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Abstract This study analyzes the downwelling longwave radiation (DLW) over the Greenland Ice Sheet

(GrIS) using surface-based observations from Summit Station (72°N, 38°W; 3210m) and the European Centre for

Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) DLW fields. Since surface-based observations

are sparse in the Arctic, the accuracy of including reanalyses for spatial context is assessed. First, the DLW at

Summit is reported, including the significant time scales of variability using time-frequency decomposition

(wavelet analysis). A new method for evaluating reanalyses is then introduced that also uses wavelet analysis.

ERA-Interim DLW performs reasonably well at Summit, but because it includes toomany thin clouds and too few

thick clouds, it is biased low overall. The correlation between the observations and ERA-Interim drops from

r2> 0.8 to near 0 for time series reconstructed from time scales less than ~4days. These low correlations and

additional analyses suggest that the spatial resolution of the data sets is a factor in representing variability on

short time scales. The bias is low across all time scales and is thus likely tied to cloud generation processes in

the model rather than the spatial representation of the atmosphere across the GrIS. The exception is autumn,

when ERA-Interim overestimates the influence of clouds at time scales of 1 and 4weeks. The spatial distribution

of cloud influence on the DLW across the GrIS indicates that Summit is located in a transition zone with respect

to cloud properties. The gradient across this transition zone is steepest near Summit in autumn, so the spatial

characteristics of the atmosphere near Summit may contribute to the ERA-Interim bias during this time.

1. Introduction

Environmental changes are occurring in the Arctic. Among these changes are increasing boundary layer

air temperatures [Overland et al., 2008] and humidity [Francis and Hunter, 2007], which are associated with cloud

feedback [Liu et al., 2008;Wang and Key, 2005b]. Cryospheric responses include melting permafrost [Osterkamp,

2007] and reductions in summer sea ice extent and thickness [Wang and Overland, 2009; Parkinson and

Comiso, 2013; Zhang et al., 2013], which also feedback to the atmosphere [Curry et al., 1996; Schuur et al., 2008].

Changes in high-latitude atmospheric circulation have also been observed [Zhang et al., 2008;Wang et al., 2009].

The Greenland Ice Sheet (GrIS) may also be responding to the shifting climate. Its mass balance has become

increasingly negative since the early 1990s [Rignot and Kanagaratnam, 2006] mainly because of increasing

dynamic instability and ice loss from glaciers. Ablation and accumulation at the ice-atmosphere interface,

representing the surface mass balance, have been characterized by coincident increases in runoff and

precipitation [Hanna et al., 2008; Box, 2013]. Rignot et al. [2008] report that mass balance from ice drainage is

closely tied to the components of the surface mass balance. Over decadal time scales, changes in the sign of

surface mass balance trends due to exchanges in the dominance of accumulation and runoff rates [Box, 2013]

demonstrate the complexity of the system. The total mass loss may contribute to other climate changes,

including sea level rise [Alley et al., 2005], andmodifications to the thermohaline circulation [Fichefet et al., 2003].

Clouds are importantmodulators of the surface energy budget andmass balance of the GrIS. Thesemodulations

are caused by a combination of the net radiative effect of clouds [Starkweather, 2004] and precipitation

[Ohmura and Reeh, 1991]. Recent studies have demonstrated that the downwelling longwave (DLW) component
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of the radiation budget, and its relationship to clouds, is playing an important role in the observed changes

in the Arctic [Francis and Hunter, 2006, 2007] and in extreme events, such as an anomalous surface melting

event that occurred across the GrIS in July 2012 [Bennartz et al., 2013; Neff et al., 2014].

Newmeasurements of the atmosphere above the GrIS, beginning inMay 2010, are available from an atmospheric

observatory at Summit Station (72°N, 38°W; 3210m) called the Integrated Characterization of Energy, Clouds,

Atmospheric state, and Precipitation at Summit (ICECAPS) [Shupe et al., 2013]. ICECAPS is modeled after the U.S.

Department of Energy Atmospheric RadiationMeasurement program observatories. Surface-based observations

from ICECAPS provide high-quality measurements of cloud and atmospheric properties, including the DLW.

Spatial comparisons of cloud properties measured at multiple surface-based observatories have been made

in recent studies [Doran et al., 2006; de Boer et al., 2009; Shupe, 2011; Shupe et al., 2011; Cox et al., 2014],

including their DLW properties [Cox et al., 2012]. Studies of DLW and clouds at single observatories have also

been conducted [Intrieri et al., 2002; Dong and Mace, 2003; Shupe and Intrieri, 2004; Lesins et al., 2009; Dong et al.,

2010]. Collectively, these studies, in agreement with satellite observations [Wang and Key, 2005a; Liu et al., 2012],

show that clouds are common in the Arctic but that there is spatial heterogeneity in cloud properties and

their interactions with radiation.

Surface observatories represent point locations, so additional data sets are needed to provide spatial context

for station observations. Reanalyses may be useful tools in providing this needed spatial information. DLW

fields from reanalyses have been used previously for this purpose at Arctic observatories [Cox et al., 2012].

However, derived parameters from reanalysis data, such as surface radiative flux fields, remain largely a

product of a short-term forecast generated by a numerical weather prediction model. As they do not rely

directly on observations, they require evaluation. Furthermore, the spatial grids of reanalyses are coarse,

and, therefore, the accuracy of reanalysis fields interpolated between grid points needs to be assessed. It is

important to conduct thorough evaluations to assess reanalysis performance and to better understand the

nature of the differences in the representativeness of the gridded and point data. Evaluation of reanalysis

fields has been performed previously on cloud properties and radiative data in the Arctic. Evaluation

studies of reanalyses that utilize a three-dimensional variational assimilation system showed that the cloud

representation was problematic [e.g., Walsh and Chapman, 1998; Bromwich et al., 2007; Walsh et al., 2009;

Cox et al., 2012], but Cox et al. [2012] and de Boer et al. [2014] reported that the European Centre for Medium-

Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) [Dee et al., 2011], which uses a four-

dimensional variational system and assimilates data from additional sources, performed better.

