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Down-Scaling for Better Transform Compression
Alfred M. Bruckstein, Michael Elad, and Ron Kimmel

Abstract—The most popular lossy image compression method
used on the Internet is the JPEG standard. JPEG’s good compres-
sion performance and low computational and memory complexity
make it an attractive method for natural image compression.
Nevertheless, as we go to low bit rates that imply lower quality,
JPEG introduces disturbing artifacts. It is known that at low bit
rates a down-sampled image when JPEG compressed visually
beats the high resolution image compressed via JPEG to be
represented with the same number of bits. Motivated by this
idea, we show how down-sampling an image to a low resolution,
then using JPEG at the lower resolution, and subsequently
interpolating the result to the original resolution can improve the
overall PSNR performance of the compression process. We give an
analytical model and a numerical analysis of the down-sampling,
compression and up-sampling process, that makes explicit the
possible quality/compression trade-offs. We show that the image
auto-correlation can provide good estimate for establishing the
down-sampling factor that achieves optimal performance. Given
a specific budget of bits, we determine the down sampling factor
necessary to get the best possible recovered image in terms of
PSNR.

Index Terms—Bit allocation, image down-sampling, JPEG com-
pression, quantization.

I. INTRODUCTION

T
HE most popular lossy image compression method used

on the Internet is the JPEG standard [1]. Fig. 1 presents a

basic block diagram of the JPEG encoder. JPEG uses the Dis-

crete Cosine Transform (DCT) on image blocks of size 8 8

pixels. The fact that JPEG operates on small blocks is moti-

vated by both computational/memory considerations and the

need to account for the nonstationarity of the image. A quality

measure determines the (uniform) quantization steps for each

of the 64 DCT coefficients. The quantized coefficients of each

block are then zigzag-scanned into one vector that goes through

a run-length coding of the zero sequences, thereby clustering

long insignificant low energy coefficients into short and com-

pact descriptors. Finally, the run-length sequence is fed to an en-

tropy coder, that can be a Huffman coding algorithm with either

a known dictionary or a dictionary extracted from the specific

statistics of the given image. A different alternative supported

by the standard is arithmetic coding.

JPEG’s good middle and high rate compression performance

and low computational and memory complexity make it an at-
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tractive method for natural image compression. Nevertheless, as

we go to low bit rates that imply lower quality, the JPEG com-

pression algorithm introduces disturbing blocking artifacts. It

appears that at low bit rates a down-sampled image when JPEG

compressed and later interpolated, visually beats the high res-

olution image compressed directly via JPEG using the same

number of bits. Whereas this property is known to some in the

industry (see, for example, [9]), it was never explicitly proposed

nor treated in the scientific literature. One might argue however,

that the hierarchical JPEG algorithm implicitly uses this idea

when low bit-rate compression is considered [1].

Let us first establish this interesting property though a

simple experiment, testing the compression-decompression

performance both by visual inspection and quantitative

mean-square-error comparisons. An experimental result dis-

played in Fig. 2 shows indeed that both visually and in terms

of the Mean Square Error (or PSNR), one obtains better results

using down-sampling, compression, and interpolation after the

decompression. Two comments are in order at this stage: i)

throughout this paper, all experiments are done using Matlab

v.6.1. Thus, simple IJG-JPEG is used with fixed quantization

tables, and control over the compression is achieved via the

Quality parameter and ii) throughout this paper, all experi-

ments applying down-sampling use an anti-aliasing pre-filter,

as Matlab 6.1 suggests, through its standard image resizing

function.

Let us explain this behavior from an intuitive perspective. As-

sume that for a given image we use blocks of 8 8 pixels in the

coding procedure. As we allocate too few bits (say 4 bits per

block on average), only the DC coefficients are coded and the

resulting image after decompression consists of essentially con-

stant valued blocks. Such an image will clearly exhibit strong

blocking artifacts. If instead the image is down-sampled by a

factor of 2, the coder is now effectively working with blocks of

16 16 and has an average budget of bits to code

the coefficients. Thus, some bits will be allocated to higher order

DCT coefficients as well, and the blocks will exhibit more de-

tail. Moreover, as we up-scale the image at the decoding stage

we add another improving ingredient to the process, since inter-

polation further blurs the blocking effects. Thus, the down-sam-

pling approach is expected to result in better both visually and

qualitatively outcomes.

