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Abstract—The integration of millimeter-wave base stations
(mmW-BSs) with conventional microwave base stations (𝜇W-BSs)
is a promising solution for enhancing the quality-of-service (QoS)
of emerging 5G networks. However, the significant differences
in the signal propagation characteristics over the mmW and
𝜇W frequency bands will require novel cell association schemes
cognizant of both mmW and 𝜇W systems. In this paper, a
novel cell association framework is proposed that considers both
the blockage probability and the achievable rate to assign user
equipments (UEs) to mmW-BSs or 𝜇W-BSs. The problem is
formulated as a one-to-many matching problem with minimum
quota constraints for the BSs that provides an efficient way
to balance the load over the mmW and 𝜇W frequency bands.
To solve the problem, a distributed algorithm is proposed that
is guaranteed to yield a Pareto optimal and two-sided stable
solution. Simulation results show that the proposed matching with
minimum quota (MMQ) algorithm outperforms the conventional
max-RSSI and max-SINR cell association schemes. In addition,
it is shown that the proposed MMQ algorithm can effectively
balance the number of UEs associated with the 𝜇W-BSs and
mmW-BSs and achieve further gains, in terms of the average
sum rate.

I. INTRODUCTION

The integration of cellular networks with millimeter-wave

(mmW) communication links is a promising solution to meet

the high data traffic requirements of tomorrow’s wireless

services [1]–[6]. However, mmW communication is known to

be inherently intermittent, due to the susceptibility of its links

to signal blockage, due to shadowing by human, buildings, and

other obstacles. To this end, mmW base stations (mmW-BSs)

must coexist with the conventional microwave base stations

(𝜇W-BSs) to provide 𝜇W connectivity for users, when a

reliable mmW communication is not feasible [3], [4].

Such integrated mmW-𝜇W networks introduce new chal-

lenges for cellular resource management. In particular, the

association of user equipments (UEs) to the BSs must now

account for the presence of two radio access technologies

(RATs) with significantly different propagation environments.

In fact, conventional approaches such as maximum signal-to-

interference-plus-noise-ratio (max-SINR) and maximum signal

strength indicator (max-RSSI) may result in significantly un-

balanced load distributions and may not be directly applicable

to the multi-RAT setting. That is due to three key reasons: a)

mmW links are highly intermittent and have a higher path loss

than 𝜇W, b) mmW communication is mostly limited by noise
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rather than interference, and c) more bandwidth is available at

mmW band compared to the 𝜇W frequency band.

The problem of cell association with load balancing has

been extensively studied in heterogeneous cellular networks

[3], [4], [7]–[10]. The work in [7] studies the performance

of the max-SINR cell association for heterogeneous networks

(HetNets) with load balancing via cell range expansion (CRE).

The authors in [8] propose a cell association approach based

on convex optimization to find a load-aware distributed cell

association algorithm for HetNets. Moreover, in [9], a game-

theoretic approach is adopted for network selection in HetNets,

using an evolutionary game approach. For mmW networks,

the work in [10] presents a distributed algorithm that yields

a fair cell association. A stochastic geometry framework is

used in [3] for the decoupled uplink-downlink cell association

for traditional macrocells and mmW small cell networks. In

addition, the authors in [4] study resource allocation for mmW-

𝜇W networks where cell association is decoupled in the uplink

for mmW users.

The existing works in [7]–[10] have focused on 𝜇W or

mmW networks, separately and in isolation, and thus, they

cannot be applied to integrated mmW-𝜇W cellular networks.

In addition, the authors in [3] and [4] consider max-RSSI cell

association. However, max-RSSI is not a proper association

metric for integrated mmW-𝜇W networks, since it does not

properly reflect the achievable rate of the users. Indeed, this

rate depends on the allocated bandwidth and the interference,

which are completely different between mmW and 𝜇W.

The main contribution of this paper is to introduce a novel

cell association framework with load balancing for integrated

mmW-𝜇W cellular networks. First, we show that conventional

max-SINR and max-RSSI cell associations can result in sig-

nificant unbalanced load in mmW and 𝜇W networks. Then, we

formulate the proposed cell association problem as a matching

game with minimum quota constraints, in which the BSs can

adjust their minimum quota, in terms of the number of UEs

they serve, to balance the network’s load. For this game, we

show that classical matching solutions such as in [11] and

[12] cannot be applied. In contrast, to solve our problem,

we propose a novel distributed algorithm that allows UEs to

submit association requests to either the mmW-BS or 𝜇W-

BS that maximizes its average achievable rate. To achieve a

balanced load, BSs approve UEs’ requests such that the quota

constraints are met. We show that the proposed algorithm

yields a Pareto optimal (PO) and stable solution for the UEs.
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Fig. 1. Cell association for an integrated 𝜇W-mmW network using (a) max-
RSSI, and (b) max-SINR approaches. The triangles show the BSs and the
orange and blue colors represent, respectively, the mmW and 𝜇W links.

