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Downlink Spectral Efficiency of Distributed

Massive MIMO Systems with Linear Beamforming

under Pilot Contamination
Jiamin Li, Dongming Wang, Pengcheng Zhu, Member, IEEE, Jiangzhou Wang, Fellow, IEEE

and Xiaohu You, Fellow, IEEE

Abstract—In this paper, the downlink spectral efficiency of
multi-cell multi-user distributed massive MIMO systems with
linear beamforming is studied in the presence of pilot contamina-
tion. According to the levels of effective channel gain information
at user side, we provide the lower bound and upper bound
on user ergodic achievable downlink rate. Due to the different
access distance from each user to different remote antenna units,
the entries of user channel vectors are no longer identically
distributed in distributed massive MIMO systems, which makes
the spectral efficiency analysis challenging. Using the properties
of Gamma distributions together with the approximate meth-
ods for non-isotropic vectors, we derive tractable but accurate
closed-form expressions for the rate bounds with maximum
ratio transmission (MRT) and zero-forcing (ZF) beamforming in
distributed massive MIMO systems. Based on these expressions,
user ultimate achievable rates are also given when the ratio of the
total number of transmit antennas to the number of users goes to
infinity. It is shown that MRT and ZF beamforming achieve the
same ultimate rate no matter what levels of effective channel gain
information at user side. Numerical results show that ZF achieves
better performance gain and faster convergence speed than MRT.
When the coherence interval is large, the downlink beamforming
training scheme is more preferable for the distributed massive
MIMO systems.

Index Terms—Distributed massive MIMO; pilot contamina-
tion; spectral efficiency; Gamma distribution; non-isotropic vec-
tor

I. INTRODUCTION

The use of massive antennas was first proposed for multi-

cell multi-user cellular systems in [1] and since then, it

has received much research interest [2]–[5]. It was shown

that massive multi-input multi-output (MIMO) has very large

performance gains compared with the conventional MIMO

provided that a sufficiently large number of transmit antennas

per active user are employed at each base station (BS). The

very large signal vector dimension at a massive MIMO antenna

array favors low complexity beamforming such as maximum

ratio transmission (MRT) and zero-forcing (ZF), and as the

number of transmit antennas becomes large, MRT and ZF
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become near optimal [4]. Therefore, in this paper, we mainly

focus on the two linear beamforming schemes. MRT beam-

forming maximizes the gain of the desired signal and relies

on that interfering signals are rejected automatically since

the co-user channels are quasi-orthogonal when the number

of transmit antennas is large. In contrast, ZF beamforming

cancels the intra-cell interference by projecting the intended

channel onto the null space of the subspace spanned by the

channels of all other users inside the same cell. A large co-

located antenna array (i.e., co-located massive MIMO) and a

large geographically distributed antenna array (i.e., distributed

massive MIMO) are two non-conflicting approaches to achieve

the gains of massive MIMO and present the two extremes

of massive MIMO paradigm [5], [6]. Compared with co-

located massive MIMO, due to the increased macro-diversity

gain and reduced access distance, distributed massive MIMO

has the potential to improve spectral efficiency, system cov-

erage, energy efficiency, and battery life of user terminals

[7]–[13]. The main difference between co-located massive

MIMO systems and distributed massive MIMO systems is

that distributed massive MIMO systems suffer from different

degrees of path loss caused by different access distances

to distributed antenna arrays. Consequently, the channels of

distributed massive MIMO systems are typically modeled as

composite channels including uncorrelated large-scale fading

and small-scale fading, which makes the performance analysis

of distributed massive MIMO systems more challenging [14]–

[16].

In order to realize the potential of massive MIMO, good

enough channel state information (CSI) is required at the

BSs and the users [3], [5]. Thanks to the effect of channel

hardening, i.e., the effective channel gain seen by each user

fluctuates only slightly around its mean when the number of

antennas at the BS is very large, the users can reliably decode

the transmitted signals from BSs based on only statistical

CSI [17]. This is the reason that most previous studies on

massive MIMO assumed that there is no need for users

to estimate the CSI based on downlink training [18]–[23].

However, when the antennas of BSs are separately distributed

in cells, each user may be effectively served by only a small

number of remote antenna units (RAUs). As a result, the effect

of channel hardening in distributed massive MIMO systems

is less pronounced than that in co-located massive MIMO

systems and the gain from estimating CSI at users become

larger [24]. [25] investigated the problem of estimating CSI at
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users and proposed a downlink beamforming training scheme

to acquire the estimates of the effective channel gain, defined

as the inner product of channel vectors and beamforming

vectors, instead of the CSI at each user. This scheme is feasible

in practice since the channel estimation overhead is only

proportional to the number of users. With this downlink beam-

forming training, there are basically three levels of effective

channel gain information at user side: (i) “Statistical”, without

downlink pilots, users know only the statistical knowledge of

effective channel gain; (ii) “Estimated”, users are aware of

the estimates of effective channel gain; (iii) “Perfect”, users

can estimate the effective channel gain perfectly with a genie

receiver [26]. Note that (i) and (iii) are two extreme cases of

(ii) which provide the lower bound and upper bound on user

ergodic achievable downlink rate [24], respectively. Based on

these rate bounds, we can analyze the spectral efficiency of

distributed massive MIMO systems and evaluate the benefits

of the downlink beamforming scheme. Consequently, in this

paper, we focus on the cases (i) and (iii), and derive closed-

form expressions for the rate bounds with MRT and ZF

beamforming in multi-cell distributed massive MIMO systems.

In the case of (i), i.e., assuming that users detect the signals

transmitted from BS based on only the statistical effective

channel gain informantion, [18] proposed a lower bound on

user ergodic achievable downlink rate which has been widely

used to analyze the spectral efficiency of both co-located

and distributed massive MIMO systems [19]–[23]. Practical

per user power normalization was considered in [18] which

can provide user fairness. However, [18] did not provide

a general closed-form rate expression expect for a simple

single-user scenario with MRT beamforming. In order to

give analytical tractability, [19]–[23] assumed average transmit

power normalization instead of per user power normalization.

However, this assumption is only valid when the number of

transmit antennas is very large [23]. Recently, under per user

power normalization, [27] derived closed-form expressions for

the lower bound in co-located massive MIMO systems. For co-

located massive MIMO systems, channel vectors are isotropic,

i.e., comprising independent and identically distributed (i.i.d.)

entries. Available techniques for the spectral efficiency anal-

ysis of MIMO systems mostly assume channel vectors with

i.i.d. entries, which simplifies the analysis significantly [28]–

[30]. However, in distributed massive MIMO systems, each

user suffers from different degrees of path losses caused by

different access distances to different RAUs, and hence the

entries of its aggregate channel vector to all RAUs are non-

identically distributed, i.e., non-isotropic, in general. To the

best of our knowledge, under per user power normalization, the

closed-form expressions for the ergodic achievable downlink

rate lower bound with both MRT and ZF beamforming in

distributed massive MIMO systems are not available in the

literature.

In the case of (iii), i.e., with the assumption of perfect

effective channel gain information at users, the upper bound

on user ergodic achievable downlink rate was obtained in [24].

Deriving the closed-form expressions for the upper bound is

difficult since we need to characterize the distributions of

the signal and interference powers which are related to the

projection of non-isotropic channel vectors onto a beamform-

ing subspace. [31]–[35] investigated this problem in some

simplified scenarios, i.e., distriuted massive MIMO systems

without pilot contamination and network MIMO systems with

the assumption of perfect CSI at BSs. [36] extended the

investigation to the case of imperfect CSI at BSs. However,

the analytical expression in [36] has a prohibitively high

complexity since Meijer’s G-function defined by line integral

in complex plane [37] is involved. Moreover, in the network

MIMO systems considered in [32]–[36], data and CSI of all

users are shared among BSs and BSs act as a single distributed

multi-antenna transmitter to jointly serve the users in the

coverage area. This means that the network MIMO system

considered in [32]–[36] is just a single-cell case of the dis-

tributed massive MIMO systems. In the multi-cell case, there

is pilot contamination, i.e., the correlated interference from

other cells due to the reuse of the same pilot sequences, which

has been a fundamental bottleneck of massive MIMO systems

and makes the spectral efficiency analysis more challenging

[1]. In addition, only ZF beamforming was considered in [31]–

[36]. MRT beamforming, also called conjugate beamforming,

is a particularly attractive beamforming scheme for massive

MIMO systems because of its low computational complexity,

robustness to channel impairments, and high asymptotic per-

formance [4]. Thus, deriving the closed-form expression for

the rate upper bound with MRT beamforming in multi-cell

distributed massive MIMO systems is needed. In multi-cell

distributed massive MIMO systems with pilot contamination,

no simple closed-form expressions for the rate upper bound

with both MRT and ZF beamforming have been given in the

literature to the authors’ best knowledge.

Herein, considering practical per user power normalization,

we analyze the downlink spectral efficiency of multi-cell

multi-user distributed massive MIMO systems with both MRT

and ZF beamforming under pilot contamination. The main

contributions of this paper are summarized as follows:

• Taking into consideration the effect of pilot contam-

ination, we propose the method of characterizing the

distributions of signal and interference powers in dis-

tributed massive MIMO systems with both MRT and

ZF beamforming, which enables the spectral efficiency

analysis of distributed massive MIMO systems in more

practical scenarios.

• Considering practical per user power normalization, we

derive tractable but accurate closed-form expressions for

the rate bounds in distributed massive MIMO systems

with both MRT and ZF beamforming, thereby enabling

the spectral efficiency analysis of distributed massive

MIMO systems and the efficient evaluation of the benefits

of estimating the effective channel gain information at

user side.

