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gene set analysis
Adi Laurentiu Tarca1,2,3*, Sorin Draghici2,4, Gaurav Bhatti1 and Roberto Romero1

Abstract

Background: The identification of gene sets that are significantly impacted in a given condition based on microarray

data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless

how specific they are to a given gene set.

Results: In this work we propose a new gene set analysis method that computes a gene set score as the mean of

absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes

appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the

method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway

Analysis withDown-weighting ofOverlappingGenes (PADOG). Unlike most gene set analysis methods which are

validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation

employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal

assumptions and eliminates the need for possibly biased human assessments of the analysis results.

Conclusions: PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information

already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of

PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be

analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/

or www.bioconductor.org.

Keywords: Gene expression, Gene set analysis, Pathway analysis, Overlapping gene sets

Background
Microarray-based gene expression profiling experiments,

which are routine today, allow researchers to identify, for

instance, genes differentially expressed (DE) between dis-

eased and normal patient samples or genes that change in

expression over time during a treatment. Unfortunately,

the steady increase in the amount of data generated in the

past decade from such experiments was not paralleled by

the evolution of analytical methods used to extract knowl-

edge from such datasets and, therefore, there is a gap

between our ability to measure gene expression data and

to extract workable knowledge from it.

*Correspondence: atarca@med.wayne.edu
1Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and

Detroit, MI, USA
2Department of Computer Science, Wayne State University, Detroit, MI, USA
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Since the beginning of the microarray-based expression

profiling experiments, researchers were interested in find-

ing common “themes” among the genes identified as dif-

ferentially expressed between two conditions. For instance

the identification of Gene Ontology (GO) terms enriched

in differentially expressed genes was used as early as 1999

[1], but became widespread only after the first on-line

GO analysis tools were made available [2,3]. As biological

annotations started to include descriptions of gene inter-

actions in the form of pathways (found in resources such

as KEGG [4], BioCarta www.biocarta.com, and Reactome

[5]), the identification of the pathways involved in various

conditions has emerged as a ubiquitous bioinformatics

task.

In general, biological pathways can be divided into gene

signaling pathways, and metabolic pathways. Gene sig-

naling pathways are graphs that use nodes to represent

genes, or gene products, and edges to represent signals

© 2012 Tarca et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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that go from one gene to another. Metabolic pathways

are graphs that use nodes to represent biochemical com-

pounds, and edges to describe biochemical reactions that

involve such compounds. Since biochemical reactions are

usually carried out by enzymes which are coded for by

genes, in a metabolic pathway genes are associated with

edges rather than nodes. Ideally, a comprehensive pathway

analysis method would be able to take into considera-

tion all aspects of the phenomena described by a pathway.

These aspects would include the position and role of each

gene in a pathway, the types of signals between genes, the

efficiency with which a signal travels from one gene to

another, or the efficiency with which a certain reaction is

carried out, rate limiting conditions, etc. Such methods

have been proposed for both signaling pathways [6-9],

andmetabolic pathways [8,10], but nomethod is currently

available to analyze both types of pathways taking into

consideration all the information available. Hence, even

though they do not use all information available, methods

that treat the pathways as simple gene sets are still popular

because they can be applied equally well to signaling path-

ways, metabolic pathways, GO terms, as well as arbitrary

sets of genes.

Two of the most popular such methods are the Gene

Set Enrichment Analysis (GSEA) [11] and the Gene Set

Analysis (GSA) [12]. These methods belong to the func-

tional class scoring category of gene set analysis methods

[13,14]. For a simple two group experiment (e.g. disease

vs. normal), both GSEA and GSA start with computing

a t-statistic for each gene measured on the array. Then,

a score is computed for each gene set using the t-scores

of all genes in the gene set. The significance of the gene

set scores is determined by using permutations of the

samples. Both approaches treat the genes in the gene set

equally.

In this work, we propose the Pathway Analysis with

Down-weighting of Overlapping Genes (PADOG) which

is a general gene set analysis method. The method gives

more weight to genes that are gene set-specific, than to

genes which can be found in multiple gene sets. This

is similar to the approach commonly used in informa-

tion retrieval (e.g. web search engines) that decreases the

importance of words that appear in many documents (e.g.

“and”, “or”, etc.) in favor of words that are highly specific to

given documents, the latter type being considered to carry

more information about the informational content of the

document. Similarly, in our approach, if the differential

expression affects genes that are highly specific to a given

pathway (e.g. huntingtin to Hungtington’s disease), it is

more likely that the respective pathway is truly relevant in

that condition.

The process of down-weighting popular genes does not

affect one’s ability to find a gene set to be significant when-

ever the gene set is composed mostly of ubiquitous genes,

but rather increase the contrast between gene sets that

overlap by reducing the contribution of the overlapping

genes into the gene set scores. As a simple example, with

PADOG, a gene set A having 20 out of 50 genes differ-

entially expressed, that appear only in gene set A, will be

found more significant than another gene set B of same

size that has also 20 differentially expressed genes but

which appear in other gene sets as well. Both GSEA and

GSA would find the two gene sets equally significant.

