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Abstract

In this paper we consider a power allocation problem in multi-class wireless systems. We focus on the downlink

of the system. Each mobile has a utility function that characterizes its degree of satisfaction for the received service.

The objective is to obtain a power allocation that maximizesthe total system utility. Typically, natural utility functions

for each mobile are non-concave. Hence, we cannot use existing convex optimization techniques to derive a global

optimal solution. We develop a simple (distributed) algorithm to obtain a power allocation that is asymptotically

optimal in the number of mobiles. The algorithm is based on dynamic pricing and consists of two stages. At the

mobile selectionstage, the base-station selects mobiles to which power is allocated. At thepower allocationstage, the

base-station allocates power to the selected mobiles. We provide numerical results that illustrate the performance of

our scheme. In particular, we show that our algorithm results in system performance that is close to the performance

of a global optimal solution in most cases.

Index Terms

Power allocation, downlink, wireless networks, and non-convex optimization.

I. I NTRODUCTION

In recent years, the area of power control in wireless networks has received significant interest from both

academic and industrial researchers. Power control plays an important role in the efficient management

of code division multiple access (CDMA) networks. Since voice has been the main service provided by
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wireless networks thus far, most research efforts have beendevoted to voice systems. In voice systems,

typically all users have the same quality of service (QoS) requirements and it is important that the signal to

interference and noise ratio (SINR) exceeds some minimum threshold. Hence, the main purpose of power

control in such systems is to eliminate the near-far effect by equalizing the SINR of each user by setting it

at the minimum SINR threshold [1], [2].

In the next generation of wireless networks, it is expected that services will have significantly differing

characteristics from the current voice-dominated systems. Already, the demand for various services with

different QoS requirements such as video and data is increasing. The required bandwidth for these services is

much higher than that for voice services, further compounding the scarcity of resources in wireless systems.

Therefore, to more efficiently accommodate services with different characteristics, we need a new approach

for power control in next generation wireless networks. A distinguishing feature of many of these new

services is their elasticity, i.e., they can adjust transmission rates (to some degree) based on the channel

conditions and the congestion level of the system. Hence, byappropriately exploiting the elasticity of such

services, we can maintain high network efficiency and prevent network congestion. Moreover, such services

are highly asymmetric, requiring more bandwidth in the downlink than the uplink. This implies that, in the

next generation of wireless networks, efficient resource allocation for the downlink becomes an important

issue [3], [4], [5].

Recently, the concept of utility (and pricing) from economics has been used to develop network control

algorithms by exploiting the elasticity of the services. The utility represents the degree of a user’s (service’s)

satisfaction when it acquires a certain amount of the resource, and the price is the cost per unit resource that

the user needs to pay. Hence, services with heterogeneous QoS requirements (elasticity) can be modeled

with different utility functions. The basic idea of these algorithms is to control the users’ behavior by

pricing resources appropriately to obtain the desired results, (e.g., high utilization for the overall system and

fairness among users).

In wireline networks, utility and pricing based algorithmshave been studied for distributed flow control

of best effort services [6], [7], [8]. In these works, the utility function is assumed to be a concave function of

the allocated rate, which results in a convex programming problem. Hence, the Karush-Kuhn-Tucker (KKT)

conditions or the duality theorem can be used to obtain the optimal solution.

Utility (and pricing) based control algorithms can also be applied to the power control problem in wireless

networks. However, the main difficulty in solving the problem is that, in general, it cannot be formulated as
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a convex programming problem, since the utility function may not be concave [9], [10], [11], [12]. Thus,

neither the KKT conditions nor the duality theorem providesa sufficient condition for the optimal solution.

In most works on utility and pricing for power control, only Nash equilibria, which are inefficient from the

point of overall system utility [13], have been obtained.

In [9], [10], [11], a power control problem is formulated as anon-cooperativeN -person game in which

each mobile transmits a power level that maximizes its (net)utility without considering the behavior of

the other mobiles. They show that their algorithms convergeto Nash equilibria. Further, in [10], [11], the

authors show that, by introducing pricing, system efficiency can be improved. In these works, the base-

station informs each mobile of a fixed price per unit power andeach mobile transmits at a power level that

maximizes its net utility (utility minus cost for power allocation). They show that the system utilization

significantly depends on the choice of price. However, they do not provide a systematic algorithm to find

an optimal price. In [12], [14], a downlink resource allocation problem is considered with restricted types

of utility functions. In [12], only voice services are considered and utility functions are modeled as step

functions and in [14], utility functions are modeled as concave functions. In these works, the authors obtain

the optimal prices for maximizing the total system utility and the total revenue. In [15], [16], capacity

regions and optimal power and rate allocation schemes are studied from an information theoretic point of

view.

In this paper, we study the downlink power allocation problem for multi-class wireless networks. We use

a utility based framework as in other works. However, the situation considered here differs from previous

works in many aspects. Primarily, we consider general typesof utility functions that are suitable for multi-

class systems and may be non-concave. This generalization requires a significantly different analysis than

the works of [12], [14]. We also study the problem of maximizing total system utility for heterogeneous

users that provides a higher system utility than those considered in [9], [10], [11].

We put an emphasis on the efficiency of the system. However, due to the non-convexity of the prob-

lem, obtaining a global optimal power allocation is difficult and, if feasible, would require a very complex

algorithm. Therefore, we develop a simple (distributed) algorithm that provides an asymptotically (in the

number of mobiles) optimal power allocation. This algorithm can be implemented in either a distributed

or centralized way. If implemented in a centralized way, thebase-station must know certain information

about the mobiles, such as path gain from the base-station tothe mobile, the interference level at the mobile,

the utility function of the mobile, and so on. In addition thecomputational burden is imposed all on the
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base-station. If implemented in a distributed way, the base-station need not know the detailed information

about the mobiles, and the computational burden can be distributed among the base-station and mobiles.

This is suitable for the case when the base-station does not know the utility function of the mobile [17], [18].

However this requires iterative communication between thebase-station and mobiles for the algorithm to

converge. In this case, our problem can be expressed as a utility and dynamic pricing problem. The dynamic

pricing attribute is also another distinguishing feature of this work compared with other works.

The rest of the paper is organized as follows. In Section II, we describe the system model considered in

this paper and formulate the basic problem. In Section III, we present the power allocation algorithm, which

consists of the mobile selection stage and the power allocation stage. In Section IV, we study the asymptotic

optimality (in the number of mobiles) and the lower bound on the performance of our power allocation. In

Section V, we study a special case when all mobiles are homogeneous. Numerical results are provided in

Section VI. Finally, we conclude in Section VII.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Our objective is to determine the appropriate power levels at which the base-station should communicate

to the different mobiles (the downlink power allocation problem in a multi-class wireless network). We focus

on a single cell consisting of a single base-station andM mobiles. The system is assumed to be time-slotted.

At each time-slot, the power allocation algorithm is executed. A time-slot in our system is an arbitrary

interval of time and could consist of one packet or several packets. We focus on a time-slot assuming that

the path gain, background noise, and intercell interference for each mobile do not change during this time-

slot. Each mobile communicates with the base-station. For downlink communication, the base-station has

a maximum power limit,PT . It allocates power to each mobile within the power limit (i.e., the sum of the

power allocated to each mobile cannot exceed the power limit). Each mobilei, i = 1, 2, · · ·M , has its own

utility function, Ui that represents the degree of mobilei’s satisfaction of the received QoS and is a function

of the “generic” signal quality for mobilei. We first defineγi, the “generic” signal quality for mobilei as

follows:

γi(P̄ ) =
NiGiPi

Giθ(
∑M

m=1 Pm − Pi) + Ii

=
NiPi

θ(
∑M

m=1 Pm − Pi) + Ai

, (1)

where
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Pi: Allocated power for mobilei.

P̄ : Power allocation vector,(P1, P2, · · · , PM).

Ni: Constant for mobilei.

Gi: Path gain from the base-station to mobilei.

Ii: Background noise and intercell interference to mobilei.

Ai: “Goodness” of the transmission environment of mobilei, which is defined byIi/Gi.

M : Number of mobiles in the cell.

θ: Orthogonality factor (0 ≤ θ ≤ 1).