The present work expands upon the study of Cox et al. [2012], focusing on DLW over the GrIS. Cox et al. [2012]

compared the DLW at Eureka, Nunavut, Canada (80°N, 86°W; 10m), to the DLW at Barrow, Alaska (71°N, 156°W;

10m), and found that these locations are characterized by a bimodal distribution in the DLW: one mode

represents clear-sky conditions, while the other represents optically thick clouds. Intermediate DLW values

that connect these maxima are associated with optically thin clouds, which have radiative characteristics that

depend on their microphysical properties [Cox et al., 2014]. (This bimodal character of the Arctic atmosphere

has also been described by other recent studies at Barrow and over the Arctic Ocean [Stramler et al., 2011;

Morrison et al., 2012; Pithan et al., 2013].) Cox et al. [2012] then compared the results from the surface-based

observations to the reanalysis data interpolated to the two locations to select a reanalysis product that best

captured the DLW measured at each location. ERA-Interim, which exhibited the closest match to the bimodal

distribution and the smallest biases in the DLW, was selected and used to provide spatial context to the results

from Barrow and Eureka. Similar to Shupe et al. [2011], the results indicated that Eureka represents a region

of the Arctic where cold, dry air from the north and off the GrIS supports a preponderance of clear-sky and

thin clouds, as opposed to the frequent occurrence of thick clouds at Barrow, a location that receives moisture

from a variety of directions.

In this study, we build upon the methodology of Cox et al. [2012] but focus on Summit, Greenland, and the

GrIS. A new reanalysis evaluation is introduced that is more sophisticated than that used by Cox et al. [2012].

The present study has three main objectives. It first reports on observations of DLW measured at Summit

from July 2010 through August 2012. The Summit DLW observations are then compared to reanalysis fields.

Finally, these fields are used to analyze the spatial distribution of the influence of clouds on the DLW across

the GrIS. To carry out these objectives, time-frequency decomposition (wavelet analysis) is used [Torrence

and Compo, 1998]. Wavelet analysis is used to identify the significant time scales of variability in the DLW at
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Summit and to compare the reanalysis fields to the surface-based observations using a method that is

introduced in this study. The largely homogeneous surface over the central GrIS is ideal for comparing

gridded ERA-Interim data to point data. The results of the analysis and evaluation are discussed together,

providing mutually informative perspectives about the influence of clouds on the DLW over the GrIS.

The data sets are discussed in section 2. In section 3, the wavelet analysis and the evaluation technique

are described. In section 4, the ERA-Interim DLW is considered in parallel with an analysis of the observations

and a spatial analysis of the ERA-Interim data. Conclusions are presented in section 5.

2. Data

2.1. Surface-Based Observations

2.1.1. Atmospheric Emitted Radiance Interferometer

The atmospheric emitted radiance interferometer (AERI) is an infrared spectrometer that uses two reference

blackbodies (one heated to a constant temperature and one ambient) for calibration; the overall radiance

(mW(m2 sr cm�1)�1) accuracy is better than 1% [Knuteson et al., 2004a, 2004b]. The spectral range is

approximately 490 to 3000 cm�1 (achieved through the use of two detectors), and the spectral resolution

is approximately 1 cm�1. At Summit, the AERI was operated in rapid-sample mode, acquiring infrared

radiances at subminute intervals at a zenith viewing angle. The raw data were processed partly using

standard AERI processing routines [Knuteson et al., 2004b] and partly with slightly different routines

developed by several of the authors [Rowe et al., 2011a, 2011b]. Quality control procedures screened for

temperature instability in the reference sources, low instrument responsivity (used to identify frost-

covered foreoptics), and excessive noise; these screenings removed 3.4% of the data. At Summit, the AERI

viewport was located 2 to 3m above the surface, depending on the level of drifting snow. During the first

7months of the experiment, a hatch over the viewport was used to protect the instrument foreoptics

during precipitation and blowing snow events, but the use of the hatch was discontinued because it

actually increased the collection of snow in the foreoptics. About 1.7% (overall) of the data were removed

because of hatch closures, with most of these occurring during 1week in January 2011.

2.1.2. Downwelling Longwave All-Sky Flux, Clear-Sky Flux, and Cloud Radiative Forcing

The downwelling longwave all-sky flux (DLWallsky) was derived using the AERI spectra, and the downwelling

longwave clear-sky flux (DLWclrsky) was calculated using vertical profiles of temperature and humidity,

both using the method of Cox et al. [2012]. Cox et al. [2012] validated the method against a pyrgeometer at

Barrow and reported that the uncertainty in the derived fluxes was 1–6Wm�2, with the largest uncertainties

associated with optically thin clouds. This method includes simulating cloudy-sky radiances at multiple

viewing angles as well as outside the spectral range of the AERI (i.e., 0 to 500 cm�1) based on AERI zenith-view

measurements and knowledge of the atmospheric state. The radiative transfer calculations of atmospheric

gases were performed using the line-by-line radiative transfer model (LBLRTM) [Clough and Iacono, 1995;

Clough et al., 1992], and cloudy-sky radiative transfer was performed using LBLDIS [Turner, 2005], which combines

LBLRTM with emission and multiple scattering from cloud hydrometeors using the discrete ordinates radiative

transfer (DISORT) algorithm [Stamnes et al., 1988]. (The acronym LBLDIS is a shortened form of LBLRTM-DISORT).

Atmospheric profiles of temperature, pressure, and humidity used as input to the radiative transfer models

were obtained from Vaisala RS-92 radiosondes that were launched twice daily at Summit by ICECAPS at

0 and 12 UTC. Trace gas profiles of O3, N2O, CO, and O2 from the U.S. Standard Atmospheres [McClatchey et al.,

1972] were also included in the simulations, as were NOAA’s surface measurements of CO2 [Conway et al.,

2011] and CH4 [Dlugokencky et al., 2010] made at Summit; the surface measurements were distributed

through the profiles using a constant mixing ratio with height. Refer to Cox et al. [2012] for details of how the

models and data are implemented for the radiative transfer calculations.

The DLWallsky was calculated for 3 h averages of AERI spectra for the entire study period, and the DLWclrsky

was interpolated to the same temporal resolution following Cox et al. [2012]. This method also utilizes

near-surface air temperatures, which were obtained by the NOAA Earth System Research Laboratory (ESRL)

(archived at ftp://ftp.cmdl.noaa.gov/met/SUM/). This averaging time was chosen to be consistent with the

reanalysis data set described in section 2.3.