Analysis methods that do not treat all genes equally

were previously proposed for pathway analysis in an over-

representation context [6,7], or in a functional class scor-

ing context [8], yet none specifically exploit the frequency

of occurrence of genes across the pathways. Moreover,

unlike GSA, PADOG does not rely on ordinary t-scores to

derive gene set scores but uses moderated t-statistics [15]

instead. A similar idea to use non-ordinary t-scores in the

gene set scores computation was illustrated first in [16]

by using SAM statistics [17] in conjunction with GSEA.

Moreover, unlike GSA, PADOG summarizes the gene

scores into a gene set score using the mean of absolute

values instead of the maxmean statistic.

The sensitivity of gene set analysis methods (i.e. their

ability to produce significant p-values for gene sets that

are truly relevant to a phenotype), as well their ability

to rank the relevant gene sets near the top, is typically

assessed using a few data sets, by asking domain experts

to make informed guesses about which gene sets are rel-

evant to each condition/dataset. Relevance is determined

using the expert’s knowledge and/or literature citations

supporting the link between certain gene sets and the

condition under the study [6,7,11,18]. The problem is

that almost any gene set analysis result will be supported

by some references which makes an unbiased and objec-

tive comparison of various analysis methods practically

impossible. In this study, we used a different approach in

which we make fewer assumptions, and use an order of

magnitude more data sets (24 sets). The type of gene sets

considered in our validation were KEGG biological path-

ways. Each of the 24 microarray data sets that we used

(see Table 1) involved a particular disease for which there

is an associated pathway in the KEGG database [19], e.g.

Alzheimer’s disease, Colorectal cancer, Asthma, etc. We

refer to these as the target pathways, and we, very conser-

vatively, consider them to be the only ones certain to be

relevant for their respective conditions. Since the target

pathways for all 24 datasets belong to the non-metabolic

pathways category, we can restrict the analysis only to

KEGG non-metabolic pathways. Analyzing all metabolic

and non-metabolic pathways brings an additional chal-

lenge to the analysis methods because the assumed rel-

evant pathway for a given condition (dataset) is now to

be found among a larger pool of pathways. The gene set

analysis methods were compared in terms of their ability
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Table 1 The 24 data sets used to assess the proposed gene set analysis method

GEOID Pubmed Ref. Disease/Target pathway KEGGID Tissue

1 GSE1297 14769913 [20] Alzheimer’s Disease hsa05010 Hippocampal CA1

2 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, Entorhinal Cortex

3 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, hippocampus

4 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, Primary visual cortex

5 GSE20153 20926834 [22] Parkinson’s disease hsa05012 Lymphoblasts

6 GSE20291 15965975 [23] Parkinson’s disease hsa05012 Postmortem brain putamen

7 GSE8762 17724341 [24] Huntington’s disease hsa05016 Lymphocytes (blood)

8 GSE4107 17317818 [25] Colorectal Cancer hsa05210 Mucosa

9 GSE8671 18171984 [26] Colorectal Cancer hsa05210 Colon

10 GSE9348 20143136 [27] Colorectal Cancer hsa05210 Colon

11 GSE14762 19252501 [28] Renal Cancer hsa05211 Kidney

12 GSE781 14641932 [29] Renal Cancer hsa05211 Kidney

13 GSE15471 19260470 [30] Pancreatic Cancer hsa05212 Pancreas

14 GSE16515 19732725 [31] Pancreatic Cancer hsa05212 Pancreas

15 GSE19728 - Glioma hsa05214 Brain

16 GSE21354 - Glioma hsa05214 Brain, Spine

17 GSE6956 18245496 [32] Prostate Cancer hsa05215 Prostate

18 GSE6956 18245496 [32] Prostate Cancer hsa05215 Prostate

19 GSE3467 16365291 [33] Thyroid Cancer hsa05216 Thyroid

20 GSE3678 - Thyroid Cancer hsa05216 Thyroid

21 GSE9476 17910043 [34] Acute myeloid leukemia hsa05221 Blood, Bone marrow

22 GSE18842 20878980 [35] Non-Small Cell Lung Cancer hsa05223 Lung

23 GSE19188 20421987 [36] Non-Small Cell Lung Cancer hsa05223 Lung

24 GSE3585 17045896 [37] Dilated cardiomyopathy hsa05414 Heart

Each data set comes from tissues affected by a specific disease. The KEGG pathway describing that disease is henceforth considered to be the target pathway. The

analysis methods were compared in terms of their ability to rank the target pathway as high as possible in the analysis of each data set.

to produce significant p-values for these target pathways

and rank them near the top.

Methods
Existing methods

The two methods we chose to compare PADOG against

are the Gene Set Enrichment Analysis (GSEA) [11] and

the Gene Set Analysis (GSA) [12]. Briefly, GSEA works

as follows. Let GSi denote the ith gene set, where i =
1..NGS. For each gene j on the array, GSEA computes

a t-statistic zj for the differential expression of the gene

between the disease group and the control group. A gene

set score S(GSi) is computed similar to a signed version

of the Kolmogorov-Smirnov statistic between the values

zj, j ∈ GSi and their complement (genes measured on the

array but not belonging to the gene set). The class labels

of the arrays are permuted and the significance of the gene

set score is assessed by determining the null distribution

of the gene set score.

