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Abstract

In this paper we consider a power allocation problem in rraliss wireless systems. We focus on the downlink
of the system. Each mobile has a utility function that chiades its degree of satisfaction for the received service
The objective is to obtain a power allocation that maximtbestotal system utility. Typically, natural utility furions
for each mobile are non-concave. Hence, we cannot userexisbnvex optimization techniques to derive a global
optimal solution. We develop a simple (distributed) altfori to obtain a power allocation that is asymptotically
optimal in the number of mobiles. The algorithm is based onaglyic pricing and consists of two stages. At the
mobile selectiostage, the base-station selects mobiles to which powdoisaséd. At thepower allocatiorstage, the
base-station allocates power to the selected mobiles. @eéder numerical results that illustrate the performance of
our scheme. In particular, we show that our algorithm resalsystem performance that is close to the performance

of a global optimal solution in most cases.

Index Terms

Power allocation, downlink, wireless networks, and nonvex optimization.

|. INTRODUCTION

In recent years, the area of power control in wireless nétsvbas received significant interest from both
academic and industrial researchers. Power control playisportant role in the efficient management

of code division multiple access (CDMA) networks. Since eol@s been the main service provided by
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wireless networks thus far, most research efforts have deeoted to voice systems. In voice systems,
typically all users have the same quality of service (Qo§uimements and it is important that the signal to
interference and noise ratio (SINR) exceeds some minimuesiioid. Hence, the main purpose of power
control in such systems is to eliminate the near-far effgatdualizing the SINR of each user by setting it
at the minimum SINR threshold [1], [2].

In the next generation of wireless networks, it is expechked services will have significantly differing
characteristics from the current voice-dominated systeftiseady, the demand for various services with
different QoS requirements such as video and data is inageabhe required bandwidth for these services is
much higher than that for voice services, further compaogtiie scarcity of resources in wireless systems.
Therefore, to more efficiently accommodate services witfleidint characteristics, we need a new approach
for power control in next generation wireless networks. Atidguishing feature of many of these new
services is their elasticity, i.e., they can adjust trassion rates (to some degree) based on the channel
conditions and the congestion level of the system. Hencappyopriately exploiting the elasticity of such
services, we can maintain high network efficiency and prenetwork congestion. Moreover, such services
are highly asymmetric, requiring more bandwidth in the dimknthan the uplink. This implies that, in the
next generation of wireless networks, efficient resourtezcation for the downlink becomes an important
issue [3], [4], [5].

Recently, the concept of utility (and pricing) from econosii@as been used to develop network control
algorithms by exploiting the elasticity of the serviceseThility represents the degree of a user’s (service’s)
satisfaction when it acquires a certain amount of the resgand the price is the cost per unit resource that
the user needs to pay. Hence, services with heterogenedbigseQairements (elasticity) can be modeled
with different utility functions. The basic idea of thesg@lithms is to control the users’ behavior by
pricing resources appropriately to obtain the desiredt®ge.g., high utilization for the overall system and
fairness among users).

In wireline networks, utility and pricing based algorithimave been studied for distributed flow control
of best effort services [6], [7], [8]. In these works, thditgifunction is assumed to be a concave function of
the allocated rate, which results in a convex programminglem. Hence, the Karush-Kuhn-Tucker (KKT)
conditions or the duality theorem can be used to obtain thienapsolution.

Utility (and pricing) based control algorithms can also pplaed to the power control problem in wireless

networks. However, the main difficulty in solving the prablés that, in general, it cannot be formulated as
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a convex programming problem, since the utility functionymat be concave [9], [10], [11], [12]. Thus,
neither the KKT conditions nor the duality theorem providesufficient condition for the optimal solution.
In most works on utility and pricing for power control, onlyalh equilibria, which are inefficient from the
point of overall system utility [13], have been obtained.

In [9], [10], [11], a power control problem is formulated am@n-cooperativeV-person game in which
each mobile transmits a power level that maximizes its (aglify without considering the behavior of
the other mobiles. They show that their algorithms convéogeash equilibria. Further, in [10], [11], the
authors show that, by introducing pricing, system efficieoan be improved. In these works, the base-
station informs each mobile of a fixed price per unit power @ach mobile transmits at a power level that
maximizes its net utility (utility minus cost for power atlation). They show that the system utilization
significantly depends on the choice of price. However, theyat provide a systematic algorithm to find
an optimal price. In [12], [14], a downlink resource alldoatproblem is considered with restricted types
of utility functions. In [12], only voice services are codsred and utility functions are modeled as step
functions and in [14], utility functions are modeled as carefunctions. In these works, the authors obtain
the optimal prices for maximizing the total system utilitgdathe total revenue. In [15], [16], capacity
regions and optimal power and rate allocation schemes adéest from an information theoretic point of
view.

In this paper, we study the downlink power allocation prabfer multi-class wireless networks. We use
a utility based framework as in other works. However, theatibn considered here differs from previous
works in many aspects. Primarily, we consider general tgbesility functions that are suitable for multi-
class systems and may be non-concave. This generalizatijpires a significantly different analysis than
the works of [12], [14]. We also study the problem of maximgitotal system utility for heterogeneous
users that provides a higher system utility than those densd in [9], [10], [11].

We put an emphasis on the efficiency of the system. However ta@uhe non-convexity of the prob-
lem, obtaining a global optimal power allocation is difficahd, if feasible, would require a very complex
algorithm. Therefore, we develop a simple (distributedjpathm that provides an asymptotically (in the
number of mobiles) optimal power allocation. This algaritican be implemented in either a distributed
or centralized way. If implemented in a centralized way, blase-station must know certain information
about the mobiles, such as path gain from the base-statitve tmobile, the interference level at the mobile,

the utility function of the mobile, and so on. In addition tbemputational burden is imposed all on the
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base-station. If implemented in a distributed way, the {saton need not know the detailed information
about the mobiles, and the computational burden can behlditdd among the base-station and mobiles.
This is suitable for the case when the base-station doeswet the utility function of the mobile [17], [18].
However this requires iterative communication betweenbihse-station and mobiles for the algorithm to
converge. In this case, our problem can be expressed agyari dynamic pricing problem. The dynamic
pricing attribute is also another distinguishing featuréhes work compared with other works.

The rest of the paper is organized as follows. In Section & ,describe the system model considered in
this paper and formulate the basic problem. In Section I present the power allocation algorithm, which
consists of the mobile selection stage and the power altotatage. In Section 1V, we study the asymptotic
optimality (in the number of mobiles) and the lower bound lo@ performance of our power allocation. In
Section V, we study a special case when all mobiles are honsoges. Numerical results are provided in

Section VI. Finally, we conclude in Section VII.

