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Abstract

In climate change research, future scenarios of greenhouse gas and air pollutant emissions

generated by integrated assessment models (IAMs) are used in climate models (CMs) and

earth systemmodels to analyze future interactions and feedback between human activities

and climate. However, the spatial resolutions of IAMs and CMs differ. IAMs usually disag-

gregate the world into 10–30 aggregated regions, whereas CMs require a grid-based spatial

resolution. Therefore, downscaling emissions data from IAMs into a finer scale is necessary

to input the emissions into CMs. In this study, we examined whether differences in down-

scaling methods significantly affect climate variables such as temperature and precipitation.

We tested two downscaling methods using the same regionally aggregated sulfur emissions

scenario obtained from the Asian-Pacific Integrated Model/Computable General Equilibrium

(AIM/CGE) model. The downscaled emissions were fed into the Model for Interdisciplin-

ary Research on Climate (MIROC). One of the methods assumed a strong convergence

of national emissions intensity (e.g., emissions per gross domestic product), while the

other was based on inertia (i.e., the base-year remained unchanged). The emissions

intensities in the downscaled spatial emissions generated from the two methods markedly

differed, whereas the emissions densities (emissions per area) were similar. We investi-

gated whether the climate change projections of temperature and precipitation would sig-

nificantly differ between the two methods by applying a field significance test, and found

little evidence of a significant difference between the two methods. Moreover, there was

no clear evidence of a difference between the climate simulations based on these two

downscaling methods.
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Introduction

Climate change studies can be categorized into three main communities. First, climate

models (CMs) can be used to simulate climate variables using emission data of greenhouse

gases (GHGs) and air pollutants (APs). Second, the impact, adaptation, and vulnerability

(IAV) community assesses climate impacts using future climate information and socioeco-

nomic conditions. Third, the integrated assessment model (IAM) community deals with

future emissions of GHGs and APs and climate mitigation analyses. Emissions data are nec-

essary for CM projections, and IAMs are used to generate future emissions scenarios that

are integrated into CMs. Examples of such scenarios can be found in the Special Report on

Emissions Scenarios (SRES) Nakicenovic and Swart [1] and Representative Concentration

Pathways (RCPs) [2]. These scenarios are ultimately used in climate model comparison

projects such as the Coupled Model Intercomparison Project phase 3 and phase 5 (CMIP3,

CMIP5: http://cmip-pcmdi.llnl.gov/cmip5/).

In CM calculations for future scenario analyses, emissions data from IAMs must be disaggre-

gated into a finer scale, or downscaled, for use in CMs. IAMs usually classify the world into 10–

30 aggregated regions and simulate energy, land use, and relevant emissions. Regional aggrega-

tion provides sufficient detail to capture the characteristics of different parts of the world while

avoiding unnecessary complexity. Well-known examples include the Asia Pacific Integrated

Model (AIM) [3], Global Change Assessment Model (GCAM) [4], Integrated Model to Assess

the Greenhouse Effect (IMAGE) [5], Model for Energy Supply Strategy Alternatives and their

General Environmental Impact (MESSAGE) [6], and Regionalized Model of Investments and

Technological Development (ReMIND) [7]. However, other research communities, such as the

CM and IAV communities, use grid-based spatial resolutions for emissions.

Downscaling methods have been comprehensively reviewed by van Vuuren et al. [8], who

classified downscaling methods into four categories: algorithmic downscaling, methods of inter-

mediate complexity, fully elaborated models at relatively low levels of aggregation, and fully cou-

pled models at national or grid scales. Downscaling is applicable to various indicators, but few

studies have concerned global emissions. The global emissions studies of Hoehne and Ullrich [9]

and van Vuuren et al. [10] used the algorithmic method. This method can be further classified

into proportional and convergence downscaling methods, which have been applied by Hoehne

and Ullrich [9] and van Vuuren et al. [10], respectively. The former consists of simple propor-

tional downscaling. Meanwhile, the latter consists of allocating population first, and then allocat-

ing gross domestic product (GDP) and emissions. Then, the GDP per capita and emissions

intensity (i.e., emissions per GDP) for each country are assumed to converge to values that corre-

spond to regional aggregates. Finally, country-level indicators are downscaled to each grid.

Recently, the interaction between IAMs and CMs has received great attention, and several

studies have attempted to couple IAMs and CMs [11–15]. van Vuuren et al. [16] summarized

and classified possible interactions between these types of models. They reviewed relevant

research activities and suggested approaches for each research area. The need for such activi-

ties will become more urgent after the Shared Socioeconomic Pathways (SSPs) are developed

as the next generation of SRES socioeconomic scenarios, because this will allow the climate

study communities to interact more dynamically, as discussed by Ebi et al. [17] and van Vuu-

ren et al. [18]. This research trend should not be limited to the IAM and CM communities, but

should also involve the IAV community, as well as air pollution and health studies. Downscal-

ing is a key facet of this broad-scale research activity. However, one question that arises is how

downscaling methods affect projected climate variables, such as temperature and precipitation.

