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Downlink Achievable Rate Analysis in Massive

MIMO Systems with One-Bit DACs
Yongzhi Li, Cheng Tao, A. Lee Swindlehurst, Fellow, IEEE, Amine Mezghani and Liu Liu

Abstract—In this letter, we investigate the downlink per-
formance of massive multiple-input multiple-output (MIMO)
systems where the base station is equipped with one-bit analog-
to-digital/digital-to-analog converters (ADC/DACs). Considering
training-based transmission, we assume the base station (BS)
employs the linear minimum mean-squared-error (LMMSE)
channel estimator and treats the channel estimate as the true
channel to precode the data symbols. We derive an expression for
the downlink achievable rate for matched-filter (MF) precoding.
A detailed analysis of the resulting power efficiency is pursued
using our expression of the achievable rate. Numerical results
are presented to verify our analysis. In particular it is shown
that, compared with conventional massive MIMO systems, the
performance loss in one-bit massive MIMO systems can be
compensated for by deploying approximately 2.5 times more
antennas at the BS.

Index Terms—Massive MIMO, one-bit DACs, downlink rate,
MF precoding.

I. INTRODUCTION

Massive MIMO is an emerging technology capable of

scaling up the performance of conventional MIMO by orders

of magnitude. It has been shown that, with a base station (BS)

equipped with a very large number of antennas, not only can

the spectral efficiency and energy efficiency be significantly

improved by employing simple linear signal processing tech-

niques, but also the impact of imperfections in the hardware

implementation can be mitigated [1], [2].

Most prior work has assumed that each antenna element in

the massive MIMO system is equipped with a costly high-

resolution digital-to-analog converter (DAC), and hence has

neglected the nonlinear effect of the quantization. The cost

of using high-resolution DACs is manageable in conventional

MIMO systems since the number of antennas is relatively

small. However, for massive MIMO configurations employing
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large antenna arrays and many ADCs/DACs, the cost and

power consumption will be prohibitive.

The use of one-bit quantizers has been proposed as a

potential solution to this problem for some time [3], [4].

However, there has been limited prior work evaluating the

downlink performance of communication systems with one-bit

DACs. Previous work has considered standard linear precoder

designs and their performance in the context of low resolution

DACs [5] and in the context of massive MIMO with one-

bit DACs [6], [7], showing satisfactory performance for small

loading factors and well conditioned channels (e.g., i.i.d.

Rayleigh). Non-linear Tomlinson-Harashima Precoding has

been considered in [8] for low resolution DACs showing still

better performance than purely linear methods. In [9] a non-

linear symbol-by-symbol vector optimization for one-bit DAC

systems is proposed based on a ℓ∞-norm relaxation of the

discrete DAC output set and a minimum-distance criterion and

shows that such precoding schemes significantly outperform

linear precoders at the cost of an increased computational

complexity. The authors in [10], [11] successfully applied this

approach to DACs with arbitrary resolution and higher order

modulation using several different algorithms and compared

the results to quantized linear methods, again observing similar

performance gains. Recently, another nonlinear method based

on perturbation techniques has been proposed in [12]. The

derivation of achievable rates for multi-user systems with

low resolution/one-bit DACs has also been considered in

[13] for standard MIMO and in [10] for massive MIMO

implementations.

In this paper, motivated by our recent work in [14], we con-

sider a downlink massive MIMO system with one-bit DACs

on each transmit antenna and derive a lower bound on the

downlink achievable rate for matched-filter (MF) precoding.

The key difference between our work and that cited above is

that our derivation includes the effects of channel estimation

error. Based on the Bussgang decomposition, we first derive

a closed-form expression for the downlink achievable rate for

MF precoding, and then based on the obtained expression,

we perform a detailed analysis of the system performance. It

is shown that, compared with conventional massive MIMO,

the performance loss due to the use of one-bit DACs systems

can be compensated for by deploying approximately 2.5 times

more antennas at the BS.

II. SYSTEM MODEL

In this paper, we consider a downlink single-cell one-bit

massive MIMO system with K single-antenna terminals and

http://arxiv.org/abs/1610.09630v2
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Fig. 1. System architecture of the downlink one-bit massive MIMO system.

an M -antenna BS. As depicted in Fig. 1, the BS is assumed to

first apply an M×K linear precoder W to the vector s whose

elements represent the symbols for each of the K users. Then

the DACs separately quantize the real and imaginary parts of

the precoded signal using a single bit; i.e., only the sign of

the real and imaginary part of the signal is retained. Thus, the

quantized transmit signal can be expressed as

y = Q (x) = Q (Ws) , (1)

where Q(.) is the one-bit quantization function, x ∈ CM×1

represents the precoded signal, and the data symbols s are

assumed to satisfy E{ssH} = I. In this paper, in order to

normalize the power of the output, we assume the quantized

output falls in the set Y = 1√
2
{1+1j, 1−1j,−1+1j,−1−1j}.

