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Downlink MIMO-NOMA for Ultra-Reliable

Low-Latency Communications
Chiyang Xiao, Jie Zeng, Wei Ni, Xin Su, Ren Ping Liu, Tiejun Lv and Jing Wang

Abstract—With the emergence of the mission-critical Internet
of Things (IoT) applications, ultra-reliable low-latency com-
munications (URLLC) are attracting a lot of attention. Non-
orthogonal multiple access (NOMA) with multiple-input multiple-
output (MIMO) is one of the promising candidates to enhance
connectivity, reliability and latency performance of the emerging
applications. In this paper, we derive a closed-form upper bound
for the delay target violation probability in downlink MIMO-
NOMA, by applying stochastic network calculus to the Mellin
transforms of service processes. A key contribution is that we
prove the infinite-length Mellin transforms resulting from the
non-negligible interferences of NOMA, are Cauchy convergent,
and can be asymptotically approached by a finite truncated
binomial series in closed form. By exploiting the asymptotically
accurate truncated binomial series, another important contribu-
tion is that we identify the critical condition for the optimal
power allocation of MIMO-NOMA to achieve consistent latency
and reliability between the receivers. The condition is employed
to minimize the total transmit power, given a latency and
reliability requirement of the receivers. It is also used to prove
that the minimal total transmit power needs to change linearly
with the path losses, to maintain latency and reliability at the
receivers. This enables the power allocation for mobile MIMO-
NOMA receivers to be effectively tracked. Extensive simulations
corroborate the accuracy and effectiveness of the proposed model
and the identified critical condition.

Index Terms—URLLC, MIMO-NOMA, stochastic network
calculus, delay violation probability, power allocation

I. INTRODUCTION

Motivated by the explosive growth of mobile data require-

ment and number of communication devices boosted by the

Internet of Things (IoT) [1], the fifth generation (5G) wireless

system is anticipated to support wireless connectivity for both
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human centric and machine type services with guaranteed

quality of service (QoS). Two usage scenarios in 5G, namely

massive machine type communications (mMTC) and ultra

reliable and low latency communications (URLLC) [2], are

designed for IoT applications and distinguish 5G from pre-

vious generations. It is of crucial importance to achieve high

reliability and low latency, while supporting a large number of

connectivities for many IoT use cases, especially for mission

critical tasks, such as factory automation, remote surgery, and

intelligent transportation systems [3]. Typical emerging IoT

applications require a latency from 0.25 ms to 10 ms and an

outage probability (or packet loss rate) in the order of 10−3

to 10−9 [1]. It is also common for many IoT applications,

such as unmanned aerial vehicle (UAV) communications and

wireless sensors systems, to simultaneously provide services

to a large number of devices, with limited bandwidth resources

but extremely stringent statistical delay QoS. The demand

on massive connectivity and low latency implicates the use

of non-orthogonal multiple access (NOMA) [4], in coupling

with multiple-input multiple-output (MIMO) [5], or “MIMO-

NOMA” for short, due to its potential to enhance reliability

[6] and latency [7]. Moreover, the striking overload factor of

MIMO-NOMA can significantly improve spectral efficiency of

wireless systems, hence remarkably increasing connectivities.

NOMA is a promising access technique for the massive con-

nectivity of 5G underlying different usage scenarios, including

URLLC [4].

Both URLLC and NOMA are potentially the key compo-

nents in future 5G networks. It is critical that they operate

jointly and effectively to fulfill the potential of the networks.

However, URLLC and NOMA have been studied in parallel so

far. No work has jointly considered both, while the separately

developed solutions for URLLC and NOMA provide little

interoperability [1]. As a matter of fact, none of existing

NOMA techniques have been designed to provide consistent

reliability and low latency, due to the inter-user interference

incumbent to NOMA. It is typically challenging to analyze

the reliability and latency in the presence of interference [8];

leave alone optimizing them.

The authors in [3] defined the reliability of URLLC as the

probability that the latency does not exceed a pre-described

deadline. This definition emphasized on the importance of

statistical delay QoS analysis and optimization for the trans-

mission schemes in URLLC. Although there have been many

studies on the physical layer power allocation to maximize sys-

tem throughput or minimize outage probability for NOMA [9]-

[10] and MIMO-NOMA [11], there have been few investiga-

tions on the network layer performance under statistical delay
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QoS constraint. Only a few works, e.g., [12] and [13], have

jointly considered the power control in the physical layer and

the statistical delay QoS constraint in the network layer. Both

[12] and [13] exploited the concept of effective capacity [14]

to characterize statistical delay QoS. The effective capacity of

NOMA systems was maximized under delay QoS constraints.

Therein, the requirement on delay QoS was parameterized

by the exponential decay factor θ of the queue backlog,

but the delay target violation probability was not adequately

quantified. The authors of [15] analyzed the achievable link-

layer rate in different signal-to-noise ratio (SNR) regions from

an effective capacity perspective. It was revealed how the link-

layer rate changes with the statistical delay QoS requirement of

NOMA users and power allocation can be properly designed

to improve the link-layer rate performance. Note that these

existing studies [12]- [15] concerning statistical delay perfor-

mance of NOMA have only assumed single-antenna scenarios.

Research on stochastic delay QoS performance analysis and

power control for MIMO-NOMA, where a base station (BS)

with multiple antennas simultaneously serves multiple groups

of users [5], has yet to be addressed in the literature.

This paper proposes a new model, which parameterizes

the latency and reliability of service processes in downlink

MIMO-NOMA. It uses stochastic network calculus (SNC) on

the (min,×) dioid algebra to translate the intractable delay

profile (or more specifically, delay violation probability) of a

pair of NOMA receivers to the deconvolution of the arrival and

processes. An asymptotic upper bound of the delay violation

probability is developed with the Mellin transform of the

deconvolution, which is non-trivial though, due to the inter-

user interference incumbent to NOMA. By using binomial

expansion, we write the Mellin transforms as infinite series,

and prove that the series are Cauchy convergent and can be

asymptotically accurately approximated by their closed-form

truncated version.

The key contributions of the paper can be summarized as

follows.

• By carrying out the SNC analysis and Mellin transforms

on the service process, we derive closed-form asymptotic

upper bound of the delay violation probability for a pair

of NOMA recivers. The analysis is non-trivial, as the

Mellin transform of the service process is challenging

in the presence of interference (which is incumbent to

NOMA) and has not been addressed in the literature.

• Exploiting the upper bound, we identify the sufficient and

necessary condition for the optimal transmit power under

the delay QoS and user fairness, confirm the continuity

and monotonicity of the delay violation probability over

the powers, and qualify the use of simple bisection search

for the optimal powers. In contrast, there has been little

consideration on delay and reliability in existing power

approaches for NOMA.

• Closed-form expressions for the optimal power allocation

are derived in the case where the channel difference of

the receiver pair is large. It is revealed that the optimal

transmit powers for guaranteeing the delay violation

probability of the pair are proportional to their path

losses.

In a different yet relevant context, SNC has been increas-

ingly used to describe the upper bound for queueing delays or

backlogs, since the explicit queueing delay profiles are difficult

to achieve due to the strict assumptions of the queueing theory

and the randomness of fading channels. Network calculus

emerged first as a theory that analyzes performance guarantees

of queuing systems on a (min,+) dioid algebra in computer

science. Network calculus can be divided into deterministic

network calculus and SNC [16]. The deterministic network

calculus models the arrival and service processes as determin-

istic envelop functions (also known as the arrival curve and

the serive curve), and cannot capture the stochastic arrivals

and services. SNC relaxes the deterministic envelops to be

statistical ones, e.g., by introducing a pre-defined envelop

violation probability [17]. SNC has been used for statistical

delay analysis in fading channels, first in the bit domain [18],

[19], where closed-form expressions were not tractable due to

logarithm operation in the domain. In [20], a (min,×) SNC was

developed to present the fading channels in the SNR domain,

where the SNR distribution at the receiver was used to describe

the channel properties. Logarithm operations were suppressed,

and closed-form results became possible.

The (min,×) SNC represents the non-asymptotic probabilis-

tic performance bounds in terms of the distribution of fading

channels and arrival processes [21], relaxing the intractable

delay target violation probability to the tractable upper bound.