• Simplified closed-form expressions for the ergodic

achievable downlink rate upper bound are derived based

on some approximation techniques, which achieve nearly

the same performance with much less complexity.

• Based on these derived expressions, we give the user

ultimate achievable rate, from which we can analyze the
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Fig. 1. System Configuration.

asymptotic performance of distributed massive MIMO

systems with different beamforming and different levels

of effective channel gain information at user side.

• We corroborate our analysis by performing simulations

coinciding with analytical expressions, and draw insight-

ful conclusions from the comparison between distributed

and co-located massive MIMO systems and the analysis

of how the coherence interval affects the per user spectral

efficiency with both MRT and ZF beamforming.

The remainder of the paper is organized as follows. In

Section II, we describe the system model including the system

configuration, channel model, and channel estimation with

pilot contamination. Section III contains the analytical work

where closed-form expressions for the lower bound and upper

bound on ergodic achievable downlink rate are derived. Rep-

resentative numerical results are given in Section IV before

we conclude the paper in Section V.

The following notations are used. All boldface letters stand

for vectors (lower case) or matrices (upper case). IN is the

size-N identity matrix. Italic letters (e.g., X or x) denote

scalars. The transpose, Hermitian transpose and trace operators

are denoted by (·)T, (·)H and tr (·), respectively. Cm×n denotes

the set of m× n complex valued matrices. |x| is the absolute

value of a scalar x, ∥X∥ is the spectral norm of a matrix

X. x ∼ CN (0, σ2) means that x is a circularly symmet-

ric complex Gaussian random variable with mean zero and

variance σ2. E [·] denotes the expectation operator. A random

variable X which follows a Gamma distribution with shape

parameter k and scale parameter θ is denoted by X ∼ Γ(k, θ).
Nakagami(m,Ω) denotes Nakagami distribution with shape

parameter m and controlling spread parameter Ω.

II. SYSTEM MODEL

In the first part of this section, we describe the system

configuration and present the mathematical description of

the channel model. The uplink channel estimate with pilot

contamination and the analysis of pilot contamination effect

are given in the second part of this section.

A. System Configuration and Channel Model

Consider a distributed massive MIMO system with L ad-

jacent cells, as illustrated in Fig. 1. Each cell consists of M
RAUs equipped with N antennas and K single-antenna users

which share the same bandwidth. The system configuration

specified above is denoted by (M,N,K). As an example, a

(7, 3, 6) system is shown on the right side of Fig. 1, where

M = 7, N = 3 and K = 6. This system configuration is

quite general, with traditional CAS [23] (M = 1), DAS with

fully distributed antennas [38], [39] (N = 1) and network

MIMO [36] (L = 1) as special cases. Consequently, the results

obtained in this paper can also be applied to the above special

cases. We consider transmissions over frequency-flat fading

channels, and assume that the system operates in time-division

duplex (TDD) mode, not frequency-division duplex in legacy

mobile systems [40]–[42]. The channel vector from the k-th

user in the l-th cell to all of the RAUs in the i-th cell is denoted

as

gi,l,k =
[√

λi,1,l,khT
i,1,l,k · · ·

√

λi,M,l,khT
i,M,l,k

]T

, (1)

where λi,m,l,k , cd−α
i,m,l,ksi,m,l,k represents the large-scale

and shadow fading between the k-th user in the l-th cell and

the m-th RAU in the i-th cell which change slowly and can

be learned over long period of time, c is the median of the

mean path gain at a reference distance di,m,l,k = 1 km, α is

the path loss exponent, typically between 3.0 and 5.0, si,m,l,k

is a log-normal shadow fading variable, hi,m,l,k represents

the small-scale fast fading, and it is a vector with size N
which contains i.i.d. zero mean circularly symmetric complex

Gaussian (ZMCSCG) random variables with unit variance.

B. Channel Estimation with Pilot Contamination

We focus on the case where pilot symbol aided transmission

is employed to assist the BS in performing channel estimation.

In multi-cell TDD massive MIMO systems, due to the limited

channel coherence time, non-orthogonal pilot sequences must

be reused to estimate the CSI in adjacent cells. This leads to

channel estimation impairments known as pilot contamination

[1], which has been a fundamental bottleneck of massive

MIMO systems. Several techniques have been proposed to

mitigate the pilot contamination effect such as time-shifted

pilot protocol [43], pilot reuse design [44], [45], eigenvalue-

decomposition-based method [46] and pilot contamination pre-

coding [47]. It was shown that the effect of pilot contamination

can be mitigated completely based on several critical but

optimistic assumptions. However, in realistic cases, e.g., the

number of BS antennas is large but still finite, the effect of

pilot contamination should also be considered.

Considering minimum mean-square error (MMSE) channel

estimator, the channel estimate of (1) with pilot contamination

has been given in [22] by

ĝi,l,k =
[√

βi,1,l,kĥ
T

i,k,1 · · ·
√

βi,M,l,kĥ
T

i,k,M

]T

, (2)

where

βi,m,l,k , λ2i,m,l,k

(∑L

j=1
λi,m,j,k + 1/γP

)−1

, (3)

γP is the training SNR, and ĥi,k ,

[

ĥ
T

i,k,1, · · · , ĥ
T

i,k,M

]T

∼
CN (0, IMN ) represents the equivalent Rayleigh fading part

of the estimated channel. Herein we implicitly assume that
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the realizations of λi,m,l,k are perfectly known to the BSs

as in [1], [18]. It can be seen that, due to the effect of

pilot contamination, the equivalent Rayleigh fading part is

not related to the second subscript of the estimated channel.

Consequently, although the channel vectors gi,l,k and gi,j,k are

independent for j ̸= l, the estimated channel vectors ĝi,l,k and

ĝi,j,k become correlated random vectors with the following

correlation matrix

cov
(
ĝi,l,k, ĝi,j,k

)
= Λi,l,kQ−1

i,kΛi,j,k, (4)

where Λi,l,k = diag
(

[λi,1,l,k · · ·λi,M,l,k]
T
)

⊗ IN and Qi,k ,
∑L

l=1 Λi,l,k + 1/γPIMN .

Moreover, from the orthogonality property of MMSE esti-

mate, the channel gi,l,k can be decomposed as

gi,l,k = ĝi,l,k + g̃i,l,k, (5)

where

g̃i,l,k ∼ CN
(

0, diag
(
[ηi,1,l,k, · · · , ηi,M,l,k]

T )⊗ IN

)

(6)

is the uncorrelated estimation error which is statistically inde-

pendent of ĝi,l,k due to the joint Gaussianity of both vectors,

and

ηi,m,l,k , λi,m,l,k − βi,m,l,k. (7)

Similarly, due to the effect of pilot contamination, g̃i,l,k and

g̃i,j,k also become correlated random vectors given by

cov
(
g̃i,l,k, g̃i,j,k

)
=

{

−Λi,l,kQ−1
i,kΛi,j,k, l ̸= j,

Λi,l,k −Λi,l,kQ−1
i,kΛi,j,k, l = j.

(8)

The effect of pilot contamination presented in (4) and (8)
makes the spectral efficiency analysis in Section III more

challenging.

III. USER ERGODIC ACHIEVABLE DOWNLINK RATE

In this section, we derive the closed-form expressions for

the lower bound and upper bound on user ergodic achievable

downlink rate with both MRT and ZF beamforming in multi-

cell multi-user distributed massive MIMO systems in the

presence of pilot contamination. The first part of this section

describes the downlink signal model. In the second part, we

derive isotropic approximation for the non-isotropic channel

vector in distributed massive MIMO systems after presenting

some related lemmas. In the third and fourth parts, according

to the levels of effective channel gain information at user side,

we first provide lower bound and upper bound on user ergodic

achievable downlink rate, and then based on the properties of

Gamma distributions and non-isotropic channel approximation

techniques we derive closed-form expressions for these rate

bounds with both MRT and ZF beamforming. Moreover, some

approximation techniques are utilized to further simplify the

closed-form expressions for the upper bound. Based on the

derived expressions, user ultimate achievable rates are also

given.

A. Downlink Signal Model

The received signal yl,k ∈ C of the k-th user in the l-th cell

can be written as

yl,k = gH
l,l,kwl,ksl,k
︸ ︷︷ ︸

desired signal

+
∑

(i,j)̸=(l,k)
gH
i,l,kwi,jsi,j

︸ ︷︷ ︸

intra-cell and inter-cell interference

+zl,k, (9)

where wl,k ∈ C
MN×1 is the beamforming vector assigned for

the k-th user in the l-th cell, sl,k ∼ CN (0, 1) is the associated

data symbol, zl,k ∼ CN (0, 1/γDL) indicates the complex

additive white Gaussian noise (AWGN), γDL represents the

downlink SNR after normalizing the transmit power per user.

This paper restricts attention to two linear beamformers

of practical interest, namely MRT and ZF, because they are

relatively easy to implement and analyze. Mathematically, the

MRT and ZF beamforming vectors are defined as

wl,k =







ĝl,l,k

∥ĝl,l,k∥
, for MRT,

al,l,k

∥al,l,k∥
, for ZF.

(10)

respectively, where al,l,k is the k-th column of Ĝl

(
Ĝ

H

l Ĝl

)−1
,

and Ĝl ,
[
ĝl,l,1, · · · , ĝl,l,K

]
is the estimated compound

channel matrix.

B. Isotropic Approximation for Channel Vectors

In this subsection, we give the isotropic approximation

for the non-isotropic channel vector in distributed massive

MIMO systems which will be required to derive closed-

form expressions for the rate bounds on ergodic achievable

downlink rate.