Simulation results show the effectiveness of our approach in

integrated mmW-𝜇W networks.

The rest of this paper is organized as follows. Section

II presents the problem formulation. Section III formulates

the problem as a matching game. Section IV presents the

proposed algorithm. Simulation results are analyzed in Section

V. Section VI concludes the paper.

II. SYSTEM MODEL

Consider the downlink of a cellular network, composed of

a set 𝒩1 of 𝑁1 mmW-BSs and a set 𝒩2 of 𝑁2 𝜇W-BSs.

In this network, a set ℳ of 𝑀 UEs are deployed and must

be assigned to one mmW-BS or 𝜇W-BS. UEs and BSs are

distributed uniformly and randomly within a planar area with

radius 𝑟 centered at (0, 0) ∈ ℝ
2. UEs are equipped with both

mmW and 𝜇W RF interfaces allowing them to manage their

traffic at both frequency bands.

A. Propagation Model at mmW and 𝜇W Frequency Bands

Each mmW link between mmW-BS 𝑛 ∈ 𝒩1 and UE

𝑚 ∈ ℳ, located at 𝒚𝑛 ∈ ℝ
2 and 𝒚𝑚 ∈ ℝ

2, respectively,

is characterized by the transmit power 𝑝𝑛, channel gain

𝑔(𝒚𝑚,𝒚𝑛) and the antenna gain 𝜓(𝒚𝑚,𝒚𝑛). Assuming that

the total power 𝑝𝑛 is distributed uniformly over the mmW

bandwidth, the achievable rate per unit of bandwidth for a UE

𝑚 assigned to mmW-BS 𝑛 is given by:

𝑐mmW
𝑚,𝑛 = log2

(

1 +
𝑝𝑛𝜓(𝒚𝑚,𝒚𝑛)𝑔(𝒚𝑚,𝒚𝑛)

𝑤1𝑁0

)

, (1)

where 𝑤1 is the mmW bandwidth, 𝑔(𝒚𝑚,𝒚𝑛) is the link

channel gain, and 𝑁0 is the noise power spectral density.

Hereinafter, we represent 𝑐mmW
𝑚,𝑛 by 𝑐LoS

𝑚,𝑛 and 𝑐NLoS
𝑚,𝑛 , respec-

tively, if the link is line-of-sight (LoS) and non-line-of-sight

(NLoS). Here, 𝑔(𝒚𝑚,𝒚𝑛) = 𝐿(𝒚𝑚,𝒚𝑛)
−1, where the path

loss 𝐿(𝒚𝑚,𝒚𝑛) in dB follows the model of [5]:

𝐿(𝒚𝑚,𝒚𝑛) = 𝑏1 + 𝑎110 log10(∥𝒚𝑚 − 𝒚𝑛∥) + 𝜒, (2)

where 𝑎1 represents the slope of the best linear fit to the

propagation measurement in mmW frequency band and 𝑏1 is

the path loss (in dB) for 1 meter of distance. In addition, 𝜒
models the deviation in fitting (in dB) which is a Gaussian

random variable with zero mean and variance 𝜉21 .

For each UE-BS pair (𝑚,𝑛), let 𝜁𝑚,𝑛 be a Bernoulli random

variable with success probability 𝜌𝑚,𝑛 that indicates whether

the mmW link is LoS, 𝜁𝑚,𝑛 = 1, or NLoS, 𝜁𝑚,𝑛 = 0. Different

path loss parameters in (2) are considered for the LoS and

NLoS links, as listed in Table. I.