Based on the upper bounds obtained via (min,×) SNC, a

cross-layer power control framework was proposed in [22]

for a single device in WirelessHART systems. The framework

was further extended into a multi-hop version in [23] to min-

imize power consumption under statistical end-to-end delay

constraints. Utilizing SNC, statistical delay QoS analysis was

performed in [24] for millimeter-wave multi-hop systems with

full-duplex buffered relays. But the delays involved in these

works were in the range of tens to hundreds of milliseconds,

far beyond the scope of URLLC. SNC was suggested by [8]

and [25] to capture the “tail behavior”, i.e. queueing delay

profile of URLLC transmissions. [26] investigated the network

layer performance of multiple-input single-output (MISO)

systems under statistical delay constraints. Probabilistic delay

bounds were derived using SNC for URLLC. Distinctively

different from these works, MIMO-NOMA undergoes strong

interferences between receivers. The analysis of Mellin trans-

forms, a critical step following the SNC, becomes non-trivial.

To the best of our knowledge, none of the existing works have

solved the Mellin transforms in the presence of non-negligible

interferences, or can be extended to MIMO-NOMA.

The remainder of this paper is organized as follows. In sec-

tion II, the system model for NOMA transmission is described.

Section III introduces the fundamentals of the (min,×) SNC

and derives the upper bounds of of the delay target violation

probabilities for downlink MIMO-NOMA. Section IV presents

the cross-layer power control algorithm based on the derived

upper bounds. Simulation results and analysis are presented

in section V, and section VI concludes this paper. Notations

used in the rest of the paper are listed in Table I.
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TABLE I
IMPORTANT NOTATIONS

Notation Description

pm, qm Strong and weak receivers of the m-th receiver pair

η2pm , η2qm Power allocation coefficients for receivers pm and qm
ρm Total transmit power of the m-th receiver pair

lm = [lpm , lqm ] Receiver-to-BS distance pair

β Path loss exponent

Hk Channel matrix between receiver k and the BS

vpm , vqm Detection vectors applied at receivers pm and qm
cm Precoding vector for the m-th receiver pair

Ak(τ, t), Sk(τ, t), Dk(τ, t) Cumulative arrival, service and departure processes in bit domain for receiver k
Ak(τ, t), Sk(τ, t) Cumulative arrival and service processes in SNR domain for receiver k

ak(t), rk(t) Instantaneous arrival and service in bit domain for receiver k
αk(t), φk(t) Instantaneous arrival and service in SNR domain for receiver k
MX(s, τ, t) Mellin transform of X(τ, t) with parameter s
Kk(s,−w) The steady-state kernel

B̂k(w) Upper bound of delay violation probability of receiver k with delay target w
ǫ Target delay violation probability

II. SYSTEM MODEL

Consider a MIMO-NOMA system, where a BS with M
antennas serves 2M randomly distributed receviers at the same

time and frequency, as shown in Fig. 1. The 2M receivers are

grouped into M pairs, according to their channel conditions.

Each receiver pair consists of two receivers with different

fading channel gains. The BS provides services to the M pairs

of receivers by M beams. Each pair of receivers in a beam are

multiplexed in a non-orthogonal fashion. Assume that in the

m-th (1 ≤ m ≤ M ) receviers pair, receiver pm is closer to the

BS than receiver qm. Hence, receiver pm has stronger channel

condition and is referred to as the strong receiver, whereas

receiver qm is the weak receiver. The number of antennas

equipped at each receiver is N . In this paper, N > M/2 is

assumed to implement the transmission scheme based on sig-

nal alignment [5], where signals are superimposed (or aligned)

in the desired signal space or direction by carefully designing

the precoding and detection vectors for each receiver. With

signal alignment, co-channel interference can be suppressed

by exploiting the extra degrees of freedom provided by the

multiple antennas transmitter and receivers. At the t-th time

slot, the channel matrix between the BS and receiver k (k ∈
{p1, · · · , pM}∪ {q1, · · · , qM}) is denoted by Hk(t) =

Gk(t)

l
β/2
k

,

where lk is the distance between the BS and the receiver, β is

the path loss exponent, and Gk(t) ∈ C
N×M denotes the small

scale fading with independently and identically distributed

(i.i.d.) circular symmetric complex Gaussian (CSCG) random

variables. We further assume that the channels are block

fading, i.e. Gk remains unchanged within a time slot, and

changes independently between successive time slots.

This paper investigates the cross-layer power control un-

der the general MIMO-NOMA framework proposed in [5].

Downlink MIMO-NOMA transmission is implemented by

superimposing the signals destined for receiver pm and qm
at the m-th transmit antenna port. As a result, the transmit

signal vector at the BS at the t-th time slot is given by

s(t) =







ηp1
sp1

(t) + ηq1sq1(t)
...

ηpM
spM

(t) + ηqM sqM (t)
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Fig. 1. Downlink MIMO-NOMA system. The signals of different receiver
pairs are orthogonal in signal space. Receivers in the same pair are served in
the NOMA fashion.

where spm(t) and sqm(t) denote the signal intended for the

receivers pm and qm, ηpm
and ηqm are the square root of

the power allocation coefficients for the receivers pm and qm,

and η2pm
+ η2qm = 1. The BS precodes the signal vector with

an M × M precoding matrix P(t), and then transmits the

precoded signal to the M pairs of receivers. For a receiver

k in the m-th receiver pair, i.e. k ∈ {pm, qm}, the received

signal can be expressed as

yk(t) = Hk(t)P(t)s(t) + nk(t), (2)

where nk(t) ∈ C
N×1 is the noise vector at the receiver. The

receiver applies an N×1 detection vector vk(t) to the received

signal, leading to the following detection result

vH
k (t)yk(t) = vH

k (t)Hk(t)P(t)s(t) + vH
k (t)nk(t)

=
vH
k (t)Gk(t)

l
β
2

k

pm(t)(ηpm
spm

(t) + ηqmsqm(t))+

∑

i 6=m

vH
k (t)Gk(t)

l
β
2

k

pi(t)(ηpi
spi

(t) + ηqisqi(t)) + vH
k (t)nk(t),

(3)

where pm(t) is the precoding vector for the m-th receiver

pair, i.e. the m-th column of the precoding matrix P(t).
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According to the signal alignment [5], the detection vector

can be designed as follows:

[

vpm(t)
vqm(t)

]

= Um(t)xm(t), (4)

where Um(t) ∈ C
2N×(2N−M) is a matrix containing the

right singular vectors of the matrix
[

GH
pm

(t) −GH
qm(t)

]

corresponding to its zero singular values, xm(t) is a random

(2N − M) × 1 vector satisfying |xm(t)| = 2. With such

detection vectors, we have vH
pm

(t)Gpm(t) = vH
qm(t)Gqm(t),

i.e. the signals for receivers pm and qm are aligned in the same

direction. Signals for different receiver pairs are aligned in

different directions. The downlink multi-receiver-pair MIMO-

NOMA channel is decomposed into M pairs of independent

single antenna NOMA channels. Readers are refered to [5]

for more details. gm(t) = GH
pm

(t)vpm
(t) is the effective

channel vector of the m-th receiver pair. To eliminate the inter-

pair interference, the precoding matrix satisfies the following

constraint

gH
m(t)pi(t) = 0, ∀i 6= m. (5)

This leads to a zero forcing based precoding design, as given

by

P(t) = G−H(t)D, (6)

where G(t) = [g1(t), · · · ,gm(t), · · · ,gM (t)]
H

, and

D is a diagonal matrix which specifies the transmit

power for each receiver pair. More precisely, D2 =
diag{ ρ1

cH
1
(t)c1(t)

, · · · , ρM

cH
M (t)cM (t)

}, where cm(t) is the m-th

column of G−H(t), and ρm denotes the total transmit power

for the m-th receiver pair. The zero forcing based precod-

ing eliminates the co-channel interference between different

receiver pairs, while the interference between the same pair

remains.