Answering this question would provide a better understanding of the relationship between

IAMs and CMs, and would be valuable to the IAV community.
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Motivated by this background, we had three objectives: document the downscaling method

adopted in the AIMmodeling framework, analyze the characteristics of the downscaled data for

future scenarios, and input the downscaled data into the Model for Interdisciplinary Research

on Climate (MIROC) to project climate variables with a focus on statistical significance. In the

downscaling process, we assumed two extreme cases that sufficiently differentiated the downscal-

ing patterns, thereby enabling the investigation into the effects of the downscaling method on cli-

mate projections. We used a downscaling method similar to that described by van Vuuren et al.

[10] due to its simplicity, clear description, and suitability for long-term scenario assessments.

Materials and Methods

General Description

The overall framework of this study (i.e., the model input and output) consisted of three steps

(Fig 1). First, AIM/computable general equilibrium (CGE) was used to project emissions of

GHGs, and APs were aggregated into 17 regions. Second, AIM/downscaling (DS) was used to

downscale the emissions into a 0.5˚ spatial resolution. Third, MIROC was used to calculate the

climate variables using the gridded emissions. We analyzed the results obtained from the AIM/

DS andMIROC using two different factors (convergence and inertia) to downscale the emis-

sions. The use of these two factors is explained in more detail in the discussion of the AIM/DS

algorithm. We used sulfur emissions to directly compare the different implications of these two

methods, as sulfur has a relatively large effect on climate compared to other APs. We differenti-

ated the spatial allocation of sulfur emissions, and used the same information on spatial emissions

for the other APs. Because AIM/CGE [19–23] andMIROC [24–26] have already been developed

and had many other applications in which documentation is available on the model characteris-

tics. Therefore, we focused predominantly on the AIM/DS methodology and its application.

We analyzed the results from four perspectives. First, we examined the downscaled gridded

emissions maps and compared the results for 2005 and 2100 obtained with the two methods.

Second, we aggregated the downscaled emission information into national emissions and

intensities, and examined the differences between the two methods to explain how the emis-

sions intensity convergence assumption affected the emissions density. Third, we collected

grid-based sulfur emission data and assessed the variability and distribution of sulfur emis-

sions. These analyses were performed for each AIM/CGE aggregated region. We calculated the

standard deviation (SD) and interquartile range (IQR; i.e., the difference between the upper

and lower quartiles) for the gridded information as metrics of the variability of the predictions.

Fourth, we applied t-tests and field significance tests to the climate model outputs to identify

significant differences in the temperature and precipitation predictions.

AIM/CGE

We used an AIM/CGE model for this study, which is a recursive-type, dynamic, general equi-

librium model that covers all regions of the world. Details of the model structure and mathe-

matical formulas are provided by Fujimori et al. [27]. The main inputs were population, GDP,

food preferences, and assumptions of energy technology and air pollution controls. The model

provided energy consumption, agricultural and land use indicators, and emissions of GHGs

and APs. AIM/CGE considered carbon dioxide, methane, nitrous oxide, and fluorine gas to be

GHGs, while black carbon, carbon monoxide, ammonia, non-methane volatile organic com-

pounds, mono-nitrogen oxides (NOx), organic carbon, and sulfur oxides (SOx) were treated as

APs. The regional, geographical, and industrial classifications are shown in Table 1, Fig A, and

Table A in S1 File, respectively.
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Fig 1. Overall framework (model input and output).

doi:10.1371/journal.pone.0169733.g001

Table 1. Regional classifications in the AIM/CGE.

Code Region Code Region

JPN Japan TUR Turkey

CHN China CAN Canada

IND India USA United States

XSE Southeast Asia BRA Brazil

XSA Rest of Asia XLM Rest of South America

XOC Oceania XME Middle East

XE25 EU25 XNF North Africa

XER Rest of Europe XAF Rest of Africa

CIS Former Soviet Union

doi:10.1371/journal.pone.0169733.t001
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With respect to assumptions of the future, population and GDP were based on the Shared

Socio-Economic Pathway 2 (SSP2) [28]. Among the SSPs, SSP2 is characterized as a middle-

of-the-road scenario. In addition, assumptions related to energy technology, food, and land

were based on the SSP2 [29, 30]. However, the original SSP2 sulfur emissions in the latter half

of the 21st century are low, owing to the assumption of continuous implementation of air pol-

lution legislation [29, 30], and results in minimal sulfur effects on climate. Because we aimed

to explore the effects of downscaling methods on sulfur emissions and obtain meaningful

insights on the effects of downscaling on climate, we changed the sulfur emissions scenario

from the original SSP2. Instead of large emissions throughout the 21st century, we simply and

arbitrarily assumed an annual 1% decrease in emissions coefficients. The projected sulfur

emissions by region are shown in Fig 2.