In this paper we propose an analytical explanation to

the above phenomenon, along with a practical algorithm

to automatically choose the optimal down-sampling factor

for best PSNR. Following the method outlined in [4], we

derive an analytical model of the compression-decompression

reconstruction error as a function of the memory budget, (i.e.,

the total number of bits) the (statistical) characteristics of the

image, and the down-sampling factor. We show that a simplistic

1057-7149/03$17.00 © 2003 IEEE
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Fig. 1. JPEG encoder block diagram.

Fig. 2. Original image (on the left), JPEG compressed-decompressed image (middle), and down-sampled-JPEG compressed-decompressed and up sampled image
(right). The down-sampling factor was 0.5. The compressed 256� 256 “Lena” image in both cases used 0.25 bpp inducing MSEs of 219.5 and 193.12, respectively.
The compressed 512� 512 “Barbara” image in both cases used 0.21 bpp inducing MSEs of 256.04 and 248.42, respectively.

second order statistical model provides good estimates for the

down-sampling factors that achieves optimal performance.

This paper is organized as follows.Sections II–IV present the

analytic model and explore its theoretical implications. In Sec-

tion II we start the analysis by developing a model that describes

the compression-decompression error based on the quantiza-

tion error and the assumption that the image is a realization of

a Markov random field. Section III then introduces the impact

of bit-allocation so as to relate the expected error to the given

bit-budget. In Section IV we first establish several important pa-

rameters used by the model, and then use the obtained formula-

tion in order to graphically describe the trade-offs between the

total bit-budget, the expected error, and the coding block-size.

Section V describes an experimental setup that validates the pro-

posed model and its applicability for choosing best down-sam-

pling factor for a given image with a given bits budget. Finally,

Section VI ends the paper with some concluding remarks.

II. ANALYSIS OF A CONTINUOUS “JPEG-STYLE” IMAGE

REPRESENTATION MODEL

In this section we start building a theoretical model for ana-

lyzing the expected reconstruction error when doing compres-

sion-decompression as a function of the total bits budget, the
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characteristics of the image, and the down-sampling factor. Our

model considers the image over a continuous domain rather then

a discrete one, in order to simplify the derivation. The steps we

follow are as follows.

1) We derive the expected compression-decompression

mean-square-error for a general image representation.

Slicing of the image domain into by blocks is

assumed.

2) We use the fact that the coding is done in the transform

domain using an orthonormal basis, to derive to error in-

duced due to truncation only.

3) We extend the calculation to account for quantization

error of the nontruncated coefficients.

4) We specialize the image transform to the DCT basis.

5) We introduce an approximation for the quantization error,

as a function of the allocated bits.

6) We explore several possible bit-allocation policies and

introduce the overall bit-budget as a parameter into our

model.

At the end of this process we obtain an expression for the ex-

pected error as a function of the bit budget, scaling factor, and

the image characteristics. This function eventually allows us

to determine the optimal down-sampling factor in JPEG-like

image coding.

A. Compression-Decompression Expected Error

Assume we are given images on the unit square ,

, realizations of a 2-D random

process , with second order statistics given by

(1)

Note that here we assume that the image is stationary. This is a

marked deviation from the real-life scenario, and this assump-

tion is done mainly to simplify our analysis. Nevertheless, as we

shall hereafter see, the obtained model succeeds in predicting

the down-sampling effect on compression-decompression per-

formance.

We assume that the image domain is sliced into

regions of the form

Assume that due to our coding of the original image

we obtain the compressed-decompressed result , which

is an approximation of the original image. We can measure the

error in approximating by as follows:

(2)

where we define

(3)

We shall, of course, be interested in the expected mean square

error of the digitization, i.e.,

(4)

Note that the assumed wide-sense stationarity of the image

process results in the fact that the expression

is independent of , i.e., we have the same expected mean

square error over each slice of the image. Thus, we can write

(5)

Up to now we considered the quality measure to evaluate the

approximation of in the digitization process. We shall

next consider the set of basis functions needed for representing

over each slice.