[I. SYSTEM MODEL AND PROBLEM DESCRIPTION

Our objective is to determine the appropriate power levielghach the base-station should communicate
to the different mobiles (the downlink power allocation iplem in a multi-class wireless network). We focus
on a single cell consisting of a single base-station@hohobiles. The system is assumed to be time-slotted.
At each time-slot, the power allocation algorithm is exedut A time-slot in our system is an arbitrary
interval of time and could consist of one packet or severakets. We focus on a time-slot assuming that
the path gain, background noise, and intercell interfexdaceach mobile do not change during this time-
slot. Each mobile communicates with the base-station. Bantink communication, the base-station has
a maximum power limitPr. It allocates power to each mobile within the power limié(j.the sum of the
power allocated to each mobile cannot exceed the powe lil&ch mobile, i = 1,2, --- M, has its own
utility function, U; that represents the degree of mobitesatisfaction of the received QoS and is a function
of the “generic” signal quality for mobilé. We first definey;, the “generic” signal quality for mobilé as
follows:

- NG P;

(P) =
W)= s b Py £,

N; P,
_ il 1
0( i1 P — P) + A @

where



P;: Allocated power for mobile.

P: Power allocation vecto(,P,, Py, - - -, Py).

N;.  Constant for mobile.

G;:  Path gain from the base-station to mobhile

I;: Background noise and intercell interference to mohile

A;: “Goodness” of the transmission environment of mobijlehich is defined by /G,.
M:  Number of mobiles in the cell.

0: Orthogonality factor@ < 6 < 1).

Note that ifd # 0, v; and the utility function/; depend not only on mobilés own power allocation but also
on the power allocations of all the other mobiles. In the @eguation, ifN; = 1, then the signal quality
metric+; represents the SINR for mobite If N; is the processing gain for mobife which is defined by
W/R;, whereW is the chip rate for the CDMA network anfl; is the data rate at which the base-station
transmits to mobile, then~; represents the bit energy to interference density ratioafit@i, (£,/I);, in
the CDMA system. IfN; = W, then~,; = (E,/1); R; of mobile: in the CDMA system. In this case, for a
given power allocation, i.e., for a given(P) , R; and(E,/I,); have an inversely proportional relationship.

Hence, there exist appropriaf& and (E,/1,); for a giveny;(P), and they may have different values for
different~;(P). Hence, in this case, each mobile may receive variable d#a (i.e., variable processing
gains) and they can be adjusted appropriately based on ther@location. Thus, the utility value can
depends o?} and(E,/1);.

We further assume thaf; has the following properties.
Assumptions:

(a) U; is anincreasing function of;.

(b) U; is twice continuously differentiable.

(c) U;(0) =0.

(d) U; is bounded above.

(e) If =M P = Pt thenU;(v;(P)) is one of three types: a sigmoidal-Ifkea strictly concave, or a

strictly convex function of;, its own power allocation.

We will show this in Lemma 1.

2A function f(=) is said to be a sigmoidal-like function if it has one inflection poirft,and L&) > 0 for & < 2° and £L&) < 0 for

x> x°.
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Fig. 1. Probabilities of packet transmission success for BPSK, DP8KEF-8K modulation schemes.

Note that typically, most utility functions used in wirediror wireless networks can be represented by three
types of functions in assumption (e) [11], [19].

For instance, we can define the utility function of each nebids its expected throughput, which is
defined ad/;(v:(P)) = R;fi(7:(P)), whereR; is the data rate received at mobiland f;(+;(P)) is the
probability of packet transmission success of mohila Fig. 1, we provide the probability of packet trans-
mission success for various modulation schemes such asyBftese-Shift Keying (BPSK), Differential
Phase-Shift Keying (DPSK), and Frequency-Shift KeyingFFR0]. We assume that a packet consists of
800 bits without channel coding and et = 10, ¢ = 1, N; = 16, and A; = 0.7407. As shown in this
figure, the probability of packet transmission successasasented by a sigmoidal-like function of its power
allocation. Hence, in this case, we have sigmoidal-likktyiflunctions.

The goal of this paper is to obtain the power allocation faheaobile that maximizes the total system
utility (i.e., the sum of the utilities of all mobiles). Theasic formulation of this problem is given by the

following optimization problem:
M —
(A) mngUi(%(P))
i=1

M
subjectto Y P, < Pr,

=1

0<P,<Pp, i=1,2---,M.
In problem (A), if we define the utility function of the mobibes its expected throughput, the objective of
this problem will be to maximize the total expected througthgf the system. Further, if eaéltorresponds
to each sub-carrier in an Orthogonal Frequency Divisiontidigixing (OFDM) system, problem (A) can be

applied to power allocation for sub-carriers in the OFDMtegs



I11. POWERALLOCATION

We consider only the distributed solution, i.e., a user baggproach. However, the algorithm can be
easily executed in a centralized way at the base-statioadh mobile; informs the base-station of the
“goodness” of its transmission environmeAt, and its utility function,U;. Our power allocation algorithm
consists of two stages. In the first stage, mobiles to whietepds allocated are selected, and, then, power is
allocated to the selected mobiles in the second stage. Be®describe the details of our power allocation
algorithm, we decompose problem (A) as a mobile problem draksa-station problem. To do this, we need
certain results outlined next.

The following lemma will show that to maximize the total sst utility, the base-station must transmit at

its maximum power limit,Pr.

Lemmal: IfP = (P, P, ---, Py) is a power allocation and_Y, P, < Pr, then we can find another
power allocationP* = (Py, Py, ---, Pi;) suchthat_, P* = Prand> M, U(vi(P*)) > SM, Us(v(P)).
Proof: See Appendix A. [ |

Hence, the base-station always transmits at the maximunemplewel, Pr andeV:’1 P, = Pr. So, we can
rewrite;(P) in (1) as

_ NP
i P — 1 KA
7(P) 0N P P)+ A
N; P,
Q(PT — Pz') + A;

77,(PZ)7 7’:17277M

1>

Note thatv;(P;) does not depend on the power allocation for the other mobifesso problem (A) is
equivalent to the following problem.
M
(B)  max}_ Ui(5(R)
=1

M
subjectto Y P, < Pr,

=1

0<P<Pr, i=12-,M.

SinceXM, P, = Pr, from assumption () on the utility functior/;(v;(P;)) is one of three types: a



sigmoidal-like, a strictly concave, or a strictly convexétion of ;. We now define’’ as

the inflection point o;(v;(F;)), if U;(v:(P;)) is sigmoidal-like
P = <0, if U;(7:(P)) is concave
Pr, if U;(v:(P;)) is convex
Note that since we allow non-concave utility functions, @mgral, (B) is a non-convex optimization problem.
We will develop a simple (distributed) algorithm that atfesto approximate the performance of the global
optimal solution, and show that the performance of thistlgm asymptotically (in the number of mobiles)

converges to the global optimum. To that end, we will use ttlewing result.
Lemma 2: Let us define a Lagrangean function associated waibigm (B) as
B M M
L(P,X) =Y Ui((P)) + MPr—>_P),
=1

=1

S={P|0< P < Pr},

and

Y(\) = {7 € S| L(#\) = max{L(P, \)}},

Pes
where0 = (0,0,---,0) and Py = (Pr, Pr,---, Pr). Then, forany\ > 0, P()\) € Y()\) is a global optimal

solution of the following problem.