Using the detection and precoding design in (4) and (6), the

received signal after detection for the m-th receiver pair at the

t-th time slot can be expressed as follows:

vH
pm

(t)ypm
(t) =

√
ρm

(

ηpmspm(t) + ηqmsqm(t)
)

√

cHm(t)cm(t)lβpm

+ vH
pm

(t)npm
(t); (7)

vH
qm(t)yqm(t) =

√
ρm

(

ηpm
spm

(t) + ηqmsqm(t)
)

√

cHm(t)cm(t)lβqm

+ vH
qm(t)nqm(t). (8)

Due to the signal alignment, the two receivers in the same

receiver pair share the same small scale fading gain 1
cH
m(t)cm(t)

while experiencing different large scale fadings. Without of

generality, we focus on the m-th receiver pair to evaluate the

physical layer information rate of the strong receiver pm and

the weak receiver qm. For the weak receiver qm, it decodes

its message by treating the signal intended for receiver pm as

a noise. Hence, the service amount provided to receiver qm at

the t-th time slot can be written as follows:

rqm(t) = W log2



1 +

ρm

cH
m(t)cm(t)lβqm

η2qm
ρm

cH
m(t)cm(t)lβqm

η2pm
+
∣

∣vH
qm(t)

∣

∣

2
σ2





= W log2

(

1 +
η2qm

η2pm
+ cHm(t)cm(t)

∣

∣vH
qm(t)

∣

∣

2
/γ̄qm

)

,

(9)

where W is the number of symbols used in one trasmission,

σ2 is the noise power, and γ̄qm = ρm

σ2lβqm
is SNR at receiver

qm.

The strong receiver pm carries out successive interference

cancellation (SIC) by first decoding the message intended for

receiver qm and then cancelling it from the received singal.

Similar to (9), the service rate provided to receiver pm can be

written as

rpm(t) = W log2

(

1 +
ρmη2pm

cHm(t)cm(t)lβpm

∣

∣vH
pm

(t)
∣

∣

2
σ2

)

= W log2

(

1 +
η2pm

cHm(t)cm(t)
∣

∣vH
pm

(t)
∣

∣

2
/γ̄pm

)

,

(10)

where γ̄pm
= ρm

σ2lβpm
.

Consider the case that the BS delivers information to

multiple receivers with statistical QoS requirements. The QoS

requirements can be described by a predefined queueing delay

target w and a delay target violation probability ǫ. This

paper aims to minimize the transmit power which ensures

Pr{wk(t) > w} < ǫ, where wk(t) is the queueing delay of

receiver k ∈ {pm, qm} at any time slot t, i.e. the number of

time slots it takes to successfully deliver the information bits

that arrive at time slot t. In order to count for the probabilistic

delay constraint, we resort to the newly developed (min,×)

SNC which characterizes the statistical performance bounds

(such as delay bound and queue backlog bound) via the

distribution of the traffic arrivals and channel fading process.

III. SNC FOR DOWNLINK MIMO-NOMA

Recall that the downlink MIMO-NOMA system of inter-

est is a discrete-time, fluid-flow queuing system, the cu-

mulative arrival, service and departure processes between

time slots τ and (t − 1) can be defined by bivariate pro-

cesses Ak(τ, t) =
∑t−1

i=τ ak(i), Sk(τ, t) =
∑t−1

i=τ rk(i) and

Dk(τ, t) =
∑t−1

i=τ dk(i), where ak(i), rk(i) and dk(i) are the

instantaneous traffic arrival to receiver k ∈ {pm, qm}, service

offered to receiver k, and the corresponding departure from

the BS, respectively. Denote the queue backlog for receiver k
at time slot i by Qk(i). Then, the queue evolves according to

Qk(i+1) = Qk(i)+ak(i)−dk(i). For receiver k, Dk(τ, t) =
∑t−1

i=τ dk(i) defines the cumulative depature from time slot τ
to time slot t−1. We have dk(i) = min{Qk(i)+ak(i), rk(i)}.

For a work-conserving first come first served (FCFS) queue-

ing system, wk(t) is expressed as

wk(t) = inf{u > 0 : Ak(0, t) ≤ Dk(0, t+ u)}. (11)
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By substituting into (11) the dynamic server property

Dk(0, t) ≥ inf0≤τ≤t{Ak(0, τ)+Sk(τ, t)} [27], we can obtain

an upper bound for the delay. The cumulative processes,

Ak(τ, t), Sk(τ, t) and Dk(τ, t) (k ∈ {pm, qm}), are defined

in the so-called bit domain where the processes are measured

in number of bits. Unfortunately, the logarithmic operator in

rk(t) prevents expressing the statistics of the service process

in a simple closed form, resulting in analytical intractability.

We propose to use the (min,×) SNC to convert these pro-

cesses from the bit domain to the SNR domain by taking

exponent arithmetic. Denote the SNR-domain counterparts of

the cumulative arrival and service processes of receiver k by

Ak(τ, t) = eAk(τ,t) and Sk(τ, t) = eSm(τ,t), respectively. For

a bit-domain process X(τ, t), we use X (τ, t) to denote its

SNR-domain counterpart. Then, X (τ, t) − 1 represents the

minimal required SNR if there are X(τ, t) bits to transmit.

The (min,×) SNC can characterize the input-output relation-

ship of a queueing system with the following deconvolution

operator defined on the (min,×)-algebra:

U ⊘ V(τ, t) = sup
u≤τ

{ U(u, t)
V(u, τ)

}

, (12)

where ⊘ stands for deconvolution. Accordingly, the queueing

delay of receiver k (k ∈ {pm, qm}) at time slot t can be

rewritten as

wk(t) = inf{u ≥ 0 : Ak ⊘ Sk(t+ u, t) ≤ 1}. (13)

Hence, the queueing delay can be upper bounded by [21]

Pr{wk(t) > w} ≤ Pr{Ak ⊘ Sk(t+ w, t) > 1}
≤ MAk⊘Sk

(1 + s, t+ w, t), (14)

where the first inequality is based on [21], and the second in-

equality is based on the well-known Chernoff’s bound (i.e., for

an arbitrary bivariate stochastic process X(τ, t), Pr{X(τ, t) ≥
a} ≤ a−sMX(1+s, τ, t) ∀a > 0, s > 0) [28]. MX(s, τ, t) =
E
[

(X(τ, t))s−1
]

is the Mellin transform of any nonnegative

stochastic process X(τ, t) for any s ∈ R whenever the expec-

tation exists. According to the property of the Mellin transform

of the deconvolution [21], (14) can be further upper bounded

by Pr{wk(t) > w} ≤ infs>0{Kk(s,−w)}, where Kk(s,−w)
is the steady-state kernel with the following expression [21]:

Kk(s,−w) = lim
t→∞

t
∑

u=0

MAk
(1 + s, u, t)MSk

(1− s, u, t+ w).

(15)

Therefore, the upper bound of the delay violation probability

of receiver k is

Bk(w) = inf
s>0

{Kk(s,−w)} ≥ Pr{wk(t) > w}. (16)

Given the signal alignment based precoding and detec-

tion scheme, the downlink multi-receiver-pair MIMO-NOMA

channel is decomposed into M pairs of independent single

antenna NOMA channels [5]. Without loss of generality, we

focus on the m-th receiver pair. In what follows, we assume

that for each receiver k ∈ {pm, qm}, the cumulative arrival

Ak(τ, t) is i.i.d. incremental processes. It is also reasonable

to assume that Sk(τ, t) is an i.i.d. incremental process. This

is because for receiver k ∈ {pm, qm}, the increment of the

cumulative service process Sk(τ, t) at time slot i is sk(i).
Consider that each receiver experiences block fading channel.

sk(i) is independent between time slots, and has the same

distribution at different time slots.

Denote the increments of Ak(τ, t) and Sk(τ, t) by ak and

rk, respectively. Then, the Mellin transform of Ak(τ, t) can

be expressed as the product of the Mellin transforms of ak(i)
((τ ≤ i ≤ t− 1)), i.e.,

MAk
(s, τ, t) = E





(

t−1
∏

i=τ

eak(i)

)s−1


 =
(

E

[

eak(s−1)
])t−τ

= (Mαk
(s))

t−τ
, (17)

where αk = eak . Likewise, the Mellin transform of the

service processes in the SNR domain can be given by

MSk
(s, τ, t) = E





(

t−1
∏

i=τ

erk(i)

)s−1


 =
(

E

[

erk(s−1)
])t−τ

= (Mφk
(s))

t−τ
, (18)

where φk = erk . By substituting (17) and (18), (15) can be

rewritten as

Kk(s,−w) =
Mw

φk
(1− s)

1−Mαk
(1 + s)Mφk

(1− s)
, (19)

which is meaningful under the so-called “stability condition”

Z(s) = Mαk
(1 + s)Mφk

(1 − s) < 1 [21], [22]; otherwise,

the summation in (15) would be unbounded.

As shown in (16) and (19), the upper bound of the queueing

delay violation probability is established on the Mellin trans-

forms of the arrival and service processes in the SNR domain.

