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Abstract
The String of Beads model is a space-time model of rainfields measured by weather radar. It is here driven by two auto-regressive time series
models, one at the image scale, the other at the pixel scale,  to model the temporal correlation structure of the wet-period process. The
marginal distribution of the pixel scale intensities on a given radar-rainfall image is described by a log-normal distribution. The spatial
dependence structure of each image is defined by a power spectrum approximated by a power law function with a negative exponent. It is
demonstrated that this stochastic modelling approach is valid because the images sampled are effectively stationary above a scale of 30 km,
which is less than a quarter of the image width. By advecting a simulated sequence of images along the same cumulative advection vector as
the observed event and matching the image-scale statistics of each simulated image with those of the corresponding observed image, a
simulated sequence of plausible images is generated which mimics (has the same space-time statistics as) the observed event but differs from
it in detail. Aggregating the pixel scale intensities in each sequence over a number of time and space intervals and then comparing their
spatial and temporal statistics, demonstrates that the model captures the intermediate scale behaviour well, showing satisfactorily its ability
to downscale rainfall in space and time. The model thus has potential as an operational space-time model of rainfields.
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Introduction
The String of Beads model was introduced by Pegram and
Clothier (1999a, b and 2001). It is a stochastic model of a
masked field of rainfall intensities measured by radar with
a space resolution of 1 km over a circular area of 140 km
radius and with a time resolution of 5 minutes — the time
between radar scans. The particular weather system
modelled here to check the downscaling properties of the
model occurred during a wet January in 1996 and lasted 42
hours. This event was recorded by the S-band radar sited
20 km north-west of Bethlehem, South Africa.

Modelling rainfields in space and time has been the
endeavour of hydrologists and physicists in the last four
decades. Foufoula-Georgiou and Krajewski (1995) give a
resumé of modelling approaches until 1994. A publication
of particular interest is Bell’s (1987) approach where he
showed (among other useful things) that rainfall values
estimated by satellites obeyed a log-normal marginal
distribution. Following Crane (1990), Pegram and Clothier
(1999a, b) showed that radar-measured rainfield intensities

are described well by a log-normal distribution and
confirmed, following a suggestion in Menabde et al. (1997),
that the spatial correlation structure of a rainfield could be
described satisfactorily by a power spectrum fitted by a
power law. Menabde et al.(1997) showed that data-logging
raingauges yielded short-duration rainfall sequences whose
temporal correlation structure could also be described by a
power law spectrum. These results suggested that the
sequence of radar images of rainfield rates had a pixel to
pixel correlation that could also be described by a power
spectrum with a power-law relationship (Pegram and
Clothier, 1999b). But those were preliminary results: the
images the radar captured were of an advecting field and,
therefore, the estimated temporal spectrum was not “true”.

Marsan et al. (1996) drew attention to the need for
modellers to give proper attention to the anisotropy of the
scaling behaviour of rainfields in space and time, addressed
the problem of advection and derived a causal model using
Fourier transforms. More recently, Seed et al. (2001) have
modelled the space-time behaviour of radar images,
capturing part of an extreme rainfall event during a hurricane
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off Darwin, Australia. The modelling approach they used
was a seven-level multiplicative bounded (multi-fractal)
cascade which simulates seven different spatial scales
independently. Each level was linked pixelwise to the same
level at the next time step via a different ARMA(1,1) model.
Rainfields are then simulated by summing contributions
from each of the seven scales.

The former version of the String of Beads model (Pegram
and Clothier, 1999a, b and 2001) exploited the concept of
power-law filtering of Gaussian random fields in the space
domain and also in the time domain, by exploiting Taylor’s
(1938) hypothesis, to capture the correlation structure of
the rainfall process.  In  power-law filtering  a Gaussian
noise field, the technique is to transform the noise field into
Fourier space and then to multiply each term in the
transformed field by a filter function which is defined in
Fourier space by a power-law relationship. The product field
is then inverse-transformed into real space;  this operation
has the effect of performing a convolution of the filter
function and the noise field. This is the technique used in
the generation of universal multifractals (Schertzer and
Lovejoy, 1987) and the result is a spatially correlated noise
field. The ideas of Marsan et al. (1996) and Seed et al. (1999)
suggested that a one-layered image could be linked in time
by a pair of high order Auto-Regressive models (rather than
a cascade of ARMA(1,1) models or a modified power-law
filter) to give the correct temporal correlation structure.