At 𝜇W band, the achievable rate per unit of bandwidth for

a UE 𝑚 ∈ ℳ associated with 𝜇W-BS 𝑛 ∈ 𝒩2 is given by:

𝑐𝜇W
𝑚,𝑛 = log2

(

1 +
𝑝𝑛𝑔(𝒚𝑚,𝒚𝑛)

∑

𝑛′ ∕=𝑛 𝑝𝑛′𝑔(𝒚𝑚,𝒚𝑛′) + 𝑤2𝑁0

)

, (3)

where the total power 𝑝𝑛 is distributed uniformly over the

𝜇W bandwidth, 𝑤2, and the channel gain is characterized by

parameters, 𝑎2, 𝑏2 and 𝜉2, similar to (2).

B. Problem Formulation

The cell association problem can be defined as a decision

policy 𝜋 which, for any UE-BS pair (𝑚,𝑛), it outputs a binary

variable 𝑥𝑚,𝑛 ∈ {0, 1}, where 𝑥𝑚,𝑛 = 1 indicates that UE 𝑚
is assigned to BS 𝑛, otherwise, 𝑥𝑚,𝑛 = 0. Further, we define

the BS 𝑛’s load, 𝜅𝑛 as

𝜅𝑛 =
𝑀
∑

𝑚=1

𝑥𝑚,𝑛. (4)

Using (4), the maximum load difference can be defined as the

difference of the load for the BSs with the maximum and

minimum number of associated UEs, as follow:

Δ𝜅(𝜋) = max(𝜅𝑛)−min(𝜅𝑛). (5)

In (5), a smaller Δ𝜅(𝜋) implies better load balancing. In

general, it is desirable to achieve uniform loads for all BSs, i.e.,

Δ𝜅(𝜋) = 0. However, by using conventional cell association

approaches, such as max-SINR and max-RSSI schemes [7],

[8], as shown in Fig. 1, the network will exhibit a severely

unbalanced load. In fact, the max-RSSI scheme assigns most

of the UEs to 𝜇W-BS, due to the smaller path loss over

the 𝜇W frequency band. On the other hand, the max-SINR

scheme assigns most of the UEs to the mmW-BSs, due to the

directional transmissions and less interference. In addition, in

Figs. 4 and 5, we show by simulations that the CRE techniques

used in small cell networks [7] may not effectively improve

load balancing in mmW-𝜇W networks, due to the large gap

in the RSSI and SINR values for mmW and 𝜇W links. Our

joint mmW-𝜇W cell association problem is thus given by:

maximize
𝒙

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝑥𝑚,𝑛𝑈𝑚,𝑛(𝒙), (6a)

s.t.
∑

𝑛∈𝒩

𝑥𝑚,𝑛 ≤ 1, ∀𝑚 ∈ ℳ, (6b)

𝜅𝑛 ≤ 𝑞max
𝑛 , ∀𝑛 ∈ 𝒩 , (6c)

𝜅𝑛 ≥ 𝑞min
𝑛 , ∀𝑛 ∈ 𝒩 , (6d)

𝑥𝑚,𝑛 ∈ {0, 1}, (6e)

where 𝒩 = 𝒩1 ∪𝒩2 is the set of all 𝑁 = 𝑁1 +𝑁2 BSs and

𝑈𝑚,𝑛 denotes the utility of the UE 𝑚 associated to the BS 𝑛.

Moreover, 𝑞max
𝑛 and 𝑞min

𝑛 denote, respectively, the maximum

and the minimum quotas for BS 𝑛 which represent the

maximum and the minimum number of UEs that it can serve.



We let 0 ≤ 𝑞min
𝑛 ≤ 𝑞max

𝑛 and
∑

𝑛∈𝒩 𝑞min
𝑛 ≤ 𝑀 ≤

∑

𝑛∈𝒩 𝑞max
𝑛

to ensure that a feasible solution exists. As we elaborate later

in Section IV, constraints (6c)-(6d) are introduced to balance

the network’s load. Next, we make the following observation:

Remark 1: With 𝑞min
𝑛 = 0 and 𝑞max

𝑛 = 𝑀 for ∀𝑛 ∈ 𝒩 ,

the optimization problem (6a)-(6e) does not incorporate load

balancing.

The cell association for an arbitrary UE depends on the

associations of the other UEs, due to the quota constraints (6c)-

(6d). In addition, the utility of a UE may depend on whether

the associated BS is a mmW-BS or a 𝜇W-BS.

III. CELL ASSOCIATION AS A MATCHING GAME WITH

MINIMUM QUOTAS

The downlink association problem in (6a)-(6e) is a 0-1
integer programming problem for assigning UEs to BSs which

does not admit a closed-form solution and has exponential

complexity [13]. In fact, for such a cell association problem,

an exhaustive search requires a comparison of 𝑂(𝑁𝑀 ) assign-

ments, which cannot adapt to the dynamics of dense cellular

networks, particularly, when using the mmW frequency band.

