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1.  INTRODUCTION

There is substantive empirical evidence showing

that the frequency of rainy days and heavy precipita-

tion events increased during the last century for

North America (Groisman et al. 2005, Pryor et al.

2009). The Intergovernmental Panel on Climate

Change (IPCC 2007) stated that the average surface

air temperature of Earth will likely increase between

1.8 and 4.0°C by the end of this century and that the

variability of precipitation will also be on the rise.

Climate change will affect the global hydrological

cycle and, consequently, assessing the changes in

future precipitation (quantity and variability) is a

 priority. Quantifying the impacts of climate change

requires a tool or an approach that is able to pro-

duce climate projections. General circulation models

(GCMs) have been developed to meet this require-

ment. However, the spatial and temporal resolutions

of current GCMs are too coarse to assess the water-

shed and site-specific impacts of climate change

(IPCC 2007). Even though daily-scale data is avail-

able for some GCMs, it is still unsuitable for medium

and small watersheds, as well as for site-specific

impact studies in the current form. For example, pre-

cipitation simulated by climate models usually has
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too many small events resulting in an overestimation

of the wet day frequency, as well as biases resulting

in an under/overestimation of the mean annual pre-

cipitation (Rivington et al. 2008). Dynamical and sta-

tistical downscaling methods have been developed

to resolve this issue. Dynamical downscaling was de -

veloped based on dynamic formulations using the

initial and time-dependent lateral boundary condi-

tions of GCMs to achieve a higher spatial resolution

by nesting regional climate models (RCM) (Caya &

Laprise 1999). The spatial resolution of RCMs are

much higher than that of GCMs. However, the reso-

lution remains too coarse for small and medium-sized

watersheds as well as for site-specific impact studies.

Moreover, RCM data is only available for limited

regions, due to the large computational cost of run-

ning the models (Solman & Nunez 1999). To over-

come this problem, statistical downscaling methods

have been developed. These involve linking the

states of some variables representing a large scale

(GCM or RCM grid scale, predictors) to the states of

some variables representing a much smaller scale

(catchment or site scale, predictands). A range of sta-

tistical downscaling methods have been developed

and can be classified into 3 categories: transfer func-

tion (Wilby et al. 1998a, 2002a), weather typing (von

Storch et al. 1993, Schoof & Pryor 2001) and weather

generator (WG)-based approaches (Wilks 1992, 1999,

Zhang 2005, Qian et al. 2005, 2010, Kilsby et al.

2007). Each category has its advantages and draw-

backs. For transfer functions and weather typing

schemes, the main drawback is that they usually lack

strong and stable correlations between predictors

and predictands, especially when using precipitation

as a predictand (Chen et al. 2012). In the case of WG

approaches, the adjustment of transition probabili-

ties, such as a wet day following a wet day (P11) and a

wet day following a dry day (P01) is still a challenge.

Transfer functions are the most widely used methods,

with vorticity, airflow indices, wind velocity and

direction, mean sea-level pressure, geopotential

heights and relative humidity as the most commonly

used predictors (Wilby et al. 1998b, Sailor & Li 1999,

Solman & Nunez 1999, Trigo & Palutikof 2001). The

challenge in selecting appropriate predictors is that

they must be realistically simulated by GCMs while

being strongly correlated to the predictand. In many

cases, several downscaling studies used more than

one of these techniques (Wilby & Wigley 1997, Schoof

et al. 2010)

Over the past decade, stochastic WGs have been

commonly used as downscaling tools for climate

change studies (Wilks 1992, 2010, Wilby et al. 2002b,

Pruski & Nearing 2002, Zhang et al. 2004, Qian et

al. 2005, 2010, Zhang 2005, Zhang & Liu 2005, Kilsby

et al. 2007). Daily stochastic WGs like WGEN (Richard -

son 1981, Richardson & Wright 1984), CLIGEN (Nicks

& Lane 1989, Nicks et al. 1995), WeaGETS (authors’

unpubl. data), and LARS-WG (Semenov & Barrow

2002) can rapidly produce climate projections at a

daily time scale that can be used to quantify the

impacts of climate change. These weather generators

are developed based on parametric and nonpara -

metric methods, but the parametric method is the

most commonly used one. Apipattanavis et al. (2007)

also presented a semi-parametric multivariate and

multisite weather generator that generates precipita-

tion states with a 3-state, first-order Markov chain

and multivariate variables with a k-nearest neighbor

bootstrap re sampler.