The two time series models in the new version of the String
of Beads model presented here are applied at two levels: to
the image mean flux (IMF) and to the pixel scale intensity
(PSI). It is proposed that the spatial power law filtering then
ensures that the generated images, used in either simulation
or now-casting applications, scale correctly in space and
time.

The main objective of this paper is thus to present the
most relevant aspects of the “String of Beads” model in the
context of downscaling of rainfall and to illustrate the
model’s ability to capture this behaviour. The theme of the
paper is developed in three parts: the first describes the time
series form of the “String of Beads” model, a modification
of the authors’ previous work and to describe the data
analysis and the generation methodology. The second part
is to report on a simulation of a 42-hour rainfall event based
on the statistics of the observed images and then to compare
the statistics of the various space-time aggregated rainfall
intensities/amounts of the sequences of simulated images
to that of the observed. In the final part, conclusions are
drawn as to the performance of the “String of Beads” model
in terms of the downscaling behaviour of its output.

Description and analysis of  the
�bead� component of the model

The String of Beads model (SBM) gets its name from the
concept that the wet-dry process on an area of interest is a
one-dimensional time series (the “string”) which can be
modelled by a Markov chain (if time is measured in discrete
intervals) or by an allied alternating renewal process in
continuous time (Cox and Miller, 1972). The Markov chain
has been dealt with elsewhere (Pegram and Seed, 1998) and
interest herein is confined to the wet period process, which
has dimensions of 2-space + time, and constitutes the “Bead”
on the “String”.

Each radar image of rain-rates measured every five
minutes in the data-set supplied by the South African
Weather Bureau (SAWB) has a typical radius of 140
kilometres, cropped to a 200 kilometre square. In this study,
the area of analysis was limited to a radius of 64 km within
which the data were judged to be reasonably sound for many
technical reasons (level of base-scan, partial beam filling,
bright band, etc.); also the dimension being a power of 2
facilitates the use of the Fast Fourier Transform. An example
of a masked radar image is presented in Fig. 1a. The mask
is a ¾ dough-nut shape because data were not captured until
some distance from the radar and there is a region of large
permanent reflectivity from the Maluti Mountains in
Lesotho, south-east of the radar.

The number of pixels in the masked area is 9128, each
1 km square. The rain rate data were stored in integer form,
so that a pixel with a zero entry might have been either dry
or have experienced light drizzle. The imprecision of this
8-bit integer format does have a negative influence on the
analysis procedures which will be noted where appropriate.
The data were supplied in this form due to storage constraints
although this has since been changed and full precision data
are now available.

The model of the Bead adopted in this paper can be
summarised as follows. Each masked image is treated as a
sample from an exponentiated, spatially correlated Gaussian
field. Each image’s pixel scale intensities (PSIs) are therefore
modelled by a log-normal distribution, described by two
parameters, which vary from image to image. The spatial
correlation structure is modelled by a simple, homogeneous,
isotropic power-law spectrum described by one parameter.
The temporal structure between images is modelled at two
levels; the image scale and the pixel scale. At the image
scale, the image mean flux (IMF) and the wetted area ratio
(WAR) are related functionally to the parameters of the
lognormal distribution describing the PSI.

Now, in operational or simulation mode, the IMF and
WAR are modelled by a bivariate AR(p) process and the
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slope of the power spectrum is treated as constant. However,
these aspects of modelling the space-time process are
avoided in this paper because the historical image scale
statistics are used as the basis to recreate an alternative PSI
history to make valid comparisons between the scaling
characteristics of the model and the observations. At the
pixel scale, the temporal correlation structure is also
modelled as an AR(p) process, but at this level it is the same
univariate model applied to each pixel sequence in turn.
The statistical interrelationship between the pixels is
supplied by the power spectrum.