In this regard, centralized cell association schemes require

the BSs to send the network information to the radio network

controller (RNC). Such implementations carried out by the

RNC are updated at relatively long timescales. This can be

detrimental for the mmW UEs that frequently experience

NLoS transmissions. To this end, we propose a distributed

solution for the mmW-𝜇W cell association problem.

A. Cell Association as a Matching Game: Preliminaries

To solve the problem in (6a)-(6e), we propose a novel solu-

tion based on matching theory, a mathematical framework that

provides a decentralized solution with tractable complexity

for combinatorial problems, such as the one in (6a)-(6e) [11],

[12]. A matching game is essentially a two-sided assignment

problem between two disjoint sets of players in which the

players of each set are interested to be matched to the players

of the other set, according to preference relations. In our

model, over each cell association time frame, the set of BSs,

𝒩 , and the set of UEs, ℳ, are the two sets of players of

the matching game. A preference relation ≻ is defined as a

complete, reflexive, and transitive binary relation between the

elements of a given set. Here, we let ≻𝑚 be the preference

relation of UE 𝑚 and denote 𝑛 ≻𝑚 𝑛′, if UE 𝑚 prefers BS 𝑛
more than 𝑛′. Similarly, we use ≻𝑛 to denote the preference

relation of BS 𝑛 ∈ 𝒩 .

To define the preference relations, we can introduce in-

dividual utility functions for each UE and BS, using which

they can rank one another. In the proposed cell association

problem, the preference relations of UEs will depend only

on the local average achievable rate information, while the

BSs will use network-wide information to distribute the loads

and maximize the sum utility. In fact, matching-based cell

association provides a suitable framework to balance the load

by properly adjusting the maximum and minimum BS quotas.

B. Cell Association as a Matching Game

Each cell association policy 𝜋 determines the allocation of

a subset of UEs to each BS. Thus, the problem can be defined

as a one-to-many matching game:

Definition 1: Given two disjoint finite sets of players ℳ
and 𝒩 , the cell association policy, 𝜋, can be defined as a

a one-to-many matching relation, 𝜋 : 𝒩 → ℳ that satisfies

1) ∀𝑛 ∈ 𝒩 , 𝜋(𝑛) ⊆ ℳ, 2) ∀𝑚 ∈ ℳ, 𝜋(𝑚) ∈ 𝒩 , and 3)

𝜋(𝑚) = 𝑛, if and only if 𝑚 ∈ 𝜋(𝑛).
In fact, 𝜋(𝑚) = 𝑛 implies that 𝑥𝑚,𝑛 = 1, otherwise 𝑥𝑚,𝑛 =
0. One can easily see from Definition 1 that the proposed

matching game inherently satisfies the constraints in (6b) and

(6e). In addition, 𝜋 is a feasible matching, if it satisfies the

quota constraints, i.e., ∣𝜋(𝑚)∣ ∈ {0, 1} and 𝑞min
𝑛 ≤ 𝜅𝑛 =

∣𝜋(𝑛)∣ ≤ 𝑞max
𝑛 , where ∣.∣ denotes the set cardinality. Next, we

define suitable utility functions.

C. Utility and Preference Relations of the UEs and BSs

For mmW links, a UE may experience multiple LoS/NLoS

transmissions with different rates during the time that cell

association is not updated. Thus, the utilities of UEs to BSs

must be a function of the average rate. Here, we define the

utility function of UE 𝑚 for BS 𝑛 as:

𝑈𝑚(𝑛) = log
[

𝑓(𝒌𝑚,𝑛)𝑐
LoS
𝑚,𝑛 + (1− 𝑓(𝒌𝑚,𝑛)) 𝑐

NLoS
𝑚,𝑛

]

𝑛∈𝒩1

+ log
[

𝑐𝜇W
𝑚,𝑛

]