There are 2 main approaches for parametric adjust-

ments of WGs (Wilks 2010). The first involves a day-

by-day change to the WG parameters based on daily

variations in atmospheric circulation (Wilby et al.

2002b). The other one is the most commonly used

method and involves changes in WG parameters

based on changes of monthly statistics projected by

climate models (Qian et al. 2005, 2010, Zhang 2005,

Kilsby et al. 2007, Wilks 2010). Wilby et al. (2002b)

explored the use of synoptic-scale predictor variables

(North Atlantic oscillation and sea surface tempera-

ture) to downscale both high- and low-frequency

variability of daily precipitation at sites across Great

Britain. The results showed that conditionally sto-

chastic rainfall models displayed additive effects on

monthly rainfall statistics. However, the relationship

between precipitation parameters and indices was

very weak for most of the tested stations. Further-

more, Schoof et al. (2010) constructed regressive

models between WG parameters (precipitation para-

meters) and large scale predictors for developing

daily precipitation projections for the United States.

Again, the performance of regressive models de -

pended on the correlations between precipitation

parameters and large scale predictors. 

Other work indicates that statistical downscaling

using GCM precipitation directly as a predictor per-

formed much better than using other predictors

(Widmann et al. 2003, Zhang 2005). Wilks (1992)

originally proposed a method modifying the daily

WG parameters based on the changes of monthly

averaged statistics projected by climate models. This

method modified the unconditional probability of

daily precipitation occurrence and a dependence

parameter instead of the precipitation transition

probabilities of precipitation occurrence. For the
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downscaling of mean maximum and minimum tem-

peratures (Tmax and Tmin), changes in the mean of

observations were reflected directly in the expected

changes projected by GCMs. Temperatures were

downscaled conditioned on wet and dry days, but the

same changes were applied to the mean for wet and

dry days. Zhang (2005) also presented a method for

statistically downscaling GCM monthly outputs from

GCM grid scale to site-specific scale using GCM-

projected precipitation and temperature as predic-

tors. GCM-projected monthly precipitation was first

spatially downscaled from a grid box to a target sta-

tion using transfer functions. The spatially down-

scaled monthly precipitation was then downscaled to

daily precipitation series at the target station using

CLIGEN. For the downscaling of precipitation occur-

rence, transition probabilities were adjusted based

on spatially downscaled monthly precipitation. This

method has not been tested in different climates, and

the relationships between transition probabilities

and monthly precipitation may depend on geograph-

ical location. A spatially downscaled monthly mean

Tmax and Tmin were directly used in CLIGEN as the

adjusted parameters for the changed climate. Ad -

justed daily temperature variances for each month

were obtained by multiplying the observed daily

temperature variances by the variance ratios be -

tween spatially downscaled monthly projections and

observed monthly values.

The change factor (CF) method is a straightforward

and widely used downscaling method (Diaz-Nieto

& Wilby 2005). It establishes a baseline climatology

using long-term climate data for the target site.

The changes between present and future climates

derived from a GCM grid point close to the target

site, usually at a monthly scale, are added to (for tem-

perature) or multiplied by (for precipitation) each day

in the baseline time series. This method is computa-

tionally straightforward and easy to apply. The most

significant drawback is that the temporal sequencing

of wet and dry days and the variance of temperature

are unchanged. There is however a change in pre-

cipitation variance derived from the change of mean

precipitation.

The objective of the present study is to present a

statistical downscaling method combining the attrib-

utes of both stochastic WG and the CF methods

based on the changes of monthly statistics projected

by a regional climate model. This method is further

compared to the CF method by quantifying the hydro -

logical im pacts of climate change for a Canadian

watershed (Quebec province). The huge advantage

of the de veloped method over the CF method is that

differences in precipitation occurrence and variance

of all variables can be specifically taken into account.

In addition, a time series of any length can be gener-

ated: an advantage for the study of extremes.

2.  STUDY AREA AND DATA

2.1.  Study area

This study was conducted for the Manicouagan

5 river basin (Fig. 1) located in central Quebec,

Canada. It covers 24 610 km2 of mostly forested area.
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It has a rolling to moderately hilly topography with a

maximum elevation of 952 m above sea level (a.s.l.).

The reservoir at the basin outlet has a mean level of

350 m a.s.l. Population density is extremely low and

logging is the only industrial activity over the basin.