Therefore, evaluating the upper bound requires deriving the

Mellin transforms of αk and φk. In this paper, we assume that

the arrivals with low rates and low burstiness can be modeled

by a Poisson process. That is to say, ak in (17) is a Poisson

random variable with an average of λk bits. In turn, the Mellin

transform of αk can be derived as

Mαk
(s) =

∞
∑

n=0

en(s−1) (λk)
n

n!
e−λk = eλk(e

s−1−1). (20)

In order to obtain the Mellin transform of φk, we have

to derive the probability density function (pdf) of the effec-

tive signal-to-interference-plus-noise (SINR) of receiver k ∈
{pm, qm}. The stochastic characteristic of φk is determined

by two random terms, i.e. the term corresponding to the small

scale fading cHk ck and the term corresponding to the detection

gain on noise |vH
k |2. Here, we suppress the time slot index in

the brackets for notational simplicity.

For the m-th receiver pair, it has been proved in [5] that
1

cH
mcm

is exponentially distributed, from which we can readily

derive the distribution of cHmcm. In contrast, the distribution

of |vH
k |2 is intractable for k ∈ {pm, qm}. One reason is

that |vH
k |2 is correlated with cHmcm. The other reason is

the uncertainty of xm(t) in (4). We opt to use the upper

bound of |vH
k |2 instead of its instantaneous value. Noting that

|vH
pm

|2 + |vH
qm |2 = 2, we have |vH

k |2 ≤ 2. This leads to a
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lower bound of service rate r̂k, i.e. r̂k ≤ rk. Let φ̂k = er̂k ,

then Mφk
(1−s) ≤ Mφ̂k

(1−s) holds since s > 0. According

to the function monotonicity rule, Kk(s,−w) monotonically

increases with Mφk
(1 − s) whenever the stability condition

holds. This monotonicity leads to an upper bound of the

steady-state kernel, denoted by K̂k(s,−w), which can still be

used to determine the upper bound of the delay target violation

probability.

Theorem 1. Given the power allocation coefficients ηpm
and

ηqm of the m-th receiver pair, the upper bounds of Mφpm
(1−

s) and Mφqm
(1− s) are given by

Mφ̂pm
(1− s) =

(

η2pm
γ̄pm

2

)−Ws

e
2

η2
mγ̄pm

× Γ

(

1−Ws,
2

η2pm
γ̄pm

)

(21)

and

Mφ̂qm
(1− s) = lim

K→∞
η2Ws
pm

[

1−Wsπme
2

η2
pm

γ̄qm Ei

(

− 2

η2pm
γ̄qm

)

+
Ws(Ws+ 1)π2

m

2

×
(

e
2

η2
pm

γ̄qm Ei

(

− 2

η2pm
γ̄qm

)

+
η2pm

γ̄qm
2

)

+

K
∑

n=3

n−1
∑

k=1

(k − 1)!

(n− 1)!

(−Ws)
n

n!
πn
m(−1)k+1

(

2

η2pm
γ̄qm

)−k

+

K
∑

n=3

(−Ws)
n

n!

e
2

η2
pm

γ̄qm

(n− 1)!
Ei

(

− 2

η2pm
γ̄qm

)

]

, (22)

where W = W/ ln 2, Γ(x, a) =
∫∞

a
tx−1e−tdt is the up-

per incomplete Gamma function, πm =
2η2

qm

η2
pm

γ̄qm
, Ei(x) =

∫∞

−x
e−t

t dt is the exponential integral and (x)
n

denotes the

n-th falling factorial power of a real variable x, also known

as the Pochhammer symbol [29], and is given by (x)
n

=
(x)(x− 1) · · · (x− n+ 1).

Proof: Please refer to Appendix A.

It is worth mentioning that the expression for Mφ̂qm
(1−s)

in (22) includes an infinite series as the result of the general

binomial expansion. Nevertheless, we are able to prove that

(22) is convergent by the following theorem.

Theorem 2. Denote the summation of the first K terms in

(22) by FK , i.e., FK = η2Ws
pm

∑K−1
n=0 fn, where fn is the n-

th term in the square brackets of (22). Then, {Fn}n≥0 is a

Cauchy sequence. As the limit of {Fn}n≥0, Mφ̂qm
(1 − s) =

limn→∞ Fn exists and can be asymptotically approached by

FK , provided K is sufficiently large.

Proof: Please refer to Appendix B.

By substituting Mαk
(s) and Mφ̂k

(1 − s) (k ∈ {pm, qm})

into (15), the upper bounds of the delay violation probabilities

for receivers pm and qm can be achieved.

From (22), the Mellin transform of the SNR-domain service

process of the weak receiver leads to an infinite series. As

w

Fig. 2. Illustration on the use of (min,×) SNC in the proposed power
allocation for MIMO-NOMA with considerations on statistical delay.

stated in Theorem 2, the infinite series is Cauchy convergent

and can be increasingly accurately approximated by its closed-

form truncated version. As a matter of fact, a small number

of terms, e.g., the first ten terms, are sufficient to approximate

Mφ̂qm
(1−s) with good accuracy. The delay QoS metric (i.e.,

delay violation probability) for the NOMA receivers can be

efficiently evaluated with the truncated Mellin transform. This

also facilitates designing the power control which takes the

delay QoS of NOMA receivers into account.

IV. MIMO-NOMA POWER CONTROL BASED ON

PROBABILISTIC DELAY BOUNDS

In this section, we use the asymptotic upper bound of the

delay target violation probability, i.e., by substituting (21) and

(22) into (16), as the delay QoS performance indicator, and

optimize the power control problems of the MIMO-NOMA

system under latency and reliability considerations:

• Problem 1: the optimal power allocation which mini-

mizes the maximum of the delay target violation proba-

bilities of the m-th receiver pair and achieves consistent

delay and reliability within the pair, given the total

transmit power ρm.

• Problem 2: the minimal required ρm which guarantees

that the delay target violation probabilities of both re-

ceivers inviolate a prefined probability bound ǫ.

Fig. 2 shows the role of the (min,×) SNC in the MIMO-

NOMA power allocation with the consideration of optimizing

or guaranteeing statistical delay QoS for the NOMA receiver

pairs.

A. Problem 1: Optimal Power Allocation under Total Transmit

Power Constraint

The upper bound of the delay target violation probability is

given by

B̂k(w) = inf
s>0

{

K̂k(s,−w)
}

= inf
s>0

{ Mw
φ̂k
(1− s)

1−Mαk
(1 + s)Mφ̂k

(1− s)

}

. (23)
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It is clear that the larger η2pm
is, the lower B̂pm

(w) and

the higher B̂qm(w). Hence, given the total transmit power

ρm for the m-th receiver pair, it is impossible to minimize

B̂pm
(w) and B̂qm(w) at the same time. In order to strike

a balance between the delay QoS of both receivers, i.e., to

guarantee receiver fairness, the following min-max problem is

formulated.

min
ηpm ,ηqm

max
{

B̂pm(w), B̂qm(w)
}

s.t. η2pm
+ η2qm = 1. (24)

Before solving the problem, we put forth the following

two lemmas which assert the monotonicity and identify the

sufficient and necessary condition for the optimal solution to

(24).

Lemma 1. The upper bound of the delay target violation

probability B̂k(w) is continuous and monotonically decreasing

with the receiver pair’s total transmit power ρm and its power

allocation cofficient ηk, ∀k ∈ {pm, qm}, when the stability

condition holds.

Proof: Please refer to Appendix C.

Lemma 1 shows that the upper bound of the delay violation

probability for a receiver is continuous and monotonically

decreasing with the total transmit power for the receiver

pair and its power allocation cofficient. The continuity and

monotonicity help derive the sufficient and necessary condition

of the optimal solution for (24), as will be discussed in Lemma

2. When the pair of NOMA receivers have substantially

different path losses, the sufficient and necessary condition

further reveal the optimal power allocation coefficients are

proportional to the path losses of the receivers, as will be

revealed in Lemma 3.

Lemma 2. The sufficient and necessary condition of the

optimal solution for (24) is given by

B̂pm
(w) = B̂qm(w). (25)

Proof: Please refer to Appendix D.

As a result of Lemma 1,
B̂pm (w)

B̂qm (w)
is continuous and mono-

tonically decreases from ∞ to 0, as η2pm
increases from 0 to

1. We can take a bisection search to solve (24) for the optimal

power allocation. Hence, the value of
B̂pm (w)

B̂qm (w)
can be used as

the metric for interval determination in the bisection search.

According to Lemmas 1 and 2, η2pm
is in the left interval if

B̂pm (w)

B̂qm (w)
< 1, or in the right interval, otherwise. The details

of the bisection search based optimal power allocation are

summarized in Algorithm 1.

