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OFDM Systems
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Abstract—We consider scheduling and resource allocation for
the downlink of a cellular OFDM system, with various practical
considerations including integer tone allocations, different sub-
channelization schemes, maximum SNR constraint per tone, and
“self-noise” due to channel estimation errors and phase noise.
During each time-slot a subset of users must be scheduled, and

the available tones and transmission power must be allocated
among them. Employing a gradient-based scheduling scheme pre-
sented in earlier papers reduces this to an optimization problem
to be solved in each time-slot. Using a dual formulation, we
give an optimal algorithm for this problem when multiple users
can time-share each tone. We then give several low complexity
heuristics that enforce integer tone allocations. Simulations are
used to compare the performance of different algorithms.

Index Terms—Orthogonal frequency division multiplexing
(OFDM), WiMax, cellular downlink, scheduling, resource allo-

cation, nonlinear optimization, wireless communications.

I. INTRODUCTION

MOST recent high-speed wireless data systems dynam-

ically schedule users and allocate physical layer re-

sources among them based on the users’ channel conditions

and quality of service (QoS) requirements. Many of the

scheduling algorithms considered can be viewed as “gradient-

based” algorithms, which select the transmission rate vec-

tor that maximizes the projection onto the (time-varying)

gradient of the system’s total utility [1]–[4]. Several such

algorithms have been studied for time-division multiplexed

(TDM) systems, including the “proportionally fair rule” [4],

[6] which is based on a logarithmic utility function of each

user’s throughput. A larger class of throughput-based utilities

is considered in [2], [5], where efficiency and fairness are
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allowed to be traded-off. The “Max Weight” policy (e.g. [7]–

[9]) can also be viewed as a gradient-based policy, where the

utility is also a function of the user’s queue-size or delay.

In TDM systems, one only needs to schedule one user in

a time-slot and choose the modulation and coding scheme

for that user. However, in many current systems, multiple

users may be multiplexed within a time-slot using Orthog-

onal Frequency Division Multiplexing (OFDM) (e.g. IEEE

802.16/WiMAX [11] and 3GPP LTE [12]). This paper ad-

dresses gradient-based scheduling and resource allocation for

the downlink of such a system where in addition to determin-

ing which users are scheduled, the allocation of physical layer

resources (e.g. transmission power and subcarriers) must also

be specified.

Our approach is motivated by [10], where a gradient-based

scheduling algorithm is used for a system which multiplexes

users in a time-slot via code division multiple access (CDMA).

Compared to CDMA, OFDM offers more degrees of free-

dom to allocate resources across (i.e., tone allocation in the

frequency domain). This enables exploiting both multi-user

diversity and frequency diversity at a finer granularity, but also

significantly increases the complexity of the optimization.

At the beginning of each scheduling interval, the gradient-

based scheduling algorithm maximizes the weighted through-

put sum over the current set of feasible rates. In Section II, we

give a model for this rate region, taking into account the fol-

lowing important practical considerations for OFDM systems:

1) different subchannelization techniques in which resource

allocation is performed at a larger granularity (i.e, groups of

tones or symbols) to reduce the channel measurement and

feedback overhead; 2) constraints that each subchannel/tone

can be allocated to at most one user; 3) constraints on the

maximum rate per tone to model a limitation on the available

modulation and coding schemes; and 4) “self-noise” due to

channel estimation errors (e.g., [13]) or phase noise [23].

In Section III, we consider a dual formulation for the

resulting optimization problem, which enables us to exploit the

problem’s structure and develop both optimal and simple sub-

optimal algorithms with low complexity. Simulation results

are given in Section IV for these algorithms with dynamically

varying weights under different choices of utility functions,

subchannelization schemes, self-noise and per tone rate con-

straints. We conclude in Section V.

A number of related formulations without self-noise and per

tone rate constraints for downlink OFDM resource allocation

have been studied including [14]–[20]. In [15], the goal is
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to minimize the total transmit power given target bit-rates

for each user. Sum-rate maximization is considered in [16],

[18], [19], where [18], [19] also enforce a minimum bit-rate

per user. Weighted sum-rate maximization (for a fixed set

of weights) is studied in [14], [20]. In [14], a suboptimal

algorithm with constant power per tone was shown in sim-

ulations to have little performance loss. Other heuristics that

use a constant power per tone are given in [16]–[18]. We also

consider such a heuristic in Section III-D. In [20], a similar

dual-based algorithm to ours is considered and simulations are

given which show that the duality gap of this problem quickly

goes to zero as the number of tones increases; we will revisit

this in Section III-B. Finally, in [21], the capacity region of a

downlink broadcast channel with frequency-selective fading

using a TDM scheme is given that covers our rate region

without any maximum rate constraints or self-noise.
The previous papers optimize a static objective function

while we are interested in the case where the objective changes

according to a gradient-based algorithm. It is not a priori

clear if a good heuristic for a static problem applied to each

time-step, will be a good heuristic for the dynamic case,

since the optimality result in [1]–[4], [7]–[9] is predicated on

solving the optimization problem exactly in each time-slot.

Our simulation results show that the heuristics continue to

perform well, at least for the scenarios considered in this paper.

In a companion paper [25], we use similar methods to solve

the corresponding uplink problem. A more general solution

framework that encompasses both the uplink and downlink

cases is provided in [29].