Then the received signal at the K users is

rd = γHTy + nd = γHTQ (Ws) + nd, (2)

where H is the M × K channel matrix between the K
users and the BS, nd ∼ CN (0, I) is additive white Gaussian

noise, and γ is a normalization parameter chosen to satisfy a

long term total transmit power constraint Pt at the BS, i.e.,

E{‖γy‖2
2
} = Pt. Note that, owing to the one-bit DACs, the

elements of the quantized analog signal y only have four states

in Y , which implies E{‖y‖2} = M . Therefore, we can obtain

γ =
√

Pt/M .

III. UPLINK CHANNEL ESTIMATION AND MF PRECODING

A. Uplink Training

Assuming training-based transmission, the channel matrix

H is estimated at the BS in the uplink. We assume the K
users simultaneously transmit orthogonal pilot sequences to

the BS, which we represent as Φ ∈ Cτ×K , and which thus

satisfy ΦHΦ = τI. Therefore, the received training signal

prior to quantization at the BS is [14]

vec(Yp) = yp = vec
(√

ρpHΦT +Np

)

=
(
Φ⊗√

ρpIM
)
h+ np, (3)

where ρp is the transmitted training power of each user, h =
vec(H) and np = vec(Np).

Although we note that, unlike conventional MIMO systems,

the assumption of τ = K is not in general optimal for one-bit

MIMO [14], [15], in the sequel we will assume τ = K to

simplify the analysis. We also note that although the one-bit

quantization is a nonlinear operation, we can reformulate it as

a statistically equivalent linear operation using the Bussgang

decomposition [16]. In particular, after the one-bit ADCs, the

quantized uplink training signal can be reformulated as [14]

rp = Q(yp) = Q
((
Φ⊗√

ρpIM
)
h+ np

)

= Φ̃h+Apnp + qp, (4)

where rp ∈ Y and Φ̃ = Ap

(
Φ⊗√

ρpIM
)
, Ap is the resulting

Bussgang linear operator and qp the statistically equivalent

quantization noise. Using the linear minimum mean-squared

error (LMMSE) approach, the channel estimate is given by

[14, Eq. (23)]

ĥ = Φ̃Hrp (5)

with Ap = αpI and αp =
√

2/(π(Kρp + 1)).

Note that each element of ĥ can be expressed as a sum-

mation of random variables, i.e., [ĥ]n =
∑MK

i=1
[Φ̃H ]n,irp,i.

Although the channel estimate (5) is in general not Gaussian

distributed due to the quantizer noise, we can approximate it

as Gaussian according to Cramér’s central limit theorem [17]

assuming K is sufficiently large. Therefore, in what follows

we model each element of the channel estimate ĥ as Gaussian

with zero mean and variance η2 = 2Kρp/π(1 +Kρp).

B. MF Precoding

For the downlink transmission, we assume the BS considers

the channel estimate as the true channel and employs matched-

filter (MF) precoding to process the data symbols before

broadcasting to the K users. The MF precoding matrix is

given by W = Ĥ∗, where we define inverse vectorization

operator Ĥ = unvec(ĥ). Then according to the Bussgang

decomposition, we reformulate the quantized signal y in (1) as

yd = Q(Ĥ∗s) = AdĤ
∗s+ qd, (6)

where the same definitions as in the previous sections apply,

but replacing the subscript p with d. The matrix Ad is

Ad =

√

2

π
diag(Cxx)

− 1

2 =

√

2

π
diag

(

Ĥ∗ĤT
)− 1

2

=

√
2

πKη2
I , αdI, (7)

where Cxx is the auto-correlation matrix of x.

IV. DOWNLINK ACHIEVABLE RATE ANALYSIS AND

PERFORMANCE EVALUATION

A. Downlink Achievable Rate

In this section, we derive a lower bound on the downlink

achievable rate for MF precoding. Combining (2) and (6), the

received signal vector at the K users is given by

rd = γHT
(

AdĤ
∗s+ qd

)

+ nd. (8)

Thus, the received signal at the kth user can be expressed as

rd,k = γhT
kAdĥ

∗
ksk+γhT

kAd

K∑

i6=k

ĥ∗
i si+γhT

k qd+nd,k, (9)

where the last three terms in (9) respectively correspond to

inter-user interference, quantization noise and AWGN noise.