Note that ifθ 6= 0, γi and the utility functionUi depend not only on mobilei’s own power allocation but also

on the power allocations of all the other mobiles. In the above equation, ifNi = 1, then the signal quality

metricγi represents the SINR for mobilei. If Ni is the processing gain for mobilei, which is defined by

W/Ri, whereW is the chip rate for the CDMA network andRi is the data rate at which the base-station

transmits to mobilei, thenγi represents the bit energy to interference density ratio of mobile i, (Eb/I0)i, in

the CDMA system. IfNi = W , thenγi = (Eb/I0)iRi of mobile i in the CDMA system. In this case, for a

given power allocation, i.e., for a givenγi(P̄ ) , Ri and(Eb/I0)i have an inversely proportional relationship.

Hence, there exist appropriateR∗
i and(Eb/I0)

∗
i for a givenγi(P̄ ), and they may have different values for

differentγi(P̄ ). Hence, in this case, each mobile may receive variable data rates (i.e., variable processing

gains) and they can be adjusted appropriately based on the power allocation. Thus, the utility value can

depends onR∗
i and(Eb/I0)

∗
i .

We further assume thatUi has the following properties.

Assumptions:

(a) Ui is an increasing function ofγi.

(b) Ui is twice continuously differentiable.

(c) Ui(0) = 0.

(d) Ui is bounded above.

(e) If
∑M

i=1 Pi = PT
1, thenUi(γi(P̄ )) is one of three types: a sigmoidal-like2, a strictly concave, or a

strictly convex function ofPi, its own power allocation.
1We will show this in Lemma 1.
2A function f(x) is said to be a sigmoidal-like function if it has one inflection point,xo and d2f(x)

dx2 > 0 for x < xo and d2f(x)

dx2 < 0 for

x > xo.
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Fig. 1. Probabilities of packet transmission success for BPSK, DPSK, and FSK modulation schemes.

Note that typically, most utility functions used in wireline or wireless networks can be represented by three

types of functions in assumption (e) [11], [19].

For instance, we can define the utility function of each mobile i as its expected throughput, which is

defined asUi(γi(P )) = Rifi(γi(P )), whereRi is the data rate received at mobilei andfi(γi(P )) is the

probability of packet transmission success of mobilei. In Fig. 1, we provide the probability of packet trans-

mission success for various modulation schemes such as Binary Phase-Shift Keying (BPSK), Differential

Phase-Shift Keying (DPSK), and Frequency-Shift Keying (FSK) [20]. We assume that a packet consists of

800 bits without channel coding and setPT = 10, θ = 1, Ni = 16, andAi = 0.7407. As shown in this

figure, the probability of packet transmission success is represented by a sigmoidal-like function of its power

allocation. Hence, in this case, we have sigmoidal-like utility functions.

The goal of this paper is to obtain the power allocation for each mobile that maximizes the total system

utility (i.e., the sum of the utilities of all mobiles). The basic formulation of this problem is given by the

following optimization problem:

(A) max
P̄

M
∑

i=1

Ui(γi(P̄ ))

subject to
M
∑

i=1

Pi ≤ PT ,

0 ≤ Pi ≤ PT , i = 1, 2, · · · ,M.

In problem (A), if we define the utility function of the mobileas its expected throughput, the objective of

this problem will be to maximize the total expected throughput of the system. Further, if eachi corresponds

to each sub-carrier in an Orthogonal Frequency Division Multiplexing (OFDM) system, problem (A) can be

applied to power allocation for sub-carriers in the OFDM system.
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III. POWER ALLOCATION

We consider only the distributed solution, i.e., a user based approach. However, the algorithm can be

easily executed in a centralized way at the base-station, ifeach mobilei informs the base-station of the

“goodness” of its transmission environment,Ai and its utility function,Ui. Our power allocation algorithm

consists of two stages. In the first stage, mobiles to which power is allocated are selected, and, then, power is

allocated to the selected mobiles in the second stage. Beforewe describe the details of our power allocation

algorithm, we decompose problem (A) as a mobile problem and abase-station problem. To do this, we need

certain results outlined next.

The following lemma will show that to maximize the total system utility, the base-station must transmit at

its maximum power limit,PT .

Lemma 1: IfP̄ = (P1, P2, · · · , PM) is a power allocation and
∑M

i=1 Pi < PT , then we can find another

power allocationP̄ ∗ = (P ∗
1 , P ∗

2 , · · · , P ∗
M) such that

∑M
m=1 P ∗

m = PT and
∑M

i=1 Ui(γi(P̄
∗)) >

∑M
i=1 Ui(γi(P̄ )).

Proof: See Appendix A.

Hence, the base-station always transmits at the maximum power level,PT and
∑M

i=1 Pi = PT . So, we can

rewriteγi(P̄ ) in (1) as

γi(P̄ ) =
NiPi

θ(
∑M

m=1 Pm − Pi) + Ai

=
NiPi

θ(PT − Pi) + Ai

△
= γi(Pi), i = 1, 2, · · · ,M.

Note thatγi(Pi) does not depend on the power allocation for the other mobilesand so problem (A) is

equivalent to the following problem.

(B) max
P̄

M
∑

i=1

Ui(γi(Pi))

subject to
M
∑

i=1

Pi ≤ PT ,

0 ≤ Pi ≤ PT , i = 1, 2, · · · ,M.

Since
∑M

i=1 Pi = PT , from assumption (e) on the utility function,Ui(γi(Pi)) is one of three types: a
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sigmoidal-like, a strictly concave, or a strictly convex function ofPi. We now defineP o
i as

P o
i =



























the inflection point ofUi(γi(Pi)), if Ui(γi(Pi)) is sigmoidal-like

0, if Ui(γi(Pi)) is concave

PT , if Ui(γi(Pi)) is convex

.

Note that since we allow non-concave utility functions, in general, (B) is a non-convex optimization problem.

We will develop a simple (distributed) algorithm that attempts to approximate the performance of the global

optimal solution, and show that the performance of this algorithm asymptotically (in the number of mobiles)

converges to the global optimum. To that end, we will use the following result.

Lemma 2: Let us define a Lagrangean function associated with problem (B) as

L(P̄ , λ) =
M
∑

i=1

Ui(γi(Pi)) + λ(PT −
M
∑

i=1

Pi),

S = {P̄ |0̄ ≤ P̄ ≤ P̄T},

and

Y (λ) = {x̄ ∈ S | L(x̄, λ) = max
P̄∈S

{L(P̄ , λ)}},

where0̄ = (0, 0, · · · , 0) andP̄T = (PT , PT , · · · , PT ). Then, for anyλ ≥ 0, P̄ (λ) ∈ Y (λ) is a global optimal

solution of the following problem.

max
P̄

M
∑

i=1

Ui(γi(Pi))

subject to
M
∑

i=1

Pi ≤
M
∑

i=1

Pi(λ)

0 ≤ Pi ≤ PT , i = 1, 2, · · · ,M,

(2)

whereP̄ (λ) = (P1(λ), P2(λ), · · · , PM(λ)).

Proof: This immediately follows from Property 6.6 in [21].

Lemma 2 implies that if we find aλ∗ above such that
∑M

i=1 Pi(λ
∗) = PT (whenPT is the threshold in problem

(A)), the global optimal solution of problem (A) can be obtained. However, when we cannot find such aλ∗

(this case is described later in this section),P̄ (λ) is a global optimal solution of the perturbed problem that

differs from problem (A) by|PT −
∑M

i=1 Pi(λ)| on the constraint. From Theorem 5.4 in [21], we can show

that
∑M

i=1 Ui(γi(P
o
i )) −

∑M
i=1 Ui(γi(Pi(λ))) ≤ λ(PT −

∑M
i=1 Pi(λ)), whereP̄ o = (P o

1 , P o
2 , · · · , P o

M) is a

global optimal solution of problem (A). Hence, ifPT ≈
∑M

i=1 Pi(λ), we expect that
∑M

i=1 Ui(γi(P
o
i )) ≈
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∑M
i=1 Ui(γi(Pi(λ))). Therefore, in this paper, we will attempt to minimize this quantity by considering the

following problem, and later on, we will also show that it provides an asymptotically (in the number of

mobiles) optimal power allocation.