The Gene Set Analysis (GSA) [12] differs from GSEA in

two ways. Firstly, the gene set summary statistic used is

the maxmean statistic, defined as:

Smax(GSi) = max
(

∑

z
(+)
j /n,

∑

z
(−)
j /n

)

where the (+) and (−) signs identify the positive and neg-

ative t-scores respectively, and n represents the number of

genes in the gene set. Secondly, GSA differs fromGSEA by

re-standardizing the gene set scores by taking into account

scores from sets formed by random selection of genes.

Permutations of class labels are then used to infer the sig-

nificance of the standardized gene set scores. The need for

re-standardization is justified by the fact that, given that

the genes are correlated (they tend to have either high or

low t-scores simultaneously), the gene set score computed

with the true class labels will be systematically larger than

with permuted class labels and, hence, the significance of

all gene sets will be overstated.
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Pathway Analysis with Down-weighting of Overlapping

Genes (PADOG)

Let GSi with i = 1..NGS be the collection of gene sets to

be analyzed, each containing N(GSi) genes, and G be the

set of all genes measured on the array that can be mapped

to at least one gene set to be analyzed. Then let Tg be the

value of a moderated t-score [15] of the gene g between

the two conditions of interest with g ∈ G. The moderated

t-scores are similar to ordinary t-scores, except that their

standard errors have been moderated across genes, i.e.,

shrunk towards a common value using a Bayesian model

[15]. The moderated t-scores are expected to be more

reliable than ordinary t-scores because the shrinkage of

the gene standard deviations will prevent large t-scores to

occur only due to small gene standard deviations.

Moreover, let f (g) be the frequency of gene g across all

gene sets to be analyzed. Here f (g) can take values from

1 to NGS since a gene can be either specific to a gene set

by appearing only in that gene set, or it is present in all

gene sets, respectively. We want to weight the t-scores of

the genes with a function of their frequency in such a way

that the most frequently appearing gene gets a weight of

w = 1.0, while gene set specific genes get double weight

(w = 2.0). We chose a monotonically decreasing function

to relate the gene weight w(g) to the gene frequency f (g)

so that it is bounded between 1.0 and 2.0 and drops faster

with increasing frequency values:

w(g) = 1 +

√

max(f ) − f (g)

max(f ) − min(f )
(1)

For illustration purposes, the distribution of gene fre-

quencies across all 143 KEGG non-metabolic pathways

(treated here as gene sets), as well as the dependency of

gene weights on gene frequency, is shown in Figure 1. For

each gene set we compute a score as:

S0(GSi) =
1

N(GSi)

∑

g∈GSi

|T (g)| · w(g) (2)

The formula above describes the gene set scores as the

mean across all genes in the gene set of the weighted

absolutemoderated t-scores. The gene set scores obtained

with the formula above are first standardized using a

row randomization approach described in [12] to yield

S′
0(GSi). The row randomization consists of subtracting

the mean and dividing by the standard deviation of gene

set scores that could be obtained by randomly selecting

sets of genes with the same size as the current gene set.

Given that our gene set summarization function Eq. 2

is essentially a mean (of absolute weighted moderated t-

scores) both the row standardization mean and standard

deviation can be inferred from the mean and standard

deviation of |T (g)| · w(g) values of all genes on the array,

as the central limit theorem would suggest, and hence

no actual permutations are needed. More specifically, the

row randomization mean for gene set GSi will given by

the mean (of absolute weighted moderated t-scores) of

all genes on the array, and the row randomization stan-

dard deviation can be calculated as the standard deviation

of |T (g)| · w(g) values of all genes on the array divided

by
√
N(GSi). A second standardization is applied by sub-

tracting the mean and dividing to the standard deviation

of S′
0(GSi) scores across all NGS gene sets to obtain the

observed standardized scores, S∗
0(GSi). The probability

PPADOG(GSi) to observe such a large or larger standard-

ized score is determined by permuting Nite = 1000 times

the array/samples labels:

PPADOG(GSi) =
∑

ite I(S
∗
ite(GSi) ≥ S∗

0(GSi))

Nite
(3)

where I is a function that returns 1 when the argument

is true and 0 otherwise, and S∗
ite(GSi) represents the stan-

dardized score obtained with the ite-th permutation of the

samples for gene set GSi.

Figure 1 Theweighting function used in PADOG. The left panel shows the distribution of gene frequencies across the set of KEGG non-metabolic

pathways. About 42% of genes that appear in at least one pathway appear also in other pathways. Gene frequencies over the 99th percentile of

frequencies, i.e. over 20, were replaced with the value 20. The right panel shows the gene weight (Eq. 1) as a function of gene frequency.
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Assessing the sensitivity and gene set ranking capability

using real data

To assess the sensitivity and ranking capability of the gene

set analysis methods discussed in this paper, we iden-

tified in the Gene Expression Omnibus (GEO) [38], 24

microarray data sets each involving a particular disease.