We first consider the case when the channel vectors are

isotropic, i.e., comprising i.i.d. entries. Let x ∼ C
m×1 is

isotropic with i.i.d. CN (0, σ2) elements, then xHx is the

summation of m i.i.d. Γ(1, σ2) random variables. Thus, we

have xHx ∼ Γ(m,σ2) [22]. It can be seen that, each of the

m spatial dimensions adds one to the shape parameter of the

power distribution. Further, about the projection of isotropic

vector, we have the following lemma.

Lemma 1 ( [33], [48]): For an m-dimensional vector x ∼
C

m×1 with i.i.d. CN (0, σ2) elements, when projected onto an

s-dimensional subspace, its power is distributed as Γ
(
s, σ2

)
.

Remark 1: From the perspective of each user, an intended

beam lies in a subspace of dimension s = MN with MRT

beamforming and s = MN −K + 1 with ZF beamforming,

respectively, whereas any independent vectors lie in a one-

dimensional subspace [35], [49].

From Lemma 1, we can find that each of the s spatial

dimensions also contributes one to the shape parameter of the

projection power distribution.

Lemma 1 is applied only when the channel vectors are

isotropic. Thus, it cannot be utilized to characterize the

distributions of signal and interference powers in distributed

massive MIMO systems directly. In distributed massive MIMO

systems, for the channel strength from the RAUs in the i-th
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cell to the k-th user in the l-th cell, we have

gH
i,l,kgi,l,k =

M∑

m=1

λi,m,l,khH
i,m,l,khi,m,l,k, (11)

which is a sum of M independent and non-identically dis-

tributed variables where the m-th variable is distributed as

λi,m,l,khH
i,m,l,khi,m,l,k ∼ Γ(N,λi,m,l,k) [15]. The exact dis-

tribution of the sum of independent and non-identically dis-

tributed Gamma random variables can be found in [50], how-

ever, it will not yield a mathematically tractable expression.

Therefore, we employ the second-order matching technique

shown in the following lemma to obtain an approximation

distribution.

Lemma 2 ( [31]): If {xi} are independent Gamma dis-

tributed random variables with shape and scale parameters ki
and θi, i.e., xi ∼ Γ(ki, θi), the sum

∑

i xi can be approxi-

mated as another Gamma distributed random variable which

has the same first and second order moments, with the shape

and scale parameters given by k = (
∑

i kiθi)
2 /∑

i kiθ
2
i and

θ =
∑

i kiθ
2
i

/∑

i kiθi .

As a consequence of Lemma 2, the distribution of gH
i,l,kgi,l,k

can be approximated as

gH
i,l,kgi,l,k ∼ Γ(ki,l,k,a, θi,l,k,a), (12)

where

ki,l,k,a =
N(

∑M
m=1

λi,m,l,k)
2

∑
M
m=1

λ2

i,m,l,k

, (13)

θi,l,k,a =
∑M

m=1
λ2

i,m,l,k∑
M
m=1

λi,m,l,k
, (14)

and the letter “a” in the subscript means approximation. From

(13), it can be seen that, ki,l,k,a ≤ MN with the equality if

gi,l,k is isotropic which means that the non-isotropic nature

of gi,l,k reduces the contribution of each spatial dimension to

the shape parameter of the resulting power distribution.

Based on the analysis above and inspired by [31], [33],

we characterize the distributions of the powers of the non-

isotropic channel vectors gi,l,k with dimension m = MN
projected onto an s-dimensional beamforming subspace as

follows. First, given the approximate distribution of gH
i,l,kgi,l,k

in (12), we approximate the non-isotropic channel vector

gi,l,k as an isotropic vector gi,l,k,a with i.i.d. CN (0, θi,l,k,a)
elements while the distribution of the projection of gi,l,k,a
onto an s-dimensional subspace is distributed as Γ(s, θi,l,k,a)
from Lemma 1. Then, considering that the contribution of each

spatial dimension is reduced when gi,l,k is non-isotropic, we

approximate the distribution of the powers of non-isotropic

vector gi,l,k projected onto an s-dimensional beamforming

subspace as Γ(sϕ, θi,l,k,a), where ϕ ≤ 1 denotes the con-

tribution of each spatial dimension when the vectors are non-

isotropic. ϕ can be solved by matching the mean in the case

with MRT beamforming [31], i.e., solve E[|gH
i,l,kwMRT

i,k |2] =
mrθi,l,k,a for r, where mrθi,l,k,a is the mean of the projection

power since it distributed as Γ(mϕ, θi,l,k,a). In this situation,

from (10) and (12), we obtain |gH
i,l,kwMRT

i,k |2 = gH
i,l,kgi,l,k ∼

Γ(ki,l,k,a, θi,l,k,a). Thus, we have mϕθi,l,k,a = ki,l,k,aθi,l,k,a
and obtain ϕ = ki,l,k,a/m.

In light of the discussion above, we have the following

lemma.

Lemma 3: For the m-dimensional non-isotropic channel

vector gi,l,k, when projected onto an s-dimensional subspace,

the distribution of the projection power can be approximated as

Γ(ski,l,k,a/m, θi,l,k,a) with ki,l,k,a and θi,l,k,a defined in (13)
and (14).

Remark 2: Lemma 3 provides a good approximation when

the path loss to each RAU is similar; otherwise it overpre-

dicts the degrees of freedom. We find in simulation that the

approximation is quite good for useful signal powers and a

little worse for pilot contamination since the distances from

each user to the RAUs in the interfering cells is relative large

and vary drastically. However, as shown in the simulations,

we can increase the approximation accuracy by adjusting the

effective dimension of the projection subspace.

From Lemma 1 and Lemma 3, it can be seen that the

distributions of the projections of channel vectors onto an s-
dimensional subspace can be characterized in terms of Gamma

random variables, regardless of whether the channel vectors

are isotropic or non-isotropic. The main difference is that

the shape parameter is changed from s to ski,l,k,a/m when

the channel vectors are non-isotropic. In other words, the

non-isotropic nature of the channels in distributed massive

MIMO systems is captured by changing the contribution of

each spatial dimension to the shape parameter of the resulting

Gamma distribution from 1 to ki,l,k,a/m.

Different from [32]–[35] where perfect CSI was assumed

to be available at transmitters, this paper focus on a practical

case of imperfect CSI in the presence of pilot contamination.

Thus, we need to characterize the distributions of the powers

of the non-isotropic channel estimation vectors ĝi,l,k and the

estimation error vectors g̃i,l,k projected onto an s-dimensional

beamforming subspace further. Using Lemma 2, the approxi-

mation distributions of ĝ
H
i,l,kĝi,l,k and g̃

H
i,l,kg̃i,l,k can be given

by

ĝ
H
i,l,kĝi,l,k ∼ Γ(k̂i,l,k,a, θ̂i,l,k,a), (15)

g̃
H
i,l,kg̃i,l,k ∼ Γ(k̃i,l,k,a, θ̃i,l,k,a), (16)

where

k̂i,l,k,a =
N(

∑M
m=1

βi,m,l,k)
2

∑
M
m=1

β2

i,m,l,k

, (17)

θ̂i,l,k,a =
∑M

m=1
β2

i,m,l,k∑
M
m=1

βi,m,l,k
, (18)

k̃i,l,k,a =
N(

∑M
m=1

ηi,m,l,k)
2

∑
M
m=1

η2

i,m,l,k

, (19)

θ̃i,l,k,a =
∑M

m=1
η2

i,m,l,k∑
M
m=1

ηi,m,l,k
, (20)

Given these distributions, the distributions of projection pow-

ers can be obtained by applying Lemma 3.

Based on the analysis above, we are now ready to derive

the closed-form expressions for the ergodic rate lower bound

and upper bound in the following subsections.

C. Lower Bound on Ergodic Achievable Rate

It is assumed that users do not have any channel estimate

and detect the transmitted signals from BSs with statistical
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effective channel gain, i.e., the mean of the inner product of

channel vectors and beamforming vectors E[gH
l,l,kwl,k]. Based

on the techniques developed in [18, Theorem 1], we provide

a lower bound on user ergodic achievable downlink rate.

Considering the signal component received over the effective

channel gain mean E[gH
l,l,kwl,k] is the only desired signal, (9)

can be rewritten as

yl,k = E[gH
l,l,kwl,k]sl,k + (gH

l,l,kwl,k − E[gH
l,l,kwl,k])sl,k

+
∑

(i,j)̸=(l,k)

gH
i,l,kwi,jsi,j + zl,k. (21)

By treating the interference plus noise
∑

(i,j)̸=l,k gH
i,l,kwi,jsi,j

+zl,k and the remaining signal component gH
l,l,kwl,ksl,k −

E
[
gH
l,l,kwl,k

]
sl,k as worst-case Gaussian distributed noise [18],

[23], the ergodic achievable rate lower bound of the k-th user

in the l-th cell can be given by

RLB
l,k = log2

(
1 + γLB

l,k

)
, (22)

where

γLB
l,k =

|E[gH
l,l,kwl,k]|2

var
[
gH
l,l,kwl,k

]
+
∑

(i,j) ̸=(l,k) E
[
|gH

i,l,kwi,j |2
]
+ 1

γDL

.

Note that [18] did not provide a general closed-form ex-

pression for (22), and in order to give analytical tractability,

[19]–[23] all assumed average transmit power normalization

instead of the per user power normalization considered in [18]

which can provide user fairness. In the following theorems,

considering per user power normalization, we derive the

closed-form expressions for the lower bound (22) with MRT

and ZF beamforming in distributed massive MIMO systems.