(C) min
λ

{PT −
M
∑

i=1

Pi(λ)}

subject to P̄ (λ) = arg max
0̄≤P̄≤P̄T

{L(P̄ , λ)}

M
∑

i=1

Pi(λ) ≤ PT .

We first consider the equation,̄P (λ) = arg max0̄≤P̄≤P̄T
{L(P̄ , λ)}. SinceL(P̄ , λ) is separable in̄P , P̄ (λ)

solves the equation if and only if it solves the following problem.

(Di) Pi(λ) ∈ {0 ≤ q ≤ PT | Li(q, λ) = max
0≤P≤PT

Li(P, λ)}, i = 1, 2, · · · ,M,

whereLi(x, λ) = Ui(γi(x)) − λx. Note that the parameters in problem(Di) correspond only to mobile

i. By this property, we can decompose problem (C) as the mobile problem(Di) for each mobilei and the

following base-station problem.

(E) min
λ

{PT −
M
∑

i=1

Pi(λ)}

subject to
M
∑

i=1

Pi(λ) ≤ PT .

We can interpret the decomposed problems as follows. Based onλ, the price per unit power, each mobile

i tries to maximize its net utility (i.e., the utility minus the cost) by solving problem (Di). This is a greedy

procedure and is typically known as a non-cooperative property. In our formulation, by solving problem (E)

based on the power request of each mobile, the base-station adjusts the priceλ dynamically to reduce the

performance difference between the global optimal power allocation and its power allocation by minimizing

{PT −
∑M

i=1 Pi(λ)}. Therefore, this problem can be interpreted as a utility anddynamic pricing problem.

Using this interpretation, we can implement the power allocation algorithm in a distributed way. However, a

solution to problem (C) (or equivalently problems(Di) and (E)) may result in an inefficient power allocation,

i.e.,
∑M

i=1 Pi < PT . Further, due to the discontinuity and non-uniqueness ofPi(λ) (we will show this later),

if we implement the distributed solution using standard gradient descent techniques, the resultant power

allocations could oscillate (i.e., there would be no equilibrium solution). Hence, we will devise a strategy

to ensure that our solution will in fact have an efficient power allocations (
∑M

i=1 Pi = PT ) as well as have
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a stable solution. To that end, we divide the algorithm in twostages. The first stage is the mobile selection

stage. In this part, mobiles that can be allocated positive power are selected. The second stage is the power

allocation stage. Here, only selected mobiles participateat the power allocation stage and power is optimally

allocated to the selected mobiles.

A. Mobile Selection

Before, we develop an algorithm for mobile selection, we firststudy the properties ofPi(λ) in problem

(Di). We defineλmax
i for mobilei as:

λmax
i = min{λ ≥ 0 | max

0≤P≤PT

{Ui(γi(P )) − λP} = 0}.

The parameterλmax
i will play an important role in mobile selection. From Appendix B, it can be calculated

by

λmax
i =



























dUi(γi(P ))
dP

|P=0, if P o
i = 0

dUi(γi(P ))
dP

|P=P ′

i
, if 0 < P o

i < PT andP ′
i exists

Ui(γi(PT ))
PT

, otherwise

, (3)

whereP ′
i is a solution of the following equation.

Ui(γi(P )) − P
dUi(γi(P ))

dP
= 0, P o

i ≤ P ≤ PT .

Further, we defineλmin
i as

λmin
i = max{λ ≥ 0 | Pi(λ) = PT}.

We now summarize the properties ofPi(λ). Details are provided in Appendix C.

(P1) Pi(λ) is discontinuous and has two values (zero and positive) atλ = λmax
i , if Ui is a convex or a

sigmoidal-like function. In this case, the positive value is greater than or equal toP o
i .

(P2) Pi(λ) is continuous function ofλ, if Ui is a concave function.

(P3) Pi(λ) is a positive, continuous, and decreasing function ofλ for λmin
i ≤ λ < λmax

i .

(P4) Pi(λ) = 0 for λ > λmax
i .

(P5) Pi(λ) = PT for λ ≤ λmin
i .

When the price isλmax
i , Pi(λ

max
i ) can have two values. One is zero and the other is positive. In the sequel,

unless explicitly mentioned,Pi(λ
max
i ) will denote the positive value. Hence, with a slight abuse ofthe
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notation, we redefinePi(λ) in problem(Di) as

Pi(λ) = arg max
0≤P≤PT

{Ui(γi(P )) − λP}.

Note that there exists aλmax
i such thatPi(λ) = 0 for λ > λmax

i andPi(λ) > 0 for λ < λmax
i . Hence, we call

λmax
i themaximum willingness to payof mobilei.

Using these properties ofPi(λ), we can characterize the optimal mobile selection for problem (C), where

the optimal mobile selection is defined as follows.

Definition 1: We call a subset of mobilesS an optimal mobile selection for an optimization problem, if

there exists aλ∗ that makes̄P ∗ = (P ∗
1 , P ∗

2 , · · · , P ∗
M) a global optimal solution of the problem, where

P ∗
i =











Pi(λ
∗), if i ∈ S

0, otherwise
.

In the following, without loss of generality, we assume thatλmax
1 > λmax

2 > · · · > λmax
M

3.

Proposition 1: Selecting mobiles 1 fromK for power allocation is an optimal mobile selection for prob-

lem (C), where

K = max{1 ≤ j ≤ M |
j

∑

i=1

Pi(λ
max
j ) ≤ PT}.

Further, if
K

∑

i=1

Pi(λ
max
K+1) ≥ PT , K < M (4)

or

K = M, (5)

it is an optimal mobile selection for problem (A).

Proof: See Appendix D.

Proposition 1 implies that the mobiles are selected in adecreasing order ofλmax
i .

By using Proposition 1, we can develop a distributed algorithm for mobile selection.

Mobile Selection Algorithm (MSA)

(i) The base-station broadcasts its maximum power limit,PT , to all mobiles.

(ii) Each mobilei reports itsλmax
i to the base-station.

3Sinceλmax
i of each mobilei depends on its channel condition, in general, each mobilei has differentλmax

i . If some mobiles have the same

λmax
i , they can be ordered randomly.
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(iii) Let K = 1.

(iv) If K = M , select mobiles from 1 toK and stop.

(v) The base-station broadcasts price,λmax
K+1.

(vi) Each mobilei reports its power requestPi(λ
max
K+1) to the base-station.

(vii) If
∑K+1

i=1 Pi(λ
max
K+1) > PT , select mobiles from 1 toK and stop.

Otherwise, letK = K + 1 and go to (iv).

The MSA needsO(M) iterations for selecting mobiles.

B. Power Allocation for the Selected Mobiles

After the base-station selects mobiles using the MSA in the previous subsection, it allocates its power

to the selected mobiles. In this subsection, we assume that mobiles i, i = 1, 2, · · · , K are selected and

λmax
1 > λmax

2 > · · · > λmax
K . In the proof of Proposition 1 in Appendix D, we have shown that if the

condition in (4) or (5) is satisfied, to solve problem (C), we have to find aλ∗ such that
∑K

i=1 Pi(λ
∗) = PT ,

and it is also a global optimal power allocation for problem (A). Further, we have shown that otherwise, i.e.,

if
K

∑

i=1

Pi(λ
max
K+1) < PT and

K+1
∑

i=1

Pi(λ
max
K+1) > PT , K < M, (6)

the optimal solution of problem (C) isλmax
K+1 and

∑K
i=1 Pi(λ

max
K+1) < PT . Hence, in this case, the amount

of power that is allocated to the selected mobiles is less than PT at the optimal solution of problem (C).

However, from Lemma 1, we can increase the total system utility by allocating residual power to the mobiles.

Hence, the purpose of this stage is to find aλ∗ that satisfies
∑K

i=1 Pi(λ
∗) = PT . If there exists such a power

allocation, from Lemma 2, it is a global optimal power allocation for the selected mobiles.

To that end, the base-station problem (E) for the selected mobiles can be rewritten as

(F) min
λ

|PT −
K

∑

i=1

Pi(λ)|

subject to
K

∑

i=1

Pi(λ) ≤ PT ,

0 ≤ λ ≤ λmax
K .

