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Abstract—We propose a novel subchannel and transmission
power allocation scheme for multi-cell orthogonal frequency-
division multiple access (OFDMA) networks with cognitive radio
(CR) functionality. The multi-cell CR-OFDMA network not only
has to control the interference to the primary users (PUs) but also
has to coordinate inter-cell interference in itself. The proposed
scheme allocates the subchannels to the cells in a way to maximize
the system capacity, while at the same time limiting the trans-
mission power on the subchannels on which the PUs are active.
We formulate this joint subchannel and transmission power
allocation problem as an optimization problem. To efficiently
solve the problem, we divide it into multiple subproblems by using
the dual decomposition method, and present the algorithms to
solve these subproblems. The resulting scheme efficiently allocates
the subchannels and the transmission power in a distributed way.
The simulation results show that the proposed scheme provides
significant improvement over the traditional fixed subchannel
allocation scheme in terms of system throughput.

Index Terms—Cognitive radio (CR), opportunistic spectrum
access, orthogonal frequency-division multiple access (OFDMA),
multi-cell systems, subchannel allocation, optimization, dual de-
composition.

I. INTRODUCTION

A cognitive radio (CR) network opportunistically exploits

the frequency bands licensed to the primary users (PUs) but

not used by the PUs spatially or temporarily (i.e., spectrum

holes), and utilizes them to transmit its own data. A CR

network is to be built on top of the legacy wireless networks

with the ability to avoid harmful interference to the PUs.

Therefore, an underlying wireless technology, particularly the

multiple access technique has to be chosen which is suitable

for CR networks.

Orthogonal frequency-division multiple access (OFDMA)

is a viable multiple access technique for CR networks. With

its numerous advantages, the OFDMA technology is adopted

by most of the next generation cellular wireless networks, for

example, the long-term evolution (LTE) and the worldwide

interoperability for microwave access (WiMAX) networks [1].

Besides its advantages in conventional wireless networks,

OFDMA also has several benefits which make it a good fit for

CR networks [2]. For example, an OFDMA system can turn

off subcarriers on which a PU is active, while maintaining the

connection via the rest of the subcarriers. OFDMA technology

has been incorporated into the IEEE 802.22 wireless regional

area network (WRAN) [3] standard for CR networks operating

in the TV band.

A CR-OFDMA network can be designed on the basis of the

existing researches on non-CR OFDMA networks. There have

been numerous studies on conventional OFDMA networks,

especially focusing on the subcarrier and power allocation

problem in a single-cell scenario. A comprehensive survey on

these works can be found in [4]. While the works introduced

in [4] only consider single-cell OFDMA systems, some other

works investigated the radio resource allocation problem for

multi-cell OFDMA networks [5]–[10]. The most crucial issue

in a multi-cell OFDMA network is the coordination among

multiple cells to efficiently reuse the spectrum [5]. In [6]

and [7], the authors proposed power management schemes

under the condition that all cells share the same spectrum, i.e.,

frequency reuse factor (FRF) of one. However, the difficulty

with FRF being one is that the mobile stations (MSs) located

in the edge of a cell can suffer severe inter-cell interference.

The fractional frequency reuse (FFR) schemes (e.g., FRF of

three, partial frequency reuse (PFR) [8], and soft frequency

reuse (SFR) [9]) can resolve this problem by partitioning the

spectrum into multiple subchannels1 and assigning them to the

cells. The system performance can be further enhanced by the

adaptive FFR scheme (e.g., [5], [10]) that dynamically assigns

the subchannels according to the system environment. Since

the interference to the PUs needs to be taken into account when

allocating radio resources, it is a non-trivial task to develop an

optimal resource allocation scheme for CR-OFDMA networks.

Recently, several studies have been done on resource allo-

cation in single-cell CR-OFDMA networks [11]–[13]. In [11],

a power loading algorithm for cognitive radios was proposed

that uses the frequency bands adjacent to the PU’s bands. In

[12], the authors solved a joint power and subchannel alloca-

tion problem under interference constraint for each subchannel

by means of the dual decomposition technique. In [13], a

power and subchannel allocation algorithm was proposed for

supporting non-real time services in an OFDM-based CR

system. With respect to the multi-cell CR-OFDMA networks,

only few works have been done so far. In [14], a resource

allocation algorithm for a multi-cell OFDMA network was

introduced in the context of CR, where the OFDMA network

was considered as the PU network that tries to vacate spectrum

bands for a CR network. In [15], a frequency channel and

power allocation algorithm was proposed that maximizes the

number of subscribers in a multi-cell CR network. How-

ever, this work considers a frequency-division multiple access

(FDMA) system rather than an OFDMA system.

Unlike the conventional multi-cell networks, the CR net-

work, which coexists with the PU network (Fig. 1), should

1A subchannel is defined as a set of consecutive subcarriers.
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Fig. 1. Co-existence of the CR-OFDMA and PU networks.

control the interference to the PUs as well as the inter-

cell interference within the CR network. In this paper, we

propose a novel transmission power and subchannel allocation

scheme for downlink transmission in multi-cell CR-OFDMA

networks with the adaptive FFR strategy. The proposed scheme

maximizes the throughput of the CR network by efficiently

allocating subchannels to cells, while controlling the interfer-

ence to the PUs by limiting the transmission power on the

subchannels occupied by the PUs. To develop the proposed

scheme, we formulate the resource allocation problem as an

optimization problem. Then we relax some constraints and

decompose the problem into multiple subproblems by using

the dual decomposition technique [16]. The proposed scheme

significantly outperforms the traditional fixed subchannel al-

location scheme (e.g., the static FFR with the FRF of three

in [5]). By using simulations, we show that the proposed

scheme enhances the system throughput by up to 50% for the

same amount of interference to PUs. In addition, the proposed

scheme can operate distributively with low control overhead.

The rest of the paper is organized as follows. Section II

overviews the system model of the CR and the PU networks.

In Section III, we analyze the throughput of each MS and

the interference to PUs for given transmission power and

subchannel allocation in the CR-OFDMA network. Based on

these analytical results, we formulate the optimization problem

and present the algorithm to solve it in Section IV. In Sec-

tion V, we show representative numerical results. Section VI

concludes the paper. A list of the key mathematical symbols

used in this paper is given in Table I.

II. SYSTEM MODEL AND THE PROPOSED RESOURCE

ALLOCATION ARCHITECTURE

A. Primary User and Secondary User Network Models

We consider downlink transmission in a multicell CR-

OFDMA network as shown in Fig. 1. The CR-OFDMA

network consists of M cells, each of which is managed by

a base station (BS). Each cell and the corresponding BS are

indexed by m = 1, . . . ,M . There are total N mobile stations

(MSs), each indexed by n = 1, . . . , N . An MS is associated

TABLE I
TABLE OF SYMBOLS

Symbol Definition

M Number of cells in the CR network

N Number of MSs in the CR network

Nm Set of the MSs in cell m

βn Serving BS of MS n

K Number of subchannels

W Bandwidth of a subchannel

TS Length of a slot

No Noise spectral density

R Product of the number of the subcarriers in a subchannel
and the OFDM symbol rate