In Algorithm 1, a pair of power allocation coefficients

are identified to satisfy

∣

∣

∣

B̂pm (w)

B̂qm (w)
− 1
∣

∣

∣ ≤ δ1, where δ1 is

a predefined relative precision of the algorithm. Given the

continuity of B̂pm
(w) and B̂qm(w) over the power allocation

coefficients ηpm
and ηqm , there exists Λδ1 > 0 such that

∣

∣

∣

B̂pm (w)

B̂qm (w)
− 1
∣

∣

∣
≤ δ1, ∀ηpm

∈ {x|x ≥ 0, |x−η∗pm
| ≤ Λδ1}. η∗pm

and η∗qm =
√

1− (η∗pm
)2 denote the optimal power allocation

coefficients of the m-th receiver pair. It is obvious that Λδ1

Algorithm 1 Bisection search based power allocation for the

m-th receiver pair in MIMO-NOMA

Require: η2pm
= 0, η2qm = 1, interval lower bound Il = 0,

upper bound Iu = 1, tolerance δ1, targeted delay w, path

loss lβpm
and lβqm

Ensure: Determine the optimal power allocation coefficients

which satisfy B̂pm(w) = B̂qm(w)
1: compute B̂pm

(w) and B̂qm(w) according to (17), (21),

(22) and (23)

2: while

∣

∣

∣

B̂pm (w)

B̂qm (w)
− 1
∣

∣

∣ > δ1 do

3: η2pm
= (Il + Iu)/2, η2qm = 1− η2pm

4: Update B̂pm
(w) and B̂qm(w) according to (17), (21),

(22) and (23)

5: if
B̂pm (w)

B̂qm (w)
> 1 then

6: Il = (Il + Iu)/2
7: else

8: Iu = (Il + Iu)/2
9: end if

10: end while

11: return η2pm
and η2qm

increases with δ1. According to the continuity of

∣

∣

∣

B̂pm (w)

B̂qm (w)
− 1
∣

∣

∣

over ηpm
and ηqm , the supremum of Λδ1 , denoted by Λalg1

δ1
,

exists and is unique. Since the bisection search halves the

search region each iteration, the total number of iterations is

less than log2(1/Λ
alg1

δ1
) in Algorithm 1.

Lemma 3. When lβpm
≫ lβqm or γ̄qm ≪ 1, i.e. the difference

of the large scale fadings between receivers pm and qm is

significant or the SNR of receiver qm is very small, then, under

the same delay target w, the optimal power allocation given

by Lemma 2 can be approximated by

η∗pm
≈
[

1 +

(

lqm
lpm

)β
]− 1

2

, η∗qm ≈






1− 1

1 +
(

lqm
lpm

)β







1

2

.

(26)

Proof: Please refer to Appendix E.

Although (26) is derived under the conditions that lβpm
≫

lβqm or γ̄qm ≪ 1, we will show via extensive simulations that

(26) is accurate even if the conditions do not hold.

B. Problem 2: Total Transmit Power Minimization under

Delay Target Violation Probability Constraint

We proceed to put a constraint ǫ on the delay target violation

probability, by letting B̂k(w) < ǫ (k ∈ {pm, qm}) to ensure

that pk(w) does not exceed ǫ. Since B̂k(w) monotonically

decreases with ρm (based on Lemma 1), there exists a minimal

required value for ρm, which can be obtained by solving the

following optimization problem

min
ηpm ,ηqm

ρm

s.t. max
{

B̂pm(w), B̂qm(w)
}

≤ ǫ

η2pm
+ η2qm = 1. (27)
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Assume the optimal power allocation coefficients of (27) are

η∗pm
and η∗qm . The corresponding upper bounds of the delay

target violation probabilities are B̂∗
pm

(w) and B̂∗
qm(w), respec-

tively. We show that, when the minimal total transmit power

ρ∗m of the m-th receiver pair is attained, B̂∗
pm

(w) = B̂∗
qm(w)

holds. Otherwise, according to Lemma 1, there would exist a

new pair of power allocation coefficients η∗∗pm
and η∗∗qm such

that B̂∗∗
pm

(w) = B̂∗∗
qm(w) < max{B̂∗

pm
(w), B̂∗

qm(w)}. This

would allow for further power reduction without violating the

first constraint condition in (27). This would contradict the

minimality of ρ∗m. Since B̂k(w) monotonically decreases with

ρm, we can use a bisection search to find the minimal total

transmit power which guarantees the delay target violation

probability bound for both receivers. The details of the bi-

section search process is summarized in Algorithm 2, where

the function POWER ALLOC in line 4 is the optimal power

allocation specified in Algorithm 1.

Algorithm 2 Bisection search based total transmit power

minimization for the m-th receiver pair in MIMO-NOMA

Require: Total power lower bound ρl = 0, upper bound ρu =
ρmax, tolerance δ2, delay target w, delay target violation

probability bound ǫ, path loss lβpm
and lβqm

Ensure: Determine the minimal required total transmit power

which satisfies B̂pm(w) = B̂qm(w) ≤ ǫ
1: ǫ′ = 0
2: while

∣

∣

∣

ǫ′

ǫ − 1
∣

∣

∣ > δ2 do

3: ρm = (ρl + ρu)/2
4: (η2pm

, η2qm) = POWER ALLOC(ρm, w, lβpm
, lβqm )

5: Calculate the corresponding delay target violation

probability ǫ′ = B̂pm
(w) = B̂qm(w)

6: if ǫ′

ǫ > 1 then

7: ρl = (ρl + ρu)/2
8: else

9: ρu = (ρl + ρu)/2
10: end if

11: end while

12: return ρm

Algorithm 2 searches for ρm that | ǫ′ǫ − 1| ≤ δ2, where ǫ′ =

B̂pm(w) = B̂qm(w), and δ2 is a predefined relative precision

of the algorithm. Let ρ∗m denote the minimal required total

transmit power in Problem 2. Recall that B̂pm
(w) and B̂pm

(w)
are also functions of ρm. Given the continuity of B̂pm

(w) and

B̂qm(w) over ρm, there exists Λδ2 > 0 such that

∣

∣

∣

ǫ′

ǫ − 1
∣

∣

∣ ≤
δ2, ∀ρm ∈ {x|x ≥ 0, |x − ρ∗m| ≤ Λδ2}. According to the

continuity of | ǫ′ǫ − 1| over ρm, the supremum of Λδ2 , denoted

by Λalg2

δ2
, exists and is unique. The total number of iterations

is less than log2(ρmax/Λ
alg2

δ2
) in search of ρm in Algorithm 2.

Since Algorithm 1 is nested in each iteration of Algorithm 2,

the total complexity of Algorithm 2 for solving Problem 2 is

O(log2(1/Λ
alg1

δ1
) log2(ρmax/Λ

alg2

δ2
)).

Lemma 3 can be exploited to efficiently implement the intra-

pair power allocation; i.e., using (26), instead of Algorithm 1,

to calculate ηpm and ηqm in each iteration of Algorithm 2.

As a result, the complexity of each iteration can be reduced

to O(1) in Algorithm 2 by eliminating the need for bisection

search in Algorithm 1. The total complexity of Algorithm 2

can be reduced to O(log2(ρmax/Λ
alg2

δ2
)).

C. Fast-Track Power Allocation for Mobile or Nomadic Re-

ceivers

When the distance from of a receiver pair to the BS

changes due to the movement of the receivers, the optimal

power allcoation changes accordingly. The following lemma

describes the relationship between the minimal required total

transmit powers before and after the receivers change their

locations.

Lemma 4. Under the same delay target violation probability

bound ǫ, assume that ρm and ρ̂m are the minimal required

total transmit powers for two different receiver-to-BS distance

pairs lm = [lpm
, lqm ] and l̂m = [l̂pm

, l̂qm ], respectively. When

lβpm
≫ lβqm or γ̄qm ≪ 1, we have

ρm
ρ̂m

=
lβpm

+ lβqm

l̂βpm + l̂βqm
(28)

i.e. ρm is in direct proportion to lβpm
+ lβqm .

Proof: Please refer to Appendix F.