Hence, in the power allocation stage, the base-station solves problem (F) and each selected mobilei, i =

1, 2, · · · , K solves its problem (Di). The next proposition will show that the solution of problem (F) and

problem (Di) is a global optimal solution for the set of selected mobiles.
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Proposition 2: There exists a power allocation,̄PK(λ∗) = (P1(λ
∗), P2(λ

∗), · · · , PK(λ∗)), which is a

solution of problem (F) and problem(Di). Further, it satisfies
∑K

i=1 Pi(λ
∗) = PT , i.e., it is a global optimal

solution of the following optimization problem:

(G) max
P̄

K
∑

i=1

Ui(γi(Pi))

subject to
K

∑

i=1

Pi ≤ PT ,

0 ≤ Pi ≤ PT , i = 1, 2, · · · , K.

Proof: See Appendix E.

As we have discussed before, Proposition 2 also implies thatif the condition in (4) or (5) is satisfied, it is

also a global optimal power allocation for all mobiles. But, when the condition in (6) is satisfied, it may

not be a global optimal power allocation for all mobiles. However, we will show that our power allocation

asymptotically optimal in the number of mobiles.

The power allocation algorithm can be implemented in several ways. First, if we consider problem (F), we

can use line search algorithms such as a golden section algorithm [21], since|PT −
∑K

i=1 Pi(λ)| is a unimodal

function. Secondly, since we know thatPT −
∑K

i=1 Pi(λ) has a unique root,λ∗ for 0 ≤ λ ≤ λmax
K and it is an

optimal solution of problem (F), we can use root finding algorithms such as a bisection algorithm. Finally, if

we consider problem (G), we can use a gradient based algorithm [8] or a penalty based algorithm [6], since

problem (G) is equivalent to the following convex programming problem.

(H) max
P̄

K
∑

i=1

Ui(γi(Pi))

subject to
∑K

i=1 Pi ≤ PT ,

Pi(λ
max
K ) ≤ Pi ≤ PT , i = 1, 2, · · · , K.

SincePi(λ
max
K ) ≥ Pi(λ

max
i ) ≥ P o

i , i = 1, 2, · · · , K, Ui(γi(Pi)) is a concave function forPi(λ
max
K ) ≤ Pi ≤

PT , i = 1, 2, · · · , K, which makes problem (H) a convex programming problem.

In this subsection, we implement the power allocation algorithm using a simple bisection algorithm.

Power Allocation Algorithm

Let ǫ be a small positive constant.

(i) Seta(1) = 0, b(1) = λmax
K andn = 1.

(ii) The base-station broadcasts the priceλ(n) = a(n)+b(n)

2
to all selected mobiles.
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(iii) Each mobilei reports its power requestsPi(λ
(n)) to the base-station.

(iv) If |b(n) − a(n)| ≤ 2ǫ or PT =
∑K

i=1 Pi(λ
(n)), allocate power to the selected mobiles asP̄K(λ(n)) =

(P1(λ
(n)), P2(λ

(n)), · · · , PK(λ(n))) and stop.

Otherwise, go to (v).

(v) If PT <
∑K

i=1 Pi(λ
(n)), seta(n+1) = λ(n) andb(n+1) = b(n).

Otherwise, seta(n+1) = a(n) andb(n+1) = λ(n).

(vi) n = n + 1 and go to (ii).

If the power allocation algorithm stops at iterationn∗, we have|λn∗

− λ∗| ≤ ǫ, whereλ∗ is an optimal

solution of problem (F). Hence, a smaller value ofǫ can provide a more accurate solution. Further, we can

easily show that 1
2n∗ λmax

K ≤ 2ǫ. Hence,

n∗ = min{n ≥
log λmax

K − log 2ǫ

log 2
, n = 1, 2, · · ·}.

IV. A SYMPTOTIC OPTIMALITY AND A LOWER BOUND ON THE PERFORMANCE

In this section, we first study the asymptotic optimality in the number of mobiles of our power allocation

and, then, also study the lower bound on the worst case performance.

Before we show the asymptotic optimality of our power allocation, we first study the upper bound on the

global optimal power allocation of problem (A). Let us defineUu
i (P ) as

Uu
i (P ) =











λmax
i P, if 0 ≤ P ≤ Pi(λ

max
i )

Ui(γi(P )), if Pi(λ
max
i ) ≤ P ≤ PT

. (7)

We now consider the following optimization problem.

(U) max
M
∑

i=1

Uu
i (Pi)

subject to
M
∑

i=1

Pi ≤ PT ,

0 ≤ Pi ≤ PT , i = 1, 2, · · · ,M.

Since we can easily show that for each mobilei, Uu
i (Pi) ≥ Ui(γi(Pi)), ∀Pi, problem (U) gives us an upper

bound on the total achievable system utility, i.e.,

M
∑

i=1

Ui(γi(P
∗
i )) ≤

M
∑

i=1

Uu
i (P u

i ),

whereP̄ ∗ = (P ∗
1 , P ∗

2 , · · · , P ∗
M) andP̄ u = (P u

1 , P u
2 , · · · , P u

M) be optimal solutions of problems (A) and (U),

respectively.
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We now obtain a bound on the difference between our power allocation and the upper bound on the global

optimal power allocation.

Proposition 3: LetP̄ p = (P p
1 , P p

2 , · · · , P p
M) be our power allocation and̄P u = (P u

1 , P u
2 , · · · , P u

M) be an

optimal solution of problem (U). Then,

M
∑

i=1

Uu
i (P u

i ) −
M
∑

i=1

Ui(γi(P
p
i )) ≤ umax,

whereumax = max1≤i≤M{Ui(γi(PT ))}.

Proof: See Appendix F.

Proposition 3 shows that the maximum difference between thesystem utility obtained by our power alloca-

tion and the upper bound on the system utility is at most the utility of one mobile. Further, since we assume

that the utility function of each mobile is bounded, from Proposition 3, our power allocation can be shown

to be asymptotically optimal in the following sense.

Corollary 1: Let P̄ p = (P p
1 , P p

2 , · · · , P p
M) be our power allocation and̄P ∗ = (P ∗

1 , P ∗
2 , · · · , P ∗

M) be an

optimal solution of problem (A). If
∑M

i=1 Ui(γi(P
∗
i )) → ∞ asM → ∞,

∑M
i=1 Ui(γi(P

p
i ))

∑M
i=1 Ui(γi(P ∗

i ))
→ 1, asM → ∞.

Corollary 1 implies that if there are many mobiles requiring asmall amount of power in the system (i.e.,

if the orthogonality factor of the system is small, or if eachmobile has a large processing gain or a good

transmission environment), our power allocation scheme will yield a solution close to the global optimal

solution.

We now study the worst case performance of our algorithm. Thenext proposition provides us a lower

bound on the performance of our algorithm.

Proposition 4: LetP̄ p = (P p
1 , P p

2 , · · · , P p
M) be our power allocation and̄P ∗ = (P ∗

1 , P ∗
2 , · · · , P ∗

M) be an

optimal solution of problem (A). Then,

∑M
i=1 Ui(γi(P

P
i ))

∑M
i=1 Ui(γi(P ∗

i ))
≥

umin

umax + umin

,

whereumin = min1≤i≤M{Ui(γi(PT ))} andumax = max1≤i≤M{Ui(γi(PT ))}.

Proof: See Appendix G.
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The implication is that the worst case performance can be poor when there are only few mobiles in the

system with utility functions that are quite different fromeach other and maximum willingness to pays that

are inversely proportional to utility values. However, in general, utility functions are comparable with each

other and a mobile with a higher utility value has a higher maximum willingness to pay than a mobile with

a lower utility value. Such a situation is unlikely to occur,especially when network providers will likely

require that users pick utility functions from a pre-definedset.

V. SPECIAL CASE: SINGLE CLASS OFMOBILES

In this section, we study, for illustration, a special case of our method in which all mobiles are homo-

geneous, i.e., each mobilei has the sameUi = U and the sameNi = N . We present this case because it

provides some insight.

In the homogeneous case, we can show the following properties. Details are provided in Appendix H. Let

P̄ ∗ = (P ∗
1 , · · · , P ∗

M) be a global optimal power allocation.