𝑛∈𝒩2
, (7)

where,

𝑛∈𝒩𝑖
=

{

1 if 𝑛 ∈ 𝒩𝑖,

0, if 𝑛 ∈ 𝒩𝑗 ∕=𝑖,
(8)

and 𝒌𝑚,𝑛 is a vector composed of elements, 𝑘𝑚,𝑛(𝑡
′) where

𝑡′ = 𝑡 − 1, 𝑡 − 2, ⋅ ⋅ ⋅ , 0, is the number of successful LoS

transmissions from mmW-BS 𝑛 to UE 𝑚 and 𝑓(𝑘𝑚,𝑛(𝑡)) is a

metric that each UE uses to estimate the LoS probability 𝜌𝑚,𝑛

for cell association at time 𝑡. In practice, the UEs can update

a moving average of the number of LoS transmissions from

each mmW-BS by using:

𝑓(𝒌𝑚,𝑛(𝑡)) = 𝜆
𝑘𝑚,𝑛(𝑡)𝑥𝑚,𝑛

𝑘
+ (1− 𝜆)𝑓(𝒌𝑚,𝑛(𝑡− 1)), (9)

where 𝜆 is a constant smoothing factor between 0 and 1 and

𝑘 is the number of transmission slots within the time window

in which the association policy 𝜋 is not updated. Using the

utilities in (7), the preference relations of UEs are:

𝑛 ≻𝑚 𝑛′ ⇔ 𝑈𝑚(𝑛) ≥ 𝑈𝑚(𝑛′), (10)

for ∀𝑚 ∈ ℳ, and ∀𝑛, 𝑛′ ∈ 𝒩 .

We note that assigning UEs to their most preferred BS may

not admit a feasible matching in general. In other words, in

order to satisfy the minimum quotas of the BSs, some UEs

may have to be assigned to a lower ranked BS. Therefore,

a suitable mechanism is required at the level of the BSs

to determine which UEs must be assigned to the BSs with

unsatisfied minimum quotas. To this end, all BSs must use

the same preference profile, known as master list (ML), ≻ML

with ≻𝑛 ≡≻ML, ∀𝑛 ∈ 𝒩 , as follow:

𝑚 ≻ML 𝑚′ ⇔ 𝑈ML(𝑚) ≥ 𝑈ML(𝑚
′), (11)



Algorithm 1 Proposed Cell Association Algorithm

Inputs: ≻ML, ≻𝑚,∀𝑚 ∈ ℳ, 𝑞max
𝑛

, 𝑞min
𝑛

, ∀𝑛 ∈ 𝒩 .
Outputs: 𝜋, 𝒙.

1: Initialize: 𝜋(𝑚) = ∅, ∀𝑚 ∈ ℳ, ℳ′ = ℳ.
2: Choose the UE 𝑚∗ ∈ ℳ′ that has the highest rank in ML profile, i.e.,

𝑚∗ ≻ML 𝑚, ∀𝑚 ∈ ℳ′.
3: Let 𝜋(𝑚∗) = 𝑛, where 𝑛 is the most preferred BS based on ≻𝑚∗ with

𝜅𝑛 < 𝑞max
𝑛

. Moreover, add 𝑚∗ to 𝜋(𝑛) and remove it from ℳ′.
4: repeat Steps 3 to 4
5: until

∑
𝑛∈𝒩 ⌊𝑞min

𝑛
− 𝜅𝑛⌋+ = ∣ℳ′∣.

6: while ℳ′ ∕= ∅ do

7: Choose the UE 𝑚∗ ∈ ℳ′ that has the highest rank in ML profile,
i.e., 𝑚∗ ≻ML 𝑚, ∀𝑚 ∈ ℳ′.

8: Let 𝜋(𝑚∗) = 𝑛, where 𝑛 is the most preferred BS based on ≻𝑚∗

with 𝜅𝑛 < 𝑞min
𝑛

. Add 𝑚∗ to 𝜋(𝑛) and remove it from ℳ′.
9: end while

where,

𝑈ML(𝑚) = {𝑈𝑚(𝑛′)∣𝑈𝑚(𝑛′) ≥ 𝑈𝑚(𝑛), ∀𝑛 ∈ 𝒩}. (12)

In fact, (12) implies that BSs give higher priority to a UE that

can achieve higher utility by being assigned to its preferred

BS. This allows maximizing the sum utility in (6a). To form

the ML in practice, BSs only require to exchange the ordering

of their nearby UEs to neighboring BSs.

IV. PROPOSED CELL ASSOCIATION AND LOAD

BALANCING ALGORITHM

To solve the proposed cell association matching problem,

we consider two important concepts of Pareto optimality and

two-sided stability. A PO matching is defined as follow [14]:

Definition 2: A cell association policy, 𝜋, is Pareto opti-

mal, if there is no other feasible matching policy 𝜋′ such that

𝜋′ is preferred by all UEs over 𝜋, 𝜋′ ર𝑚 𝜋, for all 𝑚 ∈ ℳ,

and strictly preferred over 𝜋, 𝜋′ ≻𝑚 𝜋, for some UEs 𝑚 ∈ ℳ.