II. PROBLEM FORMULATION

We consider downlink transmissions in an OFDM cell from

a base station to a set K = {1, . . . , K} of mobile users. In

each time-slot, the scheduling and resource allocation decision

can be viewed as selecting a rate vector rt = (r1,t, . . . , rK,t)
from the current feasible rate region R(et) ⊆ R

K
+ , where et

indicates the time-varying channel state information available

at the scheduler at time t. Following the gradient-based

scheduling framework in [1]–[4], an rt ∈ R(et) is selected

that has the maximum projection onto the gradient of a system

utility function U(W t) :=
∑K

i=1 Ui(Wi,t), where Ui(Wi,t)
is an increasing concave utility function of user i’s average

throughput, Wi,t, up to time t. In other words, the scheduling

and resource allocation decision is the solution to

max
rt∈R(et)

∇U(W t)
T · rt = max

rt∈R(et)

∑

i

U ′
i(Wi,t)ri,t, (1)

where U ′
i(·) is the derivative of Ui(·). For example, one class

of utility functions given in [2], [5] is

Ui(Wi,t) =

{

ci

α
(Wi,t)

α, α ≤ 1, α �= 0,
ci log(Wi,t), α = 0,

(2)

where α ≤ 1 is a fairness parameter and ci is a QoS weight.

With equal class weights, α = 1 results in the scheduling rule

that maximizes the sum-rate during each slot; α = 0 results

in the proportionally fair rule.

In general, we consider the problem of

max
rt∈R(et)

∑

i

wi,tri,t, (3)

where wi,t ≥ 0 is a time-varying weight assigned to the ith
user at time t tied to the QoS requirements of the user [1]–[4],

[7]–[9]. We note that (3) must be re-solved at each scheduling

instance because of changes in both the channel state and

the weights (e.g., the gradients of the utilities). While the

former changes are due to the time-varying nature of wireless

channels, the latter changes are due to new arrivals and past

service decisions.

A. OFDM capacity regions

The solution to (3) depends on the channel state dependent

rate region R(e), where for simplicity we suppress the depen-

dence on time. We consider a model appropriate for downlink

OFDM systems; related models have been considered in [14],

[21]. In this model, R(e) is parameterized by the allocation

of tones to users and the allocation of power across tones. In a

traditional OFDM system, at most one user may be assigned

to any tone. Initially, as in [15], we make the simplifying

assumption that multiple users can share one tone using

some orthogonalization technique (e.g. TDM).1 In practice,

if a scheduling interval contained multiple OFDM symbols,

we can implement such sharing by giving a fraction of the

symbols to each user. We discuss the case where only one

user can use a tone in Section III-C.

Let N = {1, . . . , N} denote the set of tones. For each

j ∈ N and user i ∈ K, let eij be the received signal-

to-noise ratio (SNR) per unit power. We denote the power

allocated to user i on tone j by pij and the fraction of that

tone allocated to user i by xij . The total power allocation

must satisfy
∑

i,j pij ≤ P , and the total allocation for each

tone j must satisfy
∑

i xij ≤ 1. For a given allocation,

with perfect channel estimation, user i’s feasible rate on tone

j is rij = xijB log(1 +
pijeij

xij
), which corresponds to the

Shannon capacity of a Gaussian noise channel with bandwidth

xijB and received SNR pijeij/xij . This SNR arises from

viewing pij as the energy per time-slot user i uses on tone j;
the corresponding transmission power becomes pij/xij when

only a fraction xij of the tone is allocated. Without loss of

generality we set B = 1 in the following.

In a realistic OFDM system, imperfect carrier synchro-

nization and channel estimation may result in “self-noise”

(e.g. [23], [13]). We model this in a similar way as [13]. Let

the received signal on the jth tone of user i be given by yij =
hijsij +nij, where hij , sij and nij are the (complex) channel

gain, transmitted signal and additive noise, respectively, with

nij ∼ CN (0, σ2). Assume that hij = h̃ij + hij,δ , where h̃ij

is receiver i’s estimate of hij and hij,δ ∼ CN (0, δ2
ij). After

matched-filtering, the received signal will be zij = h̃∗
ijyij

resulting in an effective SNR of

Eff-SNR =
‖h̃ij‖4pij

σ2
ij‖h̃ij‖2 + δ2

ijpij‖h̃ij‖2
=

pij ẽij

1 + βijpij ẽij

, (4)

1We focus on systems that do not use superposition coding and successive
interference cancellation within a tone, as such techniques are generally
considered too complex for practical systems.
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where pij = E(‖sij‖2), βij =
δ2

ij

‖h̃ij‖2
and ẽij =

‖h̃ij‖
2

σ2
ij

.2 Here,

βijpij ẽij is the self-noise term. As in the case without self-

noise (βij = 0), the effective SNR is still increasing in pij .

However, it now has a maximum of 1/βij . For the sake of

presentation, we assume that β = βij for all i and j. The

analysis is almost identical if users have different βij’s.

With self-noise, user i’s feasible rate on tone j becomes

rij = xij log(1 +
pij ẽij

xij+βpij ẽij
), where again xij models time-

sharing of a tone. Under these assumptions, we have

R(e) =

{

r : ri =
∑

j

xij log
(

1 +
pij ẽij

xij+βpij ẽij

)

,

∑

i,j

pij ≤ P,
∑

i

xij ≤ 1 ∀j, (x, p) ∈ X

}

, (5)

where X :=
∏N

j=1 Xj , and for all j ∈ N ,

Xj :=
{

(xj , pj) ≥ 0 : xij ≤ 1, pij ≤ xij s̃ij

ẽij
∀i

}

, (6)

with xj := (xij , ∀i ∈ K) and pj := (pij , ∀i ∈ K).