AIM/DS

The AIM/DS algorithm. AIM/DS is a tool used to downscale regionally aggregated emis-

sions onto a grid-based map with a resolution of 0.5˚. The algorithm is differentiated by sectors,

Fig 2. Global sulfur emissions by (a) region and (b) sector. The regional codes are defined in.

doi:10.1371/journal.pone.0169733.g002
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and the sources of emissions are assigned to one of three groups (Table 2). In group 1, GDP or

population are the drivers of the emissions. This algorithm is adopted mainly for energy-related

emissions, which we assumed to have a relationship with GDP or population. Group 2 is down-

scaled in proportion to the total regional emissions. The base year map information is scaled up

or down according to the total regional emissions. The base year represents the AIM/CGE sim-

ulation starting year (i.e., 2005). Therefore, the spatial distribution pattern for future scenarios

is the same as that of the base year. Group 3 is downscaled in proportion to total global emis-

sions with the base year spatial map. The basic logic in the case of group 3 is the same as that of

group 2, but the logic is applied to cross-border sectors. It should be noted that land use-related

emissions were classified as group 2 in this study, and the emissions of this sector would ideally

consider changes in land use. However, because energy-related sectors are the main sulfur emit-

ters, we used proportional downscaling. In future studies, we will likely follow an approach that

includes information on changes in land use.

Here, we explain the methodology of group 1 (Eqs 1–3), which is related to energy, solvent,

and waste sector emissions, because the methods for group 2 and 3 are simple. We considered

two factors, convergence and inertia. The basic logic was based on van Vuuren et al. [10], who

assumed that the intensity of emissions converged among countries that belonged to the same

aggregated region. Inertia can be interpreted as the level of technology, level of legislation, or

sector structures that exist in the base year. Eq (1) represents these two factors.

EMGi;t ¼
P

r2RI at � EIr;t � DVi;t þ ð1� atÞ � EMGi;t�1
ð1Þ

where EMGi,t is emissions in grid i and year t; EIr,t is the emissions intensity in country r and

year t; and DVr,t is the driver in country r and year t (e.g., population and GDP). The factors α
and (1- α) are the weighting coefficients between the convergence and inertia factors; α ranges

from 0 to 1. If the factor is thought to be stronger than the inertia factor, the weight should be

close to 1. A strong convergence factor indicates that the emissions intensity (e.g., emissions

per GDP) of each grid cell converges to a certain value belonging to a region (e.g., the emis-

sions intensity of a cell that belongs to Indonesia converges to the average of Southeast Asia).

Conversely, a strong inertia factor indicates that the heterogeneity in the base year’s emissions

intensity strongly remains (e.g., the emissions intensity of a cell that belongs to Indonesia

remains the same as the base year intensity difference from the average of Southeast Asia). α is

used to differentiate between the two methods. RI is a mapping from a set of country r to grid

i.DVr,t is an exogenous parameter, and EMGi,t-1 is the emissions in the previous year.

Table 2. Downscaling algorithm emission source groups andweight used.

Sectors Group Weight

Energy 1 GDP

Industry 1 GDP

Inland transport 1 GDP

Building 1 Population

Solvent 1 GDP

Waste 1 Population

Agriculture 2

Agricultural waste 2

Land use change 2

Savanna burning 2

International navigation 3

Aviation 3

doi:10.1371/journal.pone.0169733.t002
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The parameter EIr,t is the product of two terms, as shown in Eq (2). The former is the coun-

try-specific emissions intensity associated with the average emissions intensity change ratio in

the aggregated region, and the latter is the emissions intensity in the aggregated region.

EIr;t ¼ EIr;t0 �

P

ðr;ragÞ2RMEIAGrag ;t
P

ðr;ragÞ2RMEIAGrag ;t0

 !bt

�
P

ðr;ragÞ2RMEIAGrag;t
ð1�btÞ ð2Þ

where EIAGrag,t is the average emissions intensity of the aggregated region rag (AIM/CGE; 17

regions) in year t, β is a parameter that represents the convergence of each region, RM is a

mapping for the AIM/CGE-aggregated region to which the country belongs, and t0 is the base

year (2005). If β = 0, all countries that belong to an aggregated region converge to the regional

average intensity. We assumed that β was 1 in 2100 and 0 in the base year. The intermediate

periods were connected linearly.

Aggregating the emissions from each country obtained by the direct solution of Eq (1) into

the original 17 AIM/CGE regions yielded inconsistent numbers for the aggregated regional

totals. Therefore, the EMGi,t was updated by scaling using Eq (3).