M
manZ Ui(7:(F%))
=1
M M
subjectto Y P, <Y Fi())
i=1 i=1 (2)

OS-PISPTJ i:1727"'JM7

whereP(\) = (Pi()\), Py(N\), -+, Py(N)).
Proof: This immediately follows from Property 6.6 in [21]. |

Lemma 2 implies that if we find &* above such thaf, P;(\*) = Pr (whenPry is the threshold in problem
(A)), the global optimal solution of problem (A) can be olotad. However, when we cannot find such*a
(this case is described later in this sectiaR})\) is a global optimal solution of the perturbed problem that
differs from problem (A) by|Pr — >>M, P;(\)| on the constraint. From Theorem 5.4 in [21], we can show
that 532, Ui (7 (F7)) — ZiLy Us(3(P (V) < MPr — T34, Bi(N)), whereP? = (PP, Py, Pfy) is a

global optimal solution of problem (A). Hence, it ~ X, P,()\), we expect thal-, U;(1i(P?)) ~

1=
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M Ui(vi(Pi(X)). Therefore, in this paper, we will attempt to minimize thisagtity by considering the

following problem, and later on, we will also show that it picies an asymptotically (in the number of
mobiles) optimal power allocation.
M
(C)  min{Pr— " P(\)}
=1

bjectto P(\) = L(P,\
subjectto P(\) arg(_)g%%{ (P, \)}

M
> PN < Pr.
i=1

We first consider the equatioff(\) = arg maxg< p<p, {L(P,\)}. SinceL(P, \) is separable if, P(\)

solves the equation if and only if it solves the following plem.
(D)) P(A) €{0<qs PrlLilgA) = max Li(PA)} i=12-M,

whereL;(z,\) = U;(vi(z)) — Ax. Note that the parameters in problem;) correspond only to mobile
i. By this property, we can decompose problem (C) as the mobilelggm (D;) for each mobile and the
following base-station problem.
M
(E)  min{Pr -3 A0V

M
subjectto ~ Pi(\) < Pr.

=1

We can interpret the decomposed problems as follows. Bas@gdtbe price per unit power, each mobile
i tries to maximize its net utility (i.e., the utility minusetcost) by solving problendY;). This is a greedy
procedure and is typically known as a non-cooperative ptgpk our formulation, by solving problem (E)
based on the power request of each mobile, the base-staljiostathe price\ dynamically to reduce the
performance difference between the global optimal powecation and its power allocation by minimizing
{Pr — XM Pj(\)}. Therefore, this problem can be interpreted as a utility dyrtamic pricing problem.
Using this interpretation, we can implement the power allimn algorithm in a distributed way. However, a
solution to problem (C) (or equivalently problerfis;) and (E)) may result in an inefficient power allocation,
i.e., >, P, < Pr. Further, due to the discontinuity and non-uniquenesi; of) (we will show this later),
if we implement the distributed solution using standarddggat descent techniques, the resultant power
allocations could oscillate (i.e., there would be no equilim solution). Hence, we will devise a strategy

to ensure that our solution will in fact have an efficient poatocations £, P, = Pr) as well as have
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a stable solution. To that end, we divide the algorithm in stages. The first stage is the mobile selection
stage. In this part, mobiles that can be allocated positvesp are selected. The second stage is the power
allocation stage. Here, only selected mobiles participttiee power allocation stage and power is optimally

allocated to the selected mobiles.

A. Mobile Selection

Before, we develop an algorithm for mobile selection, we Btstly the properties aP;(\) in problem

(D;). We define\[*** for mobile: as:

AP = min{A > 0| max {U;(v(P)) — AP} =0}.

0<P<LPr

The parametek!"** will play an important role in mobile selection. From Appen8, it can be calculated

by
%| P=0, if Pio =
A= OAE) L L if 0 < PP < Prand P exists 3
W7 otherwise
T

whereP is a solution of the following equation.

Further, we define”" as
A = max{\ > 0| Pi(\) = Pr}.
We now summarize the propertiesBf\). Details are provided in Appendix C.

(P1) P;(N) is discontinuous and has two values (zero and positive)-atA!***, if U; is a convex or a

sigmoidal-like function. In this case, the positive valagreater than or equal #ey.

(P2) Pi()) is continuous function of, if U; is a concave function.

(P3) P;()) is a positive, continuous, and decreasing function fdr A" < \ < e,
(P4) Py(\) = 0for A > \mer,

(P5) P;(\) = Prfor A < A\,

When the price is\"**, P;(\7"**) can have two values. One is zero and the other is positivdelsequel,

unless explicitly mentionedpP;(A\***) will denote the positive value. Hence, with a slight abusehef
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notation, we redefing;(\) in problem(D;) as

P;(\) = arg max {U;(v:(P)) — A\P}.

0<P<Pr

Note that there exists ¥"** such thatP;(\) = 0 for A > A\*** and P;(\) > 0 for A < \***. Hence, we call
A themaximum willingness to payf mobiles.
Using these properties @f(\), we can characterize the optimal mobile selection for mob{C), where

the optimal mobile selection is defined as follows.

Definition 1: We call a subset of mobilésan optimal mobile selection for an optimization problem, if
there exists a* that makes”* = (Py, Py, - - -, P;;) a global optimal solution of the problem, where

B\, ifies
P* =

(2

0, otherwise
In the following, without loss of generality, we assume that® > A7 > ... > \maz 3,

Proposition 1: Selecting mobiles 1 frof for power allocation is an optimal mobile selection for prob-
lem (C), where

J
K =max{l1<j< M| Y P(A\') < Pr}.
=1

Further, if
K
ST PORE) > Pr, K < M (@)
=1

or

K =M, ()

it is an optimal mobile selection for problem (A).

Proof: See Appendix D. [ |

Proposition 1 implies that the mobiles are selecteddeereasing order ok"**.
By using Proposition 1, we can develop a distributed algoritbr mobile selection.
Mobile Selection Algorithm (M SA)
() The base-station broadcasts its maximum power lifit,to all mobiles.

(i) Each mobilei reports its\!*** to the base-station.

3SinceA™*® of each mobile depends on its channel condition, in general, each mobits different\"**. If some mobiles have the same

A% they can be ordered randomly.
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(iii) Let K =1.
(iv) If K = M, select mobiles from 1 t& and stop.
(v) The base-station broadcasts prisg: .
(vi) Each mobile: reports its power request (A% ) to the base-station.
(vii) If S B(ARes) > Pr, select mobiles from 1 t& and stop.
Otherwise, let' = K + 1 and go to (iv).

The MSA need®) (M) iterations for selecting mobiles.

B. Power Allocation for the Selected Mobiles

After the base-station selects mobiles using the MSA in tle®ipus subsection, it allocates its power
to the selected mobiles. In this subsection, we assume thbiles:, : = 1,2,---, K are selected and
AT > AT > o> A9 In the proof of Proposition 1 in Appendix D, we have showrt tifidhe
condition in (4) or (5) is satisfied, to solve problem (C), wedéo find a\* such that, X | P,(\*) = Pr,
and it is also a global optimal power allocation for problek). (Further, we have shown that otherwise, i.e.,
if

K K+1
Y PORE) < Prand Y B(ARY) > Pr, K < M, (6)

=1 =1

the optimal solution of problem (C) 8794 and Y%, P;(\729%) < Pr. Hence, in this case, the amount
of power that is allocated to the selected mobiles is less thaat the optimal solution of problem (C).