Theorem 1: Considering practical per user power normal-

ization, the closed-form expression for the rate bound (22) of

the k-th user in the l-th cell with MRT beamforming is given

by

RLB, MRT
l,k = log2

(

1 +
ξ(k̂l,l,k,a)θ̂l,l,k,a

ILB, MRT
l,k +

∑

i̸=l k̂i,l,k,aθ̂i,l,k,a

)

, (23)

where ILB, MRT
l,k , k̂l,l,k,aθ̂l,l,k,a + 1

MN

∑L
i=1 k̃i,l,k,aθ̃i,l,k,a +

K−1
MN

(
kl,l,k,aθl,l,k,a +

∑

i ̸=l(k̂i,l,k,aθ̂i,l,k,a + k̃i,l,k,aθ̃i,l,k,a)
)
−

ξ(k̂l,l,k,a)θ̂l,l,k,a + 1/γDL, and

ξ(x) ,
Γ(x+ 1/2)

Γ(x)
. (24)

Proof: The proof is given in Appendix A.

Theorem 2: Considering practical per user power normal-

ization, the closed-form expression for the rate bound (22) of

the k-th user in the l-th cell with ZF beamforming is given by

RLB, ZF
l,k = log2

(

1 +
ξ( ρ

MN k̂l,l,k,a)θ̂l,l,k,a

ILB, ZF
l,k +

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a

)

, (25)

where ILB, ZF
l,k ,

ρ
MN k̂l,l,k,aθ̂l,l,k,a − ξ( ρ

MN k̂l,l,k,a)θ̂l,l,k,a +
K

MN

∑L
i=1 k̃i,l,k,aθ̃i,l,k,a + 1/γDL, and

ρ ,MN −K + 1. (26)

Proof: The proof is given in Appendix B.

Remark 3: Practical per user power normalization was con-

sidered in this paper. Considering that ∥ĝl,l,k∥2 and ∥al,l,k∥2
fluctuate only slightly around their means E[∥ĝl,l,k∥2] and

E[∥al,l,k∥2] as the number of transmit antennas goes to infinity,

i.e.,

|E[∥vl,l,k∥2]− ∥vl,l,k∥2|
E[∥vl,l,k∥2]

MN→∞−−−−−−→ 0, (27)

where vl,l,k = ĝl,l,k or al,l,k, [19]–[23] assumed average

power normalization instead of per user power normalization

in (10) to give analytical tractability. Based on this assumption,

the MRT and ZF beamforming vectors defined in (10) can be

rewritten as

wl,k =







ĝl,l,k
√

E[∥ĝl,l,k∥]
, for MRT,

al,l,k
√

E[∥al,l,k∥]
, for ZF.

(28)

The difference in performance between average power nor-

malization in (28) and per user power normalization in (10) is

negligible in the context of co-located massive MIMO systems

(the number of transmit antennas is very large) with MRT and

ZF beamforming vectors. However, this assumption is only

valid when the number of transmit antennas is very large [23].

Moreover, when the antennas of BSs are separately distributed

in cells, each user may be effectively served by only a small

number of RAUs. As a result, the difference in performance

between average power normalization and per user power

normalization will become larger [24]. From the numerical

example (not shown here due to the space constraints), it can

be seen that, in order to achieve 10% approximation error

(defined in (27)), about 60 antennas are needed for co-located

systems, while about 200 antennas are needed for distributed

systems with M = 10 RAUs.

Next, we consider the case when the total number of

transmit antennas is much larger than the number of users,

i.e., MN
K → ∞.

Corollary 1: Let MN
K → ∞, the rate bounds (22) of the

k-th user in the l-th cell with MRT and ZF beamforming

approach the same ultimate achievable rate RLB, ∞
l,k as

RLB, ∞
l,k = log2

(

1 +
k̂l,l,k,aθ̂l,l,k,a

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a

)

. (29)

Proof: Due to the similarity, we only provide the proof

for MRT beamforming in the following. From the expression

of k̂i,l,k,a in (17), it can be seen that k̂i,l,k,a → ∞ as MN →
∞. Therefore, we have limMN→∞

(

ξ(k̂l,l,k,a)− k̂l,l,k,a

)

=

0 which results from limx→∞ ξ(x) = x [18, Theorem 4].

Then, replacing k̂i,l,k,a with MN
(
∑M

m=1
βi,m,l,k/M )2

∑
M
m=1

β2

i,m,l,k/M
in (23),

and since the mean terms
(
∑M

m=1
βi,m,l,k/M )2

∑
M
m=1

β2

i,m,l,k/M
are finite values,

it is straightforward to obtain the ultimate rate of the k-th

user in the l-th cell in (29) by dividing the denominator and

numerator of (23) by MN
K and letting MN

K → ∞.

In the following subsection, we first derive closed-form

expressions for the upper bound on ergodic achievable down-

link rate with both MRT and ZF beamforming in distributed
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kZF
z =

(
ρ

MN

∑

i k̂i,l,k,aθ̂i,l,k,a +
K

MN

∑

i k̃i,l,k,aθ̃i,l,k,a +
(K−1)
MN

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a
)2

ρ
MN

∑

i k̂i,l,k,aθ̂
2
i,l,k,a +

K
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a +

(K−1)
MN

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a

, (33)

θZF
z = γDL

ρ
MN

∑

i k̂i,l,k,aθ̂
2
i,l,k,a +

K
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a +

(K−1)
MN

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a

ρ
MN

∑

i k̂i,l,k,aθ̂i,l,k,a +
K

MN

∑

i k̃i,l,k,aθ̃i,l,k,a +
(K−1)
MN

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a
, (34)

kZF
y =

(
K

MN

∑

i k̃i,l,k,aθ̃i,l,k,a − 1
MN k̃l,l,k,aθ̃l,l,k,a +

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a
)2

K
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a − 1

MN k̃l,l,k,aθ̃
2
l,l,k,a +

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a

, (35)

θZF
y = γDL

K
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a − 1

MN k̃l,l,k,aθ̃
2
l,l,k,a +

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a

K
MN

∑

i k̃i,l,k,aθ̃i,l,k,a − 1
MN k̃l,l,k,aθ̃l,l,k,a +

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a
, (36)

kMRT
z =

(
K−1
MN kl,l,k,aθl,l,k,a +

∑

i k̂i,l,k,aθ̂i,l,k,a +
1

MN

∑

i k̃i,l,k,aθ̃i,l,k,a +
K−1
MN

∑

i ̸=l(k̂i,l,k,aθ̂i,l,k,a + k̃i,l,k,aθ̃i,l,k,a)
)2

K−1
MN kl,l,k,aθ2l,l,k,a +

∑

i k̂i,l,k,aθ̂
2
i,l,k,a +

1
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a +

K−1
MN

∑

i ̸=l(k̂i,l,k,aθ̂
2
i,l,k,a + k̃i,l,k,aθ̃2i,l,k,a)

, (38)

θMRT
z = γDL

K−1
MN kl,l,k,aθ

2
l,l,k,a +

∑

i k̂i,l,k,aθ̂
2
i,l,k,a +

1
MN

∑

i k̃i,l,k,aθ̃
2
i,l,k,a +

K−1
MN

∑

i ̸=l(k̂i,l,k,aθ̂
2
i,l,k,a + k̃i,l,k,aθ̃

2
i,l,k,a)

K−1
MN kl,l,k,aθl,l,k,a +

∑

i k̂i,l,k,aθ̂i,l,k,a +
1

MN

∑

i k̃i,l,k,aθ̃i,l,k,a +
K−1
MN

∑

i ̸=l(k̂i,l,k,aθ̂i,l,k,a + k̃i,l,k,aθ̃i,l,k,a)
, (39)

kMRT
y =

(
K−1
MN kl,l,k,aθl,l,k,a +

MN+K−1
MN

∑

i≠l k̂i,l,k,aθ̂i,l,k,a +
K

MN

∑

i ̸=l k̃i,l,k,aθ̃i,l,k,a
)2

K−1
MN kl,l,k,aθ2l,l,k,a +

MN+K−1
MN

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a +

K
MN

∑

i̸=l k̃i,l,k,aθ̃
2
i,l,k,a

, (40)

θMRT
y = γDL

K−1
MN kl,l,k,aθ

2
l,l,k,a +

MN+K−1
MN

∑

i ̸=l k̂i,l,k,aθ̂
2
i,l,k,a +

K
MN

∑

i ̸=l k̃i,l,k,aθ̃
2
i,l,k,a

K−1
MN

∑

i kl,l,k,aθl,l,k,a +
MN+K−1

MN

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a +
K

MN

∑

i ̸=l k̃i,l,k,aθ̃i,l,k,a
. (41)

massive MIMO systems in the presence of pilot contamination,

and then based on some approximation techniques we further

simplify these expressions.

D. Upper Bound on Ergodic Achievable Rate

Assuming that users can estimate the channel gain perfectly

using downlink pilots with a genie receiver [26], we can obtain

the upper bound RUB
l,k on the ergodic achievable downlink rate

of the k-th user in the l-th cell given by [24]

RUB
l,k = E

[
log2

(
1 + γUB

l,k

)]
, (30)

where

γUB
l,k =

|gH
l,l,kwl,k|2

∑

(i,j)̸=(l,k) |gH
i,l,kwi,j |2 + 1

γDL

.

In order to derive an accurate analytical expression for

(30), we need to know the distributions of the desired signal

term, i.e., |gH
l,l,kwl,k|2, and the residual interference term, i.e.,

∑

(i,j) ̸=(l,k) |gH
i,l,kwi,j |2. In the following theorems, we first

characterize these distributions and then derive the closed-

form expressions for the rate bound (30) with MRT and ZF

beamforming in the presence of pilot contamination.