n∗

k,m
(t) MS scheduled by BS m to use subchannel

k in slot t

pk,m Transmission power of BS m on subchannel k

pBS
max Maximum total transmission power of a BS

sk,m Subchannel allocation indicator of BS m
on subchannel k

G Conflict graph

A Number of all cliques in the conflict graph G

Ca Set of the indices of all the vertices in clique a

L Number of all PUs

θPU
max Maximum transmission distance of a PU-Tx

Lk Set of the PUs using subchannel k

pPU
l

Transmission power of PU-Tx l

pPU
min

Minimum transmission power of a PU-Tx

IPU
l

(t) Total interference from all BSs to PU-Rx l in slot t

IPU
lim

Limit on the interference to a PU-Rx

ǫ Limit on the interference violation probability

gBS,MS
k,m,n

(t) Channel gain from BS m to MS n

on subchannel k in slot t

gBS,PU
k,m,l

(t) Channel gain from BS m to PU-Rx l

on subchannel k in slot t

gPU,BS
k,l,m

(t) Channel gain from PU-Tx l to BS m

on subchannel k in slot t

gPU,MS
k,l,n

(t) Channel gain from PU-Tx l to MS n

on subchannel k in slot t

IMS
k,n

(t) Interference inflicted on MS n

on subchannel k in slot t

Lk,m Set of the PUs using subchannel k and
within the cell coverage area of BS m

TE Length of a quiet period

ξk,m(t) Sensing result on subchannel k,
produced by BS m in slot t

γk,n(t) SINR of MS n on subchannel k
in slot t

αk,n(t) Normalized SINR of MS n on
subchannel k in slot t

rk,n(s, p) Average data rate of MS n on subchannel k
when the subchannel allocation indicator and
the transmission power of the serving BS on

subchannel k is s and p, respectively

bn Throughput of MS n

U(x) Utility function

Dk,m Transmission power limit of BS m
on subchannel k
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with one serving BS, denoted by βn. Let Nm be the set of

the MSs associated with BS m (i.e., the MSs in cell m). An

MS communicates with the serving BS by using the OFDMA

technique in which consecutive subcarriers are bundled into a

subchannel. Let W denote the bandwidth of a subchannel, and

let K denote the number of subchannels. Each subchannel is

indexed by k = 1, . . . ,K. We consider a slotted system, where

the length of a slot is denoted by TS . A slot can contain

one or more OFDMA symbols. Each slot is indexed by t.
One subchannel during one slot constitutes a resource block

(RB). For each cell, an RB can be allocated to only one MS,

which is selected by the scheduler residing in the BS. An

opportunistic scheduling algorithm is used, which selects the

MS in a relatively good instantaneous channel condition. Let

n∗
k,m(t) denote the MS scheduled2 by BS m to use subchannel

k in slot t. Let pk,m denote the transmission power of BS m
on subchannel k.3 The maximum total transmission power of

a BS is denoted by pBS
max. Then, the following inequality should

hold:
∑K
k=1 pk,m ≤ pBS

max for m = 1, . . . ,M .

If BS m schedules MS n on subchannel k in slot t (i.e.,

n∗
k,m(t) = n), it transmits to MS n with the transmission

power of pk,m. The signal-to-interference-plus-noise ratio

(SINR) at MS n in slot t is given by:

γk,n(t) :=
gBS,MS
k,βn,n

(t) · pk,βn
IMS
k,n(t) +NoW

(1)

where gBS,MS
k,m,n(t) is the channel gain from BS m to MS n on

subchannel k in slot t, No is the noise spectral density, and

IMS
k,n(t) is the interference to MS n on subchannel k in slot t

from the PUs and the BSs other than the serving BS. Then

the instantaneous data rate of MS n is given by: R log2(1 +
γk,n(t)), where R denotes the product of the number of the

subcarriers in a subchannel and the OFDM symbol rate.

The CR network coexists with the PU network. The PUs

communicate over point-to-point links (Fig. 1). There are L
pairs of PU transmitters (PU-Tx’s) and PU receivers (PU-

Rx’s). Each pair of a PU-Tx and a PU-Rx is indexed by l =
1 . . . , L. A PU-Rx is located within the maximum transmission

distance, denoted by θPU
max, from the corresponding PU-Tx. PU-

Tx l transmits signals to PU-Rx l via one subchannel. Let Lk
denote the set of the PUs using subchannel k. The transmission

power of PU-Tx l is denoted by pPU
l . It is assumed that the

transmission power of a PU-Tx is no less than pPU
min (i.e.,

pPU
l ≥ pPU

min). We assume that the subchannel usage and the

transmission power of the PUs change slowly. Even though we

assume the point-to-point communication for the PU networks

for ease of presentation, this PU network model can easily be

extended to more generic one by allowing that several PU-Tx’s

or PU-Rx’s can be located within the same wireless node. For

example, we can place all PU-Tx’s on the center node while

putting each PU-Rx on a separate node around the center node

in order to describe a star topology network.

The scenario where the CR network is a multicell OFDMA

2We will explain the scheduling algorithm in detail in Section III-A.
3We assume that a BS does not adjust the transmission power in a fast time

scale. It is known (e.g., in [17]) that the fixed power allocation scheme can
show near-optimal performance in a multi-user OFDMA network.

network and the PU network is a distributive network consist-

ing of point-to-point links is of practical importance. The IEEE

802.22-based WRAN [3] standard defines a license-exempt

cellular-based OFDMA network operating in the VHF/UHF

TV bands on a non-intrusive basis. Other than TV receivers,

the PUs in the VHF/UHF TV bands include a wireless

microphone, the primary application of which is transmitting

an audio signal over a short distance. Another example can be

the IEEE 802.16h License-Exempt (LE) that is an amendment

of the IEEE 802.16 standard for the improved coexistence

mechanisms for license-exempt operation [18].

We consider a spectrum underlay CR (e.g., [19]), in which

CR-BSs are permitted to transmit signals on the same sub-

channel with PUs as long as the interference is kept under

a tolerable level. Let gBS,PU
k,m,l (t) denote the channel gain from

BS m to PU-Rx l on subchannel k in slot t. Then, the total

interference from all BSs to PU-Rx l in slot t is given by

IPU
l (t) :=

∑M
m=1 g

BS,PU
k,m,l (t) · pk,m, if PU l uses subchannel k

(i.e., l ∈ Lk). Let IPU
lim denote the limit on the interference to

a PU-Rx. We define the interference violation probability as

the probability that the total interference to a PU-RX, IPU
l (t),

exceeds the limit on the interference, IPU
lim . The CR network

should maintain the interference violation probabilities of PUs

under the given threshold, ǫ. That is,

Pr[IPU
l (t) > IPU

lim ] ≤ ǫ, ∀l = 1, . . . , L. (2)

To satisfy the above constraints, each CR-BS m limits the

transmission power, pk,m, to the transmission power limit,

Dk,m, for all subchannels (i.e., pk,m ≤ Dk,m for k =
1, . . . ,K). For maximum performance of the CR network,

the transmission power limits should be set as high as pos-

sible within the range that makes the constraints on the

interference violation probabilities satisfied. The method to

determine the transmission power limit based on an energy

detection-based channel sensing method [20] will be described

in Section III-B.

The channel gain of a wireless link between two nodes

(e.g., gBS,MS
k,m,l (t) and gBS,PU

k,m,l (t)) on a subchannel in slot t is:

g(t) = ρ(d) · 10ψ(t)/10 · ω(t), where ρ(d) is the path-loss

for distance d between two nodes, 10ψ(t)/10 is the lognormal

shadow fading component, and ω(t) is the multi-path Rayleigh

fading component of channel gain. The shadowing and multi-

path fading processes are assumed to be stationary. Here ψ(t)
follows a normal distribution with the mean of zero and the

standard deviation of σψ . The multi-path fading ω(t) follows

an exponential distribution with the mean of µω . We assume

that the channel gains of two different wireless links are

statistically independent.