(S1) If Ai < Aj, thenλmax
i > λmax

j .

(S2) If Ai < Aj, thenγi(P
∗
i ) ≥ γj(P

∗
j ).

(S3) If P ∗
k = 0, thenP ∗

j = 0 for all j such thatAj > Ak.

Property (S1) shows the relationship betweenAi andλmax
i . This implies that in the homogeneous case,

mobiles are selected in an increasing order ofAi by the MSA since mobiles are selected in a decreasing order

of λmax
i by the MSA. This also implies that the mobile in a better transmission environment has a greater

chance to be selected by the MSA than the mobile in a worse transmission environment. Furthermore, from

property (S2), the former achieves a higher utility than thelatter. Property (S3) implies that, at the global

optimal solution, mobiles are selected in an ascending order of Ai. By properties (S1) and (S3), the order of

mobile selection in our power allocation is the same as that of the global optimal solution. Hence, the set

of mobiles selected by the MSA is a subset of the set of mobilesselected by the global optimal solution and

the relationship between mobiles in each set is as follows:

Aj ≤ Ai, for i, j ∈ V, j ∈ Z andi 6∈ Z,

whereV is the set of mobiles selected at the global optimal solutionandZ is the set of mobiles selected

at our power allocation. This implies that the MSA excludes only those mobiles that obtain relatively low

utility in the global optimal mobile selection and, thus, the difference between their achieved performance

should be small.
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Fig. 2. Cellular network model.

VI. N UMERICAL RESULTS

In this section, we provide numerical results of our power allocation scheme for the CDMA network.

Hence, the parametersNi andγi in (1) correspond to the processing gain andEb/I0 for mobilei, respectively.

For simplicity, we model the cellular system with nine square cells, as shown in Fig. 2. We assume that the

base-station is located at the center of each cell and that each base-station has the same maximum power

limit, PT . We focus on the cell at the center of the system assuming thatthe base-stations in the other cells

transmit at the maximum power level,PT . We model the path gain from a base-stationi to a mobilej, Gi,j

as follows:

Gi,j =
Ki,j

dα
i,j

,

wheredi,j is the distance from the base-stationi to mobile j, α is a distance loss exponent, andKi,j is

the log-normally distributed random variable with mean 0 and varianceσ2 (dB) that represents shadowing

[22]. The parameters for the system are summarized in Table I. For the simulation, we use a sigmoid utility

TABLE I

PARAMETERS FOR THESYSTEM

Maximum power (PT ) 10

Orthogonality factor (θ) 1

Distance loss exponent (α) 4

Variance of log-normal distribution (σ2) 8

Length of the side of the cell 1000
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Fig. 3. Sigmoid functions with differenta (b = 5).
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Fig. 4. Sigmoid functions with differentb (a = 3).

TABLE II

COMPARISON OFUTILITY FOR THE HOMOGENEOUSCASE (b = 7(dB), N = 64, M = 10, 95% CONFIDENCE)

a 0.5 1 2 4 8

Our 5.967± 0.009 7.004± 0.011 7.756± 0.013 8.256± 0.014 8.539± 0.015

Global 6.012± 0.009 7.093± 0.011 7.885± 0.012 8.392± 0.014 8.661± 0.014

Upper 6.236± 0.009 7.336± 0.011 8.131± 0.012 8.657± 0.013 8.956± 0.013

Our/Global 0.992 0.987 0.984 0.984 0.986

Our/Upper 0.957 0.955 0.954 0.954 0.953

function. The sigmoid utility function is expressed as

U(γ) = c{
1

1 + e−a(γ−b)
− d}. (8)

We normalize the sigmoid utility function such thatU(0) = 0 andU(∞) = 1 by settingc = 1+eab

eab and

d = 1
1+eab . The sigmoid utility functions with different values fora and b are provided in Figs. 3 and

4, respectively. For each experiment, we run the simulationprogram104 times and tabulate the average

values (e.g., the total system utility and the selection ratio of mobiles in each class, which is defined as the

ratio of the number of selected mobiles to the number of mobiles in each class). At each time epoch of the

simulation, each mobile is generated at a new location (withnew path gain) in the cell via an independent

uniform distribution.

We first provide simulation results for the single class case. We compare our power allocation, the global

optimal power allocation, and the upper bound on the global power optimal allocation. For the global
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TABLE III

COMPARISON OFUTILITY FOR THE HOMOGENEOUS CASE(a = 3, N = 64, M = 10, 95% CONFIDENCE)

b(dB) 3 5 7 9 11

Our 9.887± 0.006 9.391± 0.012 8.072± 0.014 6.302± 0.011 4.697± 0.009

Global 9.907± 0.004 9.475± 0.011 8.213± 0.013 6.459± 0.01 4.803± 0.007

Upper 9.923± 0.004 9.596± 0.01 8.472± 0.013 6.749± 0.009 5.09± 0.006

Our/Global 0.998 0.991 0.983 0.976 0.978

Our/Upper 0.996 0.979 0.955 0.934 0.923

TABLE IV

COMPARISON OFUTILITY FOR THE HOMOGENEOUSCASE (a = 3, b = 7(dB), M = 10, 95% CONFIDENCE)

N 8 16 32 64 128

Our 1.987± 0.002 2.982± 0.002 5.040± 0.008 8.065± 0.014 9.884± 0.006

Global 1.995± 0.001 2.991± 0.001 5.253± 0.008 8.210± 0.013 9.913± 0.005

Upper 2.227± 0.001 3.433± 0.001 5.544± 0.007 8.466± 0.013 9.944± 0.004

Our/Global 0.996 0.997 0.959 0.982 0.997

Our/Upper 0.892 0.868 0.909 0.953 0.994

optimal power allocation, we use an exhaustive search method. However by properties in Section V, the

search region can be reduced significantly for the single class case. In Tables II – IV, we provide the total

system utilities for each power allocation, varying the values ofa, b, andN . Table II indicates that as the

value ofa increases, the total system utility increases. As shown in Fig. 3, as the value ofa increases, less

power is required to achieve the same utility for the concaveregion and more power for the convex region.

In general, in our power allocation, mobiles that are allocated positive power are in the concave region, as

shown in Lemma 3 in Appendix B. Hence, generally, if other conditions are same, a mobile with a larger

value ofa in its utility function requires less power than a mobile with a smaller value ofa to achieve the

same utility. We say that, in this case, the former is moreefficientthan the latter. Hence, the results indicate

that as the mobiles in the system get more efficient, the totalsystem utility increases. Similar results are

provided in Tables III and IV. If other conditions are same, amobile with a smaller value ofb requires less

power than a mobile with a larger value ofb to achieve the same utility, as shown in Fig. 4, and the mobile
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TABLE V

COMPARISON OFPERFORMANCES OFTWO CLASSES(a1 = 2, b1 = b2 = 7(dB), N1 = N2 = 64, M = 10, 95% CONFIDENCE)

a2 0.5 1 2 4 8

Selection ratio of class 1 0.815± 0.003 0.795± 0.003 0.789± 0.003 0.789± 0.003 0.791± 0.002

Selection ratio of class 2 0.645± 0.004 0.728± 0.003 0.787± 0.003 0.83± 0.003 0.854± 0.002

Our 6.887± 0.012 7.388± 0.012 7.756± 0.013 8.013± 0.014 8.168± 0.025

Upper 7.177± 0.012 7.737± 0.012 8.137± 0.012 8.396± 0.013 8.559± 0.026

Our/Upper 0.96 0.955 0.953 0.954 0.954

TABLE VI

COMPARISON OFPERFORMANCES OFTWO CLASSES(a1 = a2 = 1, b1 = 9(dB), N1 = N2 = 64, M = 10, 95% CONFIDENCE)

b2 5 7 9 11 13

Selection ratio of class 1 0.569± 0.003 0.549± 0.003 0.572± 0.004 0.658± 0.003 0.755± 0.004

Selection ratio of class 2 0.873± 0.003 0.755± 0.004 0.571± 0.004 0.339± 0.005 0.149± 0.003

Our 6.896± 0.013 6.290± 0.011 5.575± 0.008 4.9± 0.012 4.45± 0.013

Upper 7.23± 0.013 6.663± 0.011 5.99± 0.008 5.338± 0.013 4.901± 0.011

Our/Upper 0.954 0.944 0.931 0.918 0.908

with a smaller value ofb is more efficient than the mobile with a larger value ofb. Therefore, as the value

of b decreases, the total system utility increases, as shown in Table III. Also, if other conditions are same,

a mobile with a larger value ofN requires less power than a mobile with a smaller value ofN to achieve

the sameγi (and thus, the same utility) from (1) and the mobile with a larger value ofN is more efficient

than the mobile with a smaller value ofN . Therefore, as the value ofN increases, the total system utility

increases, as shown in Table IV.