Theorem 3: Under pilot contamination, the closed-form ex-

pression for the upper bound (30) of the k-th user in the l-th
cell with ZF beamforming is given by

RUB, ZF
l,k = f

(
kZF
z , θ

ZF
z

)
− f

(
kZF
y , θ

ZF
y

)
, (31)

where

f(k, θ) =
1

Γ(k)ln2
G 1,3

3,2

(

θ
∣
∣
∣
1−k,1,1

1,0

)

, (32)

Gm,n
p,q

(

x
∣
∣
∣
a1,··· ,ap

b1,··· ,bq

)

denotes the Meijer’s G-function [37], and

kZF
z , θZF

z , kZF
y , θZF

y are defined in (33)-(36) at the top of the

page.

Proof: The proof is given in Appendix C.

Theorem 4: Under pilot contamination, the closed-form ex-

pression for the upper bound (30) of the k-th user in the l-th
cell with MRT beamforming is given by

RUB, MRT
l,k = f

(
kMRT
z , θMRT

z

)
− f

(
kMRT
y , θMRT

y

)
, (37)

where f(k, θ) is defined in (32), and kMRT
z , θMRT

z , kMRT
y , θMRT

y

are defined in (38)-(41) at the top of the page.

Proof: Using a derivation process similar to that in proof

of Theorem 3 and applying the same approximation for the

distributions of the projections of channel vectors onto MRT

beamforming subspace as that in proof of Theorem 1, we can

obtain the result. Consequently, we omit the detailed proof of

this theorem here.

Remark 4: In Theorem 3, based on Lemmas 2 and 3, the

sum of the desired signal power and the interference power

with ZF beamforming is approximated as a Gamma random

variable ZZF, and the interference power is approximated as

a Gamma random variable YZF. The kZF
z , θZF

z defined in (33),
(34) and kZF

y , θZF
y defined in (35), (36) are the shape and scale

parameters of ZZF and YZF, respectively. In Theorem 4, the

(38)-(41) are the corresponding scale and shape parameters

with MRT beamforming. From (31)-(41), it can be seen that,

the rate expressions with MRT and ZF beamforming are very

similar, and the main difference is that the latter scheme

cancels intra-cell interference, at the price of reducing the array

gain from MN to ρ =MN −K + 1.

Assuming perfect channel gain information at user side,

we can obtain the upper bound on ergodic achievable rate
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RUB
l,k ≈ R̃UB

l,k = log2

(

1 +
E
[
|gH

l,l,kwl,k|2
]

E
[∑

j ̸=k |gH
l,l,kwl,j |2

]
+ E

[∑

i ̸=l

∑K
j=1 |gH

i,l,kwi,j |2
]
+ 1/γDL

)

(44)

which provides the maximal performance benefit of estimating

the channel gain information at user side. Thanks to the

effect of channel hardening, the users can reliably decode

the transmitted signals from BSs based on only statistical

effective channel gain information, i.e., the benefit of channel

estimation at user side is low in the context of massive MIMO

systems [24], [25]. However, the effect of channel hardening

is less pronounced and the benefit of estimating channel gain

information at user side become larger in distributed massive

MIMO systems, especially with ZF beamforming.

As known, Meijer’s G function is defined by line integral

in complex plane [37]. Consequently, the closed-form expres-

sions (31) and (37) have a prohibitively high complexity since

Meijers G-function is involved. In distributed massive MIMO

systems, users have less access distance to BS antennas [31],

[51], thus, high SNR approximation is reasonable. Next, we

first present a lemma about the expectation of log function,

and then provide a high SNR approximation for the ergodic

achievable downlink rate upper bound (30).
Lemma 4: If x is a Gamma distributed random variable

with parameters k and θ, i.e., x ∼ Γ(k, θ), then

E [log2 x]
(a)
= log2 eψ(k) + log2(θ)

(b)≈ log2(kθ)− log2
(
1 + 1

2k + 5
24k2

)
, (42)

where ψ(k) is the digamma function, (a) can be obtained

from [31, Lemma 2], (b) results from ψ(x) ∼ ln(x) −
ln (1 +

∑∞
n=1 an/x

n) as x→ ∞ [52, Remark 2.1].

From the expressions (33), (35), (38) and (40), it can

be seen that the shape parameters k approach infinity when

MN → ∞. Consequently, the approximation in Lemma 4 will

be asymptotically exact in distributed massive MIMO systems.

Simulation results in Section IV show that the second-order

expansion of ψ(k) in (42) is accurate enough. Based on the

Lemma 4, we obtain simplified closed-form expressions for

the upper bound (30) in the following theorem by performing

high SNR approximation.

Theorem 5: The high SNR rate approximation for the rate

upper bound (30) of the k-th user in the l-th cell is given by

RUB, HS
l,k = log2

(

θz
θy

k3z
24k2z + 12kz + 5

24k3y + 12ky + 5

k3y

)

, (43)

where kz , θz , ky , and θy are defined in (33), (34), (35) and

(36) for ZF beamforming, and in (38), (39), (40) and (41)
for MRT beamforming, respectively.

Proof: The proof is given in Appendix D.

Remark 5: The accuracy of high SNR rate approximation

is very high in distributed antenna systems [31, Section IIV.B].

Theorem 5 has provided simplified closed-form expressions

for the rate upper bound (30) (avoids the complex Meijer’s

G function), which can achieve nearly the same performance

as that of Theorems 3 and 4. However, the expression (43)

obtained in Theorem 5 is still complex. Recently, a tight

approximation for ergodic achievable rate was proposed in

[53] for massive MIMO systems which provides a useful

general tool for studying ergodic rate. In the following, we

derive closed-form expressions for this approximation. Al-

though there is a little performance penalty, we can analyze the

effect of system parameters on ergodic achievable rate more

intuitively.

From [53, Lemma 4], we obtain the approximation (44)
at the top of the page. Based on this approximation, we can

calculate the terms E
[
|gH

l,l,kwl,k|2
]
, E
[∑

j ̸=k |gH
l,l,kwl,j |2

]
and

E
[∑

i ̸=l

∑K
j=1 |gH

i,l,kwi,j |2
]

directly instead of characterizing

the distributions of signal and interference powers to obtain

an analytical expression. In the following theorems, we derive

the closed-form expressions for (44) in distributed massive

MIMO systems with ZF and MRT beamforming, respectively.

Theorem 6: The closed-form expression of (44), as an

approximation for the ergodic achievable downlink rate upper

bound of the k-th user in the l-th cell, with ZF beamforming

is given by

R̃UB, ZF
l,k = log2

(

1 +
ρk̂l,l,k,aθ̂l,l,k,a + k̃l,l,k,aθ̃l,l,k,a

IA, ZF
l,k +MN

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a

)

, (45)

where IA, ZF
l,k , K

∑

i k̃i,l,k,aθ̃i,l,k,a− k̃l,l,k,aθ̃l,l,k,a+MN/γDL.

Proof: The proof is given in Appendix E.

Theorem 7: The closed-form expression of (44) with MRT

beamforming is given by

R̃UB, MRT
l,k = log2

(

1 +
k̂l,l,kaθ̂l,l,k,a +

1
MN k̃l,l,k,aθ̃l,l,k,a

IA, MRT
l,k +

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a

)

,

(46)

where IA, MRT
l,k , K−1

MN (k̂l,l,k,aθ̂l,l,k,a +
∑

i ̸=l(k̂i,l,k,aθ̂i,l,k,a +

k̃i,l,k,aθ̃i,l,k,a)) + 1/γDL + 1
MN

∑

i ̸=l k̃i,l,k,aθ̃i,l,k,a.

Proof: Similar to the analysis in proof of Theorem 4, we

omit the detailed proof of this theorem here.

Remark 6: MRT beamforming aims to maximize the SNR

ratio but does not pay attention to the multi-user interference.

Meanwhile, ZF beamforming sacrifices some of the array gain

to mitigate the multi-user interference. Thus, MRT beam-

forming will be preferred in low SNR (noise-limited) region.

Moreover, as shown in (25) and (45), the user rate of ZF at

MN = K will close to a very small value. Thus, the user rate

performance of MRT will be better than that of ZF when K
is large.

In the following corollary, we investigate the asymptotic

case when the total number of transmit antennas is much larger

than the number of users, i.e., MN
K → ∞, and give the user

ultimate achievable rate.

Corollary 2: Letting MN
K → ∞, the upper bound on

ergodic achievable downlink rate of the k-th user in the l-
th cell with MRT and ZF beamforming approach the same
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ultimate achievable rate R̃UB,∞
l,k , given by

R̃UB,∞
l,k = log2

(

1 +
k̂l,l,k,aθ̂l,l,k,a

∑

i ̸=l k̂i,l,k,aθ̂i,l,k,a

)

. (47)

Proof: Using a method similar to that in proof of Corol-

lary 1, it is straightforward to obtain (47) by dividing the

denominators and numerators of (43) or (45) and (46) by
MN
K and letting MN

K → ∞.

Remark 7: As seen from Corollaries 1 and 2, when the

ratio MN
K is very large, the gain of adding more antennas

diminishes and the user achievable rate is limited by pilot con-

tamination. Thus, pilot contamination mitigation techniques,

e.g., pilot scheduling in [45], can significantly increase the

user achievable rate.

From Corollaries 1 and 2, it can be seen that, as MN
K → ∞

the effect of uncorrelated received noise is eliminated com-

pletely, and transmissions from the users within the same cell

do not interfere. However, the correlated interference from

other cells (pilot contamintion) due to the reuse of the same

pilot sequences remains existent. Moreover, ZF beamforming

and MRT beamforming achieve the same ultimate achievable

rate as MN
K → ∞ no matter with statistical or perfect effective

channel gain information at users. This is because with very

large MN
K , the effective channel gain ai,j,l,k , gH

i,l,kwi,j

becomes nearly deterministic due to the channel hardening

effect [17]. In this case, using the statistical information

E[ai,j,l,k] for signal detection at user side is good enough.