B. Bases for Representing Over Slices

In order to represent the image over each slice , we have

to choose an orthonormal basis of functions. Denote this basis

by . We must have

if

otherwise.

If is indeed an orthonormal basis then we can write

(6)

as a representation of over in terms of an infinite

set of coefficients

(7)

Suppose now that we approximate over by using

only a finite set of the orthonormal functions , i.e.,

consider

(8)
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The optimal coefficients in the approximation above turn out to

be the corresponding ’s from the infinite representation. The

mean square error of this approximation, over say, will be

(9)

Hence,

(10)

Now the expected will be

(11)

Hence

(12)

C. Effect of Quantization of the Expansion Coefficient

Suppose that in the approximation

(13)

we can only use a finite number of bits in representing the coeffi-

cients that take values in R. If is represented/encoded

with -bits we shall be able to describe it via that takes

on values only, i.e., set of

representation levels. The error in representing in this way

is Let us now see how the quantization

errors affect the . We have

(14)

where . Some alge-

braic steps leads to the following result for the expected

. The expected is therefore

given by

(15)

Hence, in order to evaluate in a particular representa-

tion when the image is sliced into pieces and over each

piece we use a subset of the possible basis functions (i.e.,

) and we quantize the coefficients

with -bits we have to evaluate

D. An Important Particular Case: Markov Process With

Separable Cosine Bases

We now return to the assumption that the statistics of

is given by (1), namely,

and we choose a separable cosine basis for the slices, i.e., over

, , where

This choice of using the DCT basis is motivated by our desire to

model the JPEG behavior. As is well known [6], the DCT offers

a good approximation of the KLT if the image is modeled as a

2-D random Markov field with very high correlation factor.
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To compute for this case we need to evaluate the vari-

ances of defined as

(16)

We have

(17)

Therefore, by separating the integrations we obtain

(18)

Changing variables of integration to

yields

(19)

Let us define, for compactness, the following integral:

(20)

Then we see that

(21)

An Appendix at the end of the paper derives , leading

to the following expression:

(22)

Hence

(23)

E. Incorporating the Effect of Coefficient Quantization

According to rate-distortion theory, if we either assume uni-

form or Gaussian random variables, there is a formula for evalu-

ating the Mean-Square-Error due to quantization. This formula,

known to be accurate at high rates, is given by [3]

(24)

where is a constant in the range and represents the

number of bits allocated for representing . Putting the above

results together, we get that the expected mean square error in

representing images from the process with Markov

statistics, by slicing the image plane into slices and using,

over each slice, a cosine basis is given by

(25)

This expression gives in terms of and

-the bits allocated to the coefficients where the subset

of the coefficient is given via .

III. SLICING AND BIT-ALLOCATION OPTIMIZATION PROBLEMS

Suppose we consider

(26)
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as a function of . We have that the total bit usage in

representing the image is

Now we can solve a variety of bit-allocation and slicing opti-

mization problems [3].

It is important to note that in adopting a bit-allocation proce-

dure we effectively deviate from the way the JPEG assigns bits

to the different DCT coefficients. In the JPEG algorithm, a uni-

form quantizer is used, which at a first glance may appear to be

inferior to any reasonable bit-allocation method. However, due

to the entropy coding (Huffman, and RLE) following the quanti-

zation stage, the overall bit assignment effect seems to be similar

to a global procedure of bit-allocation based on variances, and

for that matter, approximates well the rate-distortion behavior.