For each such disease, we considered the KEGG path-

way that describes the biological phenomena taking place

in that disease as the target pathway. For instance, the

Alzheimer’s disease pathway is the target pathway for all

Alzheimer data sets, etc. Table 1 shows the details about

these 24 datasets. For most diseases considered, there are

several associated data sets in this collection. The gene

set analysis methods were compared in terms of their

ability to produce low p-values, and rank at the top these

target pathways (one in each data set). A schematic rep-

resentation of the benchmark system used to assess the

performance of each gene set analysis method is shown

in Figure 2. There were three categories of statistics com-

puted to compare the performance of the gene set analysis

methods considered in this study:

1. Statistics that describe the distribution of the 24

target pathway’s p-values, including the geometric

mean and median (the lower the better), and the

percentage of target pathways with nominal p < 0.05

(the higher the better). This later statistic is an

estimate of the sensitivity of a given analysis method.

The percentage of target pathways with False

Discovery Rate [39] corrected p-values (called

q-values) less than 0.05 is also given.

2. Statistics that describe the distribution of the 24

target pathways ranks, including mean and median

(the lower the better). The rank of a target pathway,

having the ith smallest p-value amongst all NGS

pathways analyzed for a given dataset, will be equal

to i/NGS · 100.
3. Statistics that allow to determine if a given pathway

analysis method produces better rankings than a

reference method, chosen to be GSA since it was the

best among the two published methods that we

tested. A simple method to test that the ranks

produced by a given method for the 24 target

pathways are smaller (better) than the reference

method would be to use a one-tailed pairedWilcoxon

test, the pairing being at data set level. However, the

Wilcoxon test assumes that the different ranks are

independent between the 24 datasets, yet this is may

not be the case because some ranks are obtained for

the same pathway in up to 4 datasets (see Table 1).

Another approach that we used to analyze the ranks

while accounting for the eventual lack of

independence among them was to fit a linear mixed-

effects model. The dependent variable in this model

were the rank values, while the explanatory variables

were the analysis method (factor with two levels,

with the reference level being GSA) and the dataset

ID (to reflect that the ranks are paired at the dataset

level), while the random effects were the pathway

IDs. Both the coefficient, and one-tailed p-value that
a given analysis method produces better (smaller)

ranks than the reference method were reported.

Figure 2 Obtaining ranks and p-values of the target pathways for a given gene set analysis method based on a collection of 24 datasets.
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Note that the gene set analysis methods could have been

compared also in analyzing gene ontology terms instead of

pathways, however, choosing one GO term most relevant

for each dataset would have been more subjective.

Assessing the sensitivity of gene set analysis using

simulated data

A sensitivity comparison between GSEA, GSA and

PADOG using simulated data was performed as in [12],

but further expanded to also allow for overlap between

gene sets. Expression data for 1000 genes and 100 samples

(50 in each condition) is generated from a random nor-

mal distribution N(0, 1). A number of 50 gene sets of size

20 were created, with the expression levels of some of the

genes in gene set 1 (GS1) being artificially altered to make

only this gene set relevant to the phenotype. Expression

levels of genes in GS1 were changed according to the fol-

lowing 5 scenarios by varying the amount of change, the

number of genes that change in the gene set, as well as the

proportion of up- to down-regulated genes:

1. Level of the first 15 genes of GS1 was increased by 0.3

units in group 2.

2. Level of the first 10 genes of GS1 was increased by 0.3

units and the level of the next 5 genes was decreased

by 0.3 units in group 2.

3. Level of the first 8 genes of GS1 was increased by 0.3

units and the level of the next 7 genes was decreased

by 0.3 units in group 2.

4. Level of the first 7 genes of GS1 was increased by 0.4

units and the level of the next 3 genes was decreased

by 0.4 units in group 2.

5. Level of the first 5 genes of GS1 was increased by 0.4

units and the level of the next 5 genes was decreased

by 0.4 units in group 2.

A number of 50 data sets were generated for each of the

six scenarios above. Orthogonal on the different scenarios

we considered three analysis setups that could influence

the results of PADOG but not GSA and GSEA, accord-

ing to whether or not the genes in GS1 are allowed to

be present in other gene set as well (e.g. (GS50)). In the

first setup I), GS1 did not overlap with other gene sets

as in [12], II) All genes designed to be DE in GS1 were

included also in GS50, and III) All non-DE genes of GS1
were included in GS50. With setup I) we are basically

interested in assessing if the gene set summarization func-

tion of PADOG (mean or absolute values) combined with

the moderated t-scores compares favorably to GSA and

GSEA, because in the absence of overlap, the genes ofGS1
will have the same weight (w = 1.0). When the DE genes

in GS1 appear also in other gene sets but the non-DE do

not (setup II), PADOG is expected to give higher p-values

toGS1 compared to the situation when there is no overlap.

This is because the weight of the DE genes in this case will

be lower than the weight on non-DE genes. In contrary, if

the genes that are non-DE inGS1 overlap but the DE genes

are specific to GS1 (setup III) then PADOG is expected to

produce smaller p-values for GS1 because the DE genes

will have more weight and also larger t-scores.