Here, s̃ij =
Γij

1−Γijβ
, where Γij < 1/β is a maximum SNR

constraint on tone j for user i, e.g., to model a constraint

on the maximum rate per tone due to limited availability of

modulation and coding schemes. At the cost of additional

complexity, we could also include minimum rate constraints

to model inelastic traffic, and maximum rate constraints to

incorporate buffer sizes.

We assume that ẽij is known by the scheduler for all i and j
as is β (or δ2

ij ). In a frequency division duplex (FDD) system,

this knowledge can be acquired by having the base station

transmit pilot signals, from which the users can estimate their

channel gains and feed them back to the base station. In a

time division duplex (TDD) system, these gains can also be

acquired by having the users transmit uplink pilots; the base

station can then exploit reciprocity to measure the channel

gains. In both cases, this feedback information would need to

be provided within the channel’s coherence time.

B. Subchannelization

With many tones and users, providing pilots and/or feed-

back per tone can require excessive overhead; e.g., in IEEE

802.16e [11], a channel with bandwidth 1.25Mhz to 20Mhz

is divided from 128 to 2048 tones. One way to reduce this

overhead is for feedback and resource allocation to be done

at the granularity of subchannels of disjoint sets of tones,

i.e., constant power is used and coding is done across the

tones in the same subchannel. Our model can be adapted to

this setting by viewing N as the set of subchannels and ẽij

as the effective SNR per unit power for user i on the jth
subchannel. Specifically, assuming that k tones are bundled

into subchannel j, ẽij is chosen so that the total rate (given by

xij

∑

jl∈Nj
log(1+

pij ẽijl

xij+βpij ẽijl

) where Nj is the set of tones

2This is slightly different from the Eff-SNR in [13] in which the signal
power is instead given by ‖hij‖4pij ; the following analysis works for such
a model as well by a simple change of variables. For the problem at hand,
(4) seems more reasonable in that the resource allocation will depend only
on h̃ij and not on hij . We also note that (4) is shown in [22] to give an
achievable lower bound on the capacity of this channel.

in the jth subchannel and ẽijl
is the SNR per unit power

for tone jl) for user i in this subchannel is approximately

kxij log(1 +
pij ẽij

xij+βpij ẽij
). Since log(1 + pe

x+βpe
) is a concave

function of e, using Jensen’s inequality the rate achieved

over a subchannel is upper bounded by taking ẽij to be the

arithmetic average of the channel gains of tones in subchannel

j. The rate can be lower bounded using the strict convexity

of log(l + exp(y)) for y ∈ ℜ (with l > 0) and Jensen’s

inequality. If β = 0, taking y = log
(

pe
x

)

and l = 1 we

lower bound the rate by setting ẽij equal to the geometric

average of the subchannel gains. When β > 0 we take

y = − log
(

1 + x
βpe

)

and l = β, apply Jensen’s inequality

followed by the arithmetic-mean geometric-mean inequality

to lower bound the rate by setting ẽij equal to the harmonic

average of the subchannel gains. The gap between the upper

and lower bounds is quite small for reasonable values of pe;
for the SNRs achieved by scheduled users in our simulations,

we do not see much difference.3 From here onwards we

will use the terms tone/carrier/subchannel to mean the basic

allocation unit; the specific distinctions will be clear from the

context.

We consider the following subchannelizations: (i) adjacent

channelization, where adjacent tones are grouped together as

in the optional “band AMC mode” in IEEE 802.16d/e [11];

(ii) interleaved channelization, where tones are (perfectly)

interleaved as in the interleaved channelization in IEEE

802.16d/e [11]; and (iii) random channelization, where tones

are randomly assigned as in systems that employ frequency

hopping as in the Flash OFDM system [24]. Adjacent chan-

nelization enables the resource allocation to better exploit fre-

quency diversity. Interleaved or random channelization reduces

the variance of the effective SNR across subchannels for each

user; when the variance is small, user i can simply feed back a

single ei value. Random channelizations also aid in managing

inter-cell interference.

III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

From (3) and (5), the scheduling and resource allocation

problem can be stated as:

max
(x,p)∈X

V (x, p) :=
∑

i,j

wixij log
(

1 +
pij ẽij

xij+βpij ẽij

)

subject to:
∑

i,j

pij ≤ P, and
∑

i

xij ≤ 1, ∀j ∈ N ,
(7)

where we still assume that users can time-share subchannels.

Next we show how to solve (7) via a dual formulation.