B. Subchannel Coordination Strategy for Frequency Reuse in

the Multi-Cell CR-OFDMA Network

To reduce inter-cell interference, several variants of the FFR

strategy can be used. Among them, the simplest one is to

allocate subchannels to cells for their exclusive use. Once

a subchannel is allocated to a cell, the nearby cells are not

allowed to use the subchannel. Let sk,m be the “subchannel

allocation indicator” of subchannel k on BS m: sk,m = 1 if the
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Fig. 2. The conflict graph and the partial frequency reuse (PFR) scheme.

subchannel k is allocated to cell m; sk,m = 0, otherwise. A BS

can transmit power on a subchannel only when the subchannel

is allocated to the BS. That is, pk,m = 0 if sk,m = 0. Since

one subchannel cannot be allocated to two adjacent cells at

the same time, sk,i and sk,j cannot be both one at the same

time in the case that cell i and cell j are close to each other.

To represent the geographical relationship between cells,

we introduce the “conflict graph” G := (V, E). In the conflict

graph G, there are M vertices (i.e., |V| = M ) and vertex

vm ∈ V stands for cell m. There exists an edge (i, j) in E , if

and only if cell i and cell j are close enough to interfere with

each other.4 In Fig. 2, we present an example of the conflict

graph. A clique in a graph is defined as a subset of V such that

there is an edge between every two vertices in the clique. The

number of all cliques in the graph G is denoted by A, and

each clique is indexed by a = 1, . . . , A. Let Ca denote the

set of the indices of all the vertices in clique a. Cells do not

interfere with each other if and only if the following condition

is met:
∑

m∈Ca

sk,m ≤ 1, ∀k = 1, . . . ,K and ∀a = 1, . . . , A. (3)

The proposed resource allocation scheme is a type of dynamic

FFR strategy [5], that adaptively decides the subchannel allo-

cation indicator, sk,m, under the constraint in (3). The use of

the subchannel allocation indicator can be regarded as a sub-

optimal simplification, since it forces the transmission powers

of some BSs to be zero for interference management. The

computational complexity and the control message overhead

between BSs can be reduced significantly by introducing the

subchannel allocation indicator.

The proposed resource allocation architecture can also be

used along with the the partial frequency reuse (PFR) strategy

[8]. The PFR strategy allows the nearby cells to use the same

subchannel only for the MSs close to their serving BSs. The

basic concept of the PFR strategy is illustrated in Fig. 2. The

entire frequency band is divided into center subchannels and

4Strictly speaking, cell i interferes with cell j when BS i using its maximum
transmission power can possibly interfere with any MS in the coverage area
of cell j.

edge subchannels as in Fig. 2. While the center subchannels

can be used by all cells at the same time, the edge subchannels

are allocated to some cells for their exclusive use. The MSs

close to the serving BS (i.e., the center MSs) can make

use of both the center and edge subchannels. On the other

hand, the MSs located relatively far from the serving BS

(i.e., the edge MSs) can only utilize the edge subchannels for

protection from inter-cell interference. The proposed scheme

can be used to solve the resource allocation problem in the

edge subchannels, while the resource allocation problem in the

center subchannels can independently be solved by each cell

by using the algorithms for single-cell CR-OFDMA systems

(e.g., [12]). When the proposed scheme is applied to the PFR

strategy, we redefine the subchanels 1, . . . ,K as the edge

subchannels, the MSs 1, . . . , N as the edge MSs and the

center MSs having permission to use the edge subchannels,

and the maximum total transmission power of a BS, pBS
max, as

the transmission power dedicated to the edge subchannels.

C. Overall Resource Allocation Architecture

We develop a subchannel and transmission power allocation

scheme that aims to accomplish the following three goals: 1)

The transmission power should be allocated in such a way

to limit the interference on PUs. The BSs should restrict the

transmission power on the subchannels where a strong PU

signal is detected. 2) The BSs should efficiently allocate the

subchannels to maximize the system capacity. A subchannel

should be allocated to the cell around which there is no

PU using the subchannel. 3) Fairness should be guaranteed

among MSs. More radio resources should be allocated to cells

accommodating more MSs in order to provide fairness over

the entire network. To achieve these goals, we first formulate

an optimization problem. Then, this optimization problem is

decomposed into three subproblems corresponding to these

three goals. By solving these subproblems, we can accomplish

the corresponding goals.

The algorithms to solve the subproblems are assigned to

the respective functional blocks in a BS, namely, the fairness

control block, the transmission power allocation block, and

the subchannel allocation block, as shown in Fig. 3. We will

explain the detailed algorithms in the functional blocks in

Section IV. The fairness control block allocates more radio

resources to the BS if the data rate provided to the MSs

in the corresponding cell is not sufficient. The transmission

power allocation block allocates transmission power to each

subchannel in such a way that the transmission power is

limited in the subchannels with the PU signal detected. The

subchannel allocation block plays a key role in maximizing

the system performance. Suppose that the distribution of MSs

within a cell is the same for all cells. If the subchannel

allocation block assigns a subchannel to the BS for which

the transmission power limit on the subchannel is relatively

high, the BS is able to transmit high transmission power on

that subchannel. Then, this BS can make better use of the

subchannel than the other BSs can. The subchannel allocation

block in a BS works with the subchannel allocation blocks in

the other BSs.
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Fairness Control Block

9. Calculate b∗n(λn) for

n ∈ Nm from (24).

10. Update λn for n ∈ Nm

from (32).

Transmission Power Allocation Block

2. Calculate p∗k,m(1;Λm, νm) and

Ξ
∗

k,m(1;Λm, νm) for k = 1, . . . , K by using

the bisection method.

6. Calculate p∗k,m(λ,ν) for k = 1, . . . , K.

7. Update νm from (33).

Subchannel Allocation Block

4. Calculate s∗k,m(λ,ν) for k = 1, . . . , K by using the modified greedy algorithm.

Scheduler

• Receive channel statistics from MSs and

calculate µk,n, σk,n, and Γk,n for n ∈ Nm and

k = 1, . . . , K.

• Schedule users on the basis of s∗k,m(λ,ν) and

p∗k,m(λ,ν).

Energy Detector

• Perform channel

sensing on each

subchannel and produce

the sensing results ξ̄k,m
for k = 1, . . . , K.

1. Λm

8. rk,n(s
∗

k,m(λ,ν), p
∗

k,m(λ,ν))
for n ∈ Nm and k = 1, . . . , K

3. Ξ∗

k,m(1;Λm, νm) for

k = 1, . . . , K
5. s∗k,m(λ,ν) for

k = 1, . . . , K

11. s∗k,m(λ,ν) and

p∗k,m(λ,ν) for k =
1, . . . , K

µk,n, σk,n, and Γk,n

for n ∈ Nm and

k = 1, . . . , Kξ̄k,m for k = 1, . . . , K

Fig. 3. Algorithms for solving the decomposed problems in the functional
block structure (for BS m).

The numbers of MSs and their association to BS (i.e., N
and βn), the transmission power and the channel usage of

PUs (i.e., pPU
l and Lk), and the path-loss component in the

channel gain vary slowly enough so that they can be treated

as fixed during the resource allocation interval. On the other

hand, the shadowing and multi-path fading components in the

channel gain vary in a faster time scale. The opportunistic

scheduler in a BS responds to fast variation in a channel gain

and schedules an MS (i.e., n∗k,m(t)) on a slot-by-slot basis.

However, subchannel and transmission power allocation (i.e.,

sk,m and pk,m) are performed in a slower time scale, for

example, in response only to the changes in the MS and PU

configuration, not to the instantaneous channel condition.

III. INTRA-CELL SCHEDULING AND INTERFERENCE

MANAGEMENT

In Section III-A, we analyze the average data rates of MSs

when an opportunistic scheduling algorithm is applied for

the given transmission power and subchannel allocation. In

Section III-B, we explain how to determine the transmission

power limits based on the sensing results from the energy

detector. The results from both sections will be used in

Section IV to formulate the multi-cell resource allocation

problem.