However, from Lemma 1, we can increase the total systentyutyi allocating residual power to the mobiles.
Hence, the purpose of this stage is to fin*ahat satisfies" | P;(\*) = Pr. If there exists such a power

allocation, from Lemma 2, it is a global optimal power allboa for the selected mobiles.

To that end, the base-station problem (E) for the selectdallesocan be rewritten as
K
(F)  min|Pr = 3 PV

K
subjectto Y P;(A) < Pr,

=1
0 <\ < Ao,
Hence, in the power allocation stage, the base-statioresqvoblem (F) and each selected mobjle =
1,2,---, K solves its problemIj;). The next proposition will show that the solution of prabl¢F) and

problem (O;) is a global optimal solution for the set of selected mobiles
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Proposition 2: There exists a power allocatioR (\*) = (P,(\*), Py(\),-- -, Px()\*)), which is a
solution of problem (F) and probleiid;). Further, it satisfie$" | P;(\*) = Pr, i.e., it is a global optimal

solution of the following optimization problem:
K
(G)  max}" Ui((P)
i=1

K
subjectto Y P, < Pr,

i=1

0<P<Pr, i=12- K.

Proof: See Appendix E. [ |

As we have discussed before, Proposition 2 also impliesifttta¢ condition in (4) or (5) is satisfied, it is
also a global optimal power allocation for all mobiles. Butem the condition in (6) is satisfied, it may
not be a global optimal power allocation for all mobiles. Hwer, we will show that our power allocation
asymptotically optimal in the number of mobiles.

The power allocation algorithm can be implemented in sévemgs. First, if we consider problem (F), we
can use line search algorithms such as a golden sectioritatgd21], sincel P-— > | P,()\)| is a unimodal
function. Secondly, since we know that — > | P;(\) has a unique rood* for 0 < A < A\7%® and itis an
optimal solution of problem (F), we can use root finding aidhons such as a bisection algorithm. Finally, if
we consider problem (G), we can use a gradient based algof&hor a penalty based algorithm [6], since
problem (G) is equivalent to the following convex programgiproblem.

K
(1) maxd Ui((P)
subjectto %, P, < Pr,
PPy < P, < Pp, 1=1,2,--- K.
Since P (\j*) > Py(A\"*) > P?,i = 1,2,---, K, U;j(v;(P;)) is a concave function foP;(A\*) < P; <
Pr,i=1,2,---, K, which makes problem (H) a convex programming problem.

In this subsection, we implement the power allocation algor using a simple bisection algorithm.
Power Allocation Algorithm
Let e be a small positive constant.

(i) Seta™ =0,bH) = \me* andn = 1.

(i) The base-station broadcasts the pri¢e = M to all selected mobiles.
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(iiiy Each mobilei reports its power requests(A™) to the base-station.
(iv) If (") —a™| < 2e or Pr = ©5 | P,(A\™), allocate power to the selected mobilesRI§(\(™) =
(PLA™), Py(AM), -+ Pre(A™)) and stop.
Otherwise, go to (V).
V) If Pr <K, B(AM), seta™D) = A\ andp+D) = p(),
Otherwise, set™t!) = ¢ andp*+D) = \("),
(vi) n=n+ 1and go to (ii).
If the power allocation algorithm stops at iteratioh, we have|]\"" — \*| < ¢, where)\* is an optimal
solution of problem (F). Hence, a smaller values@fan provide a more accurate solution. Further, we can
easily show that= 72" < 2e. Hence,

log N2%* — log 2
n* = min{n > 08 Ak og 67 n=1,2--}
log 2

IV. ASYMPTOTICOPTIMALITY AND A LOWER BOUND ON THE PERFORMANCE

In this section, we first study the asymptotic optimality e number of mobiles of our power allocation
and, then, also study the lower bound on the worst case peafore.
Before we show the asymptotic optimality of our power allcaatwe first study the upper bound on the

global optimal power allocation of problem (A). Let us defiiig( P) as

AP i) < P < P(ATer)
Ui(P) = : )
Ui(vi(P)), if B(A"") < P < Pr

We now consider the following optimization problem.

M
(U)  maxy UMP)
=1
M
subjectto Y P, < Pr,

=1

OSPz SPTv Z:1727aM
Since we can easily show that for each mobjl&*(P,) > U;(~:(F;)), VP;, problem (U) gives us an upper

bound on the total achievable system utility, i.e.,

S Uu(B) < LUK

whereP* = (P;, Py, ---, Py;) andP* = (P*, P, -- -, P) be optimal solutions of problems (A) and (U),

respectively.
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We now obtain a bound on the difference between our powetatitan and the upper bound on the global

optimal power allocation.

Proposition 3: LetP? = (P}, Py, .- P},) be our power allocation and* = (P?, P¥,---, Pi) be an
optimal solution of problem (U). Then,

M M
Z Uzu(‘qu) - Z Uz(/yz(})zp)) S Umaz
=1 i=1

whereu, ., = maxy<;<pm{U;(7i(Pr))}.

Proof: See Appendix F. [ |

Proposition 3 shows that the maximum difference betweesyktem utility obtained by our power alloca-
tion and the upper bound on the system utility is at most thiéyuaf one mobile. Further, since we assume
that the utility function of each mobile is bounded, from pwsition 3, our power allocation can be shown

to be asymptotically optimal in the following sense.

Corollary 1: Let PP = (PP, Py, ---, PY,) be our power allocation and®* = (P, Py,---, P;;) be an
optimal solution of problem (A). £, U;(v;(P})) — oo asM — oo,

M Ui((P))

ity Ui(vi(Pr))
Corollary 1 implies that if there are many mobiles requiringnaall amount of power in the system (i.e.,

— 1, asM — oo.

if the orthogonality factor of the system is small, or if eanbbile has a large processing gain or a good
transmission environment), our power allocation schenleweld a solution close to the global optimal
solution.

We now study the worst case performance of our algorithm. Aehe proposition provides us a lower

bound on the performance of our algorithm.

Proposition 4: LetP? = (P}, P},---, P};) be our power allocation and®* = (P}, P;,---, P;,;) be an

optimal solution of problem (A). Then,

Zgl Ui(’Vi(PiP)) > Umin

Eij\il Uz (71(3*)) Umazx + Umin

Y

Whereumm = mmlSzSM{Uz(%(PT))} andumax = maxlSiSM{Ui(%(PT))}.