Assessing the specificity of gene set analysis

To test the ability of the gene set analysis methods to

not reject the null hypothesis when it is true, i.e. their

specificity, we conducted two simulation studies.

Simulation of the null hypothesis by sample labels

permutation

In the first simulation study all the 24 data sets were

considered, but their array/samples class labels were per-

muted at random before analysis so that the correlation

structure between genes is preserved. In 100 different tri-

als, we computed several of the statistics described above,

including the median of target pathways p-values, median

ranks, and the percentage of pathways with p < 0.05. The

average of these statistics over the 100 trials are reported.

The purpose of this simulation was two-fold. First,

it allows us to determine if the target pathways-based

benchmark works, i.e. if the ranking results are worse for

all methods when the labels are permuted compared to

when the true class labels are used. Second, it allows us to

estimate the false positive rate (1-specificity) of each gene

set analysis method and compare it with the level expected

under the null hypothesis. All analysis methods were run

on the same 100 permutations of the original class labels

of each of the 24 data sets to eliminate any differences

introduced by random chance. The number of internal

iterations used by each analysis method was Nite = 500.

Simulation of the null hypothesis by generating random data

At the suggestion of one of the reviewers, a second type of

simulation was performed to determine the false positives

rate of gene set analysis methods by generating random

data from a normal distribution with mean 0 and standard

deviation of 1, N(0, 1). For each of the 24 real datasets,

50 fake replicas were created by maintaining the actual

sample size and number of genes but generating data at

random, for a total of 1200 simulated datasets. The struc-

ture of the gene sets was preserved as defined by the 229

KEGG metabolic and non-metabolic pathways, therefore

maintaining a meaningful overlap between the different

genes in the gene sets. The fraction of all significant path-

ways (false positive rate) at different α thresholds was

determined.

Data Analysis

For all 24 datasets shown in Table 1 which were avail-

able from the Gene Expression Omnibus (GEO), the
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analysis was performed consistently by: a) removing

outlier arrays (if necessary), b) log transforming the

data and normalizing it, c) performing a moderated t-

test between groups and computing probes/probesets p-

values, d) resolving duplicate probes/probesets to Entrez

ID mappings by keeping the probe/probeset with small-

est p-value for each unique gene and, e) filtering out all

genes that could not be mapped on any of the pathways.

The normalization of datasets obtained on Affymetrix

arrays was performed using the RMA algorithm [40]

implemented in the affy [41] package of Bioconduc-

tor[42], while normalization of of datasets run on Illumina

arrays were normalized using the quantile normaliza-

tion algorithm [43] implemented in the preprocessCore

of Bioconductor. The package limma [44] was used to

compute a moderated two-sample paired or unpaired

t-score depending on the particular design of each exper-

iment.

The GSEA analysis was performed using the R imple-

mentation available freely at www.broadinstitute.org/

gsea/index.jsp, while the GSA analysis was performed

using the GSA R package [45]. PADOG was implemented

in R as well, together with the validation benchmark sys-

tem comparing the methods. All methods were run using

1,000 iterations to estimate the pathway p-values shown in

Tables 2, 3, 4 and 5, while 500 iterations were used in the

specificity analysis results shown in Table 6 and 7.

The set of 229 metabolic and non-metabolic pathways

and their genes were obtained from the KEGG.db annota-

tion package [46] of Bioconductor [42]. The split between

metabolic and non-metabolic pathways was done based

on KEGG’s classification.

All analyses were run under the R statistical language

and environment [47] version 2.14 and using other infras-

tructure packages available in Bioconductor version 2.9.

Results and discussion
Sensitivity and rank analysis using real data

We compared the PADOG method proposed here with

two existing methods (GSA and GSEA). The analysis

was performed on i) 143 non-metabolic pathways (which

included all target pathways) and ii) 229 metabolic and

non-metabolic KEGG pathways. The criteria used in the

comparison between these methods were the sensitivity,

the ranking, as well as the specificity of the gene set anal-

ysis methods considered. Table 2 shows the summary of

gene set analysis results for the three different methods

based on the panel of 24 datasets described in Table 1

when analyzing only KEGG non-metabolic pathways.

PADOG compared favorably to both GSA and GSEA in

terms of median and geometric mean p-values of the tar-

get pathways (which are expected to be relevant). Eight

(33.3%) of the 24 target pathways were found to be sig-

nificant (with a p-value less than 0.05) with PADOG, but

only three did so with GSA (12.5%), and none with GSEA.

PADOG was the only method to identify one (4.2%) of

the 24 target pathways as significant after adjusting for

multiple testing. In terms of the rank that each target path-

way received in its data set (sorting pathways by p-values),

PADOG produced significantly better (lower) rank values

compared to GSA, as evaluated by both a pairedWilcoxon

test (p = 0.0007), and a linear mixed-effects model (p =
0.0008). This later test accounts for the fact that the same

disease pathway is the target pathway in up to 4 data sets

(see Table 1). PADOG improves (reduces) the rank of tar-

get pathways by 7.2 rank units compared to GSA, which

in turn is better than GSEA by 13.7 units. In other words,

on average across the 24 data sets, the target pathways are

ranked by PADOG approximately 7 rank units better than

GSA, and approximately 21 rank units better than GSEA.