A. Throughput Analysis of Opportunistic Scheduling Algo-

rithm and Utility of an MS

Let rk,n(s, p) denote the average data rate of MS n on

subchannel k when the subchannel allocation indicator and

the transmission power of the serving BS on the subchannel

k are s and p, respectively (i.e., sk,βn = s and pk,βn = p).

Clearly, we have rk,n(s, p) = 0 when s = 0. We will now

derive an analytical expression for rk,n(s, p) for s = 1.

In each slot t for each subchannel k, the scheduler selects

MS n∗
k,m(t) and decides the data rate for the selected MS,

based on the SINR reported from the MSs in the cell.5

We use the SINR-based proportional fair (PF) scheduling

algorithm [21] to select an MS for an RB. Recall that γk,n(t)
denotes the SINR of MS n on subchannel k. An RB of

cell m on the subchannel k in slot t is allocated to MS

n∗
k,m(t) such that n∗

k,m(t) ∈ argmaxn∈Nm αk,n(t), where

αk,n(t) := γk,n(t)/E[γk,n(t)] is the normalized SINR of MS

n on subchannel k in slot t.
We calculate the scheduling probability for the above

scheduling rule, and then derive the average data rate from

this probability. Since MS n is scheduled if it has the highest

normalized SINR among the MSs in its serving cell, the proba-

bility that MS n with the normalized SINR of x is scheduled is
∏

i∈Nβn
i 6=n

Fαk,i(x), where Fαk,i is the cumulative density func-

tion (cdf) of αk,i(t). We can derive rk,n(1, p) as in (4), where

Γk,n := E[γk,n(t)]/pk,βn = E[gBS,MS
k,βn,n

(t)/(IMS
k,n(t) + NoW )],

and fαk,n is the probability density function (pdf) of αk,n(t).
To evaluate (4), we require to know the distribution

of the normalized SINR. In (1), we have IMS
k,n(t) =

∑

m=1,...,M
m 6=βn

gBS,MS
k,m,n(t) · pk,m +

∑

l∈Lk
gPU,MS
k,l,n (t) · pPU

k,l, where

gPU,MS
k,l,n (t) denotes the channel gain from PU-Tx l to MS n

on subchannel k in slot t. Since we consider the case that

subchannel k is allocated to the serving BS (i.e, sk,βn = 1)

in order to calculate rk,n(s, p) for s = 1, the subchannel

allocation indicators and the transmission powers of the nearby

BSs are zero (i.e., due to the constraints in (3)). Thus, we have
∑

m=1,...,M
m 6=βn

gBS,MS
k,m,n(t) · pk,m ≃ 0, if the interferences from the

BSs other than the nearby BSs are assumed to be zero (i.e.,

due to distance). Then, the normalized SINR can be written

as

αk,n(t) =
gBS,MS
k,βn,n

(t)

Γk,n · (
∑

l∈Lk
gPU,MS
k,l,n (t) · pPU

k,l +NoW )
. (5)

The composite lognormal and exponential distribution of

gBS,MS
k,m,n(t) and gPU,MS

k,l,n (t) approximately follows a purely log-

normal distribution [22].6 Then, the numerator in (5) becomes

lognormally distributed. In addition, since NoW is a deter-

ministic variable, the denominator in (5) can be approxi-

mated by another lognormal distribution.7 The numerator and

the denominator in (5) are independent of each other since

the channel gain between MS n and the serving BS (i.e.,

gBS,MS
k,βn,n

(t)) is independent of the channel gain between MS

n and PU l (i.e., gPU,MS
k,l,n (t)) for all l. Since both the numerator

and the denominator in (5) are lognormally distributed and

5We do not require to consider the interference to PU-Rx’s for the
scheduling algorithm. Since the downlink of the CR-OFDMA system is
assumed, the transmitting end of a wireless link is always a BS, not an MS.
Therefore, the interference to PU-Rx’s is not affected by which MS is selected
by the scheduler.

6This lognormal approximation holds when the composite distribution is
mainly dominated by the lognormal distribution. Since the standard deviation
of the shadow fading component, ψ(t), is generally very large (i.e., σψ =
8 dB), this approximation can be justified [22], [23].

7The sum of independent lognormal distributions can well be approximated
by another lognormal distribution [24].
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rk,n(1, p) =

∫ ∞

0

R log2(1 + p · Γk,n · x) ·
{

∏

i∈Nβn ,i 6=n

Fαk,i(x)

}

· fαk,n(x) · dx. (4)

independent of each other, the normalized SINR follows a

lognormal distribution. Then, the logarithm of αk,n(t) (i.e.,

10 log10 αk,n(t)) follows normal distribution with mean of

µk,n and standard deviation of σk,n.

To calculate rk,n(1, p), the serving BS should be aware

of µk,n, σk,n, and Γk,n. The serving BS can calculate these

values from the statistics of the channel gain between MS n
and the serving BS in dB (i.e., χk,n(t) := 10 log10 g

BS,MS
k,βn,n

(t))
and the noise plus interference in dB (i.e., κk,n(t) :=
10 log10(

∑

l∈Lk
gPU,MS
k,l,n (t) · pPU

k,l+NoW )). Since the statistical

characteristics of χk,n(t)’s are the same for all subchannels,

MS n can estimate E[χk,n(t)] and Var[χk,n(t)] from pi-

lot symbols on any subchannel. Also, MS n can estimate

E[κk,n(t)] and Var[κk,n(t)] when BSs perform energy detec-

tion. From these statistics reported from MS n, the serving

BS calculates µk,n = − ln 10
20 (Var[χk,n(t)] + Var[κk,n(t)]),

σk,n =
√

Var[χk,n(t)] + Var[κk,n(t)], and Γk,n =
exp( ln 10

10 (E[χk,n(t)] − E[κk,n(t)] + ln 10
20 (Var[χk,n(t)] +

Var[κk,n(t)]))). Then, the pdf and the cdf of the normalized

SINR are

fαk,n(x) =
10/ ln 10

xσk,n
√
2π

exp

(

− (10 log10 x− µk,n)2
2σ2

k,n

)

(6)

Fαk,n(x) = 1− 1

2
erfc

(
10 log10 x− µk,n√

2σk,n

)

(7)

where erfc is the complementary error function, defined as

erfc(x) = 2/
√
π
∫∞

x
exp(−t2)dt.

With infinite backlog at the MSs, if we let bn denote the

throughput of MS n, we have bn ≤
∑K
k=1 rk,n(sk,βn , pk,βn),

and the utility of MS n is defined as [25]:

U(x) :=

{

log bn, if ζ = 1

(1− ζ)−1bn
(1−ζ), otherwise

(8)

where ζ ≥ 0 determines the fairness. The higher the value of

ζ, the more fairness we can ensure at the cost of efficiency.

The fairness among the MSs can be achieved by maximizing
∑N
n=1 U(bn).

B. Estimation of Interference to Primary Users for Calculat-

ing Transmission Power Limits

In this section, we explain how to decide the transmission

power limits based on the sensing results from the energy

detector. Each BS is responsible to protect only PU-Rx’s

within its cell coverage area, since the interference from a BS

to the PU-Rx’s out of its cell coverage area is very small. With

a slight abuse of notation, let Lk,m denote the set of PU-Rx’s

using subchannel k and within the cell coverage area of BS m.