Proof: See Appendix G. [ |
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The implication is that the worst case performance can be ywben there are only few mobiles in the
system with utility functions that are quite different fragmach other and maximum willingness to pays that
are inversely proportional to utility values. However, iengral, utility functions are comparable with each
other and a mobile with a higher utility value has a higher mmasn willingness to pay than a mobile with
a lower utility value. Such a situation is unlikely to occagpecially when network providers will likely

require that users pick utility functions from a pre-defirsed

V. SPECIAL CASE: SINGLE CLASS OFMOBILES

In this section, we study, for illustration, a special ca®ewr method in which all mobiles are homo-
geneous, i.e., each mobildas the samé&; = U and the saméV; = N. We present this case because it
provides some insight.

In the homogeneous case, we can show the following propeietails are provided in Appendix H. Let
P* = (Py,---, P;,) be a global optimal power allocation.

(S1) IfA; < Aj, then)ra® > \naw,

(S2) IfA; < Ay, thenyi(P) > v;(Ff).

(S3) If P =0,thenP; = 0forall j suchthatd; > A;.

Property (S1) shows the relationship betwegnand \;***. This implies that in the homogeneous case,
mobiles are selected in an increasing orded gy the MSA since mobiles are selected in a decreasing order
of \*** by the MSA. This also implies that the mobile in a better traission environment has a greater
chance to be selected by the MSA than the mobile in a worssrtrigsion environment. Furthermore, from
property (S2), the former achieves a higher utility thanldieer. Property (S3) implies that, at the global
optimal solution, mobiles are selected in an ascendingrafdg;. By properties (S1) and (S3), the order of
mobile selection in our power allocation is the same as th#teglobal optimal solution. Hence, the set
of mobiles selected by the MSA is a subset of the set of mobé&scted by the global optimal solution and

the relationship between mobiles in each set is as follows:
A; <A fori,jeV,je Zandi & Z,

whereV is the set of mobiles selected at the global optimal solutiod Z is the set of mobiles selected
at our power allocation. This implies that the MSA excludaydhose mobiles that obtain relatively low
utility in the global optimal mobile selection and, thuse ttlifference between their achieved performance

should be small.
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Fig. 2. Cellular network model.

VI. NUMERICAL RESULTS

In this section, we provide numerical results of our powéocation scheme for the CDMA network.
Hence, the parametel§ and~; in (1) correspond to the processing gain dfid/, for mobiled, respectively.
For simplicity, we model the cellular system with nine squeglls, as shown in Fig. 2. We assume that the
base-station is located at the center of each cell and tloht le@se-station has the same maximum power
limit, Pr. We focus on the cell at the center of the system assumingftbdtase-stations in the other cells

transmit at the maximum power levét,. We model the path gain from a base-statida a mobilej, G; ;

as follows:

G,y = D

2,7
’ g’

whered, ; is the distance from the base-statioto mobile j, « is a distance loss exponent, ahd; is
the log-normally distributed random variable with mean @ aariances? (dB) that represents shadowing

[22]. The parameters for the system are summarized in TaBlerlthe simulation, we use a sigmoid utility

TABLE |

PARAMETERS FOR THESYSTEM

Maximum power £r) 10
Orthogonality factor{) 1
Distance loss exponent) 4

Variance of log-normal distributiorvf) 8

Length of the side of the cell 1000




Fig. 3. Sigmoid functions with different (b = 5).

Fig. 4. Sigmoid functions with differerit(a = 3).

TABLE Il

COMPARISON OFUTILITY FOR THE HOMOGENEOUSCASE (b = 7(dB), N = 64, M = 10, 95% CONFIDENCE)

18

a 0.5 1 2 4 8

Our 5.967+ 0.009| 7.004+ 0.011| 7.756+ 0.013| 8.256+ 0.014| 8.539+ 0.015
Global 6.012+ 0.009| 7.093+ 0.011| 7.885+ 0.012| 8.392+ 0.014| 8.661+ 0.014
Upper | 6.236+ 0.009| 7.336+ 0.011| 8.131+ 0.012| 8.657+ 0.013| 8.956+ 0.013

Our/Global 0.992 0.987 0.984 0.984 0.986

Our/Upper 0.957 0.955 0.954 0.954 0.953

function. The sigmoid utility function is expressed as
V() = el —d) ®)
14 e—a(=b)

We normalize the sigmoid utility function such tha(0) = 0 andU(co) = 1 by settinge = ¢ and

d= !

s+ The sigmoid utility functions with different values farandb are provided in Figs. 3 and

4, respectively. For each experiment, we run the simulgtimgram10? times and tabulate the average
values (e.g., the total system utility and the selectioio rait mobiles in each class, which is defined as the
ratio of the number of selected mobiles to the number of neshit each class). At each time epoch of the
simulation, each mobile is generated at a new location (matlv path gain) in the cell via an independent
uniform distribution.

We first provide simulation results for the single class c&ge compare our power allocation, the global

optimal power allocation, and the upper bound on the gloloalgs optimal allocation. For the global



TABLE llI

COMPARISON OFUTILITY FOR THE HOMOGENEOUS CASKa = 3, N = 64, M = 10, 95% CONFIDENCE)

b(dB) 3 5 7 9 11
Our 9.887+ 0.006| 9.391+ 0.012| 8.072+ 0.014| 6.302+ 0.011| 4.69A 0.009
Global 9.9074+ 0.004| 9.475+£ 0.011| 8.213+ 0.013| 6.459+ 0.01 | 4.803=+ 0.007
Upper 9.9234+ 0.004| 9.596+ 0.01 | 8.472+ 0.013| 6.7494+ 0.009| 5.09+ 0.006
Our/Global 0.998 0.991 0.983 0.976 0.978
Our/Upper 0.996 0.979 0.955 0.934 0.923

TABLE IV

COMPARISON OFUTILITY FOR THE HOMOGENEOUSCASE (a = 3, b = 7(dB), M = 10, 95% CONFIDENCE)

N 8 16 32 64 128
Our 1.987+ 0.002| 2.982+ 0.002| 5.040+ 0.008| 8.065+ 0.014| 9.884+ 0.006
Global 1.995+ 0.001| 2.991+ 0.001| 5.253+ 0.008| 8.210+ 0.013| 9.913+ 0.005
Upper 2.227+0.001| 3.433£ 0.001| 5.5444+ 0.007 | 8.466+ 0.013| 9.944+ 0.004
Our/Global 0.996 0.997 0.959 0.982 0.997
Our/Upper 0.892 0.868 0.909 0.953 0.994

optimal power allocation, we use an exhaustive search rdethlmwever by properties in Section V, the
search region can be reduced significantly for the singlesatase. In Tables Il — IV, we provide the total
system utilities for each power allocation, varying theueal ofa, b, and N. Table Il indicates that as the
value ofa increases, the total system utility increases. As showngn&; as the value af increases, less
power is required to achieve the same utility for the concageon and more power for the convex region.
In general, in our power allocation, mobiles that are alledgositive power are in the concave region, as
shown in Lemma 3 in Appendix B. Hence, generally, if other ¢bowls are same, a mobile with a larger
value ofa in its utility function requires less power than a mobilelwa smaller value of to achieve the
same utility. We say that, in this case, the former is nedfigientthan the latter. Hence, the results indicate
that as the mobiles in the system get more efficient, the sytstlem utility increases. Similar results are
provided in Tables Ill and IV. If other conditions are samenabile with a smaller value df requires less

power than a mobile with a larger value tofo achieve the same utility, as shown in Fig. 4, and the mobile
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TABLE V