The paired difference in ranks for the target pathways

Table 2 Comparison between gene set analysis methods in terms of sensitivity and pathway ranking when analyzing 143

KEGG non-metabolic pathways

GSEA GSA PADOG

p geometric mean 0.2846 0.1516 0.0585

pmedian 0.2468 0.147 0.1225

% p < 0.05 0 12.5 33.3

% q < 0.05 0 0 4.2

rank mean 42.31 28.64 21.45

rank median 35.84 21.15 14.69

Wilcoxon p 0.9885 reference 0.0007

LME p 0.9909 reference 0.0008

LME coefficient 13.67 reference -7.20

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and

percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against GSA

method (chosen as reference), using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold.

www.broadinstitute.org/gsea/index.jsp
www.broadinstitute.org/gsea/index.jsp
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Table 3 Comparison between pathway analysis methods in terms of sensitivity and pathway ranking when analyzing 229

KEGGmetabolic and non-metabolic pathways

GSEA GSA PADOG

p geometric mean 0.2846 0.1387 0.0485

p median 0.2468 0.142 0.091

% p < 0.05 0 16.7 33.3

% q < 0.05 0 0 4.2

rank mean 41.42 26.97 18.95

rank med 38.43 16.7 13.05

Wilcoxon p 0.9956 reference 0.0006

LME p 0.9962 reference 0.0023

LME coefficient 14.45 reference -8.02

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and

percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against GSA

method (chosen as reference), using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold.

Table 4 A sensitivity analysis using simulated data in the absence and presence of overlap between gene sets

Scenario GSA GSEA PADOG Setup I PADOG Setup II PADOG Setup III

1 5e-04 0.0015 0.0121 0.0378 0.0067

2 0.0276 0.225 0.0113 0.0374 0.0059

3 0.0654 0.2539 0.0133 0.0397 0.0111

4 0.0103 0.1535 0.0018 0.0271 3e-04

5 0.0161 0.2352 0.0011 0.016 1e-04

The table shows the mean p-values for GS1 (designed to be relevant to the phenotype) over 50 different trials in each of the 5 different scenarios. GSA and GSEA

p-values do not change if genes in GS1 are found in other gene sets as well. Results for PADOG are given in the absence of overlap (Setup I), presence of overlap

between the genes designed to be DE in GS1 and other gene sets (Setup II), and presence of overlap between the non-DE genes of GS1 and other gene sets (Setup III).

All methods used 1000 permutations to compute the two sided p-values for GS1 . Best values are shown in bold and second best are italicized.

Table 5 Determining the contribution of gene weighting andmoderated t-scores in PADOGwhen analyzing 229 KEGG

metabolic and non-metabolic pathways

noM noW PADOG noMnoW

p geomean 0.0480 0.1330 0.0486 0.1225

p med 0.092 0.1695 0.091 0.1595

% p.value<0.05 33.3 16.7 33.3 16.7

% q.value<0.05 8.3 0 4.2 0

rank mean 20.52 22.33 18.95 22.48

rank med 14.38 15.71 13.05 16.81

p Wilcox. 0.0260 0.371 0.002 reference

p LME 0.0463 0.314 0.0030 reference

coef. LME -1.96 -0.15 -3.53 reference

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and

percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against

noMnoWmethod, using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold. PADOG is compared

against simpler approaches that i) use gene weights but regular rather than moderated t-scores (noM), ii) use moderated t-scores but no gene weights (noW) and iii)

use neither moderated t-scores nor gene weights (noMnoW).

between pathway analysis methods and the GSA method,

chosen as reference, are also shown using box plots in

Figure 3.

To determine the robustness of PADOG with respect

to changes in the collection of gene sets to be analyzed

changes, we have run the same comparison shown in

Table 2, on the entire set of 229 KEGG human pathways

(metabolic and non-metabolic). An increase in the num-

ber of gene sets to be analyzed for a fixed gene expression

dataset, is expected to impact the various methods in
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Table 6 Comparing gene set analysis methods performance under the null hypothesis simulated by class labels

permutation

pmedian Rankmedian % p.value<0.05

PADOG 0.49 48.9 4.9

GSA 0.51 50.6 5.3

GSEA 0.50 50.1 5.0

The medians of target pathways p-values and ranks, as well as the fraction of target pathways with p < 0.05were computed in 100 simulation trials. At each trial the

class labels of the samples in each of 24 real datasets were permuted before analysis. The averages statistics over the 100 trials are shown.

Table 7 False positive rates when null hypothesis is simulated by generating random expression data

α = 0.05 α = 0.01

PADOG 0.051 0.012

GSA 0.052 0.015

GSEA 0.052 0.012

The fraction of all pathways significant at α = 0.05 and α = 0.01were computed after applying the three analysis methods on 1200 datasets having expression data

generated from a random normal N(0,1) distribution. The collection of gene sets used in the analysis was defined by the 229 KEGG non-metabolic and metabolic

pathways.