The basin drains into the Manicouagan 5 reservoir, a

2000 km2 annular reservoir within an ancient eroded

impact crater. The basin ends at the Daniel Johnson

dam, which is the largest buttressed multiple arch

dam in the world. The installed hydropower capacity

of the dam is 2.6 GW. The annual mean discharge

of the Manicouagan 5 River is 529 m3 s−1. Snowmelt

peak discharge usually occurs in May and averages

2200 m3 s−1.

2.2.  Data

The observed data consisted of daily precipitation,

Tmax and Tmin interpolated on a 10 km grid by the

National Land and Water Information Service using

7514 weather stations over Canada (www.agr. gc. ca/

nlwis-snite). The interpolation is performed using a

thin plate smoothing spline surface fitting method

(Hutchinson et al. 2009). All grid daily precipitation,

Tmax and Tmin are averaged over the river basin. Dis-

charge data at the basin outlet was obtained from

mass balance calculations at the dam and provided

by Hydro-Québec. Climate data consisted of RCM-

projected daily precipitation, Tmax and Tmin. Data

from the Canadian RCM (CRCM v.4.2.0; Music &

Caya 2007, 2009) with a grid resolution of 45 km dri-

ven by the Canadian GCM (CGCM3 v3.1; DAI

CGCM3 Predictors 2008) under the IPCC A2 gas

emission scenario. The CRCM grid data are also

averaged over the river basin to match the observed

data. This work covers the 1970−1999 period (refer-

ence period) for calibration and the 2011−2099

period in climate change mode. For the 2011−2099

climate data, 30-yr moving averages were calcu-

lated, which resulted in sixty 30 yr horizons centered

over 2025 to 2084.

3.  METHODOLOGY

A downscaling method based on WG is presented

below. Precipitation, Tmax and Tmin were downscaled

from the CRCM scale to the site-specific scale (basin

average of 10 km grid) over the 2025−2084 period

(centered by 30 yr moving averages from 2011 to

2099). The precipitation threshold used to discrimi-

nate between wet and dry days is 0.5 mm. If daily

precipitation is ≥0.5 mm, this given day is defined as

being wet. The choice of a different threshold has

been investigated and shown not to influence the

results. The results were compared against the

widely-used CF method in downscaling precipita-

tion, Tmax and Tmin, and in simulating hydrological im -

pacts using a lumped conceptual hydrological model.

3.1.  Downscaling of weather generator parameters

The WG used in this research is CLIGEN (Nicks &

Lane 1989). In this study, only the functions to gener-

ate precipitation (occurrence and quantity), Tmax and

Tmin were used. For convenience, CLIGEN was cho-

sen in spite of generating precipitation and tem -

perature independently, and the mean and standard

deviation of each variable are explicitly used in its

probability distribution function, so that the incorpo-

ration of GCM projected monthly changes in statisti-

cal moments is straightforward (Zhang 2005, Chen et

al. 2009). However, other WGs could also have been

used. 

In CLIGEN, a first-order two-state Markov chain is

used to generate the occurrence of wet or dry days.

The probability of precipitation on a given day is

based on the wet or dry status of the previous day,

which can be defined in terms of the 2 transition

probabilities: P01 and P11. For a predicted wet day, a

3-parameter skewed normal Pearson III distribution

was used to generate daily precipitation quantity for

each month (Nicks & Lane 1989). A normal distribu-

tion was used to simulate Tmax and Tmin. The temper-

ature with the smaller standard deviation between

Tmax and Tmin is computed first, followed by the other

temperature. This preserves the cross-correlation be -

tween Tmax and Tmin (Chen et al. 2008). To capture

their autocorrelation, 2 random numbers are used to

obtain the standard normal deviate; the second num-

ber for one day is reused as the first number for the

next day (Zhang 2004). The mean and standard devi-

ation of Tmax and Tmin were calculated monthly and

smoothed with a Fourier interpolation scheme to the

daily scale.

A total of 9 monthly parameters are needed by CLI-

GEN to generate precipitation, Tmax and Tmin. These

include P01 and P11 for generating precipitation oc -

currence, the mean, standard deviation and skew-

ness for generating daily precipitation quantity and

the means and standard deviations for generating

Tmax and Tmin. 

A method is presented to modify the above men-

tioned parameters based on the changes of precipi-
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tation, Tmax and Tmin projected by the CRCM. This

method could also be used with GCM outputs.