The downwelling longwave contribution by clouds is calculated by subtracting the DLWclrsky from the

DLWallsky. This parameter is referred to as downwelling longwave cloud radiative forcing (DLWcldforce) and
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was utilized previously in the Arctic by Lesins et al. [2009], Mariani et al. [2012], and Cox et al. [2012] and in

the Antarctic by Town et al. [2005].

A continuous time series is important for the wavelet analysis used in this study. Approximately 5% of the

AERI-derived DLWallsky time series values are missing. These data gaps were filled using observations from

a collocated Kipp and Zonen CG-4 pyrgeometer that is operated by the Steffen Research Group at the

University of Colorado and the Cooperative Institute for Research in Environmental Sciences (CIRES). (This

instrument is part of a suite of surface radiometers that are candidate instruments for the Baseline Surface

Radiation Network (BSRN) [Ohmura et al., 1998].) We applied quality control procedures following themethod

of Long and Shi [2008], removing 0.7% of the data. This procedure includes climatological limits. The

climatological limits for the BSRN site at Barrow, Alaska (71°N, 156°W; 10m), used by Long and Shi [2008],

were applied for Summit because Barrow is located close to the same latitude as Summit, but some of the

minimum thresholds were lowered because Summit is colder than Barrow. The pyrgeometer data were

averaged into 3 h periods to match the AERI DLWallsky. The pyrgeometer observations were biased high

compared to the AERI, primarily at low flux values, and this bias was positively correlated with solar elevation

angle and scene (i.e., “cloudiness”). Because of this, a correction was applied to the pyrgeometer fluxes based

on the AERI-derived fluxes [Cox, 2013]. Since no surrogate is available for data gaps in the radiosonde record,

missing data in the DLWclrsky were interpolated using a cubic spline.

The DLWallsky derived from the AERI, the DLWclrsky calculated from the radiosondes, and the associated

DLWcldforce at Summit will be referred to as “surface-based observations” throughout the text.

2.3. ERA-Interim

The gridded reanalysis fields used here are from ERA-Interim [Dee et al., 2011]. ERA-Interim uses a four-dimensional

variational assimilation system at 12 h intervals (0 and 12 UTC). ERA-Interim data were obtained from the

ECMWF data archive (http://data-portal.ecmwf.int). The fields are on a 0.75° latitudinal/longitudinal grid. Each

grid point represents a point location in space rather than an average of the area between the grid points

(ERA-Interim Data frequently asked question: http://www.ecmwf.int/search/faqs).

ERA-Interim assimilates temperature and humidity profiles from radiosonde observations obtained via the

Global Telecommunications System (GTS) for its reanalysis and forecast products. ICECAPS radiosondes were

sent to the GTS, beginning in December 2011, but were not assimilated into ERA-Interim until December

2012 (P. Poli (ECMWF), personal communication, 2013). Therefore, ERA-Interim fields are independent of

ICECAPS measurements during the entire study period.

Beginning from each analysis time, the ECMWF data assimilation system runs a forecast to the next analysis

time. Radiative variables, such as DLWallsky, are accumulated through time and reported every 3 h. To acquire

3 h mean DLWallsky values, which are comparable to the DLWallsky from the surface-based observations,

the integrated energy (W sm�2) is subtracted from the previous steps, and then the time duration is divided

out (http://www.ecmwf.int/search/faqs).

DLWclrsky is not directly available from the ECMWF data server. Using the notation LW for net longwave and

ULW for upwelling longwave, DLWclrsky was obtained from existing fields LWclrsky, LWallsky, and DLWallsky,

as follows: DLWclrsky= LWclrsky�ULWclrsky. Further, ULWclrsky is assumed to be equal to ULWallsky. This

corresponds to assuming a surface infrared reflectivity from clouds of 0, which results in an error of about

1% in DLWcldforce. Finally, ULWallsky is calculated from LWallsky�DLWallsky.

Another source of uncertainty in estimating DLWclrsky comes from ECMWF’s estimate of LWclrsky. A comparison

between LWclrsky and LWallsky during times when ERA-Interim did not include clouds (total cloud cover= 0)

revealed a difference of 0.4 ± 1.2Wm�2.

DLWcldforce is calculated as DLWallsky�DLWclrsky and thus has the uncertainties inherent in DLWclrsky

described above.

The ERA-Interim elevation model (0.75° grid) reaches a maximum of 3172.6m over the GrIS and is 3165.7m

when interpolated to the Summit coordinates. This places the altitude for ERA-Interim at the latitude and

longitude of Summit roughly 44m below the actual elevation of the station above mean sea level (3209.5m;

http://summitcamp.org), adding to the path length of the lower atmosphere in the radiative transfer

calculation for the ERA-Interim radiation fields. Additionally, strong, shallow, and persistent surface-based
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temperature inversions at Summit

[Shupe et al., 2013; Miller et al., 2013a]

are poorly resolved by the model,

which results in higher near-surface air

temperatures compared to ICECAPS

radiosondes [Miller et al., 2013b].

Figure 1 shows an elevation contour

map of Greenland from ERA-Interim.

The ERA-Interim grid was interpolated

to Summit using bilinear interpolation.

3. Wavelet Analysis
Methodology

Wavelet analysis is a time-frequency

decomposition technique. Using a

wavelet transform, time-dependent

power (variance) can be estimated,

allowing not only identification of the time scales of variability but also the variations in the time scales as a

function of time. This work uses wavelet analysis to determine the significant time scales of variability in

DLWallsky at Summit and to compare variability in the surface-based observations of DLWallsky and DLWclrsky

at Summit to that from ERA-Interim. The continuous wavelet transform is used. Details of the methodology

as applied here are discussed below, including assessing statistical significance of the variability and

uncertainty in the variance comparisons.