Note that, owing to the nonlinear quantization of the one-bit

DACs, the quantizer noise qd is not distributed as Gaussian.

However, we can obtain a lower bound on the achievable rate

by making the worst-case assumption [18] that in fact it is

Gaussian with the same covariance matrix:

Cqdqd
= Cydyd

−AdCxxA
H
d . (10)
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Thus, the ergodic achievable rate can be lower bounded by

Rk = E

{

log
2

(

1 +
γ2|hT

k
Adĥ

∗
k
|2

γ2
∑K

i6=k |hT
k
Adĥ

∗
i |2 + γ2hT

k
Cqdqd

h∗
k
+ 1

)}

.

(11)

In order to obtain a closed-form expression for the ergodic

achievable rate, we use the same technique as in [19]: we first

rewrite the received signal of the kth user (9) as a known

mean gain times the desired symbol, which depends on the

channel distribution instead of the instantaneous channel, plus

an effective noise term:

ŝk = E
{

γhT
kAdĥ

∗
k

}

sk + ñd,k, (12)

where ñd,k is the effective noise

ñd,k =
(

γhT
kAdĥ

∗
k − E

{

γhT
kAdĥ

∗
k

})

sk

+ γhT
kAd

K∑

i6=k

ĥ∗
i si + γhT

k qd + nd,k. (13)

Next we define the linear minimum mean square error

(LMMSE) estimate s̃k of sk based on ŝk

s̃k =
γE{hT

kAdĥ
∗
k}

γ2|E{hT
k
Adĥ

∗
k
}|2 + E{|ñd,k|2}

ŝk, (14)

resulting in the following MSE:

E{|sk − s̃k|2} = E{|εk|2} =
E{|ñd,k|2}

γ2|E{hT
k
Adĥ

∗
k
}|2 + E{|ñd,k|2}

. (15)

Then, we can obtain a lower bound for the mutual informa-

tion I(sk, s̃k) with Gaussian input sk as

I(sk, s̃k) = h(sk)− h(sk|s̃k) = h(sk)− h(sk − s̃k|s̃k)

≥ h(sk)− h(sk − s̃k
︸ ︷︷ ︸

εk

) ≥ log
2

1

E{|εk|2}
. (16)

We obtain the first inequality in (16) since conditioning

reduces entropy. The second inequality is due to the fact that

h(εk) is upper bounded by the entropy of a Gaussian random

variable whose covariance is equal to the error variance

E{|εk|2} of the linear MMSE estimate of sk. Therefore using

this approach a closed-form expression for the achievable rate

can be obtained. Furthermore, substituting Ad = αdI yields

Rk = log
2




1 +

α2

dγ
2

∣
∣
∣E

{

ĥT
k h

∗
k

}∣
∣
∣

2

α2

dγ
2Var

(

ĥT
k h

∗
k

)

+ UIk + QNk + 1




 ,

(17)

where

UIk = α2

dγ
2

K∑

i6=k

E

{∣
∣
∣ĥ

T
k h

∗
i

∣
∣
∣

2
}

(18)

QNk = γ2(1 − 2/π)E
{∥
∥hT

k

∥
∥
2
}

. (19)

Next we provide a closed-form expression for the achievable

rate with MF precoding.

Theorem 1: For MF precoding, with imperfect CSI es-

timated by the LMMSE channel estimator, the downlink

achievable rate of the kth user in a one-bit massive MIMO

system is lower bounded by

Rk = log
2

(

1 +
4MρpPt

π2(1 +Kρp)(1 + Pt)

)

. (20)

Proof: See Appendix A.

B. Performance Evaluation

1) Power Efficiency: We first study power efficiency for the

one-bit massive MIMO downlink.

Case I: If ρp is fixed and Pt = Et/M , where Et is fixed

regardless of M , the downlink achievable rate converges to

Rk → log
2

(

1 +
4ρpEt

π2(1 +Kρp)

)

(21)

as M tends to infinity. We see that, although the BS is

only equipped with one-bit ADC/DACs, the total transmit

power of the BS still can be reduced proportionally to 1/M
while maintaining a given achievable rate when the channel

estimation accuracy is fixed.

Case II: If ρp = Eu/
√
M and Pt = Et/

√
M , where Eu

and Et are fixed regardless of M , the downlink achievable

rate converges to

Rk → log
2

(

1 +
4EuEt

π2

)

(22)

when M increases to infinity. We see that the training power

of the users and the total transmit power of the BS cannot

be reduced as aggressively as in Case I where the accuracy

of the channel estimate is fixed. This is because when we

reduce the training power of the users, the channel estimation

accuracy will deteriorate. Therefore, we can only scale down

ρp and Pt proportionally to 1/
√
M in order to maintain a

given achievable rate.