Lemma 4 reveals that, if the receiver-to-BS distance pair

changes from l to l̂ while λ, w and ǫ remain unchanged,

the new optimal total transmit power ρ̂m can be derived

directly from the previous optimal total transmit power ρm
according to ρ̂m = ρm(l̂βpm

+ l̂βqm)/(lβpm
+lβqm). As a result, the

optimal total transmit power can be efficiently updated based

on the large scale fadings of the receiver pairs, as opposed

to re-performing the bisection search in Algorithm 2. This

contributes to a significant computational complexity reduction

of the power control. Algorithm 3 summarizes the fast-track

power allocation for the mobile device pair m.

It is revealed in Lemma 4 that, given traffic arrival rate λ, the

minimal power allocated for a pair of receivers to guarantee the

delay target w with the violation probability ǫ is proportional

to the sum of the path losses of the pair of receivers, when the

channel difference between the strong and weak receivers is

large. Sophisticated user pairing would not help further save

the transmit power, and can be greatly simplified.

D. Extension to Inter-Pair Power Allocation

The proposed intra-pair power allocation described in

Lemma 3 can be extended to inter-pair power allocation which

allocates the finite transmit power of the BS for all the receiver

pairs to minimize the maximal delay violation probability of

all receivers. The MIMO-NOMA precoding/decoding scheme

designed in [5] is adopted in this paper to extend our analysis

and power control algorithms to multiple pairs of NOMA

receivers, and hence helps the generalization of our anal-

ysis and algorithms. We confirm that the inter-pair power

allocation is optimal if and only if all receivers have the

same upper bound of delay violation probability. This can

be proved in the same way as Lemma 2: one can always

reduce the maximal delay violation probability by transfering

part of the transmit power from the pair of receivers with the
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Algorithm 3 Fast-track power allocation for mobile or no-

madic receiver pair m

Require: Previous path loss l = [lβpm
, lβqm ], current pathloss

l̂ = [l̂βpm
, l̂βqm ], previous requirement on latency and

reliability w and ǫ, current requirement on latency and

reliability ŵ and ǫ̂, previous minimal required total trans-

mit power ρm.

Ensure: Determine the minimal required total transmit power

ρ̂m which satisfies B̂pm
(ŵ) = B̂qm(ŵ) ≤ ǫ̂

1: if (w = ŵ & ǫ = ǫ̂) then

2: Update the total transmit power by ρ̂m = ρm(l̂βpm
+

l̂βqm)/(lβpm
+ lβqm)

3: else

4: Run Algorithm 2 with l̂ = [l̂βpm
, l̂βqm ] to obtain ρ̂m

5: end if

6: Run Algorithm 1 or perform (26) with l̂ = [l̂βpm
, l̂βqm ] to

obtain η2pm
and η2qm

7: return ρ̂m, η2pm
and η2qm

lowest delay violation probability to the pair with the highest.

Consider the typical user pairing of MIMO-NOMA, where

the channel difference between a selected pair of receivers is

large. According to Lemma 4, the transmit power allocated

for a receiver pair is proportional to the sum of the receivers’

path losses to achieve the consistent delay violation probability

among different receiver pairs. The transmit power allocated

for the m-th pair is given by

ρm =
lβpm

+ lβqm
∑M

i=1 l
β
pi + lβqi

ρ, (29)

where ρ =
∑M

i=1 ρi is the total transmit power of the BS. Once

ρm is determined, the power allocation within each receiver

pair can be achieved by conducting the proposed intra-pair

power allocation, as described in Lemma 3.

V. SIMULATION RESULT

We present the numerical results of the proposed power

control algorithms under different statistical QoS requirements

and arrival rates in this section. The simulation assumes

a homogenous statistical QoS provisioning for all MIMO-

NOMA receivers. The time slot duration is set to be 1 ms, and

the number of resource elements shared by each receiver pair

is W = 168. The number of antennas at the BS and receivers

are set to be M = N = 4, unless otherwise stated. The

noise power is σ2 = -30 dBm, and the path loss exponent is

β = 3. Before the performance of the proposed power control

algorithms are presented, we first validate the effectiveness

of the upper bound of the delay target violation probability,

i.e., based on (15) and (22), in comparison to by Monte-Carlo

simulations.

Fig. 3 compares the delay violation probability and its upper

bound computed by (16), under different arrival rates (λ = 15

kbps or 3 kbps). We observe that the actual delay violation

probability curve (by Monte-Carlo simulation) and the upper

bound curve (by numerical calculation) have almost the same

Fig. 3. Upper bound of delay target violation probability versus the delay
target for the m-th receiver pair, compared to simulations under different
arrival rates λ = 15 kbps and 3 kbps, with lpm = 10 m, lqm = 20 m, ρm =
5 dBm, η2pm = 0.25.

Fig. 4. Optimal power allocation coefficient obtained for receiver m versus
total transmit power ρm and delay target w, under different distance pairs
[lpm , lqm ] = [10 m, 10 m], [10 m, 12 m], [10 m, 15 m] and [10 m, 20 m],
with arrival rate λ = 10 kbps.

slope. This indicates that the upper bound can reasonably track

the trend of the actual delay violation probability. We point

out that under the same delay violation probability, the gaps

between the corresponding delays of the simulation curve and

upper bound curve are less than 1 ms in most cases. Although

the gap is around 3 time slots for the weak receiver under

large arrival rates, the upper bound manages to track the trend

of the actual delay violation probability. This property lays the

foundation of the power control algorithm based on the upper

bound of the delay violation probability. It also endows the

proposed power control algorithm certain robustness, since the

upper bound of the delay violation probability exerts a guard

interval of one time slot.

We proceed to present the performance of the proposed

power allocation algorithms. Fig. 4 depicts the optimal power

allocation coefficients η2pm
under different receiver-to-BS dis-

tance pairs, different total transmit powers, and different

targeted delays. All the optimal power allocation coefficients

are obtained by conducting the bisection search in Algorithm

1. The ratio of the path loss, lβqm/lβpm
, varies from 1 to 8, and
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Fig. 5. Maximal delay target violation probability max{B̂pm (w), B̂qm (w)}
versus η2pm for the m-th receiver pair under different distance pairs

[lpm , lqm ] = [10 m, 10 m], [10 m, 12 m], [10 m, 15 m] and [10 m, 20
m], with delay target w = 3 ms, arrival rate λ = 5 kbps, total transmit power
ρm = 5 dBm.

the SNR γ̄qm varies from -7 dB to 10 dB. It can be seen that

the optimal power allocation coefficient η2pm
almost remains

unchanged with ρm and w, i.e. η2pm
is sololy dependent on

by lqm/lpm
. We see that under given lpm

/lqm , the optimal

value of η2pm
that minimizes the maximal delay target violation

probability can be accurately predicted by [1+(lqm/lpm)β ]−1.

This indicates that Lemma 3 holds not only holds under the

condition lβpm
≫ lβqm or γ̄qm ≪ 1, but also under various

values of lqm/lpm
and γ̄qm . The application condition of

Lemma 3 can be substantially relaxed.

Fig. 5 shows the maximal delay target violation probabil-

ity max{B̂pm
(w), B̂qm(w)} under different power allocation

coefficients and different receiver-to-BS distance pairs. It is

obvious that max{B̂pm
(w), B̂qm(w)} first decreases with η2pm

,

since under small η2pm
, the maximal delay target violation

probability depends on B̂pm
(w) which monotonically de-

creases with η2pm
, as proved in Lemma 1. When η2pm

exceeds

a certain value, max{B̂pm
(w), B̂qm(w)} begins to increase

with η2pm
, because under large η2pm

, the maximal delay target

violation probability is determined by B̂qm(w), which is

monotonically increasing with η2pm
. Since the distance from

the BS to the strong receiver does not change, the descending

branches partially overlap with each other. We further mark the

power allocation coefficients (η∗pm
)2 obtained from Lemma 3

in Fig. 5. It can be seen that these values of (η∗pm
)2 are exactly

the ponits where the minimums of max{B̂pm(w), B̂qm(w)}
are obtained. This again verifies the effectiveness of Lemma

3.

Fig. 6 compares the maximal delay target violation prob-

ability between three different resource allocation schemes,

namely, (a) MIMO-NOMA with the proposed power allo-

cation scheme presented in Lemma 3, (b) MIMO-NOMA

with fixed power allocation [30], where η2pm
= 1

3 and

η2qm = 2
3 , and (c) MIMO-TDMA where each receiver in

each receiver pair occupies half of the time resource. We can

see that MIMO-NOMA with the proposed power allocation

scheme outperforms the other two schmes under all receiver-

Fig. 6. Maximal delay target violation probability max{B̂pm (w), B̂qm (w)}
versus receiver-to-BS distance ratio lqm/lpm , with lpm = 10 m, delay target
w = 3 ms and 5 ms, arrival rate λ = 10 kbps, total transmit power ρm = 5
dBm.