In summary of this section, closed-form expressions for the

lower bound and upper bound on ergodic achievable downlink

rate have been derived in distributed massive MIMO systems

with MRT and ZF beamforming in the presence of pilot

contamination. Based on the derived expressions, the user

ultimate achievable rates are also given as MN
K → ∞. In the

following section, we validate the accuracy of the theoretical

results for different scenarios.

IV. NUMERICAL RESULTS

In this section, the theoretical analysis presented in Section

III is verified through a set of Monte Carlo simulations. A

hexagonal system with L cells is considered. Unless mentioned

otherwise, the locations of RAUs and users are assumed to

be uniformly distributed in each cell. The cell radius and the

distance between two adjacent cells are normalized to 1 and√
3, respectively, and the minimum distance between users

and RAUs is set to 0.01. To allow for reproducibility of the

results, we consider a distance-based path loss model with

path loss exponent α = 3.7, without shadowing [20], [23].

We set the parameter c to be one and γDL = 10 dB to be

the reference SNR at the cell edge in the downlink. In all

examples, γP = KγDL.

We begin with justifying the various different approxima-

tions employed in this paper. Fig. 2 shows the cumulative

distribution function (CDF) of the powers of the non-isotropic

channel vectors gi,l,k obtained numerically and by employing

Gamma second-order matching technique (Lemma 2). As seen

from the figure, Gamma second-order matching technique

provides an accurate approximation for the powers of gi,l,k.

gH
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This provides the incentives to use the moment matched

approximation in distributed massive MIMO systems. Focus

on the k-th user in the l-th cell, the CDFs of signal pow-

er |ĝH
l,l,kwMRT

l,k |2 and pilot contamination power |ĝH
i,l,kwMRT

i,k |2
from the transmission in i-cell for the k-th user obtained nu-

merically and by employing Gamma approximation technique

(Lemma 3) are presented in Fig. 3 and Fig. 4, respectively.

As seen from Fig. 3, the CDF curves obtained by Gamma

approximation technique perfectly match the numerical results

for the signal power in all cases. From Fig. 4, it can be

seen that, if we approximate the pilot contamination power

by Lemma 3 directly (the dimension of projection subspace is

MN ), the approximation is slightly less accurate. It is because

that the path losses from the k-th user in the l-th cell to the

RAUs in the i-th cell are relative large and vary drastically,

i.e., the user may be interfered mainly by a small part of the

RAUs in the i-th cell. As seen from Fig. 4, we can increase

the approximation accuracy by setting the dimension of the

projection subspace equal to MsN (Ms = 4 or 5 in the Fig.

4) instead of MN where Ms is the number of RAUs in the

i-th cell with less and similar path loss which can be obtained

easily based on the known large-scale fading. Note that the

simulation results with ZF beamforming are omitted here due

to space constraints but provide similar results.

Then, we verify the accuracy of the closed-form expressions

given in Theorems 1, 2, 3 and 4. Fig. 5 depicts the rate

bounds on ergodic achievable downlink rate with MRT and

ZF beamforming as a function of the total number of transmit

antennas MN for L = 7 cells, and K = 4 users, M = 5
RAUs. We denote the ultimate achievable rate by R∞

l,k since

RLB,∞
l,k = R̃UB,∞

l,k . As seen from the figure, although there is a

small mismatch between the closed-form expressions and sim-

ulation results due to the approximations applied for the non-

isotropic channel vectors, they also match well with less than

five percent error. Note that, the closed-form expressions are

almost indistinguishable from simulation results in co-located

massive MIMO systems with both MRT and ZF beamforming

which is omitted due to space constraints. Consequently, in

the following, we will use these closed-form expressions for

MN
K
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Fig. 6. Average rate per user at cell edge against the total number of transmit
antennas, L = 7, K = 4, and M = 5.

all numerical simulations.

Next, we evaluate the performance of the closed-form ex-

pressions for the upper bound on user ergodic achievable rate

obtained by applying high SNR approximation and expectation

approximation in Theorems 5, 6 and 7 in a distributed massive

MIMO system comprising L = 7 cells and M = 6 RAUs. For

the comparison between distributed massive MIMO (DAS in

the figure) and co-located massive MIMO systems (CAS in

the figure), it is assumed that K = 6 users are uniformly

distributed within the cell edge (defined as the region outside

the circle of radius r = 3/4) in each cell. As seen from

Fig. 6, the following findings have been obtained. First, in

both distributed and co-located massive MIMO systems, the

high SNR approximations in Theorem 5 achieve nearly the

same performance as that of the closed-form expressions in

Theorems 3 and 4 (denoted by “Gamma approximation” in

the figure) with ZF and MRT beamforming. Second, the

closed-form expressions in Theorems 6 and 7 (denoted by

“Expectation approximation” in the figure) also achieve nearly

the same performance in co-located massive MIMO systems,

and have only a little performance penalty in distributed mas-

sive MIMO systems. Considering the lowest computational

complexity, the closed-form expressions in Theorems 6 and 7

are preferable when the number of antennas is large. Third,

ZF beamforming leads to a significant performance gain over

MRT beamforming as it reduces multiuser interference and has

a faster convergence speed than MRT beamforming. Here we

should note that, although it can be seen from Fig. 6 that the

average rate per user of the distributed massive MIMO systems

is much larger than that of the co-located massive MIMO

systems, in practice, the overheads for CSI estimate and user

data sharing will reduce the spectral efficiency of distributed

massive MIMO systems. How to establish a scalable signal

processing framework for distributed massive MIMO systems

is a key challenge and needs to be further addressed.

Fig. 7 shows the sum rate per cell calculated by Theorems

1 and 2 as a function of the number of users K at SNR = -25

dB and 10 dB, where purely co-located systems (M = 1, N =
50), partly distributed systems (M = 5, N = 10) and purely
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Fig. 7. Sum rate per cell as a function of the number of users, L = 7,
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distributed systems (M = 50, N = 1) are considered. As seen

from the figure, we get the following findings. First, although

ZF often provides better sum rate than MRT, it is interesting to

note that MRT is competitive when K is large and the SNR is

low, both in terms of sum rate and computational complexity

since the complexity of ZF scales as O(MNK2) while the

complexity of MRT scales as O(MNK) [23]. Second, when

the SNR is low (-25 dB), distributing the transmit antennas

increases the desired signal power thanks to the reduction of

minimum access distance. However, the interference (intra-cell

and inter-cell interference if MRT beamforming is adopted and

only inter-cell interference with ZF beamforming since the

intra-cell interference is eliminated by joint precoding over

users) power is also enhanced and the interference becomes

more and more severe as the number of users K increases.

This is the reason that the three sum rate per cell curves

with ZF beamforming cross each other when K is large in

Fig. 7(a). When the SNR is relative high (10 dB), purely co-

located systems provide better sum rate performance which is

because that the average access distance of distributed massive

MIMO systems is larger than that of co-located massive

MIMO systems when the BS is located at the center of the
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Fig. 8. Average spectral efficiency per user against the coherence interval
T , L = 7, K = 10, τu = τd = K, MN/K = 5, 100.

cell [54]. For a reason similar to that in the low SNR case,

the sum rate per cell curves of partly distributed systems and

purely distributed systems with MRT beamformign cross each

other in Fig. 7(b). Moreover, considering the performance-

complexity tradeoff, a partly distributed massive system is an

appealing design choice.

Finally, based on the closed-form expressions for the rate

bounds on ergodic achievable downlink rate derived in The-

orems 1, 2, 6 and 7, the average spectral efficiency per user

performances with statistical and perfect effective channel gain

information against different coherence interval are compared.

Taking into account the performance loss due to the uplink

and downlink pilots, the average spectral efficiency per user

is defined as

S =
T − τu − τd

T

∑L
l=1

∑K
k=1Rl,k

LK
, (48)

where T is the coherence interval (in symbols), τu and τd

are uplink and downlink pilot overhead, i.e., the number

of symbols per coherence interval spent for training phases,

respectively. Given the definition in (48), we analyze the

average spectral efficiency per user performance in distributed

and co-located massive MIMO systems comprising L = 7



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2017 12

cells and K = 10 users with different ratios MN
K . As seen

from Fig. 8, we get the following findings. First, a longer

coherence interval yields a larger average spectral efficiency

per user since the additional pilot overhead ratio reduces;

Second, both the co-located and distributed massive MIMO

systems do not need downlink beamforming training scheme

when the coherence interval T is small which will result in a

large pilot overhead ratio. Moreover, when MRT beamforming

is applied, the performance gain obtained by the downlink

beamforming training scheme is relatively small; Third, the

downlink beamforming training scheme is more preferable for

the distributed massive MIMO systems, which is because that

only a small number of RAUs may substantially contribute to

serve a given user which results in less channel hardening in

distributed massive MIMO systems .

V. CONCLUSIONS

In this paper, according to the levels of effective channel

gain information at user side, we provided the lower bound

and upper bound on user ergodic achievable downlink rate.

Considering pilot contamination and practical per user power

normalization, accurate and computationally efficient closed-

form expressions for the rate bounds with both MRT and

ZF beamforming were derived based on the properties of

Gamma distributions and the non-isotropic channel approxi-

mation techniques. Based on these closed-form expressions,

we studied the spectral efficiency of distributed and co-

located massive MIMO systems. Our investigation showed

that, distributed massive MIMO systems can provide better

performance when the SNR is low and the ratio MN
K is

large, and although ZF often provides better performance,

MRT is competitive when K is large and the SNR is low.

Moreover, the benefits of estimating the effective channel

gain at user side were analyzed. Numerical results showed

that downlink beamforming scheme is more preferable for

the distributed massive MIMO systems with ZF beamforming

when the coherence interval is relatively large.