A. Optimal Local Bit Allocation and Slicing Given Total Bit

Usage

The problem here is: Given the constraint

, find that minimize the

. Thus, the following expression is to be minimized

with respect to

(27)

This is a classical bit allocation process and we have that the

optimal bit allocation yields (theoretically) the same error for

all terms in

(28)

where we defined as the number of quantization levels, see

[6]. Hence, we need

(29)

and we should have

(30)

The result is

(31)

or

(32)

Hence

(33)

or

(34)

yielding

(35)

With this optimal bit allocation the expression

(36)

is minimized to

(37)

Hence,

(38)

an error expression in terms of and

the second-order—statistics parameters of the

-process.

B. Effect of Slicing With Rigid Relative Bit Allocation

An alternative bit allocation strategy, perhaps more in the

spirit of the classical JPEG standard, can also be thought of.

Consider that is chosen and the ’s are also chosen a priori

for all . Then, we have

(39)

as a function of and . This function clearly decreases with

increasing and since more and more bits are allocated to

the image, and here . Suppose

now that for , we choose a certain bit allocation for

a given (say ),

i.e., we chose but now as we increase the number of slices

(i.e., increase and ) we shall modify the ’s to keep

a constant by choosing . Here

remains a constant and we can again analyze the behavior of

as and vary.

In our experiments we assumed that the above limit was set

to 7 (i.e., coefficients with

are assigned with bits). As to the choice of the per
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each of these coefficients, we used a fixed template based on

the following JPEG quantization table (see [1]) that specifies

the quantization step per each coefficient

Values of were chosen to be inversely proportional to these

values.

C. Soft Bit Allocation With Cost Functions For Error and Bit

Usage

We could also consider cost functions of the form

where and are cost functions chosen according to

the task in hand, and ask for the bit allocation that minimize the

joint functionals, in the spirit of [5].

IV. THEORETICAL PREDICTIONS OF THE MODEL

In Sections II and III, we proposed a model for the compres-

sion error as a function of the image statistics , the

given total bits budget , and the number of slicings

and . Here, we fix these parameters according to the behavior

of natural images and typical compression setups and study the

behavior of the theoretical model.

Assume we have a gray scale image of size 512 512 with 8

bits/pixel as our original image. JPEG considers 8 8 slices of

this image and produces, by digitizing the DCT transform co-

efficients with a predetermined quantization table, approximate

representation of these 8 8 slices. We would like to explain

the observation that down-sampling the original image, prior to

applying JPEG compression to a smaller image, produces with

the same bit usage, a better representation of original image.

Suppose the original image is regarded as the “contin-

uous” image defined over the unit square , as

we have done in the theoretical analysis. Then, the pixel

width of a 512 512 image will be . We shall assume

that the original image is a realization of a zero mean 2-D

stationary random process with autocorrelation of the form

, with , and in

the range of , as is usually done (see [6]). From a

single image, can be estimated via the expression

assuming an equalized histogram. If we consider that

we can obtain an estimate for using

, This provides

The total number of bits for the image representation will

range from 0.05 bpp to about 2.0 bpp, hence, will be

between 512 512 0.05 13 107 to 512 512 2 524, 288

bits for 512 512 original images. Therefore, in the theoretical

evaluations we shall take , for

256 gray level images, with total bit usage between 10 000 and

20 000.

The symmetric and axis slicings considered will be

, where we assume that and

. Then we we shall evaluate [see (26)]

with -s provided by the optimal level allocation

Practically, the optimal level allocation should be given

by , a measure that automatically pre-

vents the allocation of negative numbers of bits. Obviously this

step must be followed by re-normalization of the bit alloca-

tion in order to comply with the bits budget constraint. can

be taken from 1 to 3, whereas will be ,

, simulating the standard JPEG approach

which is coding of 8 8 transform coefficients, emphasizing

the low frequency range via the precise encoding of only about

coefficients.

Using the above described parameter ranges, we plot the pre-

dictions of the analytical model for the expected mean square

error as a function of the slicings with bit usage as a param-

eter.

Figs. 3 and 4 demonstrate the approximated error as a func-

tion of the number of slicings for various total number of bits.