The difficulty of this approach is that the radar
measurements are of rainfields, which are usually advecting
past the radar at various speeds and directions by the weather.
To extract the PSI time series structure requires working in
the Lagrangian or the Eulerian reference frame. The first
requires the alignment or shifting of the images by
maximising the temporal correlation. The second requires
coping with an advecting field. Both were tried: the first
approach failed (although it will be reported and reasons
given for its failure) and the second requires calibration.
Any space-time model of rainfields must tackle the problem
of advection to capture the PSI correlation structure. What
has been developed and is proposed (in the time-series
approach) seems to be a sensible and effective method (if at
this stage cumbersome), as will be demonstrated. It is hoped
that the method will be streamlined and simplified in future.

The image scale analysis proceeds as follows. A rain rate
estimate averaged over a given pixel site u, where u has
position (x

u
, y

u
) in the two-dimensional field, is a realisation

x(u) of a random variable X(u) sampled from an underlying
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Fig. 1a. Masked radar image of rainfall

Fig. 1b. Radially averaged two-dimensional power spectrum of
radar-rainfall image

random field. The ranked and binned (integer) data x(u) are
assumed to be drawn from a log-normal distribution with
parameters σ and µ. After obtaining estimates s and m of
these parameters, applicable to a given image, the individual
pixel values are normalised and standardised as y(u) =
[ln{ x(u)} – m]/s  where if a value of x(u) is zero,  y(u) is set
to –3. This is one of the serious limitations of working with
integer data — there are others which will be mentioned
where appropriate. The image of y(u) values is then Fourier
transformed to Y(f) and its power spectrum p(f) calculated;
this is described by p(f) ~ f -β . The negative β exponent,
here called β

space
 , is obtained by averaging the power

spectrum radially, assuming isotropy, and takes values
typically in the range 1.9 to 2.6. The spectrum and its power
law approximation are shown in Fig.1b; the marginal
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distribution is shown as a survivor function in Fig. 1c where
a very good fit is obtained until 2% exceedence probability,
the model tending to slightly over-estimate the probabilities
in the tail.

Returning to the analysis, the field Y(f) is inverse power-
law filtered using the value of β

space 
estimated from it (note

that inverse power-law filtering of a field is similar to power-
law filtering, only the field is divided by the filter function
and the result is a field with reduced spatial correlation); it
is then inverse Fourier transformed to a field whose
individual pixel values are labelled z(u), constituting a
random field of pre-whitened rain rates still with temporal
structure. If the assumption of lognormality of the PSI field
x(u) is correct, z(u) should be Gaussian. However, due to
the integer nature of the data, the marginal distribution of
the field z(u) has extremely high kurtosis, so before the
temporal correlation structure can be studied, a normalising
transform following the ideas of Zucchini and MacDonald
(1999) needs to be applied to the 9128 z(u) in each masked
image. This involves ranking the z(u) values, associating
cumulative probabilities with each element as if they were
drawn from a uniform distribution and then transforming
them to normality in the usual way.

To examine the spatial dependence structure in more
detail, the variogram of a typical image is shown in Fig. 1d.
The variogram is computed by taking the ensemble average
of squares of differences of z(u) values separated by l, which
is the same as the second order structure function
G

2
(l) = where  l is  the displacement

from u. A model of the variogram is fitted to the data as
shown in Fig. 1d where two points are worth noting. First,
there appears to be a distinct nugget effect c

0
 , or shift at the

origin, meaning that there is inherent error associated with
measuring of z(u) values. This nugget effect affects the
modelling process, so that, in simulation, extra noise must
be added at the pixel scale or else the sequence of images is

too smooth. Second, it will be noted that the variogram
flattens off after about 30 km from the origin, indicating
that the values of G

2
(l) tend to the variance σ2 of the field,

in turn implying that the field is stationary (Cressie, 1991)
at a scale intermediate between pixel and image. The
significance of this observation is that for the 128 km-square
images which the SBM is designed to simulate, treating the
images as stationary random fields and using traditional
stochastic tools in the analysis,  as done in the SBM, is a
legitimate approach.