3For example, in our simulations of the optimal algorithm with β = 0.01,
the differences between achieved utilities under arithmetic average and har-
monic average approximations are 0.005%, 0.1%, and 0.4% under adjacent,
interleaved and random subchannelizations, respectively.
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A. Optimal Dual Solution

Consider the Lagrangian, L(x, p, λ, µ) := λP +
∑N

j=1 Lj(x
j , pj , λ, µj), where

Lj(x
j, pj , λ, µj) :=

K
∑

i=1

wixij log

(

1 +
pij ẽij

xij + βpij ẽij

)

+ µj

(

1 −
K

∑

i=1

xij

)

− λ

K
∑

i=1

pij , (8)

and µ = (µj)
N
j=1. The corresponding dual function

L(λ, µ) := max(p,x)∈X L(x, p, λ, µ) can then be written as

L(λ, µ) = λP +

N
∑

j=1

max
(pj ,xj)∈Xj

Lj(x
j , pj , λ, µj). (9)

By directly evaluating the Hessian of x log(1 + p
x+βp

) it can

be seen that this is jointly concave in (x, p). It follows that

Problem (7) is convex and satisfies Slater’s condition. Hence,

there is no duality gap and so V ∗ := minλ≥0,µ≥0 L(λ, µ) is

the optimal objective value [26].

Next we give a closed-form representation of L(λ, µ) in (9).

We then show that minimizing L(λ, µ) over µ only requires

searching for the maximum of user dependent metrics for

each tone j. The only numerical search needed is for the

minimization over λ, which is a one-dimensional search.

1) Computing the Dual Function: For a given xj , µj and

λ, the pj which obtains the maximum in (9) is given by

p∗ij(x, λ, µ) = xij p̃ij(λ) with

p̃ij(λ) := 1
ẽij

[

q

(

β,
(

wi ẽij

λ
− 1

)+
)

∧ s̃ij

]

,(10)

where (x)+ = max(x, 0), a ∧ b = min(a, b), and

q(β, z) :=

{

z, if β = 0;
(

2β+1
2β(β+1)

)(√

1 + 4β(β+1)
(2β+1)2 z − 1

)

, if β > 0.

Figure 1 shows p∗ij in (10) as a function of ẽij for

β = 0, 0.01, and 0.1. When β = 0, (10) becomes a “water-

filling” solution in which p∗ij(x, λ, µ) is non-decreasing in

ẽij . For a fixed β > 0, due to self-noise, less power may

be allocated to “better” subchannels. The constant β case is

applicable when the self-noise is due to phase noise as in

[23]. On the other hand, when self-noise arises primarily from

estimation errors, β may not be constant but could depend

on the channel quality. The exact dependence will depend on

the details of channel estimation. As an example, we also

show a curve for when β(e) = 10/e, which is motivated

by the analysis in [22, Section IV] for the estimation error

of a Gauss-Markov channel from a pilot with known power.

For that model, when the pilot power is either constant or

inversely proportional to channel quality subject to maximum

and minimum power constraints (modeling power control), β
will be inversely proportional to e. It can be seen that the curve

has a different shape and amplitude compared to the β = 0
case. For simplicity of presentation, we assume constant β’s

in the remainder of the paper.
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Fig. 1. Optimal power p̃ij(15) with wi = 1 versus channel condition eij .

Notice from (10) that the optimal value of p∗ij is always a

linear function of xij . Substituting (10) into Lj(x
j , pj , λ, µj)

also results in a linear function of xij , namely,

Lj(x
j , pj,∗, λ, µj) =

∑

i

xij (µij(λ) − µj) + µj ,

where µij(λ) := wih
(

β,
wiẽij

λ
, s̃ij

)

, and

h (β, ω, s̃ij) := log

(

1 +
q(β,(ω−1)+)∧s̃ij

1+β(q(β,(ω−1)+)∧s̃ij)

)

− 1
ω

(

q
(

β, (ω − 1)
+
)

∧ s̃ij

)

.

From this it follows that any choice

x∗
ij(λ, µ) ∈

⎧

⎪

⎨

⎪

⎩

{1}, if µij(λ) > µj ;

[0, 1], if µij(λ) = µj ;

{0}, if µij(λ) < µj ,

(11)

will maximize Lj(x
j , pj,∗, λ, µj). Hence, L(λ, µ) := λP +

∑N

j=1 Lj(λ, µj), where

Lj(λ, µj) =
∑

i

(

µij(λ) − µj

)+
+ µj . (12)

2) Optimizing the Dual Function over λ and µ: Lemma 1

characterizes the optimization of L(λ, µ) over µ.

Lemma 1: For all λ ≥ 0,

L(λ) := min
µ≥0

L(λ, µ) = λP +
∑

j

µ∗
j (λ), (13)

where for every tone j, the minimizing value of µ∗
j is

µ∗
j (λ) = max

i
µij(λ). (14)

Proof of Lemma 1 is similar to the proof in [10]. For each

tone j, (14) computes the maximum of user metric µij .

Since L(λ) is the minimum of a convex function over a

convex set, it is a convex function of λ; hence, it can be

minimized using an iterated one dimensional search (e.g.,

the Golden Section method [26] for which the computation

complexity is O(log(1/ǫ)), where ǫ is the target relative error

bound). Since there is no duality gap, this minimization gives

the optimal objective value in (7).
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B. Optimal primal variables with time-sharing

Now we find optimal values of the primal variables (x, p).
For every λ ≥ 0, with µ∗(λ) as in (14), let

(x∗, p∗) := arg max
(x,p)∈X

L (x, p, λ, µ∗(λ)) ; (15)

note that these satisfy (10) and (11).

Given that λ = λ∗, it follows from duality theory, that

if the (x∗, p∗) satisfying (15) are primal feasible and satisfy

complimentary slackness, then they are primal optimal primal.