We also provide the ratio of the system utilities of our powerallocation to that of other allocations in

Tables II- IV. As shown in these tables, the ratios are quite close to 1 in most cases, which implies that the

system utility achieved by our power allocation is quite close to that achieved by the global optimal power

allocation.

In Tables V– VII, simulation results for a system with two classes of mobiles are provided. Each class

is generated with probability 0.5. For the utility functionof mobiles in classi, we seta = ai, b = bi and
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TABLE VII

COMPARISON OFPERFORMANCES OFTWO CLASSES(a1 = a2 = 1, b1 = b2 = 7(dB), N1 = 64, M = 10, 95% CONFIDENCE)

N2 16 32 64 128 256

Selection ratio of class 1 0.901± 0.003 0.814± 0.003 0.736± 0.004 0.778± 0.003 0.85± 0.003

Selection ratio of class 2 0.107± 0.002 0.366± 0.003 0.731± 0.004 0.943± 0.002 0.995± 0.001

Our 4.9473± 0.018 5.664± 0.012 6.999± 0.011 8.338± 0.015 9.065± 0.015

Upper 5.337± 0.017 6.039± 0.012 7.332± 0.011 8.611± 0.014 9.275± 0.013

Our/Upper 0.927 0.938 0.955 0.968 0.977

N = Ni. In this case, we do not provide the system utility achieved by the global optimal power allocation,

since it is not easy to obtain. However, as shown in the tables, the ratios of the system utility achieved by

our power allocation to that achieved by the upper bound on the global optimal power allocation are quite

close to 1 in most cases. This implies that, even in multi-class cases, the system utility achieved by our

power allocation is close to that achieved by the global optimal power allocation. In fact, as in the single

class cases, the ratio between these two allocations is muchcloser to 1 than the ratio between our power

allocation and the upper bound on the global optimal power allocation.

We also provide the mobile selection ratio for each class in Tables V– VII. The results show that the class

of mobiles with a larger value ofa (a smaller value ofb, or a larger value ofN ) has a higher selection ratio

than one with a smaller value ofa (a larger value ofb, or a smaller value ofN ). This implies that in our

power allocation, the mobile that is more efficient has a higher priority to be selected than the mobile that

is less efficient. This efficient utilization of power results in our power allocation achieving high system

utility. On the other hand, from the results, our power allocation in which only the efficiency of the system

is considered could be unfair to some mobiles (that are less efficient).

VII. C ONCLUSION

In this paper, we have developed a downlink power allocationalgorithm for multi-class wireless networks

by using a utility based framework allowing general types ofutility functions. The algorithm can be imple-

mented in a distributed way using a utility and dynamic pricing framework. We have shown that it provides

an asymptotically (in the number of mobiles) optimal power allocation. Further, numerical results show that

its performance is close to that of the global optimal power allocation.
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Power is a fundamental resource in wireless networks and other resource allocation problems in wireless

networks, such as data rate and time must be studied based on the power allocation scheme. Therefore, even

though in this paper, we consider only the power allocation problem in wireless networks, our framework

can be extended to other resource allocation problems as well [23].

In this paper, we have focused only on the efficiency of the system without considering fairness among the

mobiles, which could result in unfair power allocation for some mobiles. However, in resource allocation,

considering fairness as well as efficiency such as the opportunistic scheduling schemes in [24], [25], [26] is

an important issue and is a topic for future research.

APPENDIX

A. Proof of Lemma 1

If
∑M

i=1 Pi < PT , there exists anα > 1 such that

M
∑

i=1

Pi < α
M
∑

i=1

Pi = PT .

We defineP ∗
i = αPi for i = 1, 2, · · · ,M , then

γi(P̄
∗) =

NiP
∗
i

θ(
M
∑

j=1

P ∗
j − P ∗

i ) + Ai

=
αNiPi

θ(
M
∑

j=1

αPj − αPi) + Ai

>
αNiPi

θ(
M
∑

j=1

αPj − αPi) + αAi

= γi(P̄ ), i = 1, 2, · · · ,M.

Therefore,Ui(γi(P̄
∗)) > Ui(γi(P̄ )) for all i, sinceUi is an increasing function ofγi.

B. Proof of (3)

We first prove the following lemma, from which if mobilei requests positive powerPi(λ) at priceλ, then

Pi(λ) = PT or Ui(γi(Pi(λ))) is in the concave region.

Lemma 3:Pi(λ) = 0 or P o
i ≤ Pi(λ) ≤ PT .
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Proof: If 0 < P (λ) < PT , it must satisfy the first and the second order necessary conditions for

optimality [21], i.e., dUi(γi(P ))
dP

|P=P (λ) = λ, d2Ui(γi(P ))
dP 2 |P=P (λ) ≤ 0, sinceP (λ) is an interior point. This

implies thatPi(λ) = 0 or P o
i ≤ Pi(λ) ≤ PT .

From Lemma 3, if the utility functionUi, of mobilei, is convex, then mobilei will always request a power

level of 0 orPT .

We now prove (3). We first definewi(λ) as

wi(λ) = max
P o

i
≤P≤PT

{Ui(γi(P )) − λP},

which is a non-increasing function ofλ. Then, by Lemma 3,

max
0≤P≤PT

{Ui(γi(P )) − λP} = max{0, wi(λ)}

and

λmax
i = min{λ ≥ 0 | wi(λ) ≤ 0}. (9)

We now defineqi(λ) = arg maxP o
i
≤P≤PT

{Ui(γi(P ))−λP}, λT
i = dUi(γi(P ))

dP
|P=PT

, andλo
i = dUi(γi(P ))

dP
|P=P o

i
.

Then, sinceUi(γi(P )) is a concave function forP o
i ≤ P ≤ PT , dUi(γi(P ))

dP
is a decreasing function for

P o
i ≤ P ≤ PT . Hence,λT

i ≤ λo
i and

qi(λ) =



























PT , if λ < λT
i

q∗i (λ), if λT
i ≤ λ ≤ λo

i

P o
i , if λ > λo

i

, (10)

whereq∗i (λ) is a unique solution of

dUi(γi(P ))

dP
= λ, P o

i ≤ P ≤ PT . (11)

Therefore,

wi(λ) =



























Ui(γi(PT )) − λPT , if λ < λT
i

Ui(γi(q
∗
i (λ))) − λq∗i (λ), if λT

i ≤ λ ≤ λo
i

Ui(γi(P
o
i )) − λP o

i , if λ > λo
i

. (12)

Since, by the assumptions on the utility functions,dUi(γi(P ))
dP

is a continuous function,qi(λ) is a continuous

function and, thus,wi(λ) is a continuous function. Further, we can easily show thatwi(λ) is a decreasing
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function forλ ≤ λo
i , wi(λ

o
i ) ≤ 0, andwi(0) > 0. This implies thatwi(λ) = 0 has a unique solution for

0 ≤ λ ≤ λo
i and, by (9),λmax

i is its solution. Hence, there exists a uniqueλmax
i for mobilei.

We now consider the following equation:

Ui(γi(P )) −
dUi(γi(P ))

dP
P = 0, P o

i ≤ P ≤ PT . (13)

Then, by (10) - (12), there exists a solutionP ′
i of the equation in (13) if and only if there exists a solutionλ′

i

of w(λ) = 0, λT
i ≤ λ ≤ λo

i . We first assume that there exists a solutionP ′
i of the equation in (13) and let

λ′
i = dUi(γi(P ))

dP
|P=P ′

i
. Hence,qi(λ

′
i) = P ′

i andwi(λ
′
i) = 0. This implies thatλmax

i = λ′
i = dUi(γi(P ))

dP
|P=P ′

i
.