Based on the work of Wilks (1992), the daily WG

parameters were modified according to the changes

of monthly averaged statistics projected by climate

models. For downscaling of precipitation occur-

rence, Wilks (1992) modified the unconditional

probability of daily precipitation occurrence (π) and

a dependence parameter (r) rather than acting

directly on the transition probabilities of precipita-

tion occurrence (P11 and P01). However, the changes

of P11 and P01 are more  gradual and less noisy than

those of π and r for both CGCM and CRCM pro-

jected daily precipitation (Fig. 2). The correlations

between 30-yr moving averages of CGCM3- and

CRCM-simulated seasonal P11 (and P01) and their

linear regressions are also  consistently stronger

than those between r and their  linear regressions for

all 4 seasons (Table 1). Thus, the proposed method

directly modifies the transition probabilities of pre-
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cipitation occurrence (P11 and P01). The parameters

of WG were modified to take into account variations

projected by a climate model (GCM or RCM). This

variation is based on a delta change approach. For

example, take the probability of occurrence of P01, a

common parameter of WG using a two-state Markov

chain for precipitation occurrence. Since the spatial

resolution of GCM or RCM is of the order of 100s or

10s of km, P01 from GCM or RCM data will not

match the P01 measured at a station. Thus, similarly

to the CF method, the difference between P01 pro-

jected by GCM (or RCM) in present and future cli-

mate will be applied to the observed data. The same

method was also applied to the probability of occur-

rence of P11 and the monthly mean precipitation

(MMP). The skewness of daily precipitation distrib-

ution does not change gradually, but displays large

fluctuations, especially for the winter precipitation

(Fig. 2). This is not surprising since the skewness is

largely influenced by extreme precipitations that

are not well represented by climate models. Thus,

a simple modification of the changes in skewness

projected by climate models between future and

reference periods may result in unacceptable biases.

To simplify the process, the skewness of the precipi-

tation distribution was presumed to be un changed

in the future for this study. Accordingly, 8 parame-

ters required modification for every climate change

scenario. 

Details of parameter modifications follow the

 following steps: (1) Similarly to the CF method,

the adjusted monthly mean Tmax and Tmin for the

future horizon (
–
Tadj,fut) were estimated as (Chen et al.

2011):

–
Tadj,fut = 

–
Tobs + (

–
TCM,fut –

–
TCM,ref) (1)

The adjusted values were obtained by adding the

differences predicted by a GCM or an RCM be -

tween the future (fut) horizon and the reference (ref)

period (
–
TCM,fut –

–
TCM,ref) to the observed mean monthly

observed temperatures (
–
Tobs).

(2) Monthly means and variances of precipitation,

monthly variances of Tmax and Tmin and the transition

probabilities of precipitation occurrence P01 and P11

for the future horizon were adjusted by:

Xadj,fut = Xobs × (XCM,fut /XCM,ref) (2)

where X represents the variable to be adjusted. The

subscripts were the same as above.

(3) The P01 and P11 values are expressed in terms of

r for further adjustments, as:

(3)

r = P11 – P01 (4)

(4) The adjusted mean daily precipitation per wet

day (µd) was estimated (as Wilks 1992, 1999, Zhang

2005):

(5)

where Nd is the number of days in a month, Ndπ is the

average number of wet days in a month, and µm is the

step (2)-adjusted monthly precipitation.

(5) The adjusted daily variance (σ2
d) was approxi-

mated using Eq. (6), based on the step (2)-adjusted

variance of the monthly precipitation (σ2
m) (Wilks

1992, 1999).

(6)

All adjusted precipitation, Tmax and Tmin parameter

values are input into CLIGEN to generate 900 yr long

time series of daily meteorological data. Long time

series are used to obtain the true expectancy of a

WG. Short time series could result in biases due to

the random nature of the stochastic process. Each

900 yr time series is representative of a 30 yr horizon

as defined earlier. All in all, sixty 900 yr time series

(centered over 2025 to 2084) were generated. The

flow chart of WG-based downscaling is presented in

Fig. 3.
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CGCM CRCM

SMP Skewness P01 P11 π r SMP Skewness P01 P11 π r

Winter 0.83 0.08 0.89 0.80 0.94 0.45 0.7 0.53 0.62 0.43 0.67 0.002

Spring 0.97 0.48 0.92 0.81 0.94 0.04 0.96 0.03 0.87 0.50 0.88 0.340

Summer 0.73 0.33 0.61 0.46 0.37 0.10 0.62 0.05 0.76 0.59 0.03 0.770

Autumn 0.89 0.20 0.53 0.95 0.87 0.28 0.50 0.29 0.83 0.38 0.72 0.480

Table 1. Correlation coefficient (R2) of the linear regression for the Canadian Regional Climate (CRCM) and General Circula-

tion (CGCM) Models statistics, including seasonal mean precipitation (SMP), skewness of daily precipitation distribution