Correlations in time are affected by the advection of the
storm across the window of the mask; therefore, it is
important to find the image-to-image displacement history
of the storm so that it can be mimicked faithfully. It is also
necessary to remove the effects of advection by aligning or
spatially translating the successive images until maximum
serial correlation is achieved so as to determine the PSI
correlation structure of un-advected images in the
Lagrangian frame of reference.

Aligning the images is accomplished via a pattern search
in a discrete domain, which is illustrated in Fig. 2. Consider
two consecutive images. First, the pixel-to-pixel cross-
correlation is computed for the images with no spatial shift.
The images are then shifted diagonally relative to each other
to each corner of a 9 km square simplex and the correlation
between the PSIs of the images at each shift is computed.
The correlations computed at each of the five shifts are then
compared and the shift corresponding to the highest
correlation is chosen as the centre for the new simplex. This
is repeated until the highest correlation is at the centre of
the simplex, at which stage the shifts corresponding to the
two highest correlations in the simplex become the corners
of a new simplex, half the size of the original (i.e. a 5 km
simplex). The process continues until the size of the simplex
is 1 km and then the correlations of the eight surrounding
pixels are computed to find the maximum of the cross-
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correlation between the images. The algorithm is a form of
two-dimensional bisection search, on a square simplex,
which is extremely fast on a correlation field which is usually
unimodal. The best guess for the next consecutive pair of
images is taken as the correlation shift of the previous pair.

Once the relative inter-image shift has been optimised (of
course, accurate only to the 1 km scale of a pixel), the
accumulative vector of displacement of the successive
images from the first can be determined. For the event
studied, this cumulative advection vector is displayed in
Fig. 3. To give an idea of time scale, the alternating shaded
segments on the track are each 10 hours long.

As mentioned above, an attempt was made to determine
the PSI time series structure from the aligned images, but

Fig. 2. Schematic of 2-dimensional bisection search algorithm employed to find displacement of maximum correlation; starting with squares of
9x9 pixels and ending with 3x3 to confirm the maximum at pixel scale. Contours of a fictitious spatial cross-covariance function are

 superimposed.

Fig. 3. The cumulative advection vector, built up from image to
image shifts, each optimising cross-correlation between successive

images using the search algorithm of Fig. 2

this proved unsuccessful, because the approach resulted in
measured correlations which were too small to generate
realistic sequences of images; in spite of its failure, the
(seemingly straightforward) methodology attempted will be
described briefly.

The cumulative advection vector of Fig. 3 was used to
align the pre-whitened z(u) images so that when viewed as
an animated sequence, the storm appeared to be still in space,
but growing and decaying. In the artificially “still”
Lagrangian storm reference frame, the mask appeared to
move. In this next step of the analysis, sequences of PSIs
sampled from consecutive images at a point in the
Lagrangian reference frame, were analysed. Because of the
occluding effect of the (now relatively moving) mask, there
were many short sequences and few long ones. In the
sequence of images analysed, which had moderate advection
velocities of between 10 and 40 kph, it was possible to
collect 13400 sequences of PSIs 64 images (320 minutes)
long for analysis. These did not all start at the same time
but, assuming ergodicity, were analysed individually and
their serial correlation coefficients at each lag averaged to
give an ensemble correlogram out to a maximum lag of 180
minutes. The Fourier transform of this PSI correlogram
yielded a spectrum with a negative power-law exponent of
b