We now assume that there is no solution of the equation in (13). This implies thatwi(λ) 6= 0, λT
i ≤ λ ≤ λo

i .

However, since we have shown thatwi(λ) = 0 has a solution for0 ≤ λ ≤ λo
i , it has a solutionλmax

i < λT
i .

Hence, by (12),λmax
i = Ui(γi(PT ))

PT
.

If P o
i = 0, i.e.,Ui(γi(P )) is a concave function, the equation in (13) always has a solution atP ′

i = P o
i = 0.

Hence, in this case,λmax
i = λo

i = dUi(γi(P ))
dP

|P=0. If P o
i = PT , i.e.,Ui(γi(P )) is a convex function, we can

easily show thatUi(γi(PT )) < dUi(γi(P ))
dP

|P=PT
PT . Hence, the equation in (13) has no solution and, thus,

λmax
i = Ui(γi(PT ))

PT
.

C. Properties ofPi(λ)

In this subsection, we study the properties ofPi(λ). Throughout this subsection,λT
i , λo

i , qi(λ), andwi(λ)

are defined as in Appendix B and we will use their properties that have been shown there. For convenience,

we summarize some useful properties as follows:

(B1) λT
i ≤ λo

i .

(B2) wi(λ
max
i ) = 0.

(B3) If there is a solutionP ′
i of the equation in (13), thenqi(λ

max
i ) = P ′

i andλT
i ≤ λmax

i ≤ λo
i .

(B4) If there is no solution of the equation in (13), thenλmax
i < λT

i .

(B5) If P o
i = 0, thenλmax

i = λo
i and there exists a solutionP ′

i = 0 of the equation in (13).

(B6) If P o
i = PT , then there is no solution of the equation in (13).

(B7) wi(λ) is a decreasing function forλ ≤ λo
i .

Further, by using the definitions ofwi(λ) andqi(λ), we can representPi(λ) as

Pi(λ) ∈



























{0}, if wi(λ) < 0

{0, qi(λ)}, if wi(λ) = 0

{qi(λ)}, if wi(λ) > 0

. (14)
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Property 1:

Pi(λ
max
i ) ∈



























{0}, if P o
i = 0

{0, P ′
i}, if 0 < P o

i < PT andP ′
i exists

{0, PT}, otherwise

,

whereP ′
i is a solution of the equation in (13).

Proof: From (B2) and (14),Pi(λ
max
i ) ∈ {0, qi(λ

max
i )}. If there exists a solutionP ′

i of the equation in

(13), thenqi(λ
max
i ) = P ′

i by (B3). Otherwise,λmax
i < λT

i by (B4) and, thus,qi(λ
max
i ) = PT by (10). Hence,

if P o
i = 0, then,Pi(λ

max
i ) ∈ {0} by (B5). If P o

i = PT , thenPi(λ
max
i ) ∈ {0, PT} by (B6).

Property 2: Pi(λ) ∈ {0} for λ > λmax
i .

Proof: If P o
i = 0, thenqi(λ) = P o

i = 0 for λ > λmax
i by (B5) and (10). Hence,Pi(λ) ∈ {0} for

λ > λmax
i by (14). If P o

i 6= 0, then we can easily show thatwi(λ) is a decreasing function. This implies that

w(λ) < 0 for λ > λmax
i by (B2). Hence,Pi(λ) ∈ {0} for λ > λmax

i by (14).

Property 3: Pi(λ) is non-increasing inλ. Moreover,Pi(λ) is a decreasing and continuous function ofλ

for λmin
i ≤ λ < λmax

i , if λmin
i 6= λmax

i , whereλmin
i = max{λ ≥ 0|Pi(λ) = PT}.

Proof: We will prove this by considering two different cases.

We first suppose that there is no solution of the equation in (13) or that these existsP ′
i , a solution of the

equation in (13) andP ′
i = PT . By Property 2,Pi(λ) ∈ {0} for λ > λmax

i and by Property 1,Pi(λ
max
i ) ∈

{0, PT}. In this case, we can show thatλmax
i ≤ λT

i by (B4) and (3). Hence,wi(λ) > 0 for λ < λmax
i by

(B1), (B2), and (B7) andqi(λ) = PT for λ < λmax
i by (10). This implies thatP (λ) ∈ {PT} for λ < λmax

i

by (14). Hence,P (λ) is non-increasing inλ. Further, by the definition ofλmin
i , in this case,λmax

i = λmin
i .

We now suppose that there existsP ′
i , a solution of the equation in (13) andP ′

i 6= PT . In this case,

λT
i ≤ λmax

i ≤ λo
i by (B3). However, sinceP ′

i 6= PT , λT
i < λmax

i ≤ λo
i . By Property 2,Pi(λ) ∈ {0} for

λ > λmax
i . By Property 1 and (B3),Pi(λ

max
i ) = {0, P ′

i} andP ′
i = qi(λ

max
i ). In a similar way to the above

case, we can show thatwi(λ) > 0 for 0 ≤ λ < λmax
i . This implies thatPi(λ) ∈ {qi(λ)} for 0 ≤ λ < λmax

i

by (14). Hence, by (10),Pi(λ) ∈ {PT} for λ < λT
i . Again, by (10),qi(λ) is a solution of

dUi(γi(P ))

dP
= λ, P o

i ≤ P ≤ PT
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for λT
i ≤ λ ≤ λmax

i . Since, by the assumptions on the utility function,dUi(γi(P ))
dP

is a continuous and

decreasing function forP o
i ≤ P ≤ PT , qi(λ) is a continuous and decreasing function forλT

i ≤ λ ≤ λmax
i .

Hence,Pi(λ) is a continuous and decreasing function forλT
i ≤ λ < λmax

i and Pi(λ) > qi(λ
max
i ) for

λT
i ≤ λ < λmax

i . Further, by the definition ofλT
i , Pi(λ

T
i ) ∈ {PT}. This implies thatλmin

i = λT
i . Hence,

P (λ) is a non-increasing inλ and it is a continuous and decreasing function forλmin
i ≤ λ < λmax

i .

D. Proof of Proposition 1

WhenK = max{1 ≤ j ≤ M |
∑j

i=1 Pi(λ
max
j ) ≤ PT}, we can have the following three cases.

We first consider the case whenK = M . Then,
∑M

i=1 Pi(λ
max
M ) ≤ PT . Since eachPi(λ), i = 1, 2, · · · ,M

is a continuous and non-increasing forλ ≤ λmax
M , we can find aλ∗ such that

∑M
i=1 Pi(λ

∗) = PT and

λ∗ ≤ λmax
M . This implies thatλ∗ is an optimal solution of problem (C). Hence, selecting mobiles from 1 to

M is an optimal mobile selection for problem (C). Further, since
∑M

i=1 Pi(λ
∗) = PT , by Lemma 2, it is an

optimal mobile selection for problem (A).

We now consider the case whenK < M and
∑K

i=1 Pi(λ
max
K+1) ≥ PT . In this case, in a similar way to

the above case, we can find aλ∗ such that
∑M

i=1 Pi(λ
∗) =

∑K
i=1 Pi(λ

∗) = PT andλK+1 ≤ λ∗ ≤ λK (if

λ∗ = λmax
K+1, PK+1(λ

∗) implies zero). Hence, selecting mobiles from 1 toK is an optimal mobile selection

for problems (A) and (C).

Finally, we consider the case whenK < M and
∑K

i=1 Pi(λ
max
K+1) < PT . Then, by the definition ofK,

∑K+1
i=1 Pi(λ

max
K+1) > PT . In this case, due to the non-increasing property ofPi(λ), λ∗ = λmax

K+1 is an optimal

solution of problem (C) and selecting mobiles from 1 toK is an optimal mobile selection for problem

(C). However, since
∑M

i=1 Pi(λ
∗) =

∑K
i=1 Pi(λ

∗) < PT (wherePK+1(λ
∗) implies zero) and

∑M
i=1 Pi(λ

∗) =

∑K+1
i=1 Pi(λ

∗) > PT (wherePK+1(λ
∗) implies positive), in this case, there is noλo such that

∑M
i=1 Pi(λ

o) =

PT and this mobile selection may not be an optimal mobile selection for problem (A).