(Skewness), conditional (P01, P11) and unconditional (π) probability of daily precipitation occurrence and dependence para-

meters (r) for 2025−2084 
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3.2.  Change factor method

The CF method involves adjusting the observed

daily temperature (Tobs,d) by adding the difference in

monthly temperature between the future horizon and

the reference period predicted by the climate model

(GCM or RCM) (
–
TCM,fut,m –

–
TCM,ref,m) to obtain the daily

temperature at the future horizon (Tadj,fut,d) (Chen et

al. 2011):

Tadj,fut,d = Tobs,d + (
–
TCM,fut ,m –

–
TCM,ref ,m) (7)

The adjusted daily precipitation for the future hori-

zon (Padj,fut,d) was obtained by multiplying the precip-

itation ratio (
–
PCM,fut,m �

–
PCM,ref,m) by the observed daily

precipitation (Pobs,d):

Padj,fut,d = Pobs,d × (
–
PCM,fut ,m �

–
PCM,ref ,m) (8)

3.3.  Hydrological simulation

The hydrological simulation used the HASMI

hydrological model developed by Hydro-Québec,

191
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which has been used to forecast natural inflows for

over 20 yr (Fortin 2000). HSAMI is used by Hydro-

Québec for hourly and daily forecasting of natural

inflows over 84 watersheds with surface areas rang-

ing from 160 to 69 195 km2. HSAMI is a 23-para -

meter, lumped, conceptual, rainfall−runoff model.

Two parameters account for evapotranspiration, 6 for

snowmelt, 10 for vertical water movement, and 5 for

horizontal water movement. Vertical flows are simu-

lated with 4 interconnected linear reservoirs (snow

on the ground, surface water, unsaturated and satu-

rated zones). Horizontal flows are filtered through 2

hydrograms and 1 linear reservoir. Model calibration

is done automatically using the shuffled complex

evolution optimization algorithm (Duan 2003). The

model takes snow accumulation, snowmelt, soil freez-

ing/ thawing and evapotranspiration into account.

The basin-averaged minimum required daily input

data for HSAMI are Tmax, Tmin, and liquid and solid

precipitations. The liquid and solid precipitations are

partitioned based on the mean temperature. If the

mean temperature is ≥2°C, all precipitation is rain-

fall, if the mean temperature is ≤−2°C, all precipita-

tion is solid. Otherwise, precipitation is linearly parti-

tioned between snow and rainfall. Cloud cover

fraction and snow water equivalent can also be used

as inputs, if available. A natural inflow or discharge

time series is also needed for proper calibration/vali-

dation. For this study, 30 yr (1970 to 1999) of daily dis-

charge data were used for model calibration/valida-

tion. The optimal combination of parameters was

selected based on Nash−Sutcliffe criteria (Duan et al.

1994, Duan 2003). The set of parameters thus chosen

yielded Nash−Sutcliffe criteria values of 0.89 for both

the validation (20 yr) and calibration (10 yr) periods.

This high Nash−Sutcliffe criteria value is representa-

tive of the good quality of the weather inputs, ob -

served discharge values and hydrological model.

4.  RESULTS

4.1.  Validation of the weather generator and the
hydrological model

The validation of the hydrological model HSAMI

was based on the performance of the simulated

hydrographs (using the hydrology model driven by

the observed meteorological data, labeled SIM) at

the basin outlet compared to the observed hydro-

graph. The 10th, 50th and 90th percen tiles of annual

hydrographs are presented in Fig. 4. Annual hy -

drographs simulated by HSAMI using  CLIGEN-

generated data (labeled WG) using the observed

monthly statistics for the reference period are also

displayed to validate the ability of CLIGEN at gener-

ating weather data representative of its training

period. Annual hydrographs from the ob served dis-

charge (labeled OBS) are also presented for compar-

ison. The observed precipitation and temperatures

resulted in hydrographs that are very close to ob -

served ones. Additionally, precipitation and tempera-

tures obtained from the weather generator are able to

reproduce the interannual variability of streamflow.