3.1. Determining Time Scales of Variability

Torrence and Compo [1998, section 7] outline seven steps for wavelet analysis using a discrete

approximation to the continuous wavelet transform. First, the Fourier transform of the discrete time series

(xn, where n is the time index) is computed. Here two time series are used: the DLWclrsky and the

DLWallsky. The time series are zero padded before the Fourier transform is performed (yielding x̂ k, where k is

the frequency index). In the second and third steps, the wavelet function and set of scales (s), which describe

the width of the wavelet in time, are chosen, and the normalized wavelet function [ψ(s,ω)] is created for

each s, as a function of angular frequency ω. In this work, scales from 0.25 (the smallest resolved period of 3

hourly averages) to 365 days are used. A variety of wavelet bases were tested, some that provide more

time precision and less frequency precision, and some the opposite, and it was found that the results were

qualitatively similar. The needs of this study required more frequency precision since we focus in part on

relatively large, continuous blocks of time (seasons, for example). Wavelets that enhance the information

content in the time domain tend to smooth out the scale-dependent features that are of interest here. The

Morlet wavelet was selected for analysis. The normalized Morlet wavelet is

ψ s;ωð Þ ¼ 2πs

δt

� �1=2

π�1=4H ωð Þexp � sω� ω0ð Þ2=2
h i

; (1)

where δt is the time step and H is the Heaviside step function. For the Morlet wavelet, the nondimensional

frequency (ω0) is set to 6, satisfying admissibility [Farge, 1992] and ensuring that s is very closely related to the

Fourier period in traditional Fourier spectral analysis [Meyers et al., 1993]; therefore, small scales represent

high frequencies (shorter periods), and large scales represent low frequencies (longer periods). In this work,

all scales are converted to the equivalent Fourier period.

In step 4, the wavelet transform is calculated according to

Wn sð Þ ¼
X

N�1

k¼0

x̂kψ
� sωkð Þexp iωknδtð Þ; (2)

where the parentheses represent functionality and the asterisk represents the complex conjugate. Wavelet

power, |Wn(s)|
2 [Torrence and Compo, 1998], will be referred to simply as “power” in the text.

Figure 1. Map of Greenland and vicinity. The contours show elevation
from ERA-Interim. The contour intervals are 100m for the large map and
10m for the inset map. The blue box illustrates the ERA-Interim grid box

surrounding Summit Station, which is denoted by the X.
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The times series used here were zero padded; convolution of the zero-padded time series with the wavelet

function (or multiplication in the frequency domain, as in equation (1)) weakens the signals near the edges of

the time series, extending them into the zero-padded region. Step 5 involves determination of this affected

region, termed the cone of influence (COI). The COI used here is a function of scale and follows that of

Torrence and Compo [1998]. Here we take this a step further and attempt to calculate the error in the variance

as a function of scale. Additionally, to investigate the sensitivity to our choice of edge treatment, we

compared the results using a time series that cuts off 24months after the beginning date (thus, assuming the

entire time series is periodic and padding is unnecessary). We found little sensitivity to the results using these

different edge treatments.

Step 6 is to plot the wavelet power spectrum as contours, as a function of time and period (corresponding to s),

to identify modes of variability.

The seventh step is to determine the 2.5% and 97.5% significance contours. Here the statistical significance

of the wavelet power is determined by comparing to a red noise background power spectrum, following

Torrence and Compo [1998], and is used to quantify the significant time scales of variability of the surface-

based observations (section 4.1.2).

An additional step that can be included is to reconstruct the time series from the wavelet-transformed data.

This is useful as a diagnostic and enables creation of time series including only certain scales.

3.2. Variance of a Reconstructed Time Series

Using an inverse wavelet filter, the original time series can be reconstructed from the transform or partially

reconstructed over scales of interest [Farge, 1992; Torrence and Compo, 1998]. Since the wavelet transform

used here is continuous, this reconstruction can be performed using a delta function [Farge, 1992] and is

given by Torrence and Compo [1998] as

x ’

n ¼
δjδt1=2

Cδψ0 0ð Þ
X

j2

j¼ j1

ℜ Wn sj
� �� �

s
1=2
j

; (3)

where the time series is reconstructed over the scale from s at index j1 through j2 (where the js are defined

such that sj≡ s0 2
jδj), Cδ is a wavelet-specific parameter, δj is a parameter associated with the iteration through s,

and ψ0(0) accounts for energy scaling. The values for these parameters were set for a Morlet wavelet (ω0=6)

as recommended by Torrence and Compo [1998] in their Table 2.

Following Torrence and Compo [1998], the variance of equation (3) can be reconstructed as

σ2M ¼ δj δt

CδN

X

M�1

n¼0

X

j2

j¼ j1

Wn sj
� �

�

�

�

�

2

sj
; (4)

where N is the length of the original time series. If M is set to N, then equation (4) gives the variance of the

reconstructed time series within the original bounds. Defining variance as a function of scale,

σ2j;M ¼ δj δt

CδN

X

M�1

n¼0

Wn sð Þj j2
sj

; (5)

allows for the calculation of the variance spread into the zero-padded region, which depends on sj, and

can be large when sj is large compared to the length of the time series. The dispersed variance can be

estimated by computing equation (5) twice, with M set alternatively to N and to the length of the zero-

padded times series, Np,

ρ2j ¼ σ2j;Np
� σ2j;N: (6)

For the DLWallsky ( DLWclrsky) time series used in this study, about 16% (22%) of the variance was distributed

outside of the original bounds of the time series; most of this dispersed variance (2/3) corresponds to variation

from the seasonal cycle, which has a period roughly half the length of the time series.