time
 = 0.24, which is very small — it is a spectrum close to

that of white noise. This approach was abandoned as a means
of determining the serial correlation structure of the PSI
and a different approach was adopted as described presently,
in which it is combined more appropriately with the
simulation procedure upon which the determination
depends. The modelling of the image scale statistics will be
described first.
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At the largest scale, the image mean flux (IMF) which is
closely related to the wetted area ratio (WAR) is given as
exp(µ + σ 2/2) where µ and σ are the two log-normal
parameters describing the marginal distribution of the PSI
values on the image. There is an obvious advantage in
exploiting this linkage for modelling purposes, which leads
to the heart of this time series version of the SBM that is a
space-time model driven by the time series model of the
IMF. It is possible to condition σ, µ and β

space
  at each time

step on the current value of the IMF and to ensure
simultaneously the ensemble development of the average
rainfall intensity at the image scale. The spatial correlation
of the images (defined by the power-law description of the
spatial power spectrum) ensures that the temporal time series
structure of pixels of all intermediate space scales between

PSI and IMF scales is simulated realistically. The measured
PSI temporal correlation structure determined by the
abortive method described above and the IMF correlation
structure are shown by the two correlograms in Fig. 4. As
noted above, the measured aligned pixel scale correlogram
does not have enough correlation to drive the time series
structure of the model.

Each time series (PSI and IMF) can be modelled as an
auto-regressive model of suitable lag p, of between 2 and 5
lags. The advantage of using an AR(p) model is that the
innovation process is confined to one time step. It may not
be the most parsimonious approach but, for modelling
purposes, it is more convenient than a mixed ARMA(p,q)
model for three reasons: ease of estimation, ease of
generation and ease of forecasting; what is more, there is a
plenitude of data from which to estimate the time series
parameters. The Yule-Walker equations (Box and Jenkins,
1970) were used to extract the AR coefficients from the
averaged sample correlogram. The order p was increased
until a good fit to the correlogram as a whole was obtained
in each case.

Returning to the spatial description of the images, the
estimates of σ, µ and especially β

space
 were shown in Pegram

and Clothier (1999a and 2001) to be unbiased by the
presence of the mask. The time series of these estimated
parameters for the 42-hour (512 images) sequence analysed
are shown in Fig. 5, together with the IMF trajectory.

These traces and the time series models at IMF and PSI
scale, together with the advection history in Fig. 3, complete
the statistical description of the history of the storm of
January 1996 as captured in the radar images. They are the
image scale statistics of the model describing the rain rate
on an individual image. In the current operational form of
the “String of Beads” model, time series of these image scale
statistics are simulated using autoregressive processes. To
derive the pixel scale time series structure, simulation had
to be applied to calibrate the pixel scale model in the Eulerian
reference frame to yield the correct structure.

Generation of  a set of  images to
mimic the historical set
The purpose of this section is to describe the philosophy
and method behind the generation of a sequence of images
with the identical advection, σ, µ and β

space
 history as that

of the observed sequence of images, shown in Fig. 5. In
other words,  the statistics of an observed event have to be
mimicked in a simulated event. This is with a view to making
a fair comparison between aggregation at various levels to
demonstrate the ability of the SBM to reproduce, faithfully,
the observed downscaling behaviour.
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Fig. 5. Trajectories of the summary statistics of the PSI values on
512 successive images recorded in 42 hours. Note that the scale of

the IMF is to the right.
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To compare aggregations of PSI values in space and time
at various scales of interest, it is essential to have a common
base to work from. The most straightforward approach is to
use the historical image scale statistics, together with the
advection history, and then simulate the PSI fields correlated
in space and time. The various aggregations of PSI over
corresponding intervals (in simulated and observed
sequences of images) of space and time can then be
compared with confidence that all irrelevant effects have
been eliminated. Consequently, in this particular application
of simulation of the SBM, the time series model of the PSI
is the only free model component. As a point of emphasis,
the IMF is not modelled explicitly because it is inferred
from the measured values of σ and µ. (Note that the observed
sequence of IMF is unlikely to be recaptured exactly by the
simulation because of resampling, the  “integerisation” of
the PSI and the masking of the field.)