Figure 3 Comparing the p-values and ranks of target pathways between gene set analysis methods when analyzing 143 KEGG

non-metabolic pathways. The boxplots show the distribution of the target pathways p-value (left panel) and ranks (middle panel), as well as the

paired difference in ranks with respect to GSA, chosen as reference method (right panel). The lower the p-values, ranks and ranks differences, the

better method.
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different ways. With PADOG, when there are more gene

sets and, hence, more genes to be analyzed, the moderated

t-scores of genes in all gene sets are expected to change

because the shrinkage of standard deviations in the t-

scores is based on a larger pool of genes [15]. Secondly,

the exact weights assigned to genes in PADOG depend

on the number of gene sets in which they appear so these

gene weights also change when the collection of gene

sets to be analyzed changes. Table 3 and Figure 4 show

that PADOG performed favorably compared to the other

methods, and that the gains in terms or ranking and sen-

sitivity are robust to changes in the collection of gene sets

to be analyzed. Moreover, unlike any other method tested,

PADOG identified one (4.2%) of the 24 target pathways as

significant after adjusting for multiple testing.

Sensitivity analysis using simulated data

The result of the sensitivity analysis based on 50 simulated

data sets in each of the 5 different scenarios are given in

Table 4. These results show that when all genes designed

to be differentially expressed (DE) in GS1 are changing in

the same direction (scenario 1), GSA and GSEA have an

advantage over PADOG while the opposite is true in all

remaining 4 scenarios. These results can be understood

by considering the fact that GSA and GSEA statistics are

designed to find such cases when all the genes in the gene

set change in the same direction while PADOG’s summary

statistic is more flexible to accommodate cases when the

changes occur in both directions.When the overlap favors

the DE genes in GS1 (Setup III), that is, when its DE genes

are specific to this gene set while its non DE-genes are

not specific to the gene set, the performance of PADOG

increase in all scenarios 1 through 5, as compared to the

absence of overlap. However, even when the overlap is not

favorable to GS1 (setup I), that is, when all its non-DE

genes are specific to this gene set, PADOG still performes

better than GSA and GSEA under scenarios 2 through 5.

Sources of improvement in PADOG

The use of gene weights is the main source of improve-

ment with PADOG in terms of ranking and power. This

is shown in Figure 5 and Table 5 in which PADOG is

Figure 4 Comparing the p-values and ranks of the target pathways between gene set analysis methods when analyzing 229 KEGG

non-metabolic andmetabolic pathways. The boxplots show the distribution of the target pathways p-value (left panel) and ranks (middle panel),

as well as the paired difference in ranks with respect to GSA, chosen as reference method (right panel). The lower the p-values, ranks and ranks

differences, the better method.
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Figure 5 Determining the contribution of gene weighting andmoderated t-scores in PADOG performance. The boxplots show the

distribution of the target pathways p-value (left panel) and ranks (middle panel), as well as the paired difference in ranks with respect to noMnoW,

chosen as reference method (right panel). The lower the p-values, ranks and ranks differences, the better method. PADOG is compared against

simpler approaches that i) use gene weights but regular rather than moderated t-scores (noM), ii) use moderated t-scores but no gene weights

(noW) and iii) use neither moderated t-scores nor gene weights (noMnoW).

compared with simpler alternative methods that i) use

gene weights but regular rather than moderated t-scores

(noM), ii) use moderated t-scores but no gene weights

(noW ) and iii) use neither moderated t-scores nor gene

weights (noMnoW ). As it can be seen in Figure 5 left panel

both methods that do not use weights (noW and noM-

noW) give higher (worse) p-values for the target pathways

than the two other methods that use weights (PADOG

and noM). Also as, shown in Table 5, the use of moder-

ated t-scores alone (noW) does not improve the raking

compared to the reference (noMnoW) (mean rank is 22.3

vs 22.5 respectively). Although the use of weights (noM)

improves the ranking significantly compared to the ref-

erence method (noMnoW), the improvement is higher in

the presence of the moderated t-scores.

Specificity analysis of gene set analysis methods

Two simulation studies were performed to determine

whether the improved sensitivity of the PADOG method,

i.e. producing lower p-values for the target pathways,

comes at the expense of reduced specificity (increased

false positive rate). Table 6 shows three of the same

statistics introduced in Table 2 (median p-values, median

ranks, and percentage of pathways with p < 0.05) except

that their average was taken over 100 trials in which the

class labels of the arrays in all 24 datasets were randomly

permuted before the analysis. The percentage of target

pathways with p < 0.05 is now the false positive rate

(FP) because using random class labels models the null

hypothesis in which expression levels are dissociated from

the studied phenotypes, yet the gene-gene correlations are

preserved. Under these circumstances, any pathways that

are reported as significant by any method are, in fact, false

positives.