The continuous wavelet transform results in better scale representation and a smoothly varying transform

but also includes redundant information, which introduces a small amount of error into the reconstruction,
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even outside the COI. Torrence and Compo [1998] suggest ensuring that this error is small. The error, ε2,

associated with the reconstruction, is found as follows:

ε2 ¼ var xnð Þ � σ2Np
: (7)

Note that we use Np here to avoid including ρ
2 in the calculation of ε2. The reconstruction error (equation (7))

is <1.4% of var(xn) for each of the time series used in this study. Unlike the error in the COI, ε is assumed

to be relatively scale-independent and proportional to variance:

ε2j ¼ ε2
σ2j;Np

σ2Np

: (8)

By combining equations (5), (6), and (8), the variance of the reconstructed time series, as a function of scale

(represented by j), is related to the variance of the original time series, xn, by

X

J

j¼0

σ2j;N þ ε2j þ ρ2j ¼ var xnð Þ: (9)

3.3. Difference in Variance Between Two Reconstructed Time Series

Using equation (9), the difference in variance between two time series, an (ERA-interim) and bn (surface-based

observations), as a function of scale index j, can be represented as follows:

Δσ2j ¼ Δσ2j;N að Þ � Δσ2j;N bð Þ
h i

þ Δε2j að Þ � Δε2j bð Þ
h i

þ Δρ2j að Þ � Δρ2j bð Þ
h i

: (10)

To help understand equation (10), note that the total variance, over all scales, can be determined by summing

equation (10) over j. This is then comparable to the difference in variances between the original time series:

X

J

j¼0

Δσ2j ¼ var anð Þ � var bnð Þ: (11)

Note that equation (11) expresses a net difference because Δσj
2may include compensatory differences (it may

be positive at some j and negative at others), and therefore, the total difference can be found by summing over

the absolute value of Δσj
2, which will be greater than or equal to var(an)� var(bn).

3.4. Use of Wavelets in Reanalysis Evaluation

The primary diagnostic tool used for the reanalysis evaluation in this manuscript is to compare the partial

time series reconstruction (equation (3)) and the scale-dependent variance (equation (5)) between two data

sets (i.e., the surface-based observations and ERA-Interim) that independently estimate the same parameter

(i.e., DLW) at the same temporal resolution (i.e., 3 h averages). Comparisons are made in section 4.2.2 using

two metrics, the squared correlation coefficient r2 of the reconstruction x′n (equation (3)) and the scale-

dependent variance difference Δσj
2 (equation (10)). The values for the residual dispersed variance (Δρj) and the

reconstruction error (Δε2) are used to estimate uncertainty in the difference in variance. We also include an

estimate of the fraction in time of Δσj
2 that is under the COI when displaying results.

Statistical methods have been developed to identify significance in wavelet power relative to a specified null

hypothesis (indicating no statistical significance) [Torrence and Compo, 1998]. Statistical significance is not

applied in the evaluation. Instead, uncertainty is used (equations (6) and (7)) because wavelet parameters

and edge treatments are identical, so the differences between the time series are an accurate measure

within this uncertainty. Statistical significance against a discrete univariate lag-1 autoregressive red noise

background [Torrence and Compo, 1998, equation (16)] is applied to identify the significant time scales of

variability from the surface-based observations (section 4.1.2).

4. Results and Discussion

4.1. Downwelling Longwave Flux at Summit Station

In this section, the DLW at Summit is presented and discussed. In section 4.1.1, the distributions of the observed

DLW at Summit are analyzed and compared to ERA-Interim. The reasons for the differences between the
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surface-based observations and ERA-Interim are investigated. In section 4.1.2, the wavelet transform

(equation (1)) is used to identify significant time scales of variability in DLWallsky at Summit.

4.1.1. Distributions of DLW

Figure 2 shows the probability density functions (PDFs) of 3 hourly DLWallsky, DLWclrsky, and DLWcldforce at

Summit from surface-based observations and the ERA-Interim data set for all months, summer (June-July-

August (JJA)), winter (December-January-February (DJF)), spring (March-April-May (MAM)), and autumn

(September-October-November (SON)). Means, variances, differences in the means and variances, and

squared correlation coefficients are provided in Table 1. Also provided in Table 1 are the results of one-sample

a) All Months

d) Summer

g) Winter

j) Spring 

m) Autumn 

b) All Months

e) Summer

h) Winter

k) Spring 

n) Autumn 

c) All Months

f) Summer

i) Winter

l) Spring 

o) Autumn 

Figure 2. Histograms of the 3 h temporal resolution fluxes at Summit Station from surface-based observations (blue) and
ERA-Interim (red). (a, d, g, j, and m) The downwelling longwave all-sky flux (DLWallsky). (b, e, h, k, and n) The downwelling

longwave clear-sky flux (DLWclrsky). (c, f, i, l, and o) The downwelling longwave cloud radiative forcing (DLWcldforce).
The bin size is 4 Wm

�2
for DLWallsky and DLWclrsky and is 2 Wm

�2
for DLWcldforce. Figures 2a–2c are for all data,

followed by the following seasons: (Figures 2d–2f) summer (JJA), (Figures 2g–2i) winter (DJF), (Figures 2j–2l) spring (MAM), and
(Figures 2m–2o) autumn (SON).
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Student’s t tests for the mean of the differences in the PDFs against a null hypothesis of 0 (the differences are

assumed to be normally distributed). The t test results indicate that the biases between the observed and

ERA-Interim distributions in Figure 2 are statistically significant (P values<0.05, indicating very low likelihood

that the biases could occur by chance) with the exception of the DLWallsky in spring (P value of 0.7) and

the DLWclrsky in autumn (P value of 0.4). Results from two-sample Kolmogorov–Smirnov (Dks) tests are also

provided. The Dks indicates the differences in the distributions that can arise from differences in means,

variances, median, or shape of the PDFs and is a nonparametric test that makes no assumptions about the

shape of the distributions.

The shape of the PDF of DLWallsky (Figure 2a) appears to be reasonably well matched by ERA-Interim, with a

single mode near 155Wm�2 and a skew toward higher values. However, ERA-Interim has slightly more values

near the mode and fewer at high values, and therefore, the PDFs are different statistically (Dks=0.0605). The

similarity of the shape of the PDFs is qualitatively comparable to that previously seen between ERA-Interim

and observed DLWallsky at Barrow and Eureka [Cox et al., 2012], but the DLWallsky PDF shown here is shifted

to lower fluxes by about 50Wm�2 compared to those locations. Furthermore, the DLWallsky at Barrow and

Eureka were bimodal; of the two modes, there was a larger peak corresponding to clear sky and optically

thin clouds at Eureka and a larger peak corresponding to optically thick clouds at Barrow [Cox et al., 2012,

Figure 9]. At Summit, there is a suggestion of a small second maxima at ~250Wm�2, but overall one broad

mode is apparent. Thus, Summit represents a third typology with a single mode in DLWallsky. The surface-based

observations exhibit a bimodal distribution in summer (Figure 2d); this characteristic is not represented by

ERA-Interim. In other seasons (Figures 2g, 2j, and 2m), DLWallsky is not bimodal, and ERA-Interim better captures

the PDF shapes.