In fact, PO is a widely adopted notion of efficiency for

distributed mechanisms where each entity, here each UE, aims

to maximize its own utility. Furthermore, the concept of two-

sided stable matching between UEs and BSs is defined as

follows [11]:

Definition 3: A UE-BS pair (𝑚,𝑛) /∈ 𝜋 is said to be a

blocking pair of the matching 𝜋, if and only if 𝑚 ≻𝑛 𝑚′ for

some 𝑚′ ∈ 𝜋(𝑛) and 𝑛 ≻𝑚 𝜋(𝑚). Matching 𝜋 is stable, if

there is no blocking pair.

A stable cell association policy ensures fairness for the UEs.

That is, if a UE 𝑚 envies the assignment of another UE 𝑚′,

then 𝑚′ must be preferred by the BS 𝜋(𝑚′) to 𝑚, i.e., the

envy of UE 𝑚 is not justified. When ≻𝑛 ≡≻ML, ∀𝑛 ∈ 𝒩 ,

as in our problem, the two-sided stable 𝜋 is also known as

ML-fair matching.

For matching problems with no minimum quota, i.e., 𝑞min
𝑛 =

0, the well-known deferred acceptance (DA) algorithm is used

to find a stable matching such as in [11], [12], and [15].

However, with minimum quotas, DA is no longer guaranteed

to find a feasible solution.

Proposition 1: For cell association problems with mini-

mum quota constraints, the standard DA algorithm may not

admit a feasible solution.

Proof: We prove this using an example. Let ℳ =
{𝑚1,𝑚2,𝑚3} and 𝒩 = {𝑛1, 𝑛2, 𝑛3}, with ML profile

𝑚1 ≻ML 𝑚2 ≻ML 𝑚3. In addition, assume 𝑞min
𝑛 = 1,

𝑞max
𝑛 = 2 for all BSs, and 𝑛1 ≻𝑚𝑖

𝑛2 ≻𝑚𝑖
𝑛3, for all

𝑚𝑖 ∈ ℳ. The DA algorithm for the UE-proposed solution

yields 𝜋(𝑛1) = {𝑚1,𝑚2}, 𝜋(𝑛2) = {𝑚3}, and 𝜋(𝑛3) = ∅,

which does not satisfy the minimum quota constraint for 𝑛3.

Therefore, a new algorithm must be developed to solve the

problem. To this end, we propose the matching with minimum

quota (MMQ) algorithm shown in Algorithm 1, which is

designed based on [14]. The proposed algorithm proceeds as

follows. After initialization, in step 2, UE 𝑚∗ with the highest

rank in the ML profile requests a connection with its most

preferred BS 𝑛. If 𝜅𝑛 is less than its maximum quota, UE

𝑚∗ will be accepted by BS 𝑛. This procedure continues in

Steps 3 and 4 for the remaining UEs until the number of

UEs is equal to the required number of UEs for meeting the

minimum quota constraints, i.e.,
∑

𝑛∈𝒩 ⌊𝑞min
𝑛 −𝜅𝑛⌋

+ = ∣ℳ′∣,
where ⌊𝑥⌋+ = 𝑚𝑎𝑥(𝑥, 0). Next, in Step 7, the most preferred

UE based on the ML profile must be assigned only to its

most preferred BS from the subset of 𝒩 with 𝜅𝑛 < 𝑞min
𝑛 . In

fact, our algorithm allows each UE to be assigned to its most

preferred BS, as long as the minimum and maximum quota

constraints are not violated. The algorithm terminates once

all the UEs are assigned to a BS. The proposed, distributed

matching algorithm exhibits the following properties:

Theorem 1: Algorithm 1 is guaranteed to yield a feasible

PO and stable matching between UEs and BSs.