Fig. 3 displays the predictions of the theoretical model in con-

junction with optimal level allocation while Fig. 4 uses the JPEG

style rigid relative bit allocation. In both figures the left side

shows the results of restricting the number of bits or quantiza-

tion levels to integers, while the right side shows the results al-

lowing fractional bit and level allocation.

These figures show that for every given total number of bits

there is an optimal slicing parameter indicating the optimal

down-sampling factor. For example, if we focus on the bottom

right graph (rigid bit allocation with possible fractions), if 50

Kbits are used, the optimal is found to be 32. This implies

that an image of size 512 512 should be sliced to blocks of

size . As we move to a budget of

only 10 Kbits, optimal is found to be 18 and the block size

to work with becomes . Since JPEG

works with fixed block size of 8 8, the first case of 50 Kbits
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Fig. 3. Theoretical prediction of MSE based on optimal bit allocation versus number of slicingsM with total bits usage as a parameter. Here, we used the typical
values � = 150, and K = 3.

Fig. 4. Rigid relative bit allocation based prediction of MSE versus number of slicingsM with total bits usage as a parameter. Here, we used the typical values
� = 150, and K = 1.

calls for a down-sampling by a factor of 2, and the second case

with 10 Kbits requires a down-scaling factor of 3.5.

Note that integer bit allocation causes in both cases non-

smooth behavior. Also in Fig. 3 it appears that the minimum

points are local ones and the error tends to decrease again

as increases. This phenomenon can be explained by the

fact that we used an approximation of the quantization error

which fails to predict the true error for a small number of bits

at large down-scaling factors. Finally, we should note that the

parameter was chosen differently between the two allocation

policies. Within the range , we empirically set a value

that matched the true JPEG behavior. The overall qualitative

behavior however was quite similar for all the range of ’s.

Fig. 5 shows the theoretical prediction of PSNR versus bits

per pixel curves for typical 512 512 images with different

down-sampling factors (different values of , where the down-

sampling factor is ). One may observe that the curve

intersections occur at similar locations as those of the exper-

iments with real images shown in Section V. Also, it appears

that even though the allocation policies are different, the results

are very similar.

An interesting phenomenon is observed in these graphs: For

down-sampling factors smaller than 1 an almost flat saturation

of the PSNR versus bit-rate is seen at sufficiently large bit-rate.

This phenomenon is quite expected, since the down-sampling

of the image introduces un-recoverable loss. Thus, even an in-

finite amount of bits can not recover this induced error, and this

is the obtained saturation height. The reason this flattering hap-

pens at lower bit-rates for smaller factors is that the smaller

the image, the smaller the amount that will be considered as

leading to near-perfect transmission. In terms of quality-scal-

able coder, this effect is parallel to the attempt to work with an

image pyramid representation and allocating too many bits to

a specific resolution layer, instead of also allocating bits to the

next resolution layer.

V. COMPRESSION RESULTS OF NATURAL

AND SYNTHETIC IMAGES

To verify the validity of the analytic model and design

a system for image trans-coding we can generate synthetic

images for which the autocorrelation is similar to that of a
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Fig. 5. Optimal (top) and rigid relative (bottom) bit allocation based prediction of PSNR versus bits per pixel with image down-sampling as a parameter. Again,
we used the typical values � = 150, and K = 3 for the optimal bit allocation case, and K = 1 for the JPEG-style case.

given image. Then we can plot the PSNR/bpp JPEG graphs for

all JPEG qualities, one graph for each given down-sampling

ratio. The statistical model is considered valid if the behavior is

similar for the natural image and the synthesized one.

A. Image Synthesis

Assume that for an image the autocorrelation func-

tion is that of a sample of an ergodic homogeneous random field

of the form we assumed, hence

Define the Fourier transform . Then, the power

spectrum of the real signal is given by

Now, considering a 1D signal with the above statistics, we have

Thus, we have that . The solution

is chosen so as to satisfy

for . Therefore

To generate synthetic images, we can “color” a uniform random

(white) noise as follows. Let be an matrix in which

each entry is a uniformly distributed random number. Next, let

be an matrix with elements

otherwise

and similarly, is an matrix such that

otherwise.
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Fig. 6. Comparison between a natural image, and a synthesized one with
similar autocorrelation (� = 27, � = 11).