The comparison between ERA-Interim DLWclrsky and surface-based observations is shown in Figure 2b.

Qualitatively, this distribution is well represented by ERA-Interim, but like DLWallsky, it is different statistically from

the surface-based observations at the 5% significance level (Dks=0.0285). The PDF is bimodal with a summer

mode at higher values and a winter mode at lower values (the seasonal separation can be seen by comparing

Figures 2e and 2h). Similar to the findings at Eureka of Cox et al. [2012] (for temperature and humidity) and

Cox et al. [2014] (for cloud ice fractions and optical depths), this likely represents two distinct states in the

Summit meteorology that are separated due to a very strong annual cycle. The mean difference (bias) between

ERA-Interim DLWclrsky and surface-based observations is small (Table 1), especially considering the limitations

of the ERA-Interim elevation model and near-surface air temperatures noted earlier (see section 2.3).

Table 1. Surface Observations and ERA-Interim Comparison: Summary Statistics
a

Surface Observations ERA-Interim Difference: ERA-Interim� Surface Observations

Mean (Wm
�2

) Var. (Wm
�2

)
2

Mean (Wm
�2

) Var. (Wm
�2

)
2

r
2

ME (Wm
�2

) σ (Wm
�2

) K–S Dks (p) t Statistics (p)

DLWallsky 174.2 3149.3 166.6 2769.5 0.8 �7.5 24.9 0.0605 (<0.01) 24.1 (<0.01)

Summer (JJA) 221.3 2081.3 211.9 1565.7 0.59 �9.4 29.6 0.1565 (<0.01) 14.14 (<0.01)

Winter (DJF) 139.8 1706 126.8 1157.3 0.74 �13 21.2 0.172 (<0.01) 23.38 (<0.01)

Autumn (SON) 172.7 2399.1 165.3 2297.4 0.77 �7.4 24 0.0694 (<0.01) 11.75 (<0.01)

Spring (MAM) 146.5 1842.3 146.7 1737.2 0.79 0.2 20.2 0.0245 (0.766) 0.333 (0.739)

DLWclrsky 135.7 1125.7 136.1 1188.5 0.97 0.9 5.6 0.0285 (0.011) 12.78 (<0.01)

Summer (JJA) 171.9 341.4 174.4 312.4 0.89 2.47 6.1 0.0991 (<0.01) 18.02 (<0.01)

Winter (DJF) 105.5 271.3 104.6 268.3 0.93 �0.86 4.27 0.0552 (0.023) 7.625 (<0.01)

Autumn (SON) 132.4 584.9 132 623.4 0.94 �0.47 6.2 0.0337 (0.376) 2.879 (<0.01)

Spring (MAM) 118 574.8 119.9 609.1 0.97 1.87 4.58 0.0543 (0.025) 15.66 (<0.01)

DLWcldforce 39 989 30.6 660.3 0.46 �8.4 23.6 0.1482 (<0.01) 28.55 (<0.01)

Summer (JJA) 49.4 1187.6 37.5 780.8 0.38 �11.9 28 0.2398 (<0.01) 18.85 (<0.01)

Winter (DJF) 34.3 829.6 22.2 448.1 0.49 �12.1 20.5 0.1954 (<0.01) 22.53 (<0.01)

Autumn (SON) 40.3 912 33.4 701.3 0.48 �6.9 22.5 0.1257 (<0.01) 11.71 (<0.01)

Spring (MAM) 28.5 680.3 26.8 513.7 0.51 �1.69 18.6 0.0632 (<0.01) 3.481 (<0.01)

a
Summary statistics for the comparison between ERA-Interim longwave fluxes interpolated to Summit and the surface-based observations measured at Summit

from July 2010 through August 2012. DLWallsky is the downwelling longwave all-sky flux, DLWclrsky is the downwelling longwave clear-sky flux, and DLWcldforce is
the downwelling longwave cloud radiative forcing. ME =mean error, σ = standard deviation. Negative MEmeans ERA-Interim biased low relative to the surface-based
observations. K–S is the two-sample Kolmogorov–Smirnov statistics, Dks; the t test is a one-sample test for ERA-Interim minus surface-based observations differences
against the null hypothesis that themean = 0. Statistically significant results at the 5% significance level are highlighted in bold, and P values are shown in parentheses.
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Despite the statistically significant biases in ERA-Interim DLWclrsky distributions, the statistics in Table 1

indicate that the representation of DLWclrsky in ERA-Interim is considerably better than for the DLWallsky:

DLWclrsky is better correlated with surface-based observations and has lower mean bias and standard

deviation (Table 1). Thus, the differences between the surface-based observations and ERA-Interim DLWallsky

are primarily associated with the representation of clouds. Comparing the DLWcldforce highlights these

differences (Figure 2c). Unlike the DLWallsky, the DLWcldforce distribution derived from the surface-based

observations is bimodal. Clear-sky conditions form a peak around zero (within the uncertainty of the

measurement); a second peak appearing that is likely due to warmer, thicker clouds, and intermediate values

is likely associated with either optically thin clouds, which have much more variable radiative characteristics

[Turner, 2005; Stramler et al., 2011; Cox et al., 2012, 2014], or a mixture of clear and cloudy periods averaged

together over the 3 h period. (See Cox et al. [2014] for a discussion of the relationship between cloud optical

thickness and DLWcldforce.) Stramler et al. [2011] refer to this bimodal nature of the Arctic atmosphere as

radiatively clear and opaquely cloudy. However, note that for this time period at Summit, the frequency of

clouds between the radiatively clear and opaquely cloudy states is large compared to the frequencies at the

two modes, especially in winter, spring, and autumn (Figures 2i, 2l, and 2o), suggesting that there are many

cases that fall in between radiatively clear and opaquely cloudy states. This implies that the intermediate

state is not necessarily representative of a transition state at Summit, as was postulated by Stramler et al.