APPENDIX A

PROOF OF THEOREM 1

We derive the closed-form expression for the rate bound

(22) with MRT beamforming by calculating the following

three terms in γLB
l,k , |E[gH

l,l,kwMRT
l,k ]|2, var

[
gH
l,l,kwMRT

l,k

]
, and

∑

(i,j) ̸=(l,k) E
[
|gH

i,l,kwMRT
i,j |2

]
.

For the term |E[gH
l,l,kwMRT

l,k ]|2, based on the independence of

channel estimate ĝl,l,k and estimation error g̃l,l,k, we have

|E[gH
l,l,kwMRT

l,k ]|2 = |E[∥ĝl,l,k∥]|2. (A.1)

From Lemma 3 and (15), we obtain

|ĝH
l,l,kwMRT

l,k |2 = ∥ĝl,l,k∥2 ∼ Γ(k̂l,l,k,a, θ̂l,l,k,a). (A.2)

Based on the well-known relationship between Gamma and

Nakagami distribution, we have

∥ĝl,l,k∥ ∼ Nakagami(k̂l,l,k,a, k̂l,l,k,aθ̂l,l,k,a). (A.3)

Thus,

|E[gH
l,l,kwMRT

l,k ]|2 = |E[∥ĝl,l,k∥]|2 = ξ(k̂l,l,k,a)θ̂l,l,k,a. (A.4)

For the term var
[
gH
l,l,kwMRT

l,k

]
, we have

var
[
gH
l,l,kwMRT

l,k

]

(a)
= E

[
|ĝH

l,l,kwMRT
l,k |2

]
+ E

[
|g̃H

l,l,kwMRT
l,k |2

]
−
∣
∣E[ĝH

l,l,kwMRT
l,k ]

∣
∣
2

(b)
= (k̂l,l,k,a − ξ(k̂l,l,k,a))θ̂l,l,k,a +

1
MN k̃l,l,k,aθ̃l,l,k,a, (A.5)

where (a) results from the independence of ĝl,l,k and g̃l,l,k,

and (b) is obtained by applying Lemma 3 to approximate

the distributions of |ĝH
l,l,kwMRT

l,k |2 and |g̃H
l,l,kwMRT

l,k |2
with Γ(k̂l,l,k,a, θ̂l,l,k,a) and Γ( 1

MN k̃l,l,k,a, θ̃l,l,k,a), and
∣
∣E[ĝH

l,l,kwMRT
l,k ]

∣
∣
2
= |E[∥ĝl,l,k∥]|2 has been given in (A.4).

Considering pilot contamination which makes wMRT
i,j and

ĝi,l,k dependent for j = k, and based on the inde-

pendence of ĝi,l,k and g̃i,l,k, we decompose the term
∑

(i,j)̸=(l,k) E
[
|gH

i,l,kwMRT
i,j |2

]
into four components as

∑

(i,j)̸=(l,k)

E
[
|gH

i,l,kwMRT
i,j |2

]

=
∑

j ̸=k

E[|gH
l,l,kwMRT

l,j |2] +
∑

i ̸=l

∑

j ̸=k

E[|ĝH
i,l,kwMRT

i,j |2]

+
∑

i ̸=l

E[|ĝH
i,l,kwMRT

i,k |2] +
∑

i ̸=l

K∑

j=1

E[|g̃H
i,l,k,w

MRT
i,j |2]. (A.6)

Similarly, from Lemma 3, we can obtain the distributions of

the four components in (A.6),

|gH
l,l,kwMRT

l,j |2 ∼ Γ( 1
MN kl,l,k,a, θl,l,k,a), (A.7)

|ĝH
i,l,kwMRT

i,k |2 ∼ Γ(k̂i,l,k,a, θ̂i,l,k,a), (A.8)

|ĝH
i,l,kwMRT

i,j |2 ∼ Γ( 1
MN k̂i,l,k,a, θ̂i,l,k,a), (A.9)

|g̃H
i,l,k,w

MRT
i,j |2 ∼ Γ( 1

MN k̃i,l,k,a, θ̃i,l,k,a). (A.10)

Substituting (A.7), (A.8), (A.9) and (A.10) into (A.6) yields
∑

(i,j)̸=(l,k)
E[|gH

i,l,kwMRT
i,j |2]

= K−1
MN

(
kl,l,k,aθl,l,k,a +

∑

i̸=l
k̂i,l,k,aθ̂i,l,k,a

)

+
∑

i ̸=l

(
k̂i,l,k,aθ̂i,l,k,a +

K
MN k̃i,l,k,aθ̃i,l,k,a

)
, (A.11)

Combing (A.4), (A.5) and (A.11) concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

The useful signal power term |E[gH
l,l,kwZF

l,k]|2 can be calcu-

lated by

|E[gH
l,l,kwZF

l,k]|2 = |E[(ĝH
l,l,k + g̃

H
l,l,k)w

ZF
l,k]|2

(a)
= |E[ 1/∥al,l,k ∥]|2
(b)
=
∣
∣
∣E

[([(
Ĝ

H

l Ĝl

)−1]

k,k

)−1/2
]∣
∣
∣

2

(c)
= ξ( ρ

MN k̂l,l,k,a)θ̂l,l,k,a, (B.1)

where (a) is obtained because of the independence of wZF
l,k

and the estimation error g̃l,l,k and ĝ
H
l,l,kwZF

l,k = 1/∥al,l,k∥, (b)
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results from ∥al,l,k∥2 =
[(

Ĝ
H

l Ĝl

)−1]

k,k
, (c) is obtained be-

cause 1/∥al,l,k∥ ∼ Nakagami
(

ρ
MN k̂l,l,k,a,

ρ
MN k̂l,l,k,aθ̂l,l,k,a

)

where we have applied Lemma 3 to approximate the dis-

tribution of
[(

Ĝ
H

l Ĝl

)−1]

k,k
as Γ( ρ

MN k̂l,l,k,a, θ̂l,l,k,a) since
[(

Ĝ
H

l,aĜl,a

)−1]

k,k
∼ Γ(ρ, θ̂l,l,k,a) [27, lemma 10].

For the variance term var
[
gH
l,l,kwZF

l,k

]
, we have

var
[
gH
l,l,kwZF

l,k

]

=E
[
|ĝH

l,l,kwZF
l,k|2

]
+ E

[
|g̃H

l,l,kwZF
l,k|2

]
−
∣
∣E[ĝH

l,l,kwZF
l,k]
∣
∣
2

(a)
=
(

ρ
MN k̂l,l,k,a − ξ( ρ

MN k̂l,l,k,a)
)
θ̂l,l,k,a +

1
MN k̃l,l,k,aθ̃l,l,k,a,

(B.2)

where (a) is obtained by applying Lemma 3 to ap-

proximate the distributions of |ĝH
l,l,kwZF

l,k|2 and |g̃H
l,l,kwZF

l,k|2
with Γ( ρ

MN k̂l,l,k,a, θ̂l,l,k,a) and Γ( 1
MN k̃l,l,k,a, θ̃l,l,k,a), and

∣
∣E[ĝH

l,l,kwZF
l,k]
∣
∣
2
= |E[1/∥al,l,k∥]|2 has been given in (B.1).

Considering the term
∑

(i,j) ̸=(l,k) E
[
|gH

i,l,kwZF
i,j |2

]
, we have

∑

(i,j)̸=(l,k)
E
[
|gH

i,l,kwZF
i,j |2

]

(a)
=
∑

j ̸=k
E[|g̃H

l,l,kwZF
l,j |2] +

∑

i ̸=l

∑

j ̸=k
E[|ĝH

i,l,kwZF
i,j |2]

+
∑

i̸=l
E[|ĝH

i,l,kwZF
i,k|2] +

∑

i ̸=l

∑K

j=1
E[|g̃i,l,k,wZF

i,j |2]
(b)
= K−1

MN k̃l,l,k,aθ̃l,l,k,a +
∑

i ̸=l

(k̂i,l,k,aθ̂i,l,k,a +
K

MN k̃i,l,k,aθ̃i,l,k,a),

(B.3)

where (a) is obtained because ĝl,l,kwZF
l,j = 0 for j ̸=

k, (b) is obtained by applying Lemma 3 to approximate

the distributions of |g̃H
l,l,kwZF

l,j |2, |ĝH
i,l,kwZF

i,k|2, |ĝH
i,l,kwZF

i,j |2

and |g̃i,l,kwZF
i,j |2 with Γ(

k̃l,l,k,a

MN , θ̃l,l,k,a), Γ(
ρ

MN k̂i,l,k,a, θ̂i,l,k,a),

Γ(
k̂i,l,k,a

MN , θ̂i,l,k,a) and Γ(
k̃i,l,k,a

MN , θ̃i,l,k,a), respectively.

Substituting (B.1), (B.2) and (B.3) into (22) yields the

closed-form expression (25). This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

The ergodic achievable downlink rate upper bound (30) of

the k-th user in the l-th cell with ZF beamforming can be

rewritten as

RUB
l,k = E [log2 (1 +XZF + YZF)]− E [log2(1 + YZF)] , (C.1)

where

XZF , γDL|gH
l,l,kwZF

l,k|2,

YZF , γDL

∑

j ̸=k

|gH
l,l,kwZF

l,j |2 + γDL

∑

i ̸=l

K∑

j=1

|gH
i,l,kwZF

i,j |2.