Proof: If the cell association 𝜋, given by Algorithm 1 is

not PO, a UE 𝑚 must exist that can benefit by being assigned

to another BS 𝑛, i.e., 𝑛 ≻𝑚 𝜋(𝑚). There are two possible

cases to consider. First, 𝑛 ≻𝑚 𝜋(𝑚) and 𝑚 /∈ 𝜋(𝑛) imply that

UE 𝑚 has applied to BS 𝑛 prior to 𝜋(𝑚) and is rejected, due

to 𝜅𝑛 = 𝑞max
𝑛 and 𝑚′ ≻ML 𝑚, for all 𝑚′ ∈ 𝜋(𝑛). Therefore,

adding 𝑚 to 𝜋(𝑛) does not yield a feasible solution. Second,

UE 𝑚 is assigned to 𝜋(𝑚) to satisfy minimum quota constrain

for 𝜋(𝑚). This means re-allocating 𝑚 to BS 𝑛 will violate

the minimum quota criterion for 𝜋(𝑚) and is not feasible.

Therefore, the given solution is feasible Pareto optimal.

To prove the stability, we note that if UE 𝑚 prefers to be

assigned to BS 𝜋(𝑚′), that implies 𝑚′ ≻ML 𝑚, otherwise,

𝜋(𝑚) = 𝜋(𝑚′). Hence, no blocking pair exists and the

solution is stable.

We must note that Pareto optimality and stability cannot be

inherently achieved if the BSs do not follow the ML preference

profile. In fact, for ≻𝑛 ∕=≻ML, there is no algorithm in general

that can guarantee a feasible PO and stable solution [14].

V. SIMULATION RESULTS

For simulations, we consider a network with 𝑁1 = 10
mmW-BSs, 𝑁2 = 10 𝜇W-BSs, and up to 𝑀 = 100 UEs

located uniformly and randomly over an area with diameter

𝑟 = 1 km. The main parameters are summarized in Table

I. The average probability of LoS for each mmW BS-UE

pair is sampled from a uniform distribution, 𝜌𝑚,𝑛 ∈ [0, 1].
All statistical results are averaged over a large number of

independent runs.



TABLE I
SIMULATION PARAMETERS

Notation Parameter Value

𝑝𝑛 Transmit power 30 dBm

(𝜔1, 𝜔2) Bandwidth (1 GHz, 10 MHz)

(𝜉1,LoS, 𝜉1,NLoS, 𝜉2) Standard deviation of path loss (5.2, 7.6, 10) [3]

(𝑎1,LoS, 𝑎1,NLoS, 𝑎2) Path loss exponent (2,4,3) [3]

(𝑏1, 𝑏2) Path loss at 1 m (70, 38) dB

𝜓 Antenna gain 18 dBi [3]

𝑁0 Noise power spectral density −174 dBm/Hz

𝑀 Number of UEs From 10 to 100
𝑞max
𝑛

Maximum quota 𝑀

We compare the performance of the proposed MMQ al-

gorithm with both conventional max-SINR and max-RSSI

approaches. We also consider a CRE with bias factor 𝛾RSSI

and 𝛾SINR, respectively, for the max-RSSI and max-SINR

schemes for further comparisons. To calculate the rates, the

total bandwidth at each BS is allocated equally to the asso-

ciated UEs. That is, 𝑟mmW
𝑚,𝑛 = 𝑤1

𝜅𝑛
𝑐mmW
𝑚,𝑛 , where 𝑟mmW

𝑚,𝑛 denotes

the achievable rate for UE 𝑚 associated with mmW-BS 𝑛.

Moreover, 𝑟𝜇W
𝑚,𝑛 = 𝑤2

𝜅𝑛
𝑐𝜇W
𝑚,𝑛, where 𝑟𝜇W

𝑚,𝑛 denotes the achievable

rate for UE 𝑚 assigned to 𝜇W-BS 𝑛. In [8], it is shown that

for logarithmic utilities, as in (7), uniform resource allocation

maximizes the sum utility.

Fig. 2 shows the average sum-rate for the proposed MMQ

approach, compared to max-RSSI and max-SINR approaches

versus the number of UEs. The bias factors are chosen such

that near uniform loads are achieved for all the BSs. The

minimum quotas for 𝜇W-BSs are chosen randomly from 0
to ⌊𝑀/𝑁2⌋, with ⌊.⌋ denoting the floor operand. The results

show that the proposed approach achieves up to 14% and 18%
improvements compared to, respectively, the max-SINR and

the max-RSSI schemes, for 𝑀 = 50. This is due to the fact

that the achievable rate is a nonlinear function of the SINR

or RSSI metrics. Hence, average SINR or RSSI , with respect

to 𝜁𝑚,𝑛, cannot be used to find the average achievable rate.