Consider a PU-Rx l such that l ∈ Lk,m. BS m should protect

such PU-Rx l when subchannel k is allocated to itself (i.e.,

sk,m = 1). If sk,m = 1, the subchannel allocation indicators

and the transmission powers of the BSs neighboring BS m

become zero, and therefore, PU-Rx l only receives the interfer-

ence from BS m and distant BSs. Since the interference from

the distant BSs is negligible, the total interference to PU-Rx l
is given by IPU

l (t) =
∑M
i=1 g

BS,PU
k,i,l (t) · pk,i ≃ gBS,PU

k,m,l (t) · pk,m,

for l ∈ Lk,m when sk,m = 1.

Now, we derive the distribution of the interference and

calculate the interference violation probability. According to

[22], the logarithm of gBS,PU
k,m,l (t) (i.e., 10 log10 g

BS,PU
k,m,l (t)) ap-

proximately follows a normal distribution with the mean of

10 log10 ρ(d
BS,PU-Rx
m,l ) + 10 log10 µω − 2.5 and the standard

deviation of
√

σ2
ψ + 5.572, where dBS,PU-Rx

m,l is the distance

from BS m to PU-Rx l. Provided that IPU
l (t) = gBS,PU

k,m,l (t)·pk,m,

we can calculate the interference violation probability of PU

l as in (9), where Q(x) := 1/
√
2π

∫∞

x
exp(−u2

2 )du.

Since the interference violation probability should be less

than ǫ (i.e., Pr[IPU
l (t) > IPU

lim ] ≤ ǫ), we have the restriction on

the transmission power such that pk,m ≤ Φ(dBS,PU-Rx
m,l ), where

Φ(d) :=
IPU

lim

ρ(d)·µω
· 100.25−0.1

√
σ2

ψ
+5.572·Q−1(ǫ). To satisfy this

restriction for all l ∈ Lk,m, we set the transmission power limit

Dk,m to Φ(d) for d that is a lower bound of the distance from

BS m to PU-Rx’s such that d ≤ dBS,PU-Rx
m,l for all l ∈ Lk,m. A

BS derives such a lower bound by using the sensing results

from the energy detector.

Let us describe the operation of the energy detector. During

a channel sensing period (e.g., quiet period in 802.22 WRAN),

the length of which is denoted by TE , the energy detector takes

WTE baseband complex signal samples on each subchannel.

Let yk,m,i(t) denote the ith signal sample on subchannel k
at BS m in a quiet period in slot t. The energy detector

calculates the sensing result ξk,m(t) = 2
No

∑WTE
i=1 |yk,m,i(t)|2.

The power received from all PU-Tx’s using subchannel k
in slot t is

∑

l∈Lk
gPU,BS
k,l,m (t) · pPU

k,l, where gPU,BS
k,l,m (t) is the

channel gain from PU-Tx l to BS m on subchannel k in

slot t. According to [20], ξk,m(t) follows a noncentral chi-

square distribution with 2WTE degrees of freedom and the

noncentrality parameter of 2TE
No

∑

l∈Lk
gPU,BS
k,l,m (t) · pPU

k,l, given

gPU,BS
k,l,m (t)’s for all l. The BS calculates the sensing results over

a number of channel sensing periods and takes an average of

these sensing results. If the number of the sensing results is

sufficiently large, the variation due to the lognormal shadow

fading, the Rayleigh fading, and the thermal noise can be

averaged out. Then, the BS can have the average sensing result

ξ̄k,m ≃ E[ξk,m(t)] = 2WTE + 2TE
No

∑

l∈Lk
E[gPU,BS

k,l,m (t)] · pPU
k,l.

From the average sensing result, we derive a lower bound

of the distance from BS m to PU-Rx’s. Let dBS,PU-Tx
m,l de-

note the distance between BS m and PU-Tx l. Then, we

have E[gPU,BS
k,l,m (t)] = ρ(dBS,PU-Tx

m,l ) · E[10ψ(t)/10] · E[ω(t)] =

ρ(dBS,PU-Tx
m,l ) · 10 ln 10

200
·σ2

ψ · µω . The distance dBS,PU-Tx
m,l can be

calculated as dBS,PU-Tx
m,l = ρ−1(E[gPU,BS

k,l,m ]/(10
ln 10

200
·σ2

ψ · µω)).
Also, recall that θPU

max denotes the maximum distance from a

PU-Tx to the corresponding PU-Rx. Then, we can calculate
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Pr[IPU
l (t) > IPU

lim ] = Pr[10 log10 I
PU
l (t) > 10 log10 I

PU
lim ]

= Q

(
10 log10 I

PU
lim − 10 log10 ρ(d

BS,PU-Rx
m,l )− 10 log10 µω + 2.5− 10 log10 pk,m
√

σ2
ψ + 5.572

)

. (9)

the lower bound of the distance from BS m to PU-Rx l for all

l ∈ Lk as in (10), where [x]+ = max{0, x} and dBS,PU-Rx
min (ξ̄)

is the lower bound of the distance from a BS to a PU-Rx given

the average sensing result ξ̄. This lower bound can be viewed

as a conservative estimate of the distance to the nearest PU-

Rx, derived by assuming the worst-case scenario. Note that

the equality in (10) holds when i) there is one PU-Tx around

BS m; ii) the corresponding PU-Rx is located at the position

closest to BS m within the transmission range of the PU-

Tx; and iii) the PU-Tx transmits a signal using the minimum

transmission power, pPU
min.

From (10), BS m calculates the transmission power limits

from the average sensing results as

Dk,m = Φ(dBS,PU-Rx
min (ξ̄k,m)), ∀k = 1, . . . ,K. (11)

This transmission power limit is a conservative one, since it

is based on the worst-case estimate of the distance to a PU-

Rx. Since a BS can transmit power only on the subchannels

allocated to itself, the transmission power pk,m should satisfy

the following constraint:

0 ≤ pk,m ≤ sk,m ·Dk,m, ∀k and ∀m. (12)

IV. INTER-CELL SUBCHANNEL AND POWER ALLOCATION

ALGORITHM

A. Subchannel and Transmission Power Allocation Problem

The inter-cell subchannel and transmission power allocation

problem can now be formulated as follows:

max
b,s̄,p̄

N∑

n=1

U(bn) (13)

s.t. bn ≤
K∑

k=1

rk,n(sk,βn , pk,βn), ∀n = 1, . . . , N (14)

bn ≥ 0, ∀n = 1, . . . , N (15)

K∑

k=1

pk,m ≤ pBS
max, ∀m = 1, . . . ,M (16)

0 ≤ pk,m ≤ sk,m ·Dk,m, ∀k = 1, . . . ,K and

∀m = 1, . . . ,M (17)
∑

m∈Ca

sk,m ≤ 1, ∀k = 1, . . . ,K and

∀a = 1, . . . , A (18)

sk,m ∈ {0, 1}, ∀k = 1, . . . ,K and

∀m = 1, . . . ,M (19)

where b := (bn)n=1,...,N , s̄ := (sk,m) k=1,...,K
m=1,...,M

, and p̄ :=

(pk,m) k=1,...,K
m=1,...,M

.

We aim to find the subchannel allocation indicator sk,m
and the transmission power pk,m that maximize the objective

function in this problem. The constraints in (14) and (16)

span over entire subchannels. We will relax these constraints

by using the Lagrange multipliers to decompose the problem

into multiple subproblems. Each subproblem can be solved

separately by the functional blocks described in Fig. 3. Among

these subproblems, the one related to subchannel allocation is

reduced to the well-known combinatorial optimization prob-

lem, named the maximum weighted independent set (MWIS)

problem. We will propose a suboptimal distributed algorithm

to solve the MWIS problem.

The optimization problem in (13) is a mixed binary integer

problem which is not a convex optimization problem. How-

ever, it is proven in [26] that the duality gap approaches zero

as the number of subcarriers increases in the OFDMA system.