Even though slight biases were introduced by CLI-

GEN and HSAMI, the overall fits are quite good.
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4. 2.  Climate change projections

4.2.1.  Dry and wet day spells

The CF method does not take into account the tem-

poral sequencing of dry and wet days, which is its

main drawback. The WG-based method modifies the

transition probabilities of precipitation occurrence

based on RCM-projected variations. Thus, the dry

and wet day spells change according to the differ-

ences in RCM-projected dry and wet day spells

between the future and reference periods. Fig. 5

shows the average dry and wet day spells down-

scaled by the CF and WG-based methods, respec-

tively, for 12 mo over the 2025−2084 period (30 yr

moving average from 2011 to 2099) for the Mani-

couagan 5 river basin. Changes in precipitation

occurrence are not taken into account by the CF

method. Thus, the average dry and wet day spells are

stationary over the 2025−2084 period for all months

(horizontal dashed lines in Fig. 5) and are similar to

those from the reference period. The WG-based

method displays clear trends throughout the century,

which is markedly different from the situation at the

reference period. The WG-based method suggested

shorter dry day spells for all months of the 2025−2084

period compared to those of the reference period,

indicating that wet days will become more common.

However, there is no uniform pattern for monthly

average wet day spells, which are predicted to be

longer for April and November and shorter for July

and August for the 2025−2084 period. In addition,

this pattern would be first shorter and then longer

than that of the reference period for January, March,

September, October and December throughout the

2025−2084 period. In contrast, February wet day

spells would have an opposite trend to that of the

 reference period.

4.2.2.  Mean and standard deviation of daily

precipitation

Both the CF and WG-based methods specifically

take into account the changes of monthly precipita-

tions projected by RCM; thus, they suggest similar

increases in annual and seasonal precipitations for
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Fig. 5. Mean dry and wet day spells downscaled by change factor (CF) and weather generator-based (WG) methods for each 

month of 2025−2084 for the Manicouagan 5 river basin
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the 2025−2084 period (results not shown). But, as

mentioned earlier, the dry and wet day spells are

 significantly different. Specifically, mean daily pre-

cipitation changes in the opposite direction to that of

the wet day frequency. Fig. 6 demonstrates the mean

and standard deviation of daily precipitation down-

scaled by the 2 methods for 12 mo over the 2025−

2084 period. Both downscaling methods show grad-

ual increases in mean daily precipitation for all

months in this period. However, the CF method sug-

gests more increases in mean daily precipitation than

the WG-based method. This is because the WG-

based method predicts more wet days with similar

annual and seasonal precipitations than the CF

method.

Both CF and WG-based methods suggest

changes in daily precipitation variance. The change

of variance predicted by the CF method is based

on the change of mean daily precipitation, because

the CF method does not specifically modify the

precipitation variance. However, the WG-based

method specifically takes into account the variance

of precipitation based on RCM-projected variations.

Both downscaling methods suggest general in -

creases in the standard deviations of daily precipi-

tation for all months (Fig. 6). For the CF method,

the change in standard deviation of daily precipi-

tation is consistent with the change in the mean

precipitation. The WG-based method suggests

more future variability, consistent with that pre-

dicted by the RCM.

4.2.3.  Standard deviation of daily Tmax and Tmin

The CF method does not take into account the

change of variance for Tmax and Tmin. Standard devia-

tions of Tmax and Tmin downscaled by the CF method

are constant for the 2025−2084 period, which is

exactly equal to that of the reference period as pre-

sented in Fig. 7. However, similarly to the transition

probabilities of precipitation occurrence, the WG-

based method adjusts the variances of Tmax and Tmin

based on the RCM-projected changes. Compared to

the reference period (1970−1999), the WG-based

method suggests decreases in the variability of win-

ter (December, January and February) Tmax, while it

suggests increases for all other months.
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Fig. 6. Mean and standard deviation (SD) of daily precipitation downscaled by change factor (CF) and weather generator-

based (WG) methods for each month of 2025−2084 for the Manicouagan 5 river basin
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4.3.  Hydrological impacts

4.3.1.  Annual hydrograph

Fig. 8 presents the envelope of the annual hydro-

graphs simulated with the weather variables down-

scaled by the CF and WG-based methods. Each

envelope is represented by 60 annual hydrographs

(2025−2084 period). When the time period is near

the reference period, the annual hydrograph of the

future period is close to that of the reference period.