[2011] for winter clouds over the Arctic Ocean. In fact, the Summit summer most closely represents the winter

states described by Stramler et al. [2011]. This is likely due to the generally colder and drier conditions at

Summit relative to lower altitude locations in closer proximity to the Arctic Ocean, which may limit the

occurrence of the thickest clouds. The opaquely cloudy mode in DLWcldforce is not present in winter or spring,

although some opaquely cloudy cases do exist (Figures 2i and 2l). ERA-Interim includes a larger frequency of

intermediate and low DLWcldforce values, particularly for clear states (DLWcldforce near 0Wm�2), and a smaller

frequency of large DLWcldforce values, compared to the surface-based observations. Thus, the mean

DLWcldforce is smaller in ERA-Interim, which also explains the low bias in the DLWallsky (Table 1). The

overestimation of the frequency of thin clouds occurs primarily in summer when the surface-based

observations more clearly exhibit the radiatively clear and opaquely cloudy states. ERA-Interim does not

show the opaquely cloudy mode in summer (Figure 2f). ERA-Interim represents the DLWcldforce best in spring,

possibly due to a relative lack of thick clouds. In winter and autumn, ERA-Interim has few clouds with

DLWcldforce > 80Wm�2 (the thickest clouds), but the surface-based observations indicate many clouds with

DLWcldforce > 80Wm�2. In all seasons, especially winter and autumn, ERA-Interim has more clear states

(~0Wm�2) than the surface-based observations.

4.1.2. Significant Time Scales of Variability

The significant time scales of variability in DLWallsky at Summit are investigated in this section. They comprise

a substantial portion of the observed variance spectrum compared to the distribution expected from red

noise (see section 3.4).

Figure 3a shows the wavelet power spectrum of anomalies of DLWallsky from surface-based observations

(scales 0.25–128 days). Regions with power that are significant at the 95% confidence level are outlined in

black, indicating the time scales of variability that have amplitudes that are significantly larger than expected

from red noise. These regions may indicate time scales over which transitions between clear and cloudy

states occur or transitions between relatively warm and moist and cold and dry air masses. Note that since

the time series in this study are relatively short, statistically significant features may still represent stochastic

fluctuations and not have climatological significance. Anomalies are used because variability at large periods

is associated with the seasonal cycle. The anomaly time series were created by subtracting a least squares

fit to the first three harmonics of the seasonal cycle. This is necessary for statistical testing against the null

hypothesis of red noise. Since the time series is relatively short, the properties of the seasonal cycle are

not well defined. This may cause some uncertainty in the statistical testing but does not affect the wavelet

transform because the high-frequency variability is independent of the first three harmonics.

As seen in Figure 3a, low-frequency (>~32 days) variability is significant from the late autumn through early

spring in both years. Higher-frequency (16–32 days) variability is important during much of the year but

not late summer. There is relatively little significant variability between periods of 6 and 12days throughout

the record, indicating that at these time scales, variability is consistent with what is expected from red noise.
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A qualitatively similar figure is produced when the ERA-Interim time series is transformed (Figure 3b). The

main difference between Figures 3a and 3b is the regions of the power spectrum identified as significant. For

ERA-Interim, statistically significant variability is mostly between periods of 0.5 and 4 days. This is due

to differences in the lag-1 autocorrelation of the two time series, which was used to determine the red noise

process. The autocorrelation functions of the anomaly time series are discussed in section 4.2.1.

Some of the most interesting features that appear in Figure 3 are the extended clear-sky periods that occur

throughout the year (e.g., December 2011). These features appear as vertically elongated regions of low

Figure 3. (a) The wavelet power spectrum of the downwelling longwave all-sky flux (DLWallsky′) anomalies from the

surface-based observations for periods between 0.25 and 128 days (center). The prime indicates that the time series is
an anomaly. (b) Similar to Figure 3a but for DLWallsky′ anomalies from ERA-Interim. The first three harmonics were removed
from the time series (Figures 3a and 3b, top) to compute anomalies before the wavelet transformwas performed. The time-

averaged wavelet power spectrum is shown in the panel to the right; the dashed line indicates the 95% significance level.
The white curves show the cone of influence; below this line edge effects are important. The dark red contours indicate

high power, and the blue contours indicate low power; high power significant to the 95% level is marked by black contours.
The color scale is the log10 of the wavelet power and has the same limits in both Figures 3a and 3b.
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power. They are characterized by a lack of

power at time scales with periods smaller

than the duration of the event, which

suggests that clouds (even thin clouds)

are not present during these times. The

period of these features is similar to the

duration of the event (the Morlet wavelet

provides similar precision in both the time

and frequency domains); for example, in

December 2011, the clear-sky time lasted

approximately 10 days, and the low-power

region extends from the periods of 0.25 to

8 days. These features typically last from

1day to 1week and are generally well

represented by ERA-Interim. In contrast to

low-power features, which are found at

relatively high-frequency variability, high-

power, significant features (black contours)

are evident at many time scales. These

are more likely to be associatedwith clouds

because there is a high variability in

DLWallsky during cloudy times and during

transitions between clear and cloudy skies.

Figure 4 shows the time-averaged power

spectra from surface-based observations

of DLWallsky for each of the four seasons

(JJA, SON, DJF, and MAM) and for the

whole time series. (The black line in the figure, representing all months, is the same as the average power

spectrum in Figure 3a (right).) A 2.5%–97.5% confidence interval about the red noise spectrum based on

the overall time series is also shown as a gray-shaded region (power should be interpreted as significant

compared to the overall time series when it extends above or below the gray-shaded region, but note that

the confidence interval differs from the significance level shown in Figure 3). Power is significantly lower

than expected (i.e., lower than for red noise) for periods of 5 to 8 days for all months, but the range of the

periods corresponding to this deviation varies with season. The smallest ranges occur for the transition

seasons: autumn (2–8 days) and spring (4–9 days), while the largest ranges occur during winter (5–17 days)

and summer (5–8 and 12–18 days). Each of the seasons has a peak in power in the 10 to 14 day time scale

(note that these peaks are not statistically significant at the 95% confidence interval except in spring); slight

differences in the time scale of these peaks and relatively large differences in themagnitudes of the power may

suggest seasonality. In spring, most of the short-term high power is encompassed in a prominent 14day period.

