabla_{\mu}\mathcal{F} = \mathbb{E}_{q(\theta)}[\underbrace{\nabla_{\theta}\log g(\theta)}_{f(\theta)}] \approx \frac{1}{S}\sum_{s=1}^{S}f(\theta^{s}), \qquad \theta^{s} \sim^{i.i.d} q(\theta)$$

Based on the theory of stochastic approximations (Robbins & Monro, 1951) we use a sample instead of the full gradient

$$abla_{oldsymbol{\mu}} \mathcal{F} o
abla_{oldsymbol{ heta}} \log g(oldsymbol{ heta}) ig|_{oldsymbol{ heta} = oldsymbol{ heta}^s}$$

イロン イロン イヨン イヨン 三日

Algorithm

Algorithm 1 Doubly stochastic variational inference

Input: ϕ , \mathbf{y} , θ , $\nabla \log g$. Initialise $\mu^{(0)}$, $C^{(0)}$, t = 0. repeat t = t + 1; $\mathbf{z} \sim \phi(\mathbf{z})$; $\theta^{(t-1)} = C^{(t-1)}\mathbf{z} + \mu^{(t-1)}$; $\mu^{(t)} = \mu^{(t-1)} + \rho_t \nabla_{\theta} \log g(\theta^{(t-1)})$; $C^{(t)} = C^{(t-1)} + \rho_t \left(\nabla_{\theta} \log g(\theta^{(t-1)}) \times \mathbf{z}^T + \Delta_{C^{(t-1)}} \right)$; until convergence criterion is met.

The learning rate (step sizes) $\{\rho_t\}$ must satisfy $\sum_t \rho_t = \infty$ and $\sum_t \rho_t^2 < \infty$ to guarantee convergence to a local maximum (or global when \mathcal{F} is concave).

To appreciate the proposed Algorithm, let us review prior art:

- Straightforward integration (Opper & Archambeau 2009, Challis & Barber 2011,2013)
- Variational Bayesian Inference with Stochastic Search (Paisley, Blei, Jordan 2012)

Straightforward Integration

Gaussian Approximation $q(\theta) = \mathcal{N}(\theta; \mu, \Sigma = \mathbf{C}\mathbf{C}^{\mathsf{T}})$ (Opper & Archambeau 2009, Challis & Barber 2011,2013)

$$\mathcal{F} = \int \mathcal{N}(oldsymbol{ heta};oldsymbol{\mu},oldsymbol{\Sigma}) \log[g(oldsymbol{ heta})] doldsymbol{ heta} + rac{1}{2} \sum_j \log C_{jj}$$

イロン イロン イヨン イヨン 三日

Straightforward Integration

Gaussian Approximation $q(\theta) = \mathcal{N}(\theta; \mu, \Sigma = \mathbf{C}\mathbf{C}^T)$ (Opper & Archambeau 2009, Challis & Barber 2011,2013)

$$abla_{\mu}\mathcal{F} = \int
abla_{\mu}\mathcal{N}(m{ heta};m{\mu},m{\Sigma})\log[g(m{ heta})]dm{ heta} = \ = \int \mathcal{N}(m{ heta};m{\mu},m{\Sigma})\log[g(m{ heta})]m{\Sigma}^{-1}(m{ heta}-m{\mu})dm{ heta}$$

イロン 不通 と 不良 と 不良 とう ほ

Straightforward Integration

Gaussian Approximation $q(\theta) = \mathcal{N}(\theta; \mu, \Sigma = CC^{T})$ (Opper & Archambeau 2009, Challis & Barber 2011,2013)

if $g(\theta) = \prod_{n=1}^{N} g_n(\mathbf{h}_n^T \theta) \prod_j p(\theta_j)$ then

$$egin{aligned} \mathcal{F} &= \sum_{n=1}^{N} \int \mathcal{N}(z;0,1) g_n(\mathbf{h}_n^T oldsymbol{\mu} + z \mathbf{h}_n^T oldsymbol{\Sigma} \mathbf{h}_n) dz + \ &+ \sum_j \int \mathcal{N}(heta_j; \mu_j, \Sigma_{jj}) \log p(heta_j) d heta_j + rac{1}{2} \sum_j \log C_{jj} \end{aligned}$$

Reduces to 1D integrals

Review of Paisley, Blei, Jordan 2012

$$\begin{aligned} \nabla_{\lambda} \mathbb{E}_{q(\theta|\lambda)}[f(\theta)] &= \nabla_{\lambda} \int f(\theta) q(\theta|\lambda) \theta \\ &= \int f(\theta) \underbrace{\nabla_{\lambda} q(\theta|\lambda)}_{l} d\theta = \int f(\theta) \underbrace{q(\theta|\lambda)}_{l} \nabla_{\lambda} \log q(\theta|\lambda)}_{l} d\theta \\ &= \mathbb{E}_{q(\theta|\lambda)}[f(\theta) \nabla_{\lambda} \log q(\theta|\lambda)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{s}) \nabla_{\lambda} \log q(\theta^{s}|\lambda) \end{aligned}$$

where $\theta^{s} \sim^{i.i.d} q(\theta|\lambda)$.