EMG�
i;t ¼

P

r2RIEMr;t �
EMGi;t

P

r2RIEMGii;t

ð3Þ

where EMG
�

i,t is the updated emissions in grid i and year t, and EMr,t is the emissions in aggre-

gated region r and year t.

Tests of the two methods for determining the parameter α. As shown in Eq (1), the

weight coefficient α changes the pattern of emissions allocation. We examined two methods of

determining α, M1-CONV and M2-INER. The basic strategy differentiating these two meth-

ods followed two extreme cases, as stated in the introduction. We used van Vuuren et al. [10]

as the starting point, as no other reports on downscaling methodologies for global-scale emis-

sions were available. van Vuuren et al. [10] assumed full convergence, which was an extreme

case. The opposite extreme of this case would be strong inertia. If we could have found or cre-

ated other extreme methods, we would have adopted them. However, to the best of our knowl-

edge, these are the best available cases.

Method M1-CONV assumed that the intensity of emissions eventually converged to the

aggregated regional average. α was initially 0.0 in 2005 and increased linearly to 1.0 in 2100. In

this study, the GDP and population of each country were provided exogenously, and the

behavior of GDP per capita differed from that assumed by van Vuuren et al. [10], who

assumed that GDP per capita converged.

The M2-INER method assumed that a mixture of the convergence and inertia factors deter-

mined the intensity of emissions, and that inertia was more important than convergence. α was

assumed to be 0.1 in 2100. We selected 0.1 arbitrarily as a sufficiently small value to observe the

impact of the assumption of α. Ideally, it would be allowed to vary as a function of future socio-

economic assumptions. For example, if a scenario represented an SSP4-like world, characterized

by inequality [31], α would be low. By contrast, if a scenario represented an SSP1-like world,

characterized by equality and sustainability [31], α would be high.

Population and GDP spatial allocation

We used national-level data for populations, urbanization rates, and GDP to generate the spa-

tially gridded populations and GDPs. The base was the 2.5-arc-minute data from the Gridded

Population of the World [32]. We used 0.5-arc-minute population data to produce population

distributions within the 2.5-arc-minute grid cells as the initial values. Initial population data

Downscaling and Climate Model Experiments
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and national urban population data were used in urban areas. We set thresholds for population

density based on the initial populations in the 0.5-arc-minute data so as to match national

urban populations. We treated the 0.5-arc-minute grid cells above the threshold as urban cells

and those below the threshold as rural cells. For the 30-arc-minute grid cells, we used urban

population/area ratios as the urban index. The Greenhouse Gas Initiative database provided

by the International Institute for Applied Systems Analysis [33] was the source of these data.

We used the rank-size rule to estimate the populations of urban grid cells. It is an empirical

law used to estimate previous city populations [34], but is also applicable to future populations.

Then the GDP distributions were basically allocated based on the populations. Several geo-

graphical constraints were considered, including mountains, water bodies, and urban sprawl.

Supporting Information 2 provides additional details on the methodology.

Configurations of the atmosphere–ocean GCM experiments

We used the coupled atmosphere–ocean global climate model MIROC5.2 in this study. MIROC

5.2 is a minor upgrade of MIROC5.0 [24], and is modified as follows. The horizontal resolution

of the atmosphere component uses a T42 spectral truncation (~2.56˚). There are 40 vertical levels,

and the top of the atmosphere is located at the 3-hPa pressure level, as in MIROC5.0. The simula-

tion of solar radiation is improved inMIROC5.2 to deal with the infrared wavelength band 4–

100 μm. In addition, the Minimal Advanced Treatments of Surface Interaction and Run-off

(MATSIRO) land surface model [35], a parameterization for sub-grid scale snow cover distribu-

tion (SSNOWD) [36] and representation of wetlands, which store some snowmeltwater [37, 38],

is a new addition. MIROC5.2 uses COCO ver. 4.9 as the global ocean component [39], which

includes several upgrades compared toMIROC5.0. A tri-polar grid is introduced inMIROC5.2 in

place of the bi-polar generalized curvilinear coordinate used inMIROC5.0 [40]. The coordinate

system is composed of a spherical coordinate portion south of 63.3˚N and a bi-polar coordinate

system in the Arctic region north of 63.3˚N. The longitudinal grid spacing is 1˚ in the spherical

portion. The latitudinal grid spacing is 1˚cosθ, where θ is the latitude, while it is about 0.5˚ in the

equatorial region and the Southern Ocean. The two coordinate singularities in the bipolar portion

are placed at 63.3˚N, 60˚E in Greenland and 63.3˚N, 120˚W in Siberia. The zonal and meridional

grid spacings are about 60 km and 33 km around the central Arctic Ocean, respectively. The num-

ber of vertical levels has been increased from 49 inMIROC5.0 to 62 inMIROC5.2. The profile of

background vertical diffusivity has been changed inMIROC5.2. The empirical profile of Tsujino

et al. [41], used inMIROC5.0, is used inMIROC5.2 below a depth of 50 m. However, above 50 m,

the vertical diffusivity is set to 1.0×10−6m2 s-1 in the uppermost 29 m and gradually increases to

1.0×10−5m2 s-1 at 50 m. The turbulent mixing process in the surface mixed layer is also updated

inMIROC5.2. Areas where the surface is covered with sea ice are assumed to experience no sur-

face wave breaking, resulting in near-surface mixing. A combination of the smaller background

vertical diffusivity above 50 m and the suppression of turbulent mixing under sea ice cover better

represents surface stratification in the Arctic Ocean [42].