For the variable XZF, we have

XZF = γDL|(ĝH
l,l,k + g̃

H
l,l,k)w

ZF
l,k|2

(a)−−−−−−→
MN→∞

γDL(|ĝH
l,l,kwZF

l,k|2 + |g̃H
l,l,kwZF

l,k|2), (C.2)

where (a) results from neglecting ĝ
H
l,l,kwZF

l,k(w
ZF
l,k)

Hg̃l,l,k and

g̃
H
l,l,kwZF

l,k(w
ZF
l,k)

Hĝl,l,k since it is insignificant compared with

|ĝH
l,l,kwZF

l,k|2 and |g̃H
l,l,kwZF

l,k|2 as the number of transmit antenna

approach infinity [20].

Based on Lemma 3, we characterize the distributions of the

two terms in (C.2) as

|ĝH
l,l,kwZF

l,k|2 ∼ Γ
(

ρ
MN k̂l,l,k,a, θ̂l,l,k,a

)
, (C.3)

|g̃H
l,l,kwZF

l,k|2 ∼ Γ
(

1
MN k̃l,l,k,a, θ̃l,l,k,a

)
. (C.4)

Therefore, the variable XZF in (C.2) can be approximated as

a sum of independent Gamma random variables with different

shape and scale parameters. From Lemma 2, we have

XZF ∼ Γ
(
kZF
x , θ

ZF
x

)
, (C.5)

where

kZF
x =

(ρk̂l,l,k,aθ̂l,l,k,a + k̃l,l,k,aθ̃l,l,k,a)
2

MN(ρk̂l,l,k,aθ̂2l,l,k,a + k̃l,l,k,aθ̃2l,l,k,a)
, (C.6)

θZF
x = γDL

ρk̂l,l,k,aθ̂
2
l,l,k,a + k̃l,l,k,aθ̃

2
l,l,k,a

ρk̂l,l,k,aθ̂l,l,k,a + k̃l,l,k,aθ̃l,l,k,a
. (C.7)

The variable YZF can be devided into four terms as

1

γDL

YZF =
∑

j ̸=k
|g̃H

l,l,kwZF
l,j |2 +

∑

i ̸=l
|ĝH

i,l,kwZF
i,k|2

+
∑

i ̸=l

∑

j ̸=k

|ĝH
i,l,kwZF

i,j |2 +
∑

i̸=l

K∑

j=1

|g̃H
i,l,kwZF

i,j |2. (C.8)

By using Lemmas 2 and 3 and some algebraic simplifications,

we obtain the distributions of the four terms in (C.8) as

∑

j ̸=k
|g̃H

l,l,kwZF
l,j |2 ∼ Γ

(
(K−1)
MN k̃l,l,k,a, θ̃l,l,k,a

)

, (C.9)

∑

i ̸=l
|ĝH

i,l,kwZF
i,k|2

∼ Γ
(

ρ
MN

(
∑

i̸=l
k̂i,l,k,aθ̂i,l,k,a)

2

∑
i ̸=l

k̂i,l,k,aθ̂2

i,l,k,a

,
∑

i ̸=l
k̂i,l,k,aθ̂

2

i,l,k,a
∑

i ̸=l
k̂i,l,k,aθ̂i,l,k,a

)

, (C.10)

∑

i ̸=l

∑

j ̸=k
|ĝH

i,l,kwZF
i,j |2

∼ Γ
(

(K−1)
MN

(
∑

i ̸=l
k̂i,l,k,aθ̂i,l,k,a)

2

∑
i ̸=l

k̂i,l,k,aθ̂2

i,l,k,a

,
∑

i̸=l
k̂i,l,k,aθ̂

2

i,l,k,a
∑

i̸=l
k̂i,l,k,aθ̂i,l,k,a

)

, (C.11)

∑

i ̸=l

∑K

j=1
|g̃H

i,l,kwZF
i,j |2

∼ Γ
(

K
MN

(
∑

i̸=l
k̃i,l,k,aθ̃i,l,k,a)

2

∑
i ̸=l

k̃i,l,k,aθ̃2

i,l,k,a

,
∑

i ̸=l
k̃i,l,k,aθ̃

2

i,l,k,a
∑

i ̸=l
k̃i,l,k,aθ̃i,l,k,a

)

. (C.12)

The proofs of (C.9)-(C.12) are similar to that of the terms

in XZF, and hence we omit the details. From Lemma 2, we

obtain

YZF ∼ Γ
(
kZF
y , θ

ZF
y

)
, (C.13)

where kZF
y and θZF

y are given by (35) and (36), respectively.

Then, we approximate XZF+YZF with another Gamma random

variable ZZF by Lemma 2,

ZZF = XZF + YZF ∼ Γ
(
kZF
z , θ

ZF
z

)
, (C.14)

where kZF
z and θZF

z are given in (33) and (34), respectively.

According to [55, Eq. (8.4.6.5)], the logarithmic term

log2(1 + x) can be expressed with a Meijer’s G-function as

log2(1 + x) =
1

ln2
G 2,2

1,2

(

x
∣
∣
∣
1,1
1,0

)

. (C.15)
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Then, for Gamma random variable x, E [log2(1 + x)] is com-

puted as

E [log2(1 + x)]

=
1

θkΓ(k)ln2

∫ ∞

0

G 2,2
1,2

(

x
∣
∣
∣
1,1
1,0

)

xk−1e−x/θdx

(a)
=

1

Γ(k)ln2
G 3,2

1,3

(

θ
∣
∣
∣
1−k,1,1

1,0

)

, (C.16)

where (a) results from [37, Eq. (7.813.1)]

Combining (C.1), (C.13), (C.14) and (C.16) concludes the

proof.

APPENDIX D

PROOF OF THEOREM 5

For the ergodic achievable downlink rate (30) of the k-th

user in the l-th, with the definition of

X , γDL|gH
l,l,kwl,k|2, (D.1)

Y , γDL

∑

j ̸=k

|gH
l,l,kwl,j |2 + γDL

∑

i ̸=l

K∑

j=1

|gH
i,l,kwi,j |2, (D.2)

we have

Rl,k = E

[

log2

(

1 + X
Y+1

)]

(a)
= E [log2 (1 + Z)]− E [log2 (1 + Y )]

(b)≈ E [log2 (Z)]− E [log2 (Y )]

(c)≈ log2(kzθz)− log2

(

1 + 1
2kz

+ 5
24k2

z

)

− log2(kyθy) + log2

(

1 + 1
2ky

+ 5
24k2

y

)

, (D.3)

where (a) results from E [log2(1 + x/y)] = E [log2(x+ y)]−
E [log2(y)] and Z , X + Y , (b) is obtained by applying

high SNR approximation, (c) follows from Lemma 4, and kz ,

θz , ky , θy are given by (33), (34), (35),(36) with ZF beam-

forming and (38), (39), (40), (41) with MRT beamforming,

respectively.

This completes the proof.

APPENDIX E

PROOF OF THEOREM 6

For the term E[|gH
l,l,kwZF

l,k|2], we have

E[|gH
l,l,kwZF

l,k|2]
(a)
= E[|ĝH

l,l,kwZF
l,k|2] + E[|g̃H

l,l,kwZF
l,k|2]

(b)
= ρ

MN k̂l,l,k,aθ̂l,l,k,a +
1

MN k̃l,l,k,aθ̃l,l,k,a, (E.1)

where (a) results from the independence of ĝl,l,k and g̃l,l,k,

(b) is obtained because |ĝH
l,l,kwZF

l,k|2 ∼ Γ
(
ρ
k̂l,l,k,a

MN , θ̂l,l,k,a
)

and

|g̃H
l,l,kwZF

l,k|2 ∼ Γ
( k̃l,l,k,a

MN , θ̃l,l,k,a
)

which result from lemma 3

and the analysis in proof of Theorem 2.

The term
∑

j≠k E[|gH
l,l,kwZF

l,j |2] can be computed as

∑

j ̸=k
E[|gH

l,l,kwZF
l,j |2]

(a)
=
∑

j ̸=k
E[|g̃H

l,l,kwZF
l,j |2]

(b)
= K−1

MN k̃l,l,k,aθ̃l,l,k,a, (E.2)

where (a) is obtained because ĝ
H
l,l,kwZF

l,j = 0 for j ̸= k,

and (b) results from Lemma 2 where we have applied Lem-

ma 3 to approximate the distribution of |g̃H
l,l,kwZF

l,j |2 with

Γ
( k̃l,l,k,a

MN , θ̃l,l,k,a
)
.

Considering the term
∑

i̸=l

∑K
j=1 E[|gH

i,l,kwZF
i,j |2], we have

∑

i ̸=l

∑K

j=1
E[|gH

i,l,kwZF
i,j |2]

=
∑

i ̸=l

∑K

j=1

(
E[|ĝH

i,l,kwZF
i,j |2] + E[|g̃H

i,l,kwZF
i,j |2]

)

=
∑

i ̸=l
E[|ĝH

i,l,kwZF
i,k|2] +

∑

i ̸=l

∑

j ̸=k
E[|ĝH

i,l,kwZF
i,j |2]

+
∑

i ̸=l

∑K

j=1
E[|g̃H

i,l,kwZF
i,j |2]

(a)
=
∑

i ̸=l

(
k̂i,l,k,aθ̂i,l,k,a +

K
MN k̃i,l,k,aθ̃i,l,k,a

)
, (E.3)

where (a) results from Lemma 2 where we have applied

Lemma 3 to approximate the distributions of |ĝH
i,l,kwZF

i,k|2,

|ĝH
i,l,kwZF

i,j |2 and |g̃H
i,l,kwZF

i,j |2 with Γ
(

ρ
MN k̂i,l,k,a, θ̂i,l,k,a

)
,

Γ
( k̂i,l,k,a

MN , θ̂i,l,k,a
)

and Γ
( k̃i,l,k,a

MN , θ̃i,l,k,a
)
.

Combining all results yields the closed-form expression

(45).
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