In particular, if for each tone j there exists a unique user i that

achieves the maximum in (14), then since there is no duality

gap, allocating tone j only to that user must be primal optimal.

In general, given λ ≥ 0, let Aj := {i|µ∗
ij(λ) = maxı̂ µ∗

ı̂j(λ)}
be the set of users who achieve the maximum on tone j, and

|Aj | be the size of Aj . From (11) it follows that all x∗ that

solve (15) are those that satisfy the following properties: (i)

for i �∈ Aj , x∗
ij = 0; (ii) if |Aj | = 1, then x∗

ij = 1 for i ∈ Aj ;

and (iii) if |Aj | > 1, then for all i ∈ Aj , x∗
ij ∈ [0, 1] and

∑

i∈Aj
x∗

ij = 1. In case (iii), not all tone allocations satisfying
∑

i∈Aj
x∗

ij = 1 may be primal feasible (e.g.,
∑

ij p∗ij maybe

larger than P ). Breaking these ties is necessary to find a primal

optimal solution. A key point is that when ties occur at a given

λ, L(λ) may not be not differentiable at that λ. However, since

L(λ) is a convex function, subgradients exist [27].

Proposition 1: For any λ ≥ 0, d is a subgradient of L(λ)
if and only if there exists (x∗, p∗) satisfying (15),

∑

i x∗
ij ≤

1 for all j, µ∗
j (λ)

(

1 −
∑

i x∗
ij

)

= 0 for each j, and P −
∑

i,j p∗ij = d.

The proof of Proposition 1 can be found in [28] and follows

by observing that that dual function is the maximum of a set

of Lagrangian functions which are linear in λ and that the

gradient of each of the Lagrangian functions (with respect to

λ) is given by P −
∑

i,j pij . At any given λ, we need to

restrict attention to the maximizing x∗, p∗ to obtain the set

of subgradients of L(λ). The rest follows by observing that

the resulting subgradient P −
∑

i,j p̃ij(λ)x∗
ij is linear in x∗

ij ,

which takes values in a convex set (product of simplexes).

Thus, in order to find the dual optimal, we need to search

for λ∗ which has a zero subgradient (if λ∗ > 0; and non-

negative if λ∗ = 0). From Proposition 1, this will also be

the check for primal feasibility and complimentary slackness

for the power constraint. Next we provide a solution for this

check. We refer to an allocation as an extreme point if it

satisfies (i)-(iii) and x∗
ij ∈ {0, 1} for all i and j; such an

allocation can be represented by a function f : N → K, so

that f(j) ∈ Aj indicates the user who is allocated channel j,
i.e., x∗

f(j)j = 1. Let B = {j : |Aj | = 1} and Bc = N \ B.

For each j ∈ B, there are no ties, and so f(j) is unique. For

each tone j ∈ Bc, there are |Aj | users in the tie, and so the

total number of extreme points is
∏

j∈Bc |Aj |. Each extreme

point satisfies Proposition 1 and so provides a subgradient for

L(λ). From Proposition 1 it follows that all the subgradients

of L(λ) can be obtained as a convex combination of the values

at the extreme points. Given an extreme point f , from (10),

it follows that the corresponding subgradient d(f) is given by

d(f) = P −
∑

j∈B

p̃f(j)j −
∑

j∈Bc

p̃f(j)j . (16)

Choosing different extreme points only effects the last term

on the right of (16). It follows that the maximum subgradient

of L(λ) corresponds to the extreme points given by

f̂(j) := arg min
i∈A(j)

p̃ij , ∀j. (17)

The minimum subgradient corresponds to the extreme points

f̄(j) := arg max
i∈A(j)

p̃ij , ∀j. (18)

At λ∗, the maximum subgradient (using (17)) is always

nonnegative, and the minimum subgradient (using (18)) is

always non-positive. If either is zero, an integer primal optimal

solution is found. In general, we have the following:

Proposition 2: There exists an optimal primal solution

(x∗(λ∗), p∗(λ∗)), where x∗(λ∗) is given by time-sharing

between the two extreme points in (17) and (18) so that the

convex combination of the corresponding subgradients is equal

to zero, and p∗(λ∗) is given by (10).

Proposition 2 implies that each time-shared tone is shared

in the same proportion.

The above steps give an algorithm for finding the optimal

solution to (7) in two stages. First, find λ∗ that minimizes L(λ)
as in Section III-A. This involves evaluating L(λ) for a fixed

value of λ as an inner loop, and a one-dimensional search over

λ as an outer loop. The outer loop has a complexity that is

independent of N and K . The inner loop has a complexity of

O(NK) due to searching for the maximum of K metrics (14)

on each of the N tones. Thus the total complexity of this stage

is O(NK). Second, given λ∗, we compute the maximum and

minimum extreme points and find the optimal primal variables

as in Proposition 2 which also has a complexity of O(NK).
Hence, the overall complexity of the optimal algorithm is

O(NK).
In our simulations, the actual complexity of the second stage

is typically much smaller than O(NK) because “typically”

only a few ties occur. 4 However, the number of extreme

points can be very large under interleaved channelization. This

is because if two users are tied on one subchannel, it is very

likely that they will also be tied on other subchannels since all

subchannels have roughly the same channel gain for the same

user. However, if all the ties are due to the same two users, we

can just allocate all subchannels with a tie to the same user

and this will lead to either the largest or smallest subgradient.