An online aerosol module of MIROC5.2, the Spectral Radiation-Transport Model for Aero-

sol Species (SPRINTARS) [43, 44], computes mass mixing ratios of the main tropospheric

aerosols from emissions of aerosols and the aerosol precursors sulfate, carbonaceous aerosols

(i.e., black carbon and organic matter), soil dust, and sea salt aerosols. The aerosol transport

processes include emission, advection, diffusion, chemistry, wet deposition, dry deposition,

and gravitational settling. SPRINTARS is coupled with radiation and cloud microphysics

schemes to calculate the direct, semi-direct, and first and second indirect effects of aerosols.

Because we compared the two experiments with different emissions of sulfur dioxide (SO2), a

precursor of sulfate aerosols, only sulfate aerosols are described. Sulfate aerosols are formed

Downscaling and Climate Model Experiments
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mainly by chemical reactions of SO2 and dimethyl sulfide with oxides (hydroxide, ozone, and

hydrogen peroxide), with monthly mean fields prescribed by the global chemical model, CHASER

[45]. SPRINTARS explicitly treats the chemical reactions related to sulfate aerosols and SO2 disso-

lution into water. In addition, the SO2 dissolution process is applied to in-cloud scavenging of

SO2. In the radiative calculation, the mode radii of the lognormal size distribution dependent on

the relative humidity are assumed. The hygroscopic growth of sulfate aerosol particles is applied

according to Tang andMunkelwitz [46]. The assumed volume-weighted refractive indices are

used for the internal mixtures between aerosol particles and water. External mixing is assumed for

sulfate, soil dust, and sea salt. More detailed processes on sulfate aerosols and other aerosols can

be found in Takemura et al. [44].

We performed two experiments using MIROC5.2. Each experiment was driven by one of

two SO2 emission datasets provided by the AIM/CGE. The emissions data for SO2 in the year

2100 were used in the experiments M1-CONV and M2-INER. For the other emissions data

(e.g., black carbon and organic carbon) and forcing data (e.g., solar constant and volcanic

aerosols), we applied pre-industrial conditions from 1850 in both experiments in which the

anthropogenic emissions were zero. Both experiments were integrated for 40 years, and the

last 30 years of data were analyzed to evaluate climatological differences between the M1-

CONV and M2-INER methods that arose from difference in the SO2 emissions data. It should

be noted that the distributions and radiative effects of sulfate aerosol in these experiments

might have differed from that of future projections with varying GHGs and aerosol emissions,

because background concentrations of other pollutants and changes in climate could have

affected sulfate aerosols. To test the statistical significance of the difference between these two

experiments, we used a 250-year preindustrial control simulation of MIROC5.2 (piControl).

Results

Overview of sulfur emissions

Fig B, C, D and F in S1 File show the global and regional populations, GDPs, and primary

energy supplies, the main drivers of sulfur emissions. Fig 2 shows the global sulfur emissions

computed by AIM/CGE by region and sector. Total sulfur emissions gradually increased from

112 Mt/year in 2005, peaked in roughly 2050 (158 Mt/year), and then declined to 140 Mt/year

in 2100. Because emissions were computed with driving forces (mainly energy consumption)

and emissions coefficients, the decline only occurred in the latter period. These emissions

were obviously higher than any of the RCPs shown by van Vuuren et al. [2] and slightly higher

than the maximum level in the Intergovernmental Panel on Climate Change Fifth Assessment

Report (IPCC AR5) scenarios (Riahi et al. [47]), implying that the scenario used in this study

was near the maximum possible emissions. The main reason for these high emissions was the

conservative air pollutant legislation assumption adopted in this study. A regional breakdown

showed that China was the largest emitter in 2005, but its emissions became much lower by

2100. Meanwhile, India increased its total amount and proportional share of sulfur emissions.

In addition, sulfur emissions increased in Africa. Both India and Africa were projected to

experience steady increases in income and energy consumption over time (Figs B and D in S1

File). A breakdown by sectors indicated that energy-related emissions, such as emissions from

the industrial and energy sectors, accounted for most of the total sulfur emissions, and this

characteristic remained throughout the 21st century. Emissions from the energy sector

decreased over time, industrial emissions remained more or less constant, and transportation-

related emissions increased. As a result, the share of emissions from the energy sector declined

from 54% in 2005 to 43% in 2100, whereas the industrial and transportation sectors
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contributions to sulfur emissions increased from 31% to 38% and from 3% to 8%, respectively,

in the same timeframe.