A synthetic sample image with desired autocorrelation is then

generated by the process

B. Estimating the Image Statistics and

In order to generate a synthetic image with the same statistics

as that of the natural one, we have to first estimate the prop-

erties of the given image. Let us present a simple method for

estimating the image statistics. We already used the relation

Fig. 7. Comparison between a natural image and a synthesized one with
similar autocorrelation (� = 50, � = 100).

Explicitly, for our statistical image model we have that the

power spectrum is given by

and the autocorrelation is

Thus, all we need to do is to estimate the slopes of the plane

given by
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Fig. 8. Comparison between a natural and a synthesized image with similar
autocorrelation (� = 39, � = 91).

This was the estimation procedure implemented in our experi-

ments.

C. Experimental Results

A JPEG compression performance comparison for a natural

image and its random synthesized version is shown in Fig. 6 for

a 256 256 image. The examples in Figs. 7–9, are of 512 512

images. The figures show the compression results of synthetic

versus natural images with similar statistics. Synthetic and orig-

inal images and their corresponding autocorrelations are pre-

sented with their corresponding JPEG PSNR/bpp compression

curves for 4 down-sampling factors. Fig. 9 presents an image

for which the statistical model is highly inaccurate due to the

Fig. 9. Comparison between a natural and a synthesized image with similar
autocorrelation (� = 42, � = 26).

diagonal texture that characterizes a relatively large part of the

“Barbara” image. In all these examples we specify the estimated

values of and . Note that since these images are of size

256 256, the values are to be multiplied by 2 if they are to be

compared to the range of suggested in Section V.

The above experiments indicate that the crossing locations

between down-sampling factors in the synthetic images appear

to be a good approximation of the crossings in the natural im-

ages. Thus, based on the second order statistics of the image

we can predict the optimal down-sampling factor. Moreover, the

nonstationarity nature of images has a relatively minor impact

on the optimal down-sampling factor. This is evident from the

alignment of the results of the natural and the synthetic images.

There appears to be a vertical gap (in PSNR) between the syn-
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thetic and the natural images. However, similar PSNR gaps also

appear between different synthetic images. Based on the above

two observations (ability to use stationary model, and ability to

refer to the second moment only), we assert that one can predict

the best down-sampling factor based on the model proposed in

this paper.

VI. CONCLUSIONS

This paper started with the observation that a the use of down-

sampling prior to JPEG coding can improve the overall coding

performance both objectively and subjectively. We then pre-

sented an analytical model to explain this phenomenon. A set of

experiments are shown to verify this model and support the idea

of down-sampling before transform coding for optimal com-

pression. Based on the theoretical developments above, a simple

algorithm can be developed to set the optimal down-sampling

for a given image, based on the image statistics, size, and bit

budget available. Further work is required in order explore ex-

tensions and implementation issues, such as an efficient estima-

tion for the image statistics, extraction of second order statistics

locally and using an hierarchical slicing of the image to various

block sizes, and more.

The emerging new standard for image compression, JPEG-

2000, is based on coding with a wavelet transform (see [2] and

[7]). This new algorithm is known to outperform the regular

JPEG. Among the many reasons to this performance improve-

ment, is the fact that wavelet-based coding applies a multireso-

lution analysis of the underlying image. In this sense, the work

presented here proposes the introduction of a simple multiscale

feature into the JPEG standard, thereby gaining compression

ratio. Further work is required to replace the approach presented

here to a locally adaptive one, as is done naturally by the wavelet

coders.

APPENDIX

To compute the second order statistics of the coefficients we

need to carry out the following integral

(40)

We shall separate the integration into two parts

i.e., . Note

however that , hence,

. Hence, after

some algebraic steps we obtain

(41)

Returning to the expression for we get

(42)

Simplifying this leads to (43), shown at the bottom of the page.

To check this formula consider

if or is even

if is odd

(43)
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and indeed,

This agrees with the general expression we got above.
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