2) Comparison with conventional massive MIMO: We next

compare the downlink achievable rates between one-bit and

conventional massive MIMO in terms of the number of anten-

nas deployed at the BS. For the conventional massive MIMO

system, we assume the BS employs perfect ADC/DACs with

infinite resolution, which do not suffer from quantization loss.

For this analysis, we denote the number of antennas in the

one-bit and conventional massive MIMO systems as Mone

and Mconv, respectively. The downlink achievable rate in the

conventional massive MIMO system is given by [20]

Rk,conv = log
2

(

1 +
MconvρpPt

(1 + Pt)(1 +Kρp)

)

. (23)

Comparing (20) with (23), we see that the terms inside

the parentheses can be made equal by choosing M =
π2Mconv/4 ≈ 2.5Mconv. Thus, to achieve performance compa-

rable to a conventional system, the one-bit system must deploy

about 2.5 times more antennas. We note that this ratio also

holds for the zero-forcing precoder at low SNR as well.

V. NUMERICAL RESULTS

For our simulations, we consider a single-cell one-bit mas-

sive MIMO downlink with K = 10 users. We first evaluate the

validity of our closed-form expression for the achievable rate
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Fig. 3. Sum rate versus the number of transmit antennas M with ρp = 10dB,
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M in Case II.

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

S
u

m
 R

at
e 

(b
it

s/
s/

H
z)

One-bit Massive MIMO

Conventional Massive MIMO

Fig. 4. Comparison of the sum rate versus the number of transmit antennas
between one-bit massive MIMO system and the conventional massive MIMO
system with ρp = Pt = 10dB.

given in Theorem 1. Fig. 2 shows the sum rate versus the total

transmit power Pt of the BS for different numbers of transmit

antennas M = {32, 64, 128}. The dashed lines represent the

sum rate obtained numerically from (11), and the solid lines

are obtained by using the closed-form expression given in (20).

We see that the performance gaps between the Monte-Carlo

results and the closed-form results are small. This indicates

that our expression is a good predictor of the performance of

the one-bit massive MIMO system.

Next we investigate the power efficiency of one-bit massive

MIMO for Case I and Case II. Fig. 3 illustrates the sum rate

versus the number of transmit antennas M for MF precoding.

In Case I, we assume ρp = 10dB is fixed and Pt = Et/M ,

where Et = 10dB. In Case II, we choose ρp = Eu/
√
M and

Pt = Et/
√
M where Eu = Et = 10dB. As predicted in our

analysis, the sum rates converge to a fixed constant in both

cases.

Finally we compare the sum rates between the one-bit and

conventional massive MIMO systems. Fig. 4 shows the sum

rate versus the number of transmit antennas with ρp = Pt =
10dB. The curves illustrate the fact that 2.5 more antennas

are required by the one-bit system in order to achieve the

same performance as the conventional system. For example, in

order to obtain the achievable rate of 35bits/s/Hz, Mone = 283
transmit antennas should be deployed in a one-bit massive

MIMO system, compared with 114 for the conventional mas-

sive MIMO system. Thus we see how a large number of

antennas can be used to compensate for loss of fidelity due to

hardware imperfections.

VI. CONCLUSIONS

We considered a downlink massive MIMO system with one-

bit DACs and derived a closed-form expression for the down-

link achievable rate. Employing our obtained expression, we

evaluated the power efficiency of such a system and showed

that the total transmit power can be reduced by increasing

the number of transmit antennas. Moreover, we demonstrated

that, with a matched-filter beamformer, the performance loss

caused by the one-bit DACs can be compensated for by

deploying approximately 2.5 times more antennas at the BS,

which confirms the benefit of the massive MIMO technique

in overcoming hardware imperfections.

APPENDIX A

According to Cramér’s central limit theorem, the elements

of the channel estimate ĥ can be approximated as Gaussian

random variables with zero mean and variance of η2. There-

fore,

E{ĥT
k h

∗
k} = E{‖ĥT

k ‖22} = Mη2 (24)

Var{ĥT
k h

∗
k} = E{|ĥT

k h
∗
k|2} −

(

E{ĥT
k h

∗
k}
)2

= Mη2 (25)

UIk = α2

dγM(K − 1)η2 . (26)

By substituting (24)-(26) into (17), Theorem 1 can be obtained.
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