Spatial distribution of sulfur emissions

Fig 3 shows the spatial distribution of sulfur emissions in 2005 and 2100 projected by M1-

CONV (the 2050 maps are presented in Fig F and G in S1 File). In 2005, there were high emis-

sions from China, the east coast of the United States, and Europe. The distribution of emis-

sions differed in 2100. Emissions from southern Asia, particularly the Himalayan region (i.e.,

Bhutan and Nepal), were remarkably high in 2100. Second, high emissions were observed in

the west coast of Africa (e.g., Cote d’Ivoire) and eastern central Africa (e.g., Kenya). These

trends reflected the projected increases in income and energy consumption in Africa and

southern Asia. Third, emissions from China were projected to decline from 2005 to 2100, par-

ticularly along the east coast of China.

Fig 4 illustrates the difference between M1-CONV and M2-INER computed by AIM/DS.

The red shading indicates grid cells in which the M2-INER projections are smaller emissions

than those of M1-CONV, while the blue shading indicates the opposite. Red-shaded regions

include Nepal, western Russia, eastern United States, sub-Saharan Africa, North Africa, and

Fig 3. Spatial distribution of sulfur emissions (Kg/m2/sec) in 2005 and 2100 in M1-CONV (sector total).

doi:10.1371/journal.pone.0169733.g003
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the Middle East. Blue-shaded regions include southeastern Africa, Eastern Europe, the Korean

Peninsula, the center of North America, and South Africa. These differences reflected the

strength of the convergence effect. However, it was not straightforward to determine why the

strength of the convergence effect differed. In principle, the reason was that the density of emis-

sions (emissions per area) was initially higher in some regions than in other regions, resulting

in remarkably large differences, although the ratio of the two methods was not particularly large

for those regions. For example, in the Rest of Asia region (i.e., Bhutan and Nepal), M1-CONV

projected higher emissions than M2-INER. Fig 5 illustrates the emissions intensities for the Rest

of Asia region by country. The M1-CONVmethod did not converge because of the inclusion of

non-energy sectors, which were not constrained to converge. The emissions converged more

strongly in the latter half of the 21st century for M1-CONV than for M2-INER. The intensities

of emissions from Bhutan and Nepal were relatively low in 2005. In the M1-CONVmethod, the

proportion of emissions from these countries increased, converging toward the average of this

region, which was higher than the emissions from Bhutan and Nepal. In the M2-INER method,

the emissions from Bhutan and Nepal remained unchanged from the base year. This revealed

that these two countries did not always have a high intensity of emissions in the Rest of Asia

Fig 4. Spatial difference in sulfate emissions (10−11 kg/m2/sec) betweenM1-CONV andM2-INER.
Difference between the two methods (a) at a 0.5˚ grid resolution computed by AIM/DS and (b) using T42
spectral truncation (~2.56˚) resolution in MIROC.

doi:10.1371/journal.pone.0169733.g004
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region, and the level of the intensity did not entirely explain the spatial distribution in the maps.

Instead, emissions per unit area were the primary driver. Another example was Egypt, which

had a high emissions density in a very limited area, the northeastern part of the country, result-

ing in the dark red shading of Egypt in Fig 4. As was the case for Bhutan and Nepal, Egypt did

not always have the highest emissions intensity in North Africa, the region that included Egypt

(Fig I in S1 File). The other factor of the different geographical allocations was the difference in

GDP growth across countries within aggregated regions, which was observed in the sub-Saha-

ran region. In the GDP scenario assumption, Nigeria had much higher growth than South

Africa and higher emissions were formed in Nigeria (Fig J in S1 File).

Fig 4 illustrates the difference between the two methods in the T42 spectral truncation

(~2.56˚) resolution used in MIROC. Geographical features of the differences in emissions

between M1-CONV and M2-INER in the original horizontal resolution were observed in the

emissions differences in the MIROC5.2 resolution. Therefore, the geographical features of the

emissions differences in the original horizontal resolution were appropriately implemented in

the emissions data used in the MIROC5.2 experiments. In addition, by comparing 20-year

averages of the mass column loading of sulfate aerosol in M1-CONV and M2-INER, signifi-

cant differences in the mass column loading of sulfate aerosol were widely observed (Fig H in

S1 File).