However, the proposed approach directly relies on the average

achievable rate, as shown in (7).

Fig. 3 shows the optimal minimum quota for 𝜇W-BSs

that yields the maximum average sum-rate, as the number of

UEs varies, for different values of 𝑁1 = 𝑁2. The minimum

quota for mmW-BSs is zero, since the load of the mmW-BSs

are higher than 𝜇W-BSs. The results show that the optimal

minimum quota increases, as 𝑀 increases, since more UEs

must be associated with the 𝜇W-BSs. Moreover, the optimal

𝑞min
𝑛 decreases as 𝑁1 and 𝑁2 increase, since more BSs are

available. For 𝑀 = 100 UEs, we observe that the optimal

minimum quotas are 𝑞min
𝑛 = 8, for all 𝑛 ∈ 𝒩2, which implies

that 80% of the UEs must be assigned to the 𝜇W-BSs. Hence,

if sum rate is considered as the optimality criterion, the result

does not yield a balanced network.

In Fig. 4, the maximum load difference Δ𝜅, is evaluated

for the proposed algorithm compared to max-RSSI approach

with CRE under biasing values ranging from 0 to 60 dB.

The results show that, as biasing increases, the load balancing

decreases and then increases. For all biasing values, Δ𝜅 for the

max-RSSI approach is significantly larger than the proposed

MMQ algorithm. In fact, we observe that the proposed MMQ
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Fig. 2. The average sum-rate (Gbps) versus the number of UEs 𝑀 .
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Fig. 4. The maximum load difference, Δ𝜅, for the proposed MMQ approach,
compared to the max-RSSI with CRE.

algorithm substantially improves the load balancing, reaching

up to 48% compared to the max-RSSI with 𝛾RSSI = 40 dB for

𝑀 = 70. This improvement is due to the fact that the CRE

with biasing cannot precisely control the number of UEs re-

associated from 𝜇W-BSs to the mmW-BSs. However, in the

proposed approach, the BSs can directly control the number

of associated UEs by adjusting their minimum quotas.

Fig. 5 compares the maximum load difference resulting

from the proposed MMQ algorithm, compared to the max-
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SINR approach with CRE. We observe that, as 𝛾SINR is

increased from 0 to 8 dB, the maximum load difference

decreases. However, for 𝛾SINR > 8 dB, the load difference

increases, since a larger number of UEs is being assigned

to the 𝜇W-BSs. Moreover, Fig. 5 shows that for all network

sizes, the proposed approach substantially outperforms the

max-SINR approach with CRE. In fact, the proposed approach

decreases Δ𝑘 by 47%, compared to max-SINR with 𝛾SINR = 8
dB for 𝑀 = 70. Here, we can once again see that the

minimum quota constraints allow BSs to control the load more

precisely, compared to max-SINR with CRE.

In Fig. 6, the statistics of the average rate per UE are

shown over the 𝜇W band, compared to max-RSSI and max-

SINR. Here, we focus on the average rate for 𝜇W links, since

the mmW links achieve higher rates, due to the available

bandwidth. The results show that, an inherent byproduct of

any load balancing technique is the fact that some of the UEs

will eventually be associated with an unpreferred 𝜇W-BS to

satisfy the minimum quota constraints. Such UEs will then

trade off rate for load balancing. To this end, parameter 𝑐th

is defined as a utility threshold for UEs. That is, the UE 𝑚
is assigned to an unpreferred 𝜇W-BS 𝑛, if 𝑈𝑚(𝑛) ≥ 𝑐th. 𝑐th

allows controlling the tradeoff between a highly balanced load

and a low average rate for the cell edge UEs. Fig. 6 shows

that for 𝑐th = 0.5, the proposed MMQ algorithm outperforms

the max-RSSI and the max-SINR approaches with CRE.

VI. CONCLUSIONS

In this paper, we have proposed a novel cell association and

load balancing framework for small base stations operating

at mmW and 𝜇W frequency bands. We have formulated the

problem as a one-to-many matching game with minimum

quotas. To solve this game, we have proposed a distributed

algorithm that considers the average LoS probability in addi-

tion to the achievable rate, while assigning UEs to the BSs.

We have shown that the proposed algorithm yields a Pareto

optimal and stable association policy. Simulation results have

shown that the proposed MMQ algorithm outperforms the

conventional max-RSSI and max-SINR schemes in terms of

both performance and load balancing.
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