COMPARISON OFPERFORMANCES OFTWO CLASSES(a1 = 2, by = by = 7(dB), N1 = No = 64, M = 10, 95% CONFIDENCE

as 0.5 1 2 4 8

Selection ratio of class [ 0.815+ 0.003| 0.795+ 0.003| 0.789+ 0.003| 0.789+ 0.003| 0.79H- 0.002

Selection ratio of class 2 0.645+ 0.004| 0.728+ 0.003| 0.787+ 0.003| 0.83+ 0.003 | 0.854+ 0.002

Our 6.887+ 0.012| 7.388+ 0.012| 7.756+ 0.013| 8.013+ 0.014| 8.168+ 0.025
Upper 7.177+0.012| 7.737+ 0.012| 8.137+ 0.012| 8.396+ 0.013| 8.559+ 0.026
Our/Upper 0.96 0.955 0.953 0.954 0.954
TABLE VI

COMPARISON OFPERFORMANCES OFTWO CLASSES(a1 = a2 = 1, b1 = 9(dB), N1 = N2 = 64, M = 10, 95% CONFIDENCE)

by 5 7 9 11 13

Selection ratio of class 1 0.569+ 0.003| 0.549+ 0.003| 0.572+ 0.004| 0.658+ 0.003| 0.755+ 0.004

Selection ratio of class 2 0.873+ 0.003| 0.755+ 0.004| 0.571+ 0.004| 0.339+ 0.005| 0.149+ 0.003

Our 6.896+ 0.013| 6.290+ 0.011| 5.575+ 0.008| 4.9+ 0.012 | 4.45+ 0.013
Upper 7.23+0.013 | 6.663+ 0.011| 5.99+ 0.008 | 5.338+ 0.013| 4.90H 0.011
Our/Upper 0.954 0.944 0.931 0.918 0.908

with a smaller value ob is more efficient than the mobile with a larger valuebofTherefore, as the value
of b decreases, the total system utility increases, as showalleTll. Also, if other conditions are same,
a mobile with a larger value oV requires less power than a mobile with a smaller valu&/db achieve
the samey; (and thus, the same utility) from (1) and the mobile with @éarvalue ofV is more efficient
than the mobile with a smaller value 8f. Therefore, as the value @f increases, the total system utility
increases, as shown in Table IV.

We also provide the ratio of the system utilities of our powbocation to that of other allocations in
Tables II- IV. As shown in these tables, the ratios are qudsecto 1 in most cases, which implies that the
system utility achieved by our power allocation is quiteseldo that achieved by the global optimal power
allocation.

In Tables V— VII, simulation results for a system with two sdas of mobiles are provided. Each class

is generated with probability 0.5. For the utility functiohmobiles in classg, we seta = a;, b = b; and
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TABLE VII

COMPARISON OFPERFORMANCES OFTWO CLASSES(a; = az = 1, by = by = 7(dB), N1 = 64, M = 10, 95% CONFIDENCE

N, 16 32 64 128 256

Selection ratio of class | 0.901+ 0.003 | 0.814+ 0.003| 0.736+ 0.004| 0.778+ 0.003| 0.85t 0.003

Selection ratio of class 2 0.107+ 0.002 | 0.366+ 0.003| 0.731+ 0.004| 0.943+ 0.002| 0.995+ 0.001

Our 49473+ 0.018| 5.664+ 0.012| 6.999+ 0.011| 8.338+ 0.015| 9.065+ 0.015
Upper 5.337+0.017 | 6.039+ 0.012| 7.332+ 0.011| 8.611+ 0.014| 9.275+ 0.013
Our/Upper 0.927 0.938 0.955 0.968 0.977

N = N,. In this case, we do not provide the system utility achiewethle global optimal power allocation,
since it is not easy to obtain. However, as shown in the tabiesratios of the system utility achieved by
our power allocation to that achieved by the upper bound ergtbbal optimal power allocation are quite
close to 1 in most cases. This implies that, even in mulsleases, the system utility achieved by our
power allocation is close to that achieved by the globalmatipower allocation. In fact, as in the single
class cases, the ratio between these two allocations is olasér to 1 than the ratio between our power
allocation and the upper bound on the global optimal powecation.

We also provide the mobile selection ratio for each clasablds V- VII. The results show that the class
of mobiles with a larger value aof (a smaller value ob, or a larger value ofV) has a higher selection ratio
than one with a smaller value of(a larger value ob, or a smaller value ofV). This implies that in our
power allocation, the mobile that is more efficient has a @éigiriority to be selected than the mobile that
is less efficient. This efficient utilization of power resulh our power allocation achieving high system
utility. On the other hand, from the results, our power akian in which only the efficiency of the system

is considered could be unfair to some mobiles (that are lésgeat).

VII. CONCLUSION

In this paper, we have developed a downlink power allocatigorithm for multi-class wireless networks
by using a utility based framework allowing general typesitilfty functions. The algorithm can be imple-
mented in a distributed way using a utility and dynamic prgciramework. We have shown that it provides
an asymptotically (in the number of mobiles) optimal powlaation. Further, numerical results show that

its performance is close to that of the global optimal poweication.
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Power is a fundamental resource in wireless networks aret otisource allocation problems in wireless
networks, such as data rate and time must be studied baskd pawer allocation scheme. Therefore, even
though in this paper, we consider only the power allocatimblem in wireless networks, our framework
can be extended to other resource allocation problems &§28¢l

In this paper, we have focused only on the efficiency of théesysvithout considering fairness among the
mobiles, which could result in unfair power allocation fanse mobiles. However, in resource allocation,
considering fairness as well as efficiency such as the oppistic scheduling schemes in [24], [25], [26] is

an important issue and is a topic for future research.

APPENDIX
A. Proof of Lemma 1

If Zi‘il P, < Pr, there exists an > 1 such that
M M
Z P <a Z P, = Pr.
=1 =1

We defineP = aP, fori =1,2,---, M, then

% NZP’L*
Vi(PT) =

() aP; —ab)+ a4,
j=1
= v(P),i=1,2,---, M.

ThereforeU;(v;(P*)) > U;(y:(P)) for all i, sincel; is an increasing function of;.

B. Proof of (3)

We first prove the following lemma, from which if mobileequests positive powdt;(\) at price), then

P;(\) = ProrU;(v;(P;(\))) is in the concave region.

Lemma 3:P;(A\) =0or P? < Pi(\) < Pr.
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Proof: If 0 < P(\) < Pr, it must satisfy the first and the second order necessaryitammsi for
optimality [21], i.e., @0uP ), 0 = A, EUOLP)) L 0 < 0, since P()) is an interior point. This

implies thatP;(\) = 0 or PP < P;(\) < Pr. |

From Lemma 3, if the utility functiort/;, of mobilei, is convex, then mobiléwill always request a power
level of O or Pr.

We now prove (3). We first define;(\) as

wi(A) = max {U;(n(P)) = AP},

P°<P<Pr

which is a non-increasing function af Then, by Lemma 3,

max {U;(7i(P)) — AP} = max{0, w;(\)}

0<P<Pr
and
AeE —mingA > 0 | wi(A) < 0. )
We now definey;(\) = arg maxpo<pep, {Us(7:(P)) = AP}, AT = 0B, andhg = @A0AED|

Then, sincel;(~;(P)) is a concave function foPy < P < Pr, @iliP) ig g decreasing function for

P? < P < Pr. Hence A < \? and

Pr, if A< AT
G(N) =9 ¢\, FAT<A<N , (10)
P? if A >\

(2

whereg; () is a unique solution of

dUz‘(%(P>>
=\ PP<P<Pr. 11
P ABTsPs Py (11)
Therefore,
Ui(vi(Pr)) — APr, if A\ < AT
wi(A) = Up(ilqr (V) = Agi(N), if AT <A< A0 . (12)
Us(vi(P?)) — AFY, if A >\

Since, by the assumptions on the utility functloﬁ‘-é,glg— is a continuous functiony;(\) is a continuous

function and, thusy;()\) is a continuous function. Further, we can easily show thad) is a decreasing
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function for A < A2, w;(A?) < 0, andw;(0) > 0. This implies thatv;(\) = 0 has a unique solution for
0 < X < \¢and, by (9)\"** is its solution. Hence, there exists a unigye&* for mobiles.
We now consider the following equation:

_dU;((P))

Uik(P) = =0

P=0, P°<P<Pr. (13)

Then, by (10) - (12), there exists a solutiBhof the equation in (13) if and only if there exists a solutign
of w(A) = 0, A < X < \2. We first assume that there exists a solutigfrof the equation in (13) and let
N, = 0P|, L Hencegi(N) = P andw;(\;) = 0. This implies that\/e? = )} = 50iEl), .
We now assume that there is no solution of the equation in 8% implies thatu;(\) # 0, AT < X < \o.
However, since we have shown that\) = 0 has a solution fof < A < X¢, it has a solution\7** < AT,
Hence, by (12)Ayee = B0,

If P? =0,i.e.,U;(v(P))is aconcave function, the equation in (13) always has aisalat P, = P? = 0.
Hence, in this case\"s* = \¢ = ©0uP) |, if pe = Pr,ie., Ui(v;(P)) is a convex function, we can
easily show that/;(y;(Pr)) < WLDZPTPT. Hence, the equation in (13) has no solution and, thus,

maz _ Ui(v(Pr))
e = o)

C. Properties ofP;()\)

In this subsection, we study the propertiesf)\). Throughout this subsection!, )¢, ¢;(\), andw;(\)
are defined as in Appendix B and we will use their propertias lave been shown there. For convenience,
we summarize some useful properties as follows:

(B1) AT <.

(B2) w;(Am*) = 0.

(B3) If there is a solutior”/ of the equation in (13), them(A\7%®) = P/ and\? < \maz < \o,

(B4) If there is no solution of the equation in (13), thef'® < 7.

(B5) If P? =0, then\"** = \? and there exists a solutidff = 0 of the equation in (13).

(B6) If P? = Pr, then there is no solution of the equation in (13).

(B7) w;(\) is a decreasing function for < A?.

Further, by using the definitions af;(\) andg;(\), we can represerf; () as

{0}, if w;(\) <0
P(N) € ¢ {0,a(N)}, ifw; (M) =0 - (14)
{g;:(N)},  ifw;(A) >0
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Property 1:

(01,  ifPo—0
Pi(\"*) € 4 {0, P/}, if0< P° < PpandP)! exists ,
{0, Pr}, otherwise

whereP! is a solution of the equation in (13).

Proof: From (B2) and (14)P;(\"**) € {0, ¢;(\"**)}. If there exists a solutiof?/ of the equation in
(13), theng;(\7*2®) = P/ by (B3). Otherwise) ™® < A\ by (B4) and, thusg;(\"**) = Py by (10). Hence,
if P =0, then,P;(\7) € {0} by (B5). If P* = Py, thenP,(A\"*) e {0, P} by (B6). |

Property 2: P;(\) € {0} for A > A\,
Proof: If P? = 0, theng;(\) = P? = 0 for A > \"** by (B5) and (10). Hencel;(\) € {0} for
A > \er by (14). If P? # 0, then we can easily show that()) is a decreasing function. This implies that
w(A) < 0for A > A" by (B2). Hence P;(\) € {0} for A > A\I"** by (14). |

Property 3: P;(\) is non-increasing im\. Moreover,P;(\) is a decreasing and continuous function)of

for \in <\ < Amar | if \min oL Amaz where A" = max{\ > 0|P;(\) = Pr}.
Proof: We will prove this by considering two different cases.

We first suppose that there is no solution of the equation3) ¢t that these exist8!, a solution of the
equation in (13) and®’ = Pr. By Property 2,P;(\) € {0} for A\ > \"** and by Property 1P;(\/"**) €
{0, Pr}. In this case, we can show th&te® < AT by (B4) and (3). Hencey;(\) > 0 for A\ < A% by
(B1), (B2), and (B7) and;(\) = Pr for A < A"* by (10). This implies thaP(\) € {Pr} for A < A"e*
by (14). HenceP()\) is non-increasing in\. Further, by the definition ok, in this case* = X7,

We now suppose that there exigts, a solution of the equation in (13) anfd # Pr. In this case,
A< Amar < \e by (B3). However, sincd” # Pr, Al < A7 < X\¢. By Property 2,P;()\) € {0} for
A > \rer By Property 1 and (B3)P;(\**) = {0, P/} and P! = ¢;(A"**). In a similar way to the above
case, we can show that(\) > 0 for 0 < A < A"**. This implies thatP;(\) € {¢;(\)} for0 < A < A"®
by (14). Hence, by (10)(\) € {Pr} for A < AT, Again, by (10),4;(\) is a solution of

dU;(vi(P))

— )\ P°P<P<P
dP roe =2 =27
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for A < X < A™@. Since, by the assumptions on the utility functidﬂ% is a continuous and
decreasing function foP? < P < Pr, ¢;(\) is a continuous and decreasing function fgr < X < \7a,
Hence, P;()\) is a continuous and decreasing function fgr < A < A7 and P,(\) > ¢;(\"®®) for
A< X < A Further, by the definition ok], P;(\]) € {Pr}. This implies that\*" = AT. Hence,

P()) is a non-increasing in and it is a continuous and decreasing functionX¥gi” < \ < Ao, [

D. Proof of Proposition 1

WhenK =max{1 < j < M| >/, Pi(AJe*) < Pr}, we can have the following three cases.

We first consider the case whénh= M. Then, XM (A7) < Pr. Since eactP;(\),i =1,2,---, M
is a continuous and non-increasing for< A\7¢*, we can find a\* such that:", P;(\*) = Pr and
A* < A, This implies that\* is an optimal solution of problem (C). Hence, selecting mexbfrom 1 to
M is an optimal mobile selection for problem (C). Further, sifit}’, P;(\*) = Pr, by Lemma 2, itis an
optimal mobile selection for problem (A).

We now consider the case whéh < M andY %, P,(A\R%%) > Pr. In this case, in a similar way to
the above case, we can find\asuch thaty X, B(A\*) = K, B(\) = Prandg, < A < Mg (if
N = AR, P11 (X*) implies zero). Hence, selecting mobiles from 1/ds an optimal mobile selection
for problems (A) and (C).

Finally, we consider the case whén < M andY_/, Pi(\p2e%) < Pr. Then, by the definition ofy,,
Yt P(Apat) > Pr. Inthis case, due to the non-increasing property’¢h), \* = A724% is an optimal
solution of problem (C) and selecting mobiles from 1Kois an optimal mobile selection for problem

(C). However, sinc& X, P,(\*) = S5, P,(\*) < Pr (wherePx,()\*) implies zero) angd_M, P;(\*)

SEH P(\*) > Pr (wherePyk ., ()\*) implies positive), in this case, there is Adsuch that"Y, P()\°) =

Pr and this mobile selection may not be an optimal mobile sigled¢or problem (A).

E. Proof of Proposition 2

By Proposition 1,5 %, P(A\x) < PrandP(\), i = 1,2,---, K is a non-increasing and continuous
function for0 < A < k. Hence, there always exists < \7%* that satisfies" , P(\*) = Pr. Therefore,

by Lemma 2,PK(\*) = (Pi(\), Po(X\*),---, Px()\*)) is a global optimal solution for problem (G).
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F. Proof of Proposition 3

We assume that mobiles from 1 o6 are selected by the MSA and™** > \J** > ... > A\7**. We
defineP; ., (A) and 73" as

P, ,(\) = arg max {U/(P)— AP}

0<P<Pr
and

At =min{A >0 | OSI?D%};T{U (P) — AP} =0}.

Then, we can easily show that

Fi(A) (> 0), if A < A
Pu(A) =14 {P10< P < P(AM)} (3 B(N), if A=Arar . (15)
Pi(A) (=0), if A > \maz

This implies thatnaxo<p<p {U"(P) — AP} > 0 for A < A\"** andmax<p<p,{U*(P) — AP} = 0 for
A > AT Hence A = A\,

We first suppose that the condition in (4) or (5) is satisfiedthis case, from the proof of Proposition 1
in Appendix D, there exists &* such thatP;(\*) = PP, i = 1,2,---, M andX ¥, P,(\*) = Pr. Since,
PP € P,,(\*) by (15) andyM, PP = Pr, by Lemma 2,P? is a global optimal solution of problem (U).
Hence, we can tak&* = PP. Further, if P? > 0, thenP? > P;(\™e*). This implies that, by the definition
of U¥in (7), UM (P?) = Uy(vi(PF)) fori =1,2,---, M. Hence,

M M
Z; Ui (P) = ; Ui(ni(PF))-

We now suppose that neither of the condition in (4) nor (Satisied, i.e., from (6)7, Pi(\24%) < Pr
and Y54 P(ARe) > Pr, K < M. In this case, from Propositions 1 and 2/ = P;(\*) for i =
1,2,---,KandP? = 0fori = K + 1, K +2,---, M, where)\* satisfies* , P,(\*) = Pr. This implies

that\* < A2%% and, thuspP? > P;(\jpe4) fori =1,2,---, K. Hence,

M K K
S Ua(PE) =Y U(w(P)) = D Ui(vi(Bi(NES)))- (16)
=1 =1 =1
We now define
R(A’r[??l—xl% Ifl:17277K
P = ¢ Pr—yK PR, ifi=K+1

0, fi=K+2 K+3,---,M
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Then, >, Pt = PrandP* € P,(\pee) fori = 1,2,---, M by (15). Hence, by Lemma 2, it is a global
optimal solution of problem (U). Further, siné&(A\74%) > P;(A***) fori =1,2,---, K, by the definition
of U* in (7),

Uzu(qu) = Uz('yz(Pz<)‘?i—xl)))’ 1= 1727 T K. (17)

Therefore, by (16) and (17),
M K K K

D UNPY) =2 Ui(i(P))) < Y UMPIORE)) + U (Pr = 3 B(NET) = 2 Ui(n(P(ARE)))

i=1 =1 i=1 =1 =1
K
= U (Pr =Y P(AE))
=1
< Ulu(+1<PT)
= Ukt1(vk+1(Pr))

<  max {U;(vi(Pr))}.

1<i<M

G. Proof of Proposition 4

By Proposition 3,
S Uitn(P)) o S Ui(w(PY))
Ly Ui(0i(P7)) ™ tman + 0 Us(i(PF))
Since by Proposition 2, our power allocation is a globalrmptipower allocation for the selected mobiles,

> Ui(wi(PF)) = Ui(v;(Pr)) = tmin,

i=1

where mobilej is one of the selected mobiles by the MSA. This implies that

Zij\il U’L (’77,(P1*)) o Umazx + Umin

H. Proof of Properties in the Homogeneous Case

1) Proof of property (S1): SinceU;(v) = U;(vy) andN; = N;, A; < A; implies thatU (v;(P)) >
U(y;(P)) for 0 < P < Pr. By the definition ofA7" ",

U(7(P)) — AP < 0, 0 < P < Py.

Hence,

U(35(P)) = X" P <0, 0< P < Pr.
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This implies that

)\maac < )\maac7

Sincemaxogpng{U(’yj(P)) - )\;naxp} = 0.

2) Proof of property (S2): We will prove this by using contradiction. Suppose tkat= (P}, ---, P;;)

is an optimal power allocation and(F;) < ~;(F;). Then, 55 N}I;HA < 5 NﬁfHA and, thus,p;" <

SRLALPY. Let Py = G PR and Py = P + Py — P = P — =P Then,F/ + P} = P} + P},

OPr+A; s
(P = Nopoa
FACK 9Pr 1A,
G(PT GP;Tp-i-AJ

NP
O(Pr— P*)+ A,

= 7i<Pi*>>

Pr) + A;

* Aj—Ai px
w(Bl) = 5 ek P
O(Pr — Pj*+9P +£ P*)+A

x _ Aj—Ai OPr+A; px
N(PJ €PT+A¢ OPr+A; PJ )

_ D% Aj—Ai OPr+A; px )
0(Pr Pi+ OPp+A; 9PT+A‘,-P]' )+ A

NP;

0(Pr— P;) + A
= (F}),

where the inequality comes from the fact thgt < A; and P < zIfTiﬁl P;. Therefore,U(v;(P})) =

U(vi(P7)) andU (vi(F;)) > U(v;(P;)). This implies that
Uni(F)) + U(;(F)) > U(v(F)) + Uy ()

and utilities for all other mobiles are unchanged, whicthes ¢ontradiction.

3) Proof of property (S3): This immediately follows from property (S2).
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