Fig. 7. Minimal total transmit power ρm versus delay violation probabil-
ity ǫ for the m-th receiver pair under different UE-to-BS distance pairs
[lpm , lqm ] = [10 m, 20 m] and [15 m, 25 m], with delay target w = 1
ms, 3 ms and 5 ms. Arrival rate λ = 10 kbps.

to-BS distacne raitos. Specifically, when compared to the

existing MIMO-NOMA [30] and MIMO-TDMA approaches

with lqm/lpm
= 1.8, the proposed MIMO-NOMA power

allocation reduces the delay violation probability by 59.8% and

90.2%, respectively. We notice that as lqm/lpm
increases, the

maximal delay target violation probability also increases. This

is because that as lqm increases, more transmit power should

be allocated to the weak receiver to guarantee the identical

delay QoS performance of both receivers.

Fig. 7 compares the minimal total transmit power ρm re-

quired by the m-th receiver pair to ensure statistical delay QoS

with different targeted delays and violation probabilities. In

general, the case with larger receiver-to-BS distance requires

higher ρm, since the larger distance incurs higher path loss.

We also observe that both lower delay target and the violation

probability, or in other words, more stringent delay QoS, can

result in higher ρm. Given the receiver-to-BS distance pairs,

a consistent gap between the minimal required ρm can be

perceived. This is in line with Lemma 4, where the constant

quotient between the minimal required total transmit powers
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Fig. 8. Minimal delay target w that can be attained under different arrival
rate λ and different total transmit power ρm. The UE-to-BS distance pair is
[lpm , lqm ] = [20 m, 30 m] , delay target violation probability is ǫ = 10−5,
which is typical for URLLC. E.C. is short for effective capacity, the dash
lines represent the effective capacities of different power allocation schemes
with the QoS exponent θ → 0.

depends on the ratio of the sum of the receiver pair’s path

losses. More specifically, we can use Lemma 4 to predict

the minimal required ρ̂m under l̂m = [15 m, 25 m] from

the minimal required ρm under lm = [10 m, 20 m]. The

predicted powers are drawn in dashed curves. We find that

the predicted transmit powers are almost the same with the

optimal powers obtained from Algorithm 2. This confirms that

the optimal total transmit power can be quickly updated, as

opposed to conducting the bisection search in Algorithm 2,

if the delay QoS requirements w and ǫ remain unchanged.

The updating only requires the knowledge on the large scale

fading of the receiver pair, and can dramatically reduce the

computational complexity, as compared to Algorithm 2. We

also show in Fig. 7 the minimal required total transmit power

under the fixed power allocation scheme [30], where η2pm
= 1

3

and η2qm = 2
3 . It can be observed that the proposed power

allocation scheme in Section IV-B outperforms the fixed power

allocation scheme in terms of ρm to ensure the same statistical

delay QoS requirement.

So far, we have demonstrated that the proposed power

allocation scheme has better statistical delay performance than

the classical fixed power allocation scheme. The premise

on which we can apply the proposed bound based power

allocation scheme in Algorithms 1 and 2 is that the stability

condition Mαk
(1 + s)Mφk

(1− s) < 1 holds; see (19). This

implies that the arrival rate λ should not exceed a certain value.

In practice, one interesting question we care about is: given the

statistical delay QoS constraint parameter w and ǫ and the total

downlink transmit power ρm for the m-th receiver pair, what is

the largest arrival rate that can be attained for both receivers?

Here, the largest arrival rate under given QoS constraint is

somewhat like the concept of effective capacity [14]. The

difference is that the delay QoS constraint of effective capacity

is described by the QoS exponent θ. Larger θ means more

stringent delay guarantee, and vice versa. Alghouth effective

capacity has an elegant mathematical expression in terms of θ
and the distribution of the service process, it is hard to derive

a closed-form expression for the largest tolerable arrival rate,

when the delay QoS constraint is expressed in the form of

delay target and violation probability. Hence, to answer the

question, we show in Fig. 8 the minimal delay target w that can

be attained with the constraint max{B̂pm
(w), B̂qm(w)} ≤ ǫ,

under different arrival rate λ.

When a delay target is selected, the corresponding λ in Fig.

8 is the maximal arrival that can be supported. We also plot the

(w, λ) curve for the classical fixed power allocation scheme.

It is obvious that the maximal tolerable arrival rate increases

with w for both schemes. The proposed scheme can support

a larger rate than the fixed power allocation scheme under

the same delay target. When higher total transmit power is

available, the maximal tolerable rate gets larger and so does the

difference between the proposed scheme and the fixed scheme.

We notice that there is a limit of the tolerable arrival rate

when the delay target goes to infinity. The limit is exactly the

effective capacity when the QoS exponent goes to zero. We

show in Fig. 8 that the effective capacity follows the limit the

maximal tolerable delay. The results reflected by the figure can

be utilized to guide the design of system functionalities, such

as traffic admission control or congestion control, whenever

there is a requirement on statistical delay QoS.

VI. CONCLUSION

This paper investigates network layer performance bounds

and cross-layer power control for downlink MIMO-NOMA

in the context of URLLC. Closed-form upper bounds of

the delay violation probabilities for MIMO-NOMA receivers

are established, based on the (min,×) SNC and the Mellin

transforms of the arrival and service processes. Based on

the bounds, new algorithms are developed to achieve consis-

tent latency and reliability within a MIMO-NOMA receiver

pair, while minimizing the transmit power of the pair. It is

revealed that the transmit power changes linearly with the

path losses. Validated by simulations, the upper bounds of

the delay violation probability and the actual probability have

the same slope with a gap less than one time slot. The

proposed MIMO-NOMA power allocation exhibits significant

improvement over the existing MIMO-NOMA and MIMO-

TDMA approaches, by reducing the delay violation probability

by up to 59.8% and 90.2%, respectively.

APPENDIX A

PROOF OF THEOREM 1

Since the service processes of receivers pm and qm have

different stochastic behaviors, we characterize their Mellin

transforms separately. For the strong reveiver pm, we have

φ̂pm
= erpm =

(

1 +
η2

pm
γ̄pmz

2

)W

, where z = 1
cH
pm

cpm

follows the exponential distribution with unit mean. Taking

Mellin transformation on φ̂pm
, the upper bound of Mφpm

(1−
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s) can be derived as

Mφ̂pm
(1− s) = E





(

1 +
η2pm

γ̄pmz

2

)−Ws




=

∫ ∞

0

(

1 +
η2pm

γ̄pm
z

2

)−Ws

e−zdz

(a)
=

(

η2pm
γ̄pm

2

)−Ws

e
2

η2
pm

γ̄pm

∫ ∞

2

η2
pm

γ̄pm

v−Wse−vdv, (30)

where (a) reads from the variable substitution v = z+ 2
η2
pm

γ̄pm
,

and (30) directly translates to (21) with the definition of the

upper incomplete Gamma function.

For the weak receiver qm, we have φ̂qm = erqm =
(

1 +
η2

qm
γ̄qmz

2+η2
mγ̄qmz

)W

. By taking the Mellin transform on φ̂qm ,

we can obtain the upper bound for Mφqm
(1− s) as

Mφ̂qm
(1− s) = E





(

1 +
η2qm γ̄qmz

2 + η2pm
γ̄qmz

)−Ws




(a)
=

∫ ∞

0






1 +

η2qm
η2pm

−
2
η2

qm

η2
pm

2 + η2pm
γ̄qmz







−Ws

e−zdz

(b)
= η2Ws

pm

∞
∫

0






1−

2
η2

qm

η4
pm

γ̄qm
/
(

1 +
η2

qm

η2
pm

)

2
η2
pm

γ̄qm
+ z







−Ws

e−zdz

(c)
= η2Ws

pm

∞
∫

0

∞
∑

n=0

(−Ws)
n

n!

(

− πm

z + 2
η2
pm

γ̄qm

)n

e−zdz, (31)

where (a) is obtained by rewritting
η2

qm
γ̄qmz

2+η2
pm

γ̄qmz =
η2

qm

η2
pm

−
2η2

qm
/η2

pm

2+η2
pm

γ̄qmz and using the fact that z has the exponential

distribution; (b) is due to η2pm
+ η2qm = 1; and (c) is based

on the general binomial theorem.