Frequency distribution of emissions density and intensity

The frequency of distribution of emissions density and intensity can be investigated to better

understand how spatial downscaling works. Fig 6 illustrates the frequency distribution of grids

as a function of the emissions density (per area) and emissions intensity (per GDP) generated

by the M1-CONV and M2-INER methods for the base year and 2100. It should be noted that

the scale for the abscissa is logarithmic, and the ranges differ between regions. As the emissions

intensity converged, the spatial allocation of emissions approached that of the GDP, and there

was a large change in the emissions density distribution. The distributions for 2100 and 2005

simulated with M2-INER were similar. However, the M1-CONV distributions did not fully

converge. There are two possible explanations for this behavior. First, the GDP density did not

Fig 5. Emissions intensities (emissions per GDP) for countries in the Rest of Asia region based onM1-CONV andM2-INER.

doi:10.1371/journal.pone.0169733.g005
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change substantially, and the emissions density could eventually become similar to the GDP

density. Second, the scale of the abscissa is logarithmic, and the changes are difficult to discern.

Meanwhile, similar figures made using emissions intensity based on emissions per GDP

showed no apparent differences. The emissions intensities based on M1-CONV converged

strongly, whereas those based on M2-INER did not.

Next, we analyzed the distribution changes based on statistical indicators using the SD and

IQR of both emissions density (Table 3) and intensity (Table 4) in the energy sector, which

was the sector that accounted for the greatest share of sulfur emissions. As already noted, the

emissions density differed little between 2005 and 2100 (Table 3), and the difference between

the emissions density projected by the M1-CONV and M2-INER methods was not very obvi-

ous. By contrast, the statistics relevant to emissions intensity (Table 4) differed drastically

Fig 6. Frequency distribution of emissions density and intensity for the sector total. The emissions density
represents emissions per area and the emissions intensity is emissions per GDP. The regional codes are defined
in Table 1.

doi:10.1371/journal.pone.0169733.g006
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between M1-CONV and M2-INER. In the M1-CONV projection, the emissions intensity con-

verged to 0 in 2100, which was not observed in the M2-INER projection, although the emis-

sions intensities calculated in M2-INER decreased for most countries.

Table 3. Statistics for emissions density (kg SO2/m
2). SD, standard deviation; IQR, interquartile range. The regional codes are defined in Table 1.

SD IQR

2005 2100 2005 2100

M1-CONV M2-INER M1-CONV M2-INER

BRA 1.77 1.98 1.97 2.28 2.97 2.90

CAN 4.47 4.39 4.47 6.38 6.39 6.38

CHN 2.69 2.76 2.74 4.05 4.06 4.07

CIS 2.95 2.84 2.87 4.34 3.70 3.93

IND 1.94 1.91 1.93 1.48 1.59 1.62

JPN 2.91 3.15 2.97 3.80 4.08 3.90

TUR 2.36 1.12 1.25 3.07 1.58 1.92

USA 3.89 3.73 3.75 5.49 6.02 5.80

XAF 2.14 2.33 2.24 2.50 2.88 2.78

XE25 2.55 2.63 2.48 3.14 3.39 3.05

XER 2.30 2.68 2.42 2.55 3.79 3.16

XLM 3.11 3.61 3.18 3.89 5.51 4.56

XME 1.90 2.20 1.96 1.93 3.06 2.41

XNF 2.65 2.50 2.54 3.91 2.79 3.73

XOC 2.31 2.62 2.41 2.94 3.10 3.00

XSA 2.74 3.02 2.69 3.32 4.42 3.51

XSE 2.61 2.59 2.57 3.85 3.88 3.90

doi:10.1371/journal.pone.0169733.t003

Table 4. Statistics for emissions intensity (kg SO2/US$GDP). SD, standard deviation; IQR, interquartile range. The regional codes are defined in Table 1.

SD IQR

2005 2100 2005 2100

M1-CONV M2-INER M1-CONV M2-INER

BRA 1.26 0.00 0.60 0.21 0.00 0.08

CAN 1.03 0.00 0.79 0.00 0.00 0.00

CHN 0.61 0.00 0.48 0.01 0.00 0.01

CIS 1.02 0.00 0.53 0.00 0.00 0.00

IND 0.82 0.00 0.56 0.07 0.00 0.14

JPN 0.50 0.00 0.55 0.02 0.00 0.35

TUR 2.27 0.00 0.95 2.60 0.00 0.71

USA 1.68 0.00 1.18 0.24 0.00 0.21

XAF 1.08 0.00 0.66 0.81 0.00 0.36

XE25 1.13 0.00 0.84 1.68 0.00 0.95

XER 1.34 0.00 0.60 0.37 0.00 0.91

XLM 1.60 0.00 1.22 1.19 0.00 1.65

XME 1.24 0.00 1.12 0.91 0.00 0.86

XNF 1.59 0.00 1.37 2.01 0.00 1.37

XOC 0.73 0.00 0.61 0.00 0.00 0.00

XSA 1.67 0.00 1.04 2.60 0.00 1.21

XSE 1.08 0.00 0.71 0.10 0.00 0.29

doi:10.1371/journal.pone.0169733.t004
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Climate variables

The globally averaged 30-year mean temperature difference in the climate simulation between

the M1-CONV and M2-INER methods (-0.0076 ± 0.053˚C) was not significant. The confi-

dence interval was estimated with a t-test at the 95% significance level. We assumed a degree

of freedom of 18, which was estimated by considering the persistence in a first-order autore-

gression of global annual mean temperature time series of the piControl [48]. The spatial dis-

tributions of the differences in the annual mean temperature and precipitation between the

two methods are shown in Fig 7 (seasonal differences are shown in Figs K and L in S1 File).