This is due to the fact that, the time-sharing condition, which

generally holds in a time-division multiple access (TDMA)

system, is also satisfied in a multicarrier system with a large

number of subcarriers. This theorem can also be applied to our

optimization problem. We present the proof of zero duality gap

in a separate technical report [27]. The number of subchannels

in the next generation OFDMA network (e.g., LTE) will be at

least 50 in the bandwidth of more than 10 MHz. This number

of subchannels is enough to approximately accomplish zero

duality gap.

B. Dual Decomposition

To decompose the optimization problem, we relax the

constraints in (14) and (16), and then we derive the Lagrangian

in (22), where λ := (λn)n=1,...,N and ν := (νm)m=1,...,M are

the Lagrange multipliers, Λm := (λn)n∈Nm ,

Θ(bn;λn) := U(bn)− λnbn (20)

and

Ξk,m(sk,m, pk,m;Λm, νm) :=
∑

n∈Nm

λnrk,n(sk,m, pk,m)− νmpk,m. (21)

The dual function h(λ,ν) can be calculated by maximizing

Ω(b, s̄, p̄;λ,ν) as in (23), where sk := (sk,m)m=1,...,M and

the domain is defined by the constraints (15), (17), (18), and

(19). As can be seen in (23), we decompose the optimization

problem into subproblems 1–3. In addition, we need to solve

the dual problem to find the Lagrange multipliers minimizing

the dual function.

Now, we define and solve these problems (i.e., subproblems

1–3 and dual problem) one by one.
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dBS,PU-Rx
m,l ≥ [dBS,PU-Tx

m,l − θPU
max]

+ = [ρ−1(E[gPU,BS
k,l,m (t)]/(10

ln 10

200
·σ2

ψ · µω))− θPU
max]

+

≥
[

ρ−1

(∑

l∈Lk
E[gPU,BS

k,l,m (t)]

10
ln 10

200
·σ2

ψ · µω

)

− θPU
max

]+

=

[

ρ−1

( No
2TE

ξ̄k,m −NoW
pPU
k,l · 10

ln 10

200
·σ2

ψ · µω

)

− θPU
max

]+

≥
[

ρ−1

( No
2TE

ξ̄k,m −NoW
pPU

min · 10
ln 10

200
·σ2

ψ · µω

)

− θPU
max

]+

= dBS,PU-Rx
min (ξ̄k,m). (10)

Ω(b, s̄, p̄;λ,ν) :=
N∑

n=1

U(bn) +
N∑

n=1

λn

{ K∑

k=1

rk,n(sk,βn , pk,βn)− bn
}

+
M∑

m=1

νm

{

pBS
max −

K∑

k=1

pk,m

}

=

N∑

n=1

Θ(bn;λn) +

K∑

k=1

M∑

m=1

Ξk,m(sk,m, pk,m;Λm, νm) +

M∑

m=1

νmp
BS
max.

(22)

h(λ,ν) := max
b,s̄,p̄

Ω(b, s̄, p̄;λ,ν)

=

N∑

n=1

Subproblem 1
︷ ︸︸ ︷

max
bn

Θ(bn;λn)+

K∑

k=1

max
sk

M∑

m=1

Subproblem 2
︷ ︸︸ ︷

max
pk,m

Ξk,m(sk,m, pk,m;Λm, νm)

︸ ︷︷ ︸

Subproblem 3

+

M∑

m=1

νmp
BS
max (23)

1) Subproblem 1 (throughput calculation): Subproblem 1

is defined for each MS. For MS n, subproblem 1 aims to find

the throughput bn for given λn. That is,

max
bn

Θ(bn;λn) = U(bn)− λnbn (24)

s.t. bn ≥ 0. (25)

Let b∗n(λn) be the solution of subproblem 1. From (8), we can

easily find the solution as

b∗n(λn) = argmax
b≥0

{U(b)− λnb} = λ−1/ζ
n . (26)

2) Subproblem 2 (transmission power allocation): Sub-

problem 2 is defined for each BS on each subchannel. For

BS m and subchannel k, we decide the transmission power

pk,m by solving subproblem 2 when the subchannel allocation

indicator (i.e., sk,m) and the Lagrange multipliers (i.e., Λm

and νm) are given. Subproblem 2 is defined as in (27).

Let p∗k,m(sk,m;Λm, νm) denote the solution of this prob-

lem. It is obvious that p∗k,m(0;Λm, νm) = 0. Since sub-

problem 2 is a convex optimization problem with one

scalar variable, we can derive p∗k,m(1;Λm, νm) by using

the bisection method (as given in Fig. 4). After the algo-

rithm terminates, (xL + xH)/2 indicates p∗k,m(1;Λm, νm)
within the error of ǫ/2. This method uses the derivative of

Ξk,m(1, pk,m;Λm, νm) with respect to pk,m. The calculation

of this derivative involves numerical integration to evaluate

the derivative of the average data rate in (4). For numerical

integration, we use the Trapezoidal method [28, p. 216] with a

uniform grid. Since we can calculate {∏i∈Nβn ,i 6=n
Fαk,i(x)}·

fαk,n(x) for all grid points prior to running the bisection

method, the complexity of numerical integration for an MS

1: xL ← 0, xH ← min{Dk,m, p
BS
max}

2: while xH − xL > ǫ do

3: xM ← (xL + xH)/2

4: y ← ∂Ξk,m
∂pk,m

∣
∣
∣
pk,m=xM

5: if y > 0 then

6: xL ← xM
7: else

8: xH ← xM
9: end if

10: end while

Fig. 4. Bisection method to find the optimal transmission power.

is only of the order of the number of the grid points of the

Trapezoidal method.

3) Subproblem 3 (subchannel allocation): Let

Ξ∗
k,m(sk,m;Λm, νm) be the optimal value of subproblem

2. Given Ξ∗
k,m(sk,m;Λm, νm) for sk,m = 0, 1 and

m = 1, . . . ,M , subproblem 3 is formulated to find the

subchannel allocation indicators of all BSs for subchannel k:

max
sk

∑M
m=1 Ξ

∗
k,m(sk,m;Λm, νm)

=

M∑

m=1

maxpk,m Ξk,m(sk,m, pk,m;Λm, νm) (29)

s.t.
∑

m∈Ca
sk,m ≤ 1, ∀a = 1, . . . , A (30)

sk,m ∈ {0, 1}, ∀m = 1, . . . ,M. (31)
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max
pk,m

Ξk,m(sk,m, pk,m;Λm, νm) =
∑

n∈Nm

λnrk,n(sk,m, pk,m)− νmpk,m (27)

s.t. 0 ≤ pk,m ≤ sk,m ·Dk,m. (28)

This problem is a combinatorial optimization problem on

the conflict graph G. We will present an algorithm to solve this

problem in Section IV-C. Let s∗k,m(λ,ν) denote the solution

to this problem. Also, we define p∗k,m(λ,ν) as the solution

to subproblem 2 when the subchannel allocation indicator is

s∗k,m(λ,ν), that is, p∗k,m(λ,ν) = p∗k,m(s∗k,m(λ,ν);Λm, νm).
Then, s∗k,m(λ,ν) and p∗k,m(λ,ν) are the optimal subchannel

allocation indicator and the optimal transmission power, re-

spectively, when the Lagrange multipliers λ and ν are given.

4) Dual Problem: The dual problem is to find the Lagrange

multipliers minimizing the dual function. That is,

min
λ,ν

h(λ,ν) (32)

s.t. λ � 0, ν � 0 (33)

where “�” denotes a component-wise inequality and 0 is a

vector with all zero components. The optimal solutions of the

dual problem are denoted by λ
∗ := (λ∗n)n=1,...,N and ν

∗ :=
(ν∗m)m=1,...,M .