The integral in the last equality of (31) can be rewritten

in the form of exponential integral Ei(·) using the following

identity integrals [31].

∫ ∞

0

e−µx

x+ b
dx = −ebµEi(−bµ), (| arg b| < π,ℜ(µ) > 0),

∫ ∞

0

e−px

(x+ a)2
dx = peapEi(−ap) +

1

a
, (p > 0, a > 0),

∫ ∞

0

e−µx

(x+ b)n
dx =

1

(n− 1)!

n−1
∑

k=1

(k − 1)!(−µ)n−k−1b−k

− (−µ)n−1

(n− 1)!
ebµEi(−bµ), (n > 2, | arg b| < π,ℜ(µ) > 0),

By applying the three identity integrals to (31), (22) is ob-

tained. This completes the proof.

APPENDIX B

PROOF OF THEOREM 2

According to the last equality of (31), we have

fn =

∫ ∞

0

(−Ws)
n

n!

(

−πm

z + 2
η2
pm

γ̄qm

)n

e−zdz. (32)

To prove the convergence of {Fn}n≥0, we have the following

inequality between fn+1 and fn:

fn+1 = −Ws+ n

n+ 1

∫ ∞

0

(−Ws)
n

n!

(

−πm

z + 2
η2
pm

γ̄qm

)n+1

e−zdz

<
Ws+ n

n+ 1

πm
2

η2
pm

γ̄qm

∫ ∞

0

(−Ws)
n

n!

(

−πm

z + 2
η2
mγ̄qm

)n

e−zdz

=
Ws+ n

n+ 1
η2qmfn. (33)

If Ws < 1 or n → ∞, (33) translates to fn+1 < η2qmfn, i.e.

∃K > 0, ∀n > K, fn+1 < η2qmfn always holds. Therefore,

∀ε > 0, ∃Kε = K+⌈ln ε
fK

/ ln η2qm⌉ such that ∀n ≥ Kε, fn <

fKη
2(n−K)
qm < ε. Hence, the sequence {fn}n≥0 converges to

zero. Then, ∀i > j ≥ Kε, |Fi − Fj | = η2Ws
pm

∑i
n=j fn <

η2Ws
pm

fKεη
2(j−Kε)
pm /η2pm

< εη
2(j−Kε)
qm /η

2(1−Ws)
pm → 0. As a

result, the sequence {Fn}n≥0 is a Cauchy sequence. Accord-

ing to the completeness of the real numbers, the limit of

{Fn}n≥0, i.e. Mφ̂qm
(1−s) = limn→∞ Fn, exists. Due to the

properties of Cauchy sequence, Mφ̂qm
(1−s) can be accurately

approximated by FK if K is sufficiently large.

APPENDIX C

PROOF OF LEMMA 1

Since B̂k(w) is monotonically increasing with K̂k(s,−w)
and K̂k(s,−w) is monotonically increasing with Mφ̂k

(1−s),

the monotonicity of B̂k(w) with respect to ρm and ηk is

identical with that of Mφ̂k
(1−s). It can be readily verified that

∂Mφ̂k
(1−s)

∂ρm
≤ 0 and

∂Mφ̂k
(1−s)

∂η2

k
≤ 0. Hence, the monotonicity

of B̂k(w) is confirmed. In order to prove the continuity of

B̂k(w), we first show that infs{f(s, x)} is continuous with x
if f(s, x) is continuous with x. According to the definition of

continuity, we have, ∀ε > 0, ∀s, there always exists δ > 0 such

that ∀x2 ∈ {x : |x1−x| < δ}, |f(s, x1)−f(s, x2)| < ε holds.

Then, ∀s, we have f(s, x2) − ε < f(s, x1) < f(s, x2) + ε,

which translates to | infs{f(s, x1)} − infs{f(s, x2)}| < ε
by taking infimum on both sides. Hence, infs{f(s, x)} is

continuous with x. Since K̂k(s,−w) is continuous with respect

to ρm and ηk in the stability region, infs{K̂k(s,−w)} is

continuous with respect to ρm and ηk.

APPENDIX D

PROOF OF LEMMA 2

Denote the optimal power allocation coefficients of the m-

th receiver pair by η∗pm
and η∗qm . The corresponding upper

bounds of the delay target violation probabilities of the strong

and weak receivers are B̂∗
pm

(w) and B̂∗
qm(w), respectively.

Without loss of generality, we hypothetically assume that



13

B̂∗
pm

(w) > B̂∗
qm(w). According to Lemma 1, ∀ε > 0, there

exists δ > 0, when the following new power allocation

coefficients, η∗∗pm
= η∗pm

+ δ/2 and η∗∗qm =
√

1− (η∗∗pm
)2, are

adopted, the inequalities B̂∗
pm

(w) > B̂∗∗
pm

(w) > B̂∗
pm

(w) − ε

and B̂∗
qm(w) + ε > B̂∗∗

qm(w) > B̂∗
qm(w) hold. In other words,

B̂∗∗
pm

(w) and B̂∗∗
qm(w) are the upper bounds of the delay

target violation probabilities under the new power allocation

coefficients η∗∗pm
and η∗∗qm . For 0 < ε < B̂∗

pm
(w)−B̂∗

qm(w), we

have max{B̂∗∗
pm

(w), B̂∗∗
qm(w)} < max{B̂∗

pm
(w), B̂∗

qm(w)}.

This contradicts the hypothesis of optimality of η∗pm
and η∗qm ,

and therefore concludes the proof.

APPENDIX E

PROOF OF LEMMA 3

Note that, for a given w, B̂k(w) (k ∈ {pm, qm}) is

determined solely by Mφ̂k
(1 − s), since the Poisson arrival

rates are the same for the two receivers. Hence, a sufficient

condition of (25) is Mφ̂pm
(1 − s) = Mφ̂qm

(1 − s), which

holds if the two receivers have identically distributed SINRs,

i.e. ∀z ≥ 0,

1 +
η2pm

γ̄pm
z

2
= 1 +

η2qm γ̄qmz

2 + η2pm
γ̄qmz

, (34)

which equals to

1 +
1
2

η2
pm

γ̄pmz

= 1 +
1

2
η2
qm

γ̄qmz +
η2
pm

η2
qm

. (35)

This is reasonable since when lβpm
≫ lβqm , most of the transmit

power is allocated to the weak receiver to ensure the same

statistical delay performance. This leads to
η2

pm

η2
qm

≪ 1, which

translates to η2pm
≪ η2qm < 1. The ratio of the two terms

in the denominator on the right-hand side (RHS) of (35)

is rd = 2
γ̄qmη2

pm
z . Since z is exponentially distributed, the

probability that rd exceeds a large threshold T is given by

Pr{rd > T} = 1 − e
−2

γ̄qmη2
pm

T . If γ̄qm ≪ 1 or η2pm
≪ 1, we

have Pr{rd > T} → 1. In other words,
η2

pm

η2
qm

is negligible with

high probability, as compared to 2
η2
qm

γ̄qmz . Hence, (35) can be

approximated with high accuracy by

1 +
1
2

η2
pm

γ̄pmz

= 1 +
1
2

η2
qm

γ̄qmz

, (36)

from which η2pm
γ̄pm

= η2qm γ̄qm can be obtained. Together

with the constraint η2pm
+ η2qm = 1, we can achieve the power

allocation in (26). In turn, the result verifies the condition that

if lβpm
≫ lβqm then η2pm

≪ 1.

APPENDIX F

PROOF OF LEMMA 4

Let B̂k(w, lm, ρm) denote the upper bound of the delay

target violation probability with the receiver-to-BS distance

pair lm and the total transmit power ρm. According to

the analysis in Section IV-A, we have B̂pm(w, lm, ρm) =
B̂qm(w, lm, ρm) = B̂pm

(w, l̂m, ρ̂m) = B̂qm(w, l̂m, ρ̂m) =

ǫ. Since the Poisson arrival rate does not change,

B̂pm(w, lm, ρm) = B̂pm(w, l̂m, ρ̂m) translates to

E





(

1 +
η2pm

ρmz

2σ2lβpm

)−Ws


 = E





(

1 +
η̂2pm

ρ̂mz

2σ2 l̂βpm

)−Ws




(37)

which implies

ρm
ρ̂m

=
η̂2pm

lβpm

η2pm
l̂βpm

(38)

Substituting η2pm
= 1/(1 + lβqm/lβpm

) and η̂2pm
= 1/(1 +

l̂βqm/l̂βpm
) into (38), we can obtain (28).
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