To avoid the minor bias resulting from the hydro -

logical model when comparing the future to the ref-

erence period, the discharge at the reference period

is represented by model data and not by the ob -

served discharge. The results showed that both

downscaling methods suggest increases in winter

(Nov− Apr) discharge. Decreases in summer (Jun−

Oct) are predicted for most future horizons, espe-

cially for those downscaled by the WG-based method.

The WG-based method suggests peak discharges

higher than both those of the CF method and the

 simulated peak discharges at the reference period.

Significantly, the peak discharges increase even

more as the future advances. Peak discharges over

the 2025−2085 period are predicted to be earlier than

those at the reference period by both downscaling

methods. Lags vary from 12 d (May 12) to 19 d

(May 5) for the WG-based method and from 6 (May

18) to 22 d (May 2) for the CF method.

4.3.2.  Annual and seasonal discharges

Fig. 9 presents the 30 yr moving averages of annual

and seasonal discharges simulated by HSAMI using

weather data downscaled by the CF and WG-based

methods. Compared to the reference period dis-

charge (straight dashed line in Fig. 9), both methods

suggest increases in annual, spring and winter dis-

charges over the 2025−2084 period. The CF method

predicts decreases in summer−autumn discharge for

most horizons, whereas the change is more gradual

with the WG approach. Even though both downscal-

ing methods predict similar annual and seasonal

mean precipitations and temperatures, the annual

and seasonal discharges are different, especially for

seasonal discharge. This indicates that the annual
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Fig. 7. Daily standard deviation (SD) of Tmax and Tmin downscaled by change factor (CF) and weather generator-based (WG) 

methods for each month of 2025−2084 for the Manicouagan 5 river basin
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and seasonal discharges are not only affected by the

means of the precipitation and temperatures, but also

by their variances and precipitation occurrences. In

addition, these results reflect that the process from

climate projections to hydrologic variables is  non-

linear. Annual discharge suggested by the CF

method is slightly more than that predicted by the

WG-based method over the 2025−2085 period. The

discharges differ more at the seasonal scale than at

the annual scale. Compared to the CF method, the

WG-based method suggests larger increases in

spring (Apr−Jun) discharge, and smaller increases in

summer−autumn (Jul−Nov) and winter (Dec−Mar)

discharges.
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Fig. 8. Envelopes of 60 annual hydrographs simulated with precipitation, Tmax and Tmin values downscaled using change factor

(CF) and weather generator-based (WG) methods over the 2025−2084 period at the Manicouagan 5 river basin. The observed 

hydrograph (OBS) for 1970−1999 is displayed for comparison

Fig. 9. Annual and seasonal mean discharge simulated with precipitation, Tmax and Tmin values downscaled using change fac-

tor (CF) and weather generator-based (WG) methods for 2025−2084 at the Manicouagan 5 river basin. OBS: annual and 

seasonal mean discharge over the reference period (1970−1999), shown for comparison
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4.3.3.  Annual and seasonal low flows

Changes in monthly precipitation averages can

conceal subtle variations in dry spells that are poten-

tially significant for low flows (Diaz-Nieto & Wilby

2005). The 2 downscaling methods suggest simi -

lar changes in monthly precipitation, but different

changes in precipitation occurrence, resulting in

noticeable differences in mean low flows at the river

basin. Fig. 10 presents the 30 yr moving averages

of mean annual and seasonal low flows for the 2025−

2084 period. Both downscaling methods suggest

general increases in average annual and seasonal

low flows, but there are considerable differences in

their predictions. The CF method predicts larger

increases in mean annual low flow than the WG-

based method. These greater increases, compared to

the WG-based method, occur in spring and winter

low flows, resulting in the larger increases in annual

low flow.

Fig. 11 presents the 30 yr moving averages of the

annual and seasonal minimal low flows for the

2025−2084 and the reference periods. Similarly to the

mean low flows shown in Fig. 10, both downscaling

methods suggest increases in annual and seasonal

minimal low flows, but those predicted by WG-based

figures display more variability. The WG method has

a much longer time series (900 yr compared to 30 yr)

that is better at sampling climate variability. The CF

method predicts larger increases in minimal low

flow, especially for the more distant future period,

and larger increases in spring and winter minimal

low flows than the WG-based method. The WG-

based method is better able to capture long series of

dry days that lead to low flows. The WG-predicted

summer−autumn minimal low flows for the 2025−

2084 period are considerably larger than those for

the reference period. Both methods give similar

results, although the WG-based method predicts

low flows that are 10% smaller than those of the CF

method, on average.