The SBM relies on the spatial structure of the image, as
captured by β

space
, to spread the spatial aggregation properly

from image to pixel scale. As mentioned in the previous
paragraph, for the purpose of the experiment of comparing
the effects of different levels of aggregation in space and
time on the simulated and observed sequences, only the
statistics at the image scale are preserved, the pixel scale
structure being modelled independently. It will, therefore,
be a fair test to determine whether aggregations of observed
PSI values over various space and time intervals will be
matched by the simulated equivalent. Individual, concurrent,
simulated and observed images are not expected to have
the same shape, only the re-sampled statistics (σ, µ and β

space

and IMF) describing the images will be approximately the
same as those originally measured.

The simulation procedure is the opposite of the analysis
and develops as follows. Assume that the time label for the
initial image is given as t = 1.

1. Start: t = 0. Assume (for example) that the maximum
lag of the AR model for the PSI process is p = 4.
Generate a 128 square white noise field with unit
variance. Call this z(u,0). Set z(u,j) identically to zero
for j  = -1. -2, -3, -4. Set t = 1. Go to step 2.

2. At time t, generate a 128 square white noise field with
appropriate variance to match the AR(4) model. Call
this image a(u,t). For each pixel u, evaluate the linear
difference equation:

z(u,t) = f
1
z(u,t-1) + f

2
z(u,t-2) + … + f

4
z(u,t-4) + a(u,t)

Corresponding to t, choose a suitable β
space

 from the
(suitably smoothed) trajectory of observed values,

then Fourier transform z(u,t) and power-law filter it
with β

space
 . Inverse Fourier transform the filtered

image to y(u,t). Transform y(u,t) to real space by
choosing σ and µ for the corresponding time from the
historical trace and compute x(u,t) = exp[y(u,t)σ + µ].
Go to 3. (Note that the process of smoothing of the
observed series of βspace is necessary in this
application of the model simulation only because the
sequence was originally estimated from integer data
and is consequently quite erratic).

3. Increment t by 1. If end, stop — or else go to 2.

Note that the difference between this and the previous
approach, using the SBM in simulation mode (Pegram and
Clothier, 1999a and 2001), is that the temporal power-law
filtering has been replaced by a stochastic difference
equation or time series model. Examination of Fig. 4 shows
that although the PSI correlogram estimated in the
Lagrangian frame has a long tail, there is very little
correlation in it. If used as the correlation model for the
PSI, successive simulated images are virtually independent
of each other at the pixel scale. The cause of this is threefold:
the integer data are imprecise, there is a large amount of
noise at the pixel scale and, most influentially, the advection
of the local storm cells can differ markedly from the image
mean advection.

The remedy is to calibrate a “driver” correlation function
at the pixel scale, which has enough correlation at short
lags, with an appropriate correlation length.

The driver function is not directly observable because of
bias, so has to be found iteratively at this stage, but once
determined, is likely to be suitable for a wide range of climate
types. Analysis of the data revealed that the downscaling
behaviour of simulated sequences is very sensitive to the
shape of the driver function. (The process of aggregating
sequences of images in space and time in order to quantify
the downscaling behaviour of the rainfall event is described
in the following section.)

The iterative process used to calibrate the driver function
was as follows.

1. Quantify the downscaling behaviour of the observed
sequence of images using the method of block
aggregation. This was done by calculating 15, 30, 60,
210 and 240 minute accumulations over 1, 2, 4, 8 and
16 km square blocks of PSI and then computing their
temporal correlation functions.

2. Simulate a sequence of 512 images with the same image
scale statistics as the observed record as described
above, at 1 km and 5 minute resolution, using a choice
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of driver function (a reasonable first choice would be
one that resembles the correlogram of the IMF)

3. Quantify the downscaling behaviour of the generated
sequence of images using  the same block aggregation
scheme as in Step 1.

4. Compare the correlation functions at different
aggregations of the observed and generated sequences

5. Adjust the shape of the driver function by altering its
parameters and repeat from step 2 until the observed
and simulated downscaling behaviour compare well in
the least squares sense.