The colored areas indicate differences that are statistically significant at the 95% level in t-tests

with a degree of freedom of 58 (assuming 1 per year). Although there were local differences in

the M1-CONV and M2-INER temperatures in 2100, the differences were small in most cases,

and temperature differences significantly differed from 0 only in 9.0% of the total area. How-

ever, these significant differences may not represent clear evidence of sensitivity to the emis-

sion data, because 5% of the grid values are expected to be significant at the 95% significant

levels by chance if the grids are independent of one another. Furthermore, in climate systems,

considerable spatial correlations of the internal natural variability can lead to more or less than

5% of the total area with significant differences. To evaluate the possibility that these propor-

tions of significant cases resulted from the internal natural variability alone, we applied a field

significance test [26, 49, 50] using the outputs of the piControl run. We computed the differ-

ences between two non-overlapped 30-year period averages of the 250-year piControl, and

estimated the area fractions of grids with significant differences. We repeated these processes

for all 28 combinations of two non-overlapped 30-year periods, and found that 96% (27/28) of

all combinations had area fractions of significant difference larger than 9.0% when M1-CONV

was subtracted fromM2-INER. Therefore, there was no clear evidence that the two methods

caused apparent differences in the projections of temperature change.

Similarly, the differences in global mean precipitation were not significant (0.0022 ± 0.0054

mm day-1; degrees of freedom: 44). The differences were statistically significant in only 4.8% of

the areas. In the field significance test, 93% of all of the combinations of two 30-year piControl

segments (26/28) had areas with significant differences larger than 4.8%. Therefore, the 4.8%

of the global area that exhibited significant differences occurred by chance due to internal nat-

ural variability.

Discussion and Conclusions

We described two downscaling methods of the AIMmodeling framework and compared the

two methods using the same aggregated sulfur emissions. One method is based on the conver-

gence of emissions intensity, and the other is based on inertia. We performed climate model

simulations using MIROC with spatial distributions of sulfur emissions based on the two

methods, and then investigated the climate responses. The spatial allocation of emissions dif-

fered between the two methods. This difference was obvious in the case of emissions intensity,

but was much less apparent in the case of emissions density. The projected temperature and

precipitation in 9.0% and 4.8% of the total global area, respectively, differed significantly

between the two methods. However, the field significance tests showed that these could have

been produced by natural internal variability alone. Therefore, there was no clear evidence

that the differences between the two downscaling methods led to additional significant uncer-

tainties in climate projections. The conclusion derived from this analysis is that the differences

in the spatial allocations investigated in this study did not have a significant systematic impact

on global or regional climate.
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This study had several limitations. First, we only tested sulfur emissions; considering other

gases could change the climate projections. Sulfur is a major gas that affects the pattern of

Fig 7. Annual mean (a) temperature and (b) precipitation differences betweenM1-CONV and M2-INER
(M2-INER–M1-CONV). The shaded areas represent areas where the differences differed statistically based
on a t-test (p� 0.05). The percentage in the upper-right corner of the figure represents the proportion of
surface area with significant difference to the global surface area.

doi:10.1371/journal.pone.0169733.g007
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cloud generation and radiative forcing, but black carbon might also be worth considering. We

tested the downscaling method and determined the characteristics of the methods. Therefore,

we limited the study to sulfur. However, it may be valuable to include other gases in future stud-

ies. Second, although the spatial allocation of GDP and population affect the geographical alloca-

tion of emissions, we used simple methods to allocate emissions. Using different spatial drivers

could result in different emissions results, and the implications in terms of climate variability

would then differ from those in this study. The M1-CONVmethod, for which the emissions

intensity strongly converged, would be particularly sensitive to such changes. Third, this study

focused entirely on climate responses, but it would have been beneficial to use the spatial data on

emissions to study air pollution or its associated health effects. The conclusions may have been

affected by the downscaling method, and more elaborate methodologies should be considered in

future studies. Finally, we used a single climate model, MIROC, and conclusions of such analyses

may depend on the climate model used. Thus, our results should be interpreted accordingly.

Supporting Information

S1 File. .pdf file includes 1) regional and sector classification of AIM/CGE, 2) description

of population and GDP downscaling method, 3) main drivers of sulfur emissions and 4)

supporting figures of results.

(PDF)
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