E. Proof of Proposition 2

By Proposition 1,
∑K

i=1 Pi(λK) ≤ PT andPi(λ), i = 1, 2, · · · , K is a non-increasing and continuous

function for0 ≤ λ ≤ λK . Hence, there always existsλ∗ ≤ λmax
K that satisfies

∑K
i=1 P (λ∗) = PT . Therefore,

by Lemma 2,P̄K(λ∗) = (P1(λ
∗), P2(λ

∗), · · · , PK(λ∗)) is a global optimal solution for problem (G).
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F. Proof of Proposition 3

We assume that mobiles from 1 toK are selected by the MSA andλmax
1 > λmax

2 > · · · > λmax
M . We

definePi,u(λ) andλmax
i,u as

Pi,u(λ) = arg max
0≤P≤PT

{Uu
i (P ) − λP}

and

λmax
i,u = min{λ ≥ 0 | max

0≤P≤PT

{Uu(P ) − λP} = 0}.

Then, we can easily show that

Pi,u(λ) =



























Pi(λ) (> 0), if λ < λmax
i

{P | 0 ≤ P ≤ Pi(λ
max
i )} (∋ Pi(λ)), if λ = λmax

i

Pi(λ) (= 0), if λ > λmax
i

. (15)

This implies thatmax0≤P≤PT
{Uu(P ) − λP} > 0 for λ < λmax

i andmax0≤P≤PT
{Uu(P ) − λP} = 0 for

λ ≥ λmax
i . Hence,λmax

i,u = λmax
i .

We first suppose that the condition in (4) or (5) is satisfied. In this case, from the proof of Proposition 1

in Appendix D, there exists aλ∗ such thatPi(λ
∗) = P p

i , i = 1, 2, · · · ,M and
∑M

i=1 Pi(λ
∗) = PT . Since,

P p
i ∈ Pi,u(λ

∗) by (15) and
∑M

i=1 P p
i = PT , by Lemma 2,P̄ p is a global optimal solution of problem (U).

Hence, we can takēP u = P̄ p. Further, ifP p
i > 0, thenP p

i ≥ Pi(λ
max
i ). This implies that, by the definition

of Uu
i in (7), Uu

i (P p
i ) = Ui(γi(P

p
i )) for i = 1, 2, · · · ,M . Hence,

M
∑

i=1

Uu
i (P u

i ) =
M
∑

i=1

Ui(γi(P
p
i )).

We now suppose that neither of the condition in (4) nor (5) is satisfied, i.e., from (6),
∑K

i=1 Pi(λ
max
K+1) < PT

and
∑K+1

i=1 Pi(λ
max
K+1) > PT , K < M . In this case, from Propositions 1 and 2,P p

i = Pi(λ
∗) for i =

1, 2, · · · , K andP p
i = 0 for i = K + 1, K + 2, · · · ,M , whereλ∗ satisfies

∑K
i=1 Pi(λ

∗) = PT . This implies

thatλ∗ ≤ λmax
K+1 and, thus,P p

i ≥ Pi(λ
max
K+1) for i = 1, 2, · · · , K. Hence,

M
∑

i=1

Ui(γi(P
p
i )) =

K
∑

i=1

Ui(γi(P
p
i )) ≥

K
∑

i=1

Ui(γi(Pi(λ
max
K+1))). (16)

We now define

P u
i =



























Pi(λ
max
K+1), if i = 1, 2, · · · , K

PT −
∑K

i=1 Pi(λ
max
K+1), if i = K + 1

0, if i = K + 2, K + 3, · · · ,M

.
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Then,
∑M

i=1 P u
i = PT andP u

i ∈ Pi(λ
max
K+1) for i = 1, 2, · · · ,M by (15). Hence, by Lemma 2, it is a global

optimal solution of problem (U). Further, sincePi(λ
max
K+1) ≥ Pi(λ

max
i ) for i = 1, 2, · · · , K, by the definition

of Uu
i in (7),

Uu
i (P u

i ) = Ui(γi(Pi(λ
max
K+1))), i = 1, 2, · · · , K. (17)

Therefore, by (16) and (17),

M
∑

i=1

Uu
i (P u

i ) −
M
∑

i=1

Ui(γi(P
p
i )) ≤

K
∑

i=1

Uu
i (Pi(λ

max
K+1)) + Uu

K+1(PT −
K

∑

i=1

Pi(λ
max
K+1)) −

K
∑

i=1

Ui(γi(Pi(λ
max
K+1)))

= Uu
K+1(PT −

K
∑

i=1

Pi(λ
max
K+1))

≤ Uu
K+1(PT )

= UK+1(γK+1(PT ))

≤ max
1≤i≤M

{Ui(γi(PT ))}.

G. Proof of Proposition 4

By Proposition 3,
∑M

i=1 Ui(γi(P
p
i ))

∑M
i=1 Ui(γi(P ∗

i ))
≥

∑M
i=1 Ui(γi(P

p
i ))

umax +
∑M

i=1 Ui(γi(P
p
i ))

.

Since by Proposition 2, our power allocation is a global optimal power allocation for the selected mobiles,

M
∑

i=1

Ui(γi(P
p
i )) ≥ Uj(γj(PT )) ≥ umin,

where mobilej is one of the selected mobiles by the MSA. This implies that

∑M
i=1 Ui(γi(P

p
i ))

∑M
i=1 Ui(γi(P ∗

i ))
≥

umin

umax + umin

.

H. Proof of Properties in the Homogeneous Case

1) Proof of property (S1): SinceUi(γ) = Uj(γ) andNi = Nj, Ai < Aj implies thatU(γi(P )) >

U(γj(P )) for 0 ≤ P ≤ PT . By the definition ofλmax
i ,

U(γi(P )) − λmax
i P ≤ 0, 0 ≤ P ≤ PT .

Hence,

U(γj(P )) − λmax
i P < 0, 0 ≤ P ≤ PT .
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This implies that

λmax
j < λmax

i ,

sincemax0≤P≤PT
{U(γj(P )) − λmax

j P} = 0.

2) Proof of property (S2):We will prove this by using contradiction. Suppose thatP̄ ∗ = (P ∗
1 , · · · , P ∗

M)

is an optimal power allocation andγi(P
∗
i ) < γj(P

∗
j ). Then, NP ∗

i

θ(PT−P ∗

i
)+Ai

<
NP ∗

j

θ(PT−P ∗

j
)+Aj

and, thus,P ∗
i <

θPT +Ai

θPT +Aj
P ∗

j . Let P ′
j = θPT +Aj

θPT +Ai
P ∗

i andP ′
i = P ∗

i + P ∗
j − P ′

j = P ∗
j − Aj−Ai

θPT +Ai
P ∗

i . Then,P ′
i + P ′

j = P ∗
i + P ∗

j ,

γj(P
′
j) =

N θPT +Aj

θPT +Ai
P ∗

i

θ(PT − θPT +Aj

θPT +Ai
P ∗

i ) + Aj

=
NP ∗

i

θ(PT − P ∗
i ) + Ai

= γi(P
∗
i ),

and

γi(P
′
i ) =

N(P ∗
j − Aj−Ai

θPT +Ai
P ∗

i )

θ(PT − P ∗
j + Aj−Ai

θPT +Ai
P ∗

i ) + Ai

>
N(P ∗

j − Aj−Ai

θPT +Ai

θPT +Ai

θPT +Aj
P ∗

j )

θ(PT − P ∗
j + Aj−Ai

θPT +Ai

θPT +Ai

θPT +Aj
P ∗

j ) + Ai

=
NP ∗

j

θ(PT − P ∗
j ) + Aj

= γj(P
∗
j ),

where the inequality comes from the fact thatAi < Aj andP ∗
i < θPT +Ai

θPT +Aj
P ∗

j . Therefore,U(γj(P
′
j)) =

U(γi(P
∗
i )) andU(γi(P

′
i )) > U(γj(P

∗
j )). This implies that

U(γi(P
′
i )) + U(γj(P

′
j)) > U(γi(P

∗
i )) + U(γj(P

∗
j ))

and utilities for all other mobiles are unchanged, which is the contradiction.

3) Proof of property (S3):This immediately follows from property (S2).
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