These observations are consistent with [20], which argues that

an OFDM system with β = 0 in which no time-sharing is

allowed will have a certain “duality gap” that is small for

a reasonable number of sub-channels. Problem (7) can be

viewed as the dual of the dual problem in [20, eqn. (9)] and

the duality gap in [20] can be viewed as a measure of the

accuracy of approximating the OFDMA scheduling problem

by the time-sharing version of it from (7). When there is

exactly one extreme point, the duality gap is clearly zero

(since we have an integer solution). The arguments in [20]

for a vanishing duality gap roughly correspond to showing

4For example, extensive simulation results show that for a system of 64
subchannels (grouped from 512 tones) and 40 users in a high mobility
environment, there are on average only two extreme points typically on one
subchannel involving two users, at each scheduling interval (averaged over
3000 scheduling intervals) under either adjacent or random channelizations.
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that the spread in the power consumption of different extreme

points (i.e., the maximum difference in subgradient values) is

typically small for a reasonable number of carriers. When this

spread is small, one expects that fewer ties occur which is

consistent with the above discussion. Discussions above also

argue that the conclusions in [20] extend to the β > 0 case.

C. Single user per tone

We now consider the case where no time-sharing is allowed,

i.e., xij ∈ {0, 1} for all i and j. Suppose we still find the

optimal λ∗ as in Section III-A. If there are no ties on any of the

tones or if there is an extreme point with
∑

j∈N p̃f(j)j = P ,

the optimal primal solution given in Section III-B only has

one user per tone, and we are done. If not, Proposition 2 will

no longer give a solution that satisfies the integer constraints.

In this case, a reasonable heuristic is to simply choose one

extreme point allocation. In our simulations, we choose the

extreme point corresponding to the subgradient with the small-

est non-negative value; i.e., the extreme point f , for which
∑

j∈N p̃f(j)j is closest to P , without exceeding it. Other rules

for choosing an extreme point can also be used. Note that this

requires searching over all extreme points, which has a worst-

case complexity of O(KN ) (if all users were tied on every

tone). However, as discussed above, typically there are only

two users tied on one tone and so this has almost constant

complexity. If instead the largest or smallest subgradient was

used, the worst-case complexity would again be O(NK).
For a given extreme point f , the total transmit power

∑

j∈N p̃f(j)j will be either greater or less than the constraint

P (unless this point is optimal). We then need to re-optimize

the power allocation for the given fixed feasible tone allocation

x (i.e., xij = 1 if i = f(j), otherwise xij=0), i.e., solve

max
p:(p,x)∈X

V (x, p) s.t.
∑

i,j

pij ≤ P. (19)

Let Lx(λ) be the dual function for this problem. Given

λ̃ = argminλ≥0 Lx(λ), the optimal power allocation to (19)

is given by (10) with λ = λ̃ and the given tone allocation x. A

simple one-dimensional search once again yields the optimal

λ. This will have a complexity of O(N) (to get within ǫ of

the optimal) since each tone has at most one user.

When the self-noise term β = 0, we can actually find the

optimal λ̃ in finite steps based on the following alternative

characterization of λ̃, the proof of which is based on a similar

argument as in [10].

Proposition 3: For β = 0 a given λ̂ is the unique optimal

solution to the dual problem minλ≥0 Lx (λ) if and only if

λ̂ =

∑

i,j xijwi1{λ̂∈Wij}

P −
∑

i,j

Γij

eij
1{λ̂∈Yij}

+
∑

i,j
1

eij
1{λ̂∈Wij}

, (20)

where Wij =
[

xijwieij

1+Γij
, xijwieij

)

, and Yij =
[

0,
xijwieij

1+Γij

)

.

Proposition 3 suggests the following algorithm [28] for

finding λ̃. First check if the power constraint is violated when

all users use maximum power on the allocated tones, i.e., if
∑

(i,j)
xij

eij
Γij > P . If this is false, the problem is solved.

Otherwise, we need to search for λ̃ by starting from the largest

λ, and calculating the right side of (20). If the result is less

than the chosen value of λ, then we decrease λ and recalculate,

until a fixed-point is found. It can be shown that the algorithm

will stop [28] in at most 2N steps at the correct λ̃. This

algorithm sorts 2N values and thus, has a complexity of

O(N log N) which is larger than the O(N) complexity of the

one-dimensional search, but yields the exact optimal solution

in finite time as opposed to an ǫ-optimal solution. However,

regardless of how the power is allocated, we first need to

find the optimal λ∗. It follows that if the largest or smallest

subgradients are used to break ties, the overall algorithm

will have a complexity of O(NK) or O(NK + N log N)
depending on how the power is re-optimized.

D. Single sort suboptimal algorithm

Now we introduce two sub-optimal algorithms that do not

require finding the optimal λ∗ iteratively. Instead, a carrier

allocation is determined by a single sort on each tone based

on some easily calculated metric. These heuristic algorithms

are much faster than the previous algorithms, although their

complexity is again O(NK).
1) HEURISTIC 1: Each subchannel j is allocated to the

user with the largest value of wiR̄ij , where

R̄ij = log

[

1 +

(

s̃ij ∧

(

ẽijP/N

1 + βẽijP/N

)

)]

is the rate user i could achieve on subchannel j under power

allocation P/N . Any ties are broken arbitrarily, and power

allocation P/N is used. This metric was motivated in part

by work in [14], [16] where a uniform power allocation (not

necessarily over all tones) was shown to be nearly optimal.