To solve the dual problem, we use the projection subgradient

method [29]. This method iteratively updates the Lagrange

multipliers until it converges to the optimal solution. Let

λ
(i) := (λ

(i)
n )n=1,...,N and ν

(i) := (ν
(i)
m )m=1,...,M be the

estimation of the optimal solution at ith iteration. Starting

with the initial Lagrange multipliers that satisfy λ
(0) � 0

and ν
(0) � 0, the projection subgradient method updates the

Lagrange multipliers at ith iteration according to the following

rules:

λ(i+1)
n =

[

λ(i)n − δ(i) ·
{ K∑

k=1

rk,n(s
∗
k,βn(λ

(i),ν(i)),

p∗k,βn(λ
(i),ν(i)))− b∗n(λ(i)n )

}]+

(34)

and

ν(i+1)
m =

[

ν(i)m − δ(i) ·
{

pBS
max −

K∑

k=1

p∗k,m(λ(i),ν(i))

}]+

(35)

where [x]+ = max{0, x} and δ(i) is the step size at the ith
iteration.

If the step size satisfies δ(i) > 0,
∑∞
i=0 δ

(i) = ∞, and
∑∞
i=0(δ

(i))2 <∞, it is guaranteed that λ(i) and ν
(i) converge

to λ
∗ and ν

∗, respectively. Alternatively, we can also use the

constant step size, which makes λ
(i) and ν

(i) converge to

within some range of λ
∗ and ν

∗. As λ
(i) and ν

(i) converge

to the optimal Lagrange multipliers, the subchannel alloca-

tion indicator, s∗k,m(λ(i),ν(i)), and the transmission power,

p∗k,m(λ(i),ν(i)), also converge to the optimal solutions.

1: GS ← G, GT ← G, VS ← ∅
2: while GS 6= ∅ do

3: for m = 1 to M do

4: if Wm/(ηm(GS) + 1) > Wi/(ηi(GS) + 1) for all i
such that vi is within the distance of ∆ from vm
then

5: VS ← VS ∪ vm
6: Remove vm and its neighbors from GT
7: end if

8: end for

9: GS ← GT
10: end while

Fig. 5. Modified greedy algorithm to find the optimal subchannel allocation
indicators.

C. Maximum Weighted Independent Set Problem for Inter-cell

Subchannel Allocation

We solve subproblem 3 by converting it to the MWIS

problem. Since we have Ξ∗
k,m(0;Λm, νm) = 0, the objective

function of subproblem 3 can be rewritten as

M∑

m=1

Ξ∗
k,m(sk,m;Λm, νm) =

M∑

m=1

Wm · sk,m (36)

where Wm := Ξ∗
k,m(1;Λm, νm).

The constraint (30) in subproblem 3 enforces that sk,i and

sk,j cannot be one at the same time if the vertices i and j are

adjacent in the conflict graph G. Therefore, the set of vm’s for

which sk,m = 1 should form an independent set in G.8 If we

assign Wm to vm as a weight, subproblem 3 is reduced to the

MWIS problem, that targets to find the independent set in G
with the maximum sum of weights.

The MWIS problem is known as an NP-complete problem.

Among numerous algorithms to find the suboptimal MWIS,

the greedy algorithm [30] is the simplest and intuitive one.

We modify the greedy algorithm, as in Fig. 5, so that it can

easily be implemented in a distributed way. This algorithm

uses Wm/(ηm(G) + 1) as a metric for vm. We define ηm(G)
as the degree of vm on G.9 This algorithm selects vm, adds

it to VS , and removes its neighbors from the graph, if vm
has the highest value of the metric among the vertices within

the distance of ∆ from vm. Due to the distance restriction in

the metric comparison (i.e., ∆), we can reduce the control

overhead of a distributed implementation. This algorithm

8An independent set is a set of vertices in a graph, no two of which are
adjacent.

9The degree is the number of edges incident on a vertex.
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iterates until there is no candidate vertex, and VS becomes the

resulting independent set. Note that this modified algorithm is

the same as the original one if ∆ is no less than the diameter

of G.

D. Solving the Decomposed Problems in Functional Block

Structure

The decomposed problems are assigned to the separate func-

tional blocks illustrated in Fig. 3. The fairness control block,

the transmission power allocation block, and the subchannel

allocation block are responsible for solving subproblems 1,

2, and 3, respectively. In addition, the projection subgradient

methods for updating λ and ν are carried out by the fair-

ness control block and the transmission power control block,

respectively.

In Fig. 3, we give a detailed description of the algorithms

for solving the decomposed problems in the functional block

structure of BS m. In this figure, we also specify the se-

quential order of the algorithm executions and the information

exchanges during one iteration of the projection subgradient

method. It is noted that each block can execute its algorithm

asynchronously in order to accelerate the convergence of the

Lagrange multipliers [31]. Since the subchannel allocation

block works at a larger time scale than the other blocks due to

inter-cell operation, the fairness control block and the trans-

mission power control block can expedite their convergence by

executing their algorithms multiple times while the subchannel

allocation block executes its algorithm.

We now present the asymptotic complexity of the algorithm

in each block during one iteration. The complexity of the

algorithm in the fairness control block is simply calculated

as O(K · |Nm|). Let us calculate the complexity of the bisec-

tion method in the transmission power allocation block. The

bisection method repeats the cycle O(ln(min{Dk,m, p
BS
max}/ǫ))

times. In each cycle, the bisection method conducts the

evaluation of the derivative of Ξk,m(1, pk,m;Λm, νm) with

respect to pk,m, the complexity of which is O(|Nm| · J), if

J denotes the number of the grid points in the Trapezoidal

method. Since the bisection method is performed for each

subchannel, the complexity of the bisection method is given

as O(K · ln(min{Dk,m, p
BS
max}/ǫ) · |Nm| · J).

The modified greedy method in the subchannel allocation

block selects multiple vertices (i.e., BSs) to be included in the

independent set in a cycle. In the worst case, O(M) cycles

are required to find the maximum weighted independent set. In

each cycle, a BS sends a control message containing K metrics

to the BSs within the distance of ∆ in the conflict graph. Upon

receiving the messages, a BS compares its own metrics to the

other BSs’ metrics. This process has the complexity of the

order of K times the number of BSs within the distance of

∆. For example, if we consider the hexagonal grid topology

and ∆ = 2, the number of BSs within the distance of ∆
is 19. When ∆ is given, the worst-case complexity of the

modified greedy method is O(K ·M). Therefore, the overall

complexity of the proposed scheme for a BS in an iteration

is O(K · ln(min{Dk,m, p
BS
max}/ǫ) · |Nm| · J +K ·M) in the

worst case.

The only control overhead incurred by the proposed scheme

is the communication between BSs to convey K metrics

for the modified greedy method in the subchannel allocation

block. It is because all the functional blocks in Fig. 3 reside

within a BS and the only block communicates outside the BS

is the subchannel allocation block. Since BSs are connected

to each other via a high-speed wired network, this overhead

does not impose significant burden to the CR system.

Although it is assumed that the channel usages of PUs are

fixed in the mathematical model, it does not mean that the

channel usages of PUs are invariable over time in a practical

sense. The proposed scheme finds a solution for a given state

of PUs (i.e., the number, channel usages, and locations of PUs)

as well as the MS configuration (i.e., the number, locations,

and the serving BSs of MSs). Therefore, in practice, the

proposed scheme has to find a new solution every time the

states of PUs and MSs change.