5.  DISCUSSIONS AND CONCLUSIONS

A statistical downscaling method combining a sto-

chastic WG and some aspects of the CF method was

presented in this paper. The parameters of the WG

were perturbed to take into account the relative vari-

ations in the means and variances of weather vari-

ables projected by a climate model. The precipitation

and temperature parameters projected by climate

models display gradual (significantly non-stationary)

changing patterns, which form the basis for the para-

meter perturbation of the WG. This downscaling

method is relatively simple to use and negates the
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Fig. 10. Annual and seasonal mean low flow simulated with precipitation values downscaled using change factor (CF) and

weather generator-based (WG) methods, Tmax and Tmin for 2025−2084 at the Manicouagan 5 river basin. OBS: annual and 

seasonal low flow for the reference period (1970−1999; OBS)
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prerequisite of a strong relationship between local-

scale variables (predictants) and large scale climate

model variables (predictors) common to most statisti-

cal downscaling methods.

The proposed downscaling method was compared

to the CF method in downscaling precipitation, Tmax

and Tmin, and further quantifying the hydrological

impacts of climate change over the 2025−2084 period

for the Manicouagan 5 river basin. Both downscaling

methods suggest similar increases in annual and

 seasonal precipitations and temperatures for the

2025−2084 period (results not shown). This was as

expected, since both approaches are similar with

respect to their treatment of precipitation and tem-

perature means. Analysis of climate change scenar-

ios shows that monthly dry and wet spells for the

2025−2084 period predicted by the WG-based method

would be considerably different from those of the

 reference period. The CF method does not consider

any change in precipitation occurrence over the

 reference period, a clear weakness of the approach.

Compared to the reference period, the WG-based

method predicted shorter dry day spells for the

2025−2084 period, thus indicating an increasing wet

day frequency. Different dry and wet day spells and

similar seasonal precipitation result in different

mean daily precipitations between the 2 downscaling

approaches. The standard deviation of daily precipi-

tation, Tmax and Tmin differs markedly depending on

the downscaling method. This should not be a sur-

prise, since the WG-based method specifically takes

the variance change of precipitation and tempera-

tures into account, while the CF method does not. To

evaluate how those changes translated into hydro-

logical variables, weather variables derived from

both downscaling methods were fed into the lumped

semi-conceptual hydrology model HSAMI.

Both downscaling methods suggest general in -

creases in winter (Nov−Apr) discharge and decreases

in summer (Jun−Oct), the increases being larger

when downscaled by the WG-based method. The

WG-based method suggest higher peak discharges

than those predicted by the CF method and those

of the reference period. Peak discharges over the

2025−2084 period would be observed earlier than

those at the reference period according to both down -

scaling methods. The differences between the weather

variables downscaled from the 2 methods are ampli-

fied when transferred to hydrologic  variables. Even

though both downscaling methods suggest similar

increases in annual and seasonal precipitations and

temperatures, the annual and seasonal discharges

are markedly different, especially for seasonal dis-

charge. This indicates that precipitation and temper-

ature variability play an important role in the pro-

cesses leading to runoff.
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Fig. 11. Minimal annual and seasonal low flow (Q5) simulated with the change factor (CF) and weather generator-based (WG) 

downscaling methods for 2025−2084 at the Manicouagan 5 river basin. OBS: data for the reference period (1970−1999
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The comparison of the 2 downscaling methods

reveals the main weakness of the CF method: that it

keeps the precipitation occurrence and variability of

all weather variables constant. This fallibility is prob-

ably not a major obstacle with respect to spring

snowmelt, as shown in Fig 9, because spring floods

are the result of several months of snow accumula-

tion followed by rapid melting. As such, the most

important feature to have in a climate change study

is the correct total quantity of solid precipitation. The

variability of solid precipitation during the winter

months is likely a less important feature, unless vari-

ability adds the frequent mid-winter thaws that can-

not be captured by the CF method. For summer and

fall events, climatic disasters often result from one

major rainfall event, or from droughts that occur after

long periods with little to no precipitation. In such

cases, the CF method would be totally inappropriate

for climate change studies. This situation is clearly

delineated by the low flow results, where the 2

downscaling approaches display very different

trends. The proposed WG-based method takes into

account the change of precipitation occurrence and

the variance of all variables, so it should arguably

result in better climate projections for impact studies.

Time series of any length can be generated with this

method: another advantage for the study of rare

events.
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