As a general fitting procedure for the SBM, this process
is a one-off calibration exercise. Once the PSI driver function

has been calibrated, it is assumed that the PSI behaviour is
independent of the other statistics which describe the rainfall
event. When sufficient additional data are made available
for analysis, it will be possible to test this assumption and
to make adjustments if necessary..

The variogram in Fig. 1d shows that the nugget effect is
about 10% of the variance of the field in the spatial context.
Although not directly measured, the implication carries over
to the time domain. Thus, it was found that it was important
in the temporal domain to increase the variance of the noise
appreciably above that calculated from the AR(p) structure.
If this was not done, the transition between simulated images
was too smooth when compared with what was observed.

The PSI driver function is plotted coaxially with three
other correlation functions in Fig. 6. Note that the driver
function is inferred, not measured directly from the data.
The first of the others is the correlogram of the measured,
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simulated, non-advected image sequence, showing the
remarkable amount of bias in the estimation of this (nearly
non-stationary) process when compared to its driver
function. The other two are the correlogram of the observed
advected images at the pixel scale and at the image scale.
Other observations on the implications of Fig. 6 can be made.
The first is the difference between the PSI correlograms of
the advected and non-advected images at the pixel scale;
the latter has considerably more correlation than the former,
due only to advection, as expected. Second, the driver
function matches the image scale correlogram closely at
short lags, a feature which is needed for maintaining a
reasonable short-term correlation, but drops off at large lags
more rapidly, or else the small-scale structure is too
persistent. The images and discussion which follow justify
the approach adopted here for validating the model.

A set of observed and their corresponding (in time)
simulated images is shown in Fig. 7. These are accumulated
over a range of space and time scales; the longer intervals
subsume the shorter, hence the similarity from pair to pair.
Figure 8 shows the IMF time history for both the observed
and simulated sequences. The differences are due to the fact
that the statistics of the individual images relate to the
underlying continuously varying distribution, whereas the
sampling is done on integers; in addition, the mask will have
an unbiased (Pegram and Clothier, 2001) but noisy
resampling influence on the advecting fields.

The simulations are satisfactory in appearance and the
IMF sequence has been well reproduced as expected. It
remains to examine the downscaling behaviour of the model
statistically.

Aggregation of  the Images for the
Purpose of  Comparing Downscaling
Behaviour

The statistics of interest here with respect to rainfall
intensities are:

l the marginal distribution
l the spatial correlation as measured by the spectrum
l the serial correlation as measured by the correlogram

for aggregations in space and time.

The aggregations will be made spatially over squares of side
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from 1 km to 16 km and  temporally from 15 minutes to 6
hours. To help increase the number of samples for the larger
aggregations (the images are 128 km square and they span
42 hours) the assumption of ergodicity is made, without
checking.

The first image is of the average PSI accumulated over
the observed and simulated 42-hour event, shown in Fig. 9,
where it is seen that the main features, although distributed
differently, have been maintained by the simulation. The
rings in the observed image are artefacts of the projection
algorithm used for converting volume-scan radar
reflectivities to rain-rate at a constant altitude. This artefact
in the measured image, of course absent from the simulated
image, tends to obscure the streakiness due to advection in
the former, so clearly seen in the latter. The marginal
distributions of the two images are presented in Fig. 10 as
survivor functions.

Noting that Fig. 10 is plotted to a logarithmic scale, the
match for the accumulations over the full 42 hour period is
remarkably good, especially up to 5% exceedence
probability. Deviation beyond the 5% could be due to a
variety of reasons, the most likely of which is that this is the
comparison of only one simulation with its historical
counterpart. It is possible that the two parameter log-normal
distribution is an imperfect descriptor of the marginal
distribution of rainfall intensities, particularly at the higher
intensities. A gamma distribution or a truncated log-normal
distribution may be a better model, but the possibility was
not pursued in this study  The remaining figures will explore
the intermediate space and time scales.