V. NUMERICAL RESULTS

We present representative simulation results for the pro-

posed scheme, and compare its performance with that of a

fixed subchannel allocation scheme. The total bandwidth of

the system is 10 MHz. There are total 50 subchannels (i.e.,

K = 50), each of which has a bandwidth of 180 kHz (i.e., W
= 180 kHz). A subchannel consists of 12 subcarriers, and the

subcarrier spacing is 15 kHz. The slot duration, TS , is 0.5 ms.

In a slot, there are 7 OFDM symbols. Therefore, the OFDM

symbol rate is 14 kHz, and we have R = 168 kHz.

The cells are deployed in a 4-by-4 hexagonal grid topology

as depicted in Fig. 2. The inter-BS distance is 1.5 km. The

MSs are uniformly distributed over the entire area. The PUs

are also uniformly located, and the distance between a PU-Tx

and the corresponding PU-Rx is less than 30 m (i.e., θPU
max =

30 m). The path-loss in dB (i.e., 10 log10 ρ(d)) is given by the

formula, 128.1 + 37.6 log10 d, where d is in kilometer. The

standard deviation of shadow fading, σψ , is 8 dB. The mean

of multi-path fading, µω , is 1. The noise spectral density is

−174 dBm/Hz. The maximum total transmission power of a

BS, pBS
max, is set to 40 W. The transmission power of a PU-

Tx is 200 mW. A PU uses a subchannel that is randomly

selected out of 50 subchannels. Unless noted otherwise, the

parameter in the utility function, ζ, is set to one. The limit on

the interference to a PU-Rx, IPU
lim , is −115 dB, unless noted

otherwise. The limit on the interference violation probability,

ǫ, is 0.01. The parameter in the modified greedy algorithm,

∆, is set to two.

In Fig. 6, we show the convergence of the total transmission

powers of BSs and the average data rates of MSs over the

iterations of the subgradient method, when the numbers of

MSs and PUs are 80 and 200, respectively. For clarity of

presentation, we plot the total transmission powers of two

BSs and the average data rates of two MSs only. We observe

that the total transmission powers of the BSs converge to the

maximum total transmission power, 40 W. The average data

rates of MSs also converge and it takes about 250 iterations for

the network to converge to a stable state from the algorithm

initialization.
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Fig. 6. Convergence of the total transmission powers of BSs and the average
data rates of MSs over iterations.
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Fig. 8. Variation in average interference violation probability of PUs with
the number of PUs for the proposed scheme and the fixed scheme.

In Figs. 7-8, we compare the proposed scheme with the

perfect estimation scheme and the fixed subchannel allocation

scheme. While the proposed scheme makes a conservative

estimation of the distance to the nearest PU-Rx, we assume

that the perfect estimation scheme knows the true distance to

the nearest PU-Rx. The perfect estimation scheme calculates

the transmission power limit based on this true distance. Ex-

cept for this perfect distance estimation, the perfect estimation

scheme has the same transmission power and subchannel

allocation mechanism as the proposed scheme. Though the

perfect estimation scheme is practically impossible to realize,

it can provide an upper bound to the proposed scheme,

showing how good the distance estimation of the proposed

scheme is.

The fixed subchannel allocation scheme assigns the sub-

channels to cells with FRF of three in a fixed manner. In

our simulation, we divide 50 subchannels into three subchan-

nel groups. Subchannel group 1 includes subchannel 1 to

17, subchannel group 2 includes subchannel 18 to 34, and

subchannel group 3 includes subchannel 35 to 50. Each cell

statically uses one of these subchannel groups in a way that

the same subchannel group is not assigned to nearby cells.

Except that the subchannel allocation is predetermined, the

fixed subchannel allocation scheme adopts the same resource

allocation mechanism as that of the proposed scheme. That

is, the fixed subchannel allocation scheme finds the optimal

solution of the optimization problem (13) under the condition

that sk,m’s for all k and m are fixed to the values correspond-

ing to the predetermined subchannel allocation. This makes

the optimization problem (13) a transmission power allocation

problem that can be solved by the algorithm depicted in Fig. 3

without the subchannel allocation block. The fixed subchannel

allocation scheme has all the capabilities that the proposed

scheme has except for the adaptive subchannel allocation,

which include transmission power allocation, opportunistic

scheduling, fairness control, and PU protection.

Fig. 7 plots the total throughput of MSs as a function of

the number of PUs. It can be seen that the proposed scheme

offers about 20% to 50% increase in the throughput compared

to the fixed scheme. This performance gain over the fixed

scheme comes solely from the adaptive subchannel allocation

capability of the proposed scheme. As the number of PUs

increases, the throughputs of both the schemes decrease since

the transmission power limits tend to become lower. When

the number of PUs is 600, the proposed scheme enhances the

throughput by up to 50% owing to the adaptive subchannel

allocation algorithm, that can assign the subchannels with high

transmission power limits to cells even when PU population

is very high. Compared to the perfect estimation scheme,

the proposed scheme has relatively lower throughput since it

conservatively estimates the distance to the nearest PU-Rx,

which results in setting the transmission power limits to lower

values than needed.

In Fig. 8, we present the average interference violation

probability of PUs as a function of the number of PUs. Note

that, even after the transmission power is decided by the

proposed scheme, the interference violation probability of a

PU can be nonzero since small-scale channel fading from BSs
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to the PU can cause the interference to the PU to vary over

time. This figure shows that the throughput enhancement of

the proposed scheme over the fixed scheme is not at the cost

of increased interference to PUs. With the proposed scheme,

the interference violation probability is maintained below the

target limit of 0.01. This means that the total interference

to PUs is well restricted by the transmission power limits.

However, the proposed scheme is overly protective of the

PU due to conservative distance estimation, especially when

the number of PUs is high, whereas the perfect estimation

scheme keeps the interference violation probability around

0.01 regardless of the number of PUs.

Fig. 9 shows the tradeoff between the total throughput of

MSs and the limit on the interference to a PU-Rx, IPU
lim . The

number of MSs is 80. In all simulation trials, the interference

violation probabilities are maintained under 0.01. This figure

shows that the limit on the interference to PUs can be lowered

at the expense of the throughput of MSs. We can also see

that the proposed scheme significantly outperforms the fixed

scheme in terms of the throughput for the same interference

to PUs.

In Fig. 10, we present the average throughput and the 10

percentile throughput as function of ζ. Recall that ζ, which is

the parameter in the utility function, controls fairness among

MSs. The 10 percentile throughput means that only 10% of the

MSs have throughput lower than this throughput. Thus, the 10

percentile throughput is able to indicate the degree of fairness.

For the simulation, the numbers of MSs and PUs are set to 80

and 400, respectively. When ζ = 0, which is the case that the

optimization target is the total throughput, the 10 percentile

throughput of the proposed scheme is lower than that of the

fixed scheme. However, if ζ is set to a value higher than 0.4,

the proposed scheme guarantees more fairness than the fixed

scheme, while still having higher average throughput. This

means that the proposed scheme does not sacrifice fairness

to enhance the system performance, as long as ζ is set to a

proper value.

VI. CONCLUSION

We have addressed the resource allocation problem for inter-

cell interference coordination in OFDMA cellular networks

with the CR functionality. To solve this problem, we have

proposed a subchannel and transmission power allocation

scheme that adaptively assigns the radio resources considering

the interference caused to the PUs. We have first formulated

an optimization problem, decomposed it into multiple sub-

problems, and then presented the algorithms to solve these

subproblems. The simulation results have shown the conver-

gence of the proposed scheme. Also, it achieves considerably

higher throughput than the fixed scheme does. The complexity

of the scheme has been also analyzed.
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