2) HEURISTIC 2: Here subchannels are allocated as in

HEURISTIC 1. However, after this procedure, an optimal

power allocation is performed as in Section III-C (instead

of power allocation P/N ). It may turn out that no power is

assigned to some subchannels.

IV. SIMULATION STUDY

We report simulation results based on a realistic OFDM

simulator with assumptions and parameters commonly used

in IEEE 802.16 standards [11]. We focus on the following

algorithms: the OPTIMAL algorithm which finds the optimal

λ∗ and then chooses a tone-allocation with one user per

tone as described in Section III-C5, and HEURISTIC 1 and

HEURISTIC 2 from Section III-D.

We simulate a single OFDM cell with M = 40 users

and a total transmission power of P = 6W at the base

station. The channel gains eij’s are the product of a fixed

location-based term for each user i and a frequency-selective

fast-fading term. The location-based components are picked

using an empirically obtained distribution for many users in

a large system. The fast-fading term is generated using a

block-fading model based upon the Doppler frequency (for

5We simulated both the algorithms in Section III-B and III-C, and found
that they have identical performance under all parameter choices. This could
be due to the fact that the gap in making the time-sharing assumption is small
owing to there being very few significantly different extreme points at each
scheduling interval as discussed at the end of Section III-B. We thus refer to
the algorithm in Section III-C simply as the OPTIMAL algorithm.
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the block-length in time) and a standard reference mobile

delay-spread model (for variation in frequency). For the fast-

fading terms, each multi-path component is held fixed for

2msec (i.e., a fading block length), which corresponds to a

250Hz Doppler frequency. The delay-spread is set to 1µsec.
The users’ channel conditions are averaged over the applicable

subchannelization scheme and fed back to the scheduler.

We consider a system bandwidth of 5MHz consisting of

512 OFDM tones, grouped into 64 subchannels (8 tones per

subchannel). The symbol duration is 100µsec with a cyclic

prefix of 10µsec, which roughly corresponds to 20 OFDM

symbols per fading block (i.e., 2msec). This is one of the

allowed configurations in the IEEE 802.16 standards [11].

Resource allocation (i.e. solving (1)) is done once per fading

block. All the results are averaged over the last 2000 OFDM

symbols out of 60000 OFDM symbols (i.e., 3000 fading

blocks) by which time we can be reasonably confident that

the system has reached stationarity. All users are infinitely

back-logged and assigned a throughput-based utility as in (2)
with parameter ci = 1 and the same fairness parameters (α)
across users.

The rate of user i on subchannel j is calculated as

rij = 0.28Bxij log

(

1 +
0.56pij ẽij

xij + βpij ẽij

)

,

where B is the subchannel bandwidth. Here 0.56 accounts for

the “SNR gap” due to limited modulation and coding choices

and 0.28 accounts for various factors such as hybrid ARQ

transmission scheme and the overhead due to guard tones and

control symbols, etc. While the scheduling is based on the

geometric average for β = 0 and harmonic average for β > 0,

the decoded rate is based on per tone channel conditions.

The first set of simulation results are for a system with

adjacent channelization, no self-noise (β = 0), and no per-user

SNR constraints (i.e., Γij = ∞ for all i and j). Table I shows

the results for all three algorithms under different choices of

the utility parameter α. The column “Utility” gives the average

utility per user for each algorithm. The column “log U” shows

the log utility per user; this gives an alternate indication of

the “fairness” of the resulting allocation (same as utility for

α = 0). The column “Rate” is the average throughput per user

in Kbps, and the final column is the average number of users

scheduled per scheduling interval. For each choice of α, the

three algorithms perform close to each other for each of these

metrics. HEURISTIC 2 performs better than HEURISTIC 1,

since the former re-optimizes the power allocation after tone

allocation, and the latter just uses constant power allocation.

When α = 1 (maximum throughput), all three algorithms have

almost identical performance.

Next we consider the effect of different subchannelization

schemes. Table II shows the performance of the three algo-

rithms for the adjacent, random, and interleaved channelization

schemes from Section II-A. We set α = 0.5, β = 0,

and Γij = ∞ for all i and j. Again, both HEURISTIC

algorithms perform close to the OPTIMAL algorithm. In all

cases, interleaved and random channelizations result in lower

utility than the adjacent channelization. This is likely due

to higher frequency diversity with adjacent channelization.

TABLE I
PERFORMANCE FOR DIFFERENT CHOICES OF α (ADJACENT

CHANNELIZATION, NO-SELF-NOISE, NO SNR CONSTRAINTS).

α Algorithm Utility Log U Rate Num.

0 OPTIMAL 10.74 10.74 60.8 7.73
0 HEURISTIC 1 10.66 10.66 54.6 7.29
0 HEURISTIC 2 10.72 10.72 57.3 7.35

0.5 OPTIMAL 545.2 10.83 105.9 7.32
0.5 HEURISTIC 1 528.8 10.73 99.3 7.20
0.5 HEURISTIC 2 542.8 10.81 103.2 7.01

1 OPTIMAL 261677 6.79 261.7 2.58
1 HEURISTIC 1 261676 6.79 261.7 2.58
1 HEURISTIC 2 261676 6.77 261.7 2.58

TABLE II
PERFORMANCE OF DIFFERENT SUBCHANNELIZATION SCHEMES (α = 0.5,

NO SELF-NOISE, NO SNR CONSTRAINTS).