Table 6 shows that, under the null hypothesis, the

average median p-values, median ranks and fraction of

pathways with p < 0.05 across the 100 random permuta-

tions are 0.49, 48.9% and 0.049, respectively for PADOG
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and similar values are obtained for GSA and GSEA. This

is expected since when class labels are permuted, the

p-values of the target pathways should be uniformly dis-

tributed between between 0 and 1 (expected mean 0.5),

and rank values should be uniformly distributed between

1/NGS · 100 = 0.44 and 100 (expected mean 50.22) where

NGS is the number of gene sets analyzed. Table 6 also

shows that the average median p-values and median ranks

are much above (worse) than the level they had when true

class labels were used in the analysis (see Table 2). This

is the case for all analysis methods. These results prove

that: i) the target pathways were indeed in average relevant

to their respective phenotypes, ii) the benchmark system

was sound, and iii) both the novel, as well as the existing

methods were correctly deployed.

An additional simulation in which 1200 datasets were

generated by drawing random values from a normal dis-

tribution has yielded similar results as the previous simu-

lation. In this case the false positives rate was estimated as

the fraction of all pathways across all 1200 datasets with

a p-value less than a given threshold α. The estimated

false positive rates of all three methods were very close

to the expected α levels as shown in Table 7. This again

confirms that PADOG is not expected to find significant

gene sets more often than expected by chance regardless

if gene are correlated (as in the simulation above) or not

(this simulation).

Specificity analysis of the set of target pathways

In response to the suggestion of one of the reviewers, we

aimed at determining how specific the target pathways

were to their respective conditions. Given that the phe-

notype in 16 out of the 24 datasets used in our sensitivity

assessment benchmark study is a form of cancer, we deter-

mined if the target pathway for each of these cancer types,

in average, is found to be more significant than other

general pathways typically associated with cancer such as

Apoptosis, Cell cycle, Pathways in cancer, and RNA poly-

merase. Table 8 shows that in average on the 16 cancer

datasets PADOG shows the strongest evidence (small-

est p-values and rank statistics) for association between

the pehnotype of the dataset and KEGG’s disease specific

pathway for the phenotype (target pathway). The target

pathway was preferred by all three methods to any other

generic cancer related pathway that we have included

in this comparison, based on median p-values and, by

PADOG and GSA based on median ranks as well. The

Pathways in cancer gene set came in a close second for

both PADOG andGSA.While forApoptosis andCell cycle

the median p-values and ranks were around 25% for all

methods, for the RNA polymerase pathways these values

were above 0.5. This analysis provides evidence that the

target pathways we chose were indeed specific for their

respective phenotypes.

Conclusions
The original contribution of this paper is two-fold. Firstly,

this paper introduces the idea of gene weighting in gene

set analysis on the basis of gene frequency across the gene

sets to analyzed. The reasoning behind this type of gene

weighting is that whenever a gene belongs to multiple

gene sets, that particular gene is less useful in prioritiz-

ing among those gene sets. Conversely, the differential

expression of a gene that is present only on a single gene

set/pathway represents a stronger evidence that the given

gene set/pathway is impacted in the given condition. A

second original contribution is the validation procedure

deployed here. The classical approach involves analyzing

a handful of selected data sets and discussing the results

in the light of the existing literature. This is subjective

Table 8 A specificity analysis of the target pathways on 16 cancer data sets

Pathway type Statistic GSEA GSA PADOG

Target p med 0.2603 0.087 0.043

Target rank med 39.56 10.15 6.42

Apoptosis p med 0.3329 0.203 0.1985

Apoptosis rank med 37.56 24.24 28.76

Cell cycle p med 0.3133 0.325 0.227

Cell cycle rank med 26.29 36.35 28.61

Pathways in cancer p med 0.351 0.114 0.0465

Pathways in cancer rank med 47.54 13.21 8.41

RNA polymerase p med 0.5 0.681 0.6485

RNA polymerase rank med 57.78 71.51 63.33

The table shows a comparison between the pathways specifically designed by KEGG for each type of cancer (Target pathways) and other pathways that are

commonly involved in many cancers. The table shows statistics computed from nominal p-values, and ranks of each type of pathway for the 16 cancer datasets shown

in Table 1. PADOG gives the most significant p-values and best ranks to the target pathways. For each analysis method, the values for type of pathway with the

smallest median p-values and ranks (strongest association with the phenotype) are shown in bold, while the second smallest values are italicized.
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and makes the comparison of various methods practi-

cally impossible. The validation proposed here involves

the analysis of a large number of data sets (24 in this

case) that can be objectively associated with a target gene

set/pathway. This objective association is based on the

fact that the samples analyzed are collected from tissues

affected by the target disease (e.g. in the analysis of col-

orectal cancer samples, the colorectal cancer pathway is

chosen as the target pathway, etc.). This approach allows

a comparison of analysis methods in terms of sensitiv-

ity and ranking. Such a comparison is: a) objective, b)

reproducible, and c) independent of the accuracy and

thoroughness of a literature search. Using this approach,

we have shown that PADOG is able to identify the tar-

get pathways as significant more frequently and rank them

consistently higher than two of the best existing methods

for the analysis of gene sets based on high-throughput

gene expression data.
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