- f can be any distribution and log q must be smooth
- Paisley's method has high variance → requires control variates (complicates the algorithm)

Comparison

Method	Relevant Models	Approximation to the Posterior	Speed	Computation
Integration	Separable w.r.t. data pts (to reduce integrals to 1D)	Gaussian	Fastest	 numerical integration might be required for function and gradient evaluations simple when integrals are analytic
Doubly Stochastic	smooth log priors and log likelihoods	Also non- Gaussian	Moderate	Only gradient of the joint pdf
Paisley	Any	 Smooth log posterior easy to draw 	Slowest (due to slow convergence)	 gradient of the approximate posterior Compute sample variances and covariances (control variates)

Bayesian logistic regression on the Pima diabetes dataset. Integration: 16 likelihood evaluations with L-BFGS. DSVI: 500 evaluations (\times 3 more time)

Illustrative Convergence Analysis

Very simple example:

The model $f(\theta) = \log p(\mathbf{y}, \theta) = \log(\operatorname{const} \times \mathcal{N}(\theta; \mathbf{m}, \mathbf{I}))$ Approximate posterior $q(\theta) = \mathcal{N}(\theta; \mu, \mathbf{I})$ so $\mu^* = \mathbf{m}$

Illustrative Convergence Analysis

Very simple example:

The model $f(\theta) = \log p(\mathbf{y}, \theta) = \log(\operatorname{const} \times \mathcal{N}(\theta; \mathbf{m}, \mathbf{I}))$ Approximate posterior $q(\theta) = \mathcal{N}(\theta; \mu, \mathbf{I})$ so $\mu^* = \mathbf{m}$

DSVI uses
$$\boldsymbol{\mu}^{(t)} = \boldsymbol{\mu}^{(t-1)} + \rho_t(\mathbf{m} - \boldsymbol{\theta}^s)$$

Paisley/Direct uses $\boldsymbol{\mu}^{(t)} = \boldsymbol{\mu}^{(t-1)} + \rho_t[f(\boldsymbol{\theta}^s)(\boldsymbol{\theta}^s - \boldsymbol{\mu}^{(t-1)})]$
where $\boldsymbol{\theta}^s \sim \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\mu}^{(t-1)}, \mathbf{I})$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

13/15

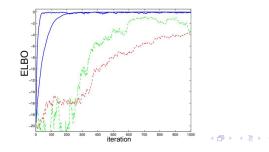
Illustrative Convergence Analysis

Very simple example:

The model $f(\theta) = \log p(\mathbf{y}, \theta) = \log(\operatorname{const} \times \mathcal{N}(\theta; \mathbf{m}, \mathbf{I}))$ Approximate posterior $q(\theta) = \mathcal{N}(\theta; \mu, \mathbf{I})$ so $\mu^* = \mathbf{m}$

DSVI uses
$$\boldsymbol{\mu}^{(t)} = \boldsymbol{\mu}^{(t-1)} + \rho_t (\mathbf{m} - \boldsymbol{\theta}^s)$$

Paisley/Direct uses $\boldsymbol{\mu}^{(t)} = \boldsymbol{\mu}^{(t-1)} + \rho_t [f(\boldsymbol{\theta}^s)(\boldsymbol{\theta}^s - \boldsymbol{\mu}^{(t-1)})]$
where $\boldsymbol{\theta}^s \sim \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\mu}^{(t-1)}, \mathbf{I})$



13/15

Variable Selection in Logistic Regression

The authors propose a DSVI-ARD algorithm. $q(\theta; \mu, \mathbf{c}) = \prod_{d=1}^{D} q(\theta_d; \mu_d, c_d)$ with prior $p(\theta) = \mathcal{N}(\theta; \mathbf{0}, \Lambda)$ with $\Lambda = \text{diag}(\ell_1^2, ..., \ell_D^2)$

$$\mathcal{F}(oldsymbol{\mu}, oldsymbol{\mathsf{C}}, oldsymbol{\mathsf{\Lambda}}) = \mathbb{E}_{\phi(\mathsf{z})}[\log \widetilde{g}(\mathbf{c} \circ \mathbf{z} + oldsymbol{\mu})] + rac{1}{2}\sum_{d=1}^D \log c_d^2 +$$

$$-\frac{1}{2}\sum_{d=1}^{D}\log\ell_{d}^{2}-\frac{1}{2}\sum_{d=1}^{D}\frac{c_{d}^{2}+\mu_{d}^{2}}{\ell_{d}^{2}}+\frac{D}{2}$$

The point estimate for the hyperparameters is $(\ell_d^2)^* = c_d^2 + \mu_d^2$. Substituting this we obtain

$$\mathbb{E}_{\phi(\mathbf{z})}[\log \tilde{g}(\mathbf{c} \circ \mathbf{z} + \boldsymbol{\mu})] + \frac{1}{2} \sum_{d=1}^{D} \log(c_d^2) - \frac{1}{2} \sum_{d=1}^{D} \log(c_d^2 + \boldsymbol{\mu}_d^2)$$

Variable Selection in Logistic Regression

Table 1. Size ar	d number	of features	of each	cancer	data set.

Data set	#Train	#Test	D
Colon	42	20	2,000
Leukemia	38	34	7,129
Breast	38	4	7,129

Table 2. Train and test errors for the three cancer datasets and for each method: CONCAV is the original DSVI algorithm with a fixed prior, whereas ARD is the feature-selection version.

Problem	Train Error	Test Error
Colon (ARD)	0/42	1/20
Colon (CONCAV)	0/42	0/20
Leukemia (ARD)	0/38	3/34
Leukemia (CONCAV)	0/38	12/34
Breast (ARD)	0/38	2/4
Breast (CONCAV)	0/38	0/4

Table 3. Size and sparsity level of each large-scale data set.

Data set	#Train	#Test	D	#Nonzeros
a9a	32,561	16,281	123	451,592
rcv1	20,242	677,399	47,236	49,556,258
Epsilon	400,000	100,000	2,000	800,000,000

Table 4. Test error rates for DSVI-ARD and ℓ_1 -logistic regression on three large-scale data sets.

Data set	DSVI ARD	Log. Reg.	λ	
a9a	0.1507	0.1500	2	
rcv1	0.0414	0.0420	4	
Epsilon	0.1014	0.1011	0.5	