Figure 11 shows the spatially averaged power spectra for
chosen pairs of observed and simulated images with PSI
accumulated over 15, 30, 60, 120 and 240 minutes and
averaged over squares with sides 1, 2, 4, 8 and 16 km shown

in Fig. 7. The correspondence between observed and
simulated spectra is again very good, only starting to wander
away from each other at the 16 km/240 minute scales where
there are very few sample points. Although the spectra
flatten at low frequencies, they can each be defined
satisfactorily by a single parameter, β

space
 . This economical

representation will be exploited in Fig. 12 when making
more general comparisons of the spatial behaviour of the
observed and simulated image sequences.

Figures 12a and b show the relationship between β
space

computed for observed and simulated images accumulated
over matching times. Figure 12a is for 15-minute
accumulations at 1 km resolution, while Fig. 12b is for 60-
minute accumulations at 4 km resolution. Longer times and
larger areas reduce the number of samples, and the scatter
worsens, so the figures are not instructive. The conclusion
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drawn from Fig.12 is that there is, on average, fair
correspondence with little bias between the spatial
correlations of accumulations of PSI over space and time,
between the simulated and observed sequences, as measured
by the spectra.

Turning finally to temporal correlation, the spectrum is

no longer described satisfactorily by a power-law
relationship because it flattens at both high and low
frequencies. The procedure adopted here was not to align
the sequences for comparison purposes but to compute the
serial correlations for accumulations over 15, 60 and 124
minutes and spatial averages over 1, 8, 32 and 128 km
squares, directly from the observed and simulated sequences,
which both have the same advection history.

These correlograms are shown in Figs. 13a, b and c, those
for the observed sequences given by lines and those of the
simulated sequences by markers. In all three cases, there is
excellent correspondence at the 128 km (image) scale, as
expected, since the model is driven by statistics which are
measured at this scale. The correlations of the simulated
sequences tend to be smaller than the corresponding
observed values and the correlation length compares
reasonably well. Generally speaking, the correlation of
aggregations in time have been captured remarkably well
by the model.

Conclusion
The String of Beads model of space-time rainfields was
presented in time series mode. This formulation exploits a
time series description of the image mean flux (IMF) using
an AR model upon which the space-time statistics are
conditioned. The pixel scale intensity (PSI) process is
modelled by a second time series also of AR type which is
a driver to ensure proper pixel to pixel dependence in time.
The spatial correlation is defined by one parameter, the
exponent of the power-law fitted to the two-dimensional
spatial spectrum of each image. This ensures the proper
distribution of variance between the image and pixel scales.
Because of the time series structure driving the development
of the model’s images in time, it is a model which can be
used for simulation and now-casting. In this paper, however,
it was used to mimic statistically an observed 42-hour
rainfall event.

Each image of the event was shown to be defined by three
statistics, σ, µ and β

space
 , and the time series of these image

statistics were extracted from the data. The advection of the
observed event was captured in its cumulative advection
vector. The simulated event was then given the same image
statistics and advection vector as the observed event and a
parallel set of rainfield images was generated.

The images of the simulated and observed events were
compared by aggregating the PSIs over several intervals of
time and space. Spatial comparisons were made by
exploiting the parsimonious description of the spatial
correlation structure via the exponent of the power-law
approximation to the spatial power spectrum of each set of
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Fig. 13b. As for Fig.13a but for 60 minute accumulations
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temporal aggregation. The match of corresponding sets of
data was seen to be excellent, even up to the aggregation of
the 42-hour events. The temporal correlation structure of
the aggregations is good at the image scale, as would be
expected, but drops off slightly as the aggregation area
reduces. The remedy is to modify the correlogram of the
driver of the PSI time series model to have more correlation
at small lags which is accomplished in an iterative fitting process.

Finally, the String of Beads model has been shown to
downscale well in space and time and also to aggregate well
over a 42-hour period. It continues to show promise as an
operational, high resolution, space-time model of rainfields.
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