High power in all seasons except autumn occurs between periods of 21 to 28days. Summer is the only season

with a significant peak near the synoptic scale, at approximately 3 days.

4.2. ERA-Interim Evaluation

In this section, the DLW from ERA-Interim is evaluated using wavelet analysis as described in section 3 and

using other statistics. In section 4.2.1, the autocorrelation functions of the two DLWallsky time series are

compared to set an expectation for the spatial-temporal relationship between the point observations and the

gridded data. In section 4.2.2, the evaluation using wavelet analysis is presented.

4.2.1. Autocorrelation Functions

Autocorrelation functions represent system “memory”; that is, the amount by which the system state at time t0
influences a subsequent time t0+ τ. To highlight the differences between theDLWallsky estimates fromERA-Interim

and the surface-based observations, Figure 5 shows the autocorrelation function for the lags from 0.125days

to 6days—48 total lags—for both the anomaly time series of surface-based observations and ERA-Interim (recall

that the ERA-Interim data are linearly interpolated to Summit). Again, the first three harmonics of the seasonal

cycle were removed from each time series to construct anomalies that emphasize weather-related variability.

Figure 4. Average power spectra for the downwelling longwave all sky-
flux (DLWallsky) from the surface-based observations computed using
the wavelet transform. Periods between 0.25 and 64 days are shown.

A 95% confidence interval (2.5% to 97.5%) is shown in gray (see text for
details). The inset shows an expanded view of periods smaller than 4 days.
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Autocorrelation drops off at a rate

consistent with red noise in the surface-

based observations for approximately

the first 4 lags (0.5 days) before persisting

above expected lag-1 autoregressive

red noise. For lags of less than 3 days,

the memory in the ERA-Interim data is

retained longer than the surface-based

observations, but less than the red noise

expectation from its lag-1 autocorrelation

(dashed line), and it only persists above red

noise after the 3 day lag time. The ERA-

Interim autocorrelation function converges

with the surface-based observations at lags

between 2 and 4days before diverging

slightly again. Recall that differences in the

lag-1 autocorrelation are responsible for

the differences in red noise background

spectra that were used to identify statistical

significance in Figures 3a and 3b.

The increased memory in ERA-Interim

over short time periods compared to

the surface-based observations may be

associated with the coarse spatial footprint

that cannot resolve local variability and

therefore is primarily influenced by larger

scale, more slowly varying time scales.

For example, a horizontal transect across the ERA-Interim 0.75° grid pixel is on the order of 100 km. If the

surface wind speed is assumed to be between 1m s�1 and 15m s�1 [Shupe et al., 2013], then the time for a

parcel of air to cross the pixel is between 2 to 28 h, or roughly on the order of 0.5 days. This corresponds

approximately to the lag time of the peak in the differences between ERA-Interim and the surface-based

observations at ~0.5 days (black line in Figure 5).

4.2.2. Wavelet-Based Comparison

Figure 3 showed that the wavelet power spectra of the DLWallsky from ERA-Interim and the surface-based

observations were qualitatively similar. However, the variance of the ERA-Interim DLWallsky time series is

~12% less than the observed DLWallsky (Table 1). To determine the time scales that contribute to this difference

(that is to quantify the differences between Figures 3a and 3b), we use the wavelet analysis described in

section 3. As ERA-Interim and the surface-based observations represent the same realization of the signal,

differences at all time scales are important, regardless of whether or not the time scales are statistically

significant compared to the null hypothesis.

Thewavelet-based comparison between ERA-Interim and the observed fluxes is shown in Figure 6. All 26months

of the study period are included in Figure 6a. Figures 6b–6e show the results for individual seasons.

Anomalies are not used here because statistical significance against red noise is not applied. The seasons are

classified into 3month groups (as in Figure 4) so that the relative magnitudes of the time scale-dependent

reconstructed variance, Δσj
2, can be more easily compared. Note that three Julys and three Augusts

are represented in the 26month time series, but only two each for all additional months; therefore,

a disproportionately large amount of the total variance from Figure 6a is contained in Figure 6b compared

to Figures 6c–6e. Recall from equation (11) that the sum over all Δσj
2 is equal to the difference in variance

between the two original time series. Figure 6 shows that there are compensatory biases in Δσj
2 so that the

net variance difference between the time series underestimates the actual differences between the time

series. The integrated variance differences (summing over the absolute value in equation (11)) are actually

about 25% greater for DLWallsky and 87% greater for DLWclrsky.

Figure 5. Autocorrelation functions as a function of lag from the down-

welling longwave all-sky flux (DLWallsky) time series (8 times daily) plotted
for lags out to 6 days (48 lags) for the surface-based observations (blue)

and ERA-Interim (red). For each time series, the first three harmonics of
the seasonal cycle were removed before the autocorrelation function
was calculated. The dashed lines show the expected autoregressive

red nose calculated from the lag-1 autocorrelation coefficient, which
is estimated by combining the sample lag-1 (α1) and the lag-2 (α2)
coefficients following Torrence and Compo [1998] as α1 þ

ffiffiffiffiffi

α2
p� �

=2.

The black line shows the difference between the autocorrelation functions
(ERA-Interim minus surface-based observations).
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At all times of the year, the correlation is near zero at periods from 0.25 to 0.5 days, then increases rapidly before

stabilizing at high correlations (very close to 1) at periods near 2–6 days. This may represent the transition

from local variability to time scales that represent spatial scales that can be resolved by ERA-Interim. These

periods are consistent with the lags before the autocorrelation functions converge (Figure 5). The correlation

stabilizes at smaller periods and to higher values in winter and spring compared to summer and autumn.

DLWallsky correlations are consistently lower than DLWclrsky because of the additional uncertainty from clouds

in ERA-Interim. In summer, there is an increase in correlation at a period of 1 day, corresponding to a good

representation of the diurnal cycle.

Time scales varying over period<1day are difficult to identify with the 3h temporal resolution utilized in this study,

and there is less signal to noise. For these periods, the correlation between ERA-Interim and surface-based

observations approaches zero. However, this is not an artifact of the wavelet analysis or uncertainty in the