Channelization Algorithm Utility Log U Rate Num.

Adjacent OPTIMAL 545.15 10.83 105.9 7.32
Adjacent HEURISTIC 1 528.83 10.73 99.3 7.20
Adjacent HEURISTIC 2 542.84 10.81 103.2 7.01

Interleaved OPTIMAL 494.61 10.53 92.4 1.79
Interleaved HEURISTIC 1 486.40 10.47 88.4 1.14
Interleaved HEURISTIC 2 487.02 10.48 87.8 1.15

Random OPTIMAL 487.53 10.53 89.2 4.89
Random HEURISTIC 1 479.07 10.46 84.2 4.39
Random HEURISTIC 2 485.63 10.51 86.5 4.34

Indeed, for the channel model used here, in the interleaved

case all subchannels can be shown to be almost identical,

explaining why it typically schedules only one or two users.

Next we consider the case when the self-noise coefficient

β = 0.0056 in Table III. Here we assume α = 0.5, and no per-

user SNR constraint. The performance gap between the three

algorithms is slightly larger compared to the case without self-

noise in Table II.

Figure 2 shows the throughput CDFs for all three al-

gorithms, with β = 0.0056 and β = 0. Here adjacent

channelization is used, α = 0.5, and s̃ij = ∞ for all i and j.
It is clear that users achieve better throughput when there is

no self-noise (β = 0). For each β the OPTIMAL algorithm

always achieves better rates compared to the HEURISTIC

ones.

Table IV illustrates the effect of SNR constraints. In par-

ticular, we choose the SNR constraint to be ∞, 32.5dB,

and 22.5dB, respectively, and the same across all users and

all tones. We choose adjacent channelization with utility

parameter α = 0.5 and no self-noise. Compared to the no

SNR constraints case, a constraint of 32.5dB does not change

the results significantly, while a constraint of 22.5dB substan-

tially decreases the achievable rates (13% for the OPTIMAL

algorithm and 27% for HEURISTIC 1 algorithm).
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TABLE III
PERFORMANCE OF DIFFERENT SUBCHANNELIZATION SCHEMES (α = 0.5,

β = 0.0056, NO SNR CONSTRAINTS).

Channelization Algorithm Utility Log U Rate Num.

Adjacent OPTIMAL 512.20 10.82 82.5 7.52
Adjacent HEURISTIC 1 489.32 10.70 73.7 7.40
Adjacent HEURISTIC 2 504.00 10.78 77.2 7.22

Interleaved OPTIMAL 467.00 10.51 73.5 1.98
Interleaved HEURISTIC 1 453.16 10.43 66.8 1.26
Interleaved HEURISTIC 2 454.59 10.44 66.9 1.27

Random OPTIMAL 460.53 10.51 71.6 5.60
Random HEURISTIC 1 446.58 10.42 64.7 4.89
Random HEURISTIC 2 453.51 10.48 66.1 4.85
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Fig. 2. Empirical CDF of users’ throughputs (adjacent channelization, α =
0.5, no per-user SNR constraints).

V. CONCLUSIONS

We have considered the problem of gradient-based schedul-

ing and resource allocation for a downlink OFDM system,

which essentially reduces to solving a convex optimization

problem in each time-slot. We studied this problem for a

model that accommodates various choices for user utility

functions, different subchannelization techniques, and self-

noise due to imperfect channel estimates or phase noise. Using

duality theory we first gave an optimal algorithm for solving

a relaxed version of this problem in which users can time-

share each subchannel. This involves finding a maximum of

a per user (closed-form) metric for each subchannel and a

one-dimensional search of an optimal dual variable. More

interestingly, this algorithm typically automatically yields an

integer carrier allocation (except on one or two tones). To

enforce such a constraint on all tones, we further proposed

an algorithm that picks an integer carrier allocation and re-

optimizes the power allocation accordingly. The numerical

performance of this algorithm is almost identical to the optimal

solution of the relaxed problem. Finally, we proposed two

even simpler suboptimal algorithms that only perform a single

sort on each of the tones and avoid any iterative calculations.

Simulations show that the suboptimal algorithms achieve close

to optimal performance under a wide range of scenarios, and

TABLE IV
PERFORMANCE OF DIFFERENT SNR CONSTRAINTS (ADJACENT

CHANNELIZATION, α = 0.5, NO SELF-NOISE).

SNR Max Algorithm Utility Log U Rate Num.

∞ OPTIMAL 545.15 10.83 105.9 7.32
∞ HEURISTIC 1 528.83 10.73 99.3 7.20
∞ HEURISTIC 2 542.84 10.81 103.2 7.01

32.5dB OPTIMAL 542.78 10.83 102.97 7.33
32.5dB HEURISTIC 1 519.81 10.72 91.87 7.25
32.5dB HEURISTIC 2 535.89 10.81 96.35 7.10

22.5dB OPTIMAL 522.48 10.82 88.11 7.40
22.5dB HEURISTIC 1 483.50 10.66 72.60 7.09
22.5dB HEURISTIC 2 505.81 10.77 78.61 6.92

the performance gap widens when per user SNR constraints

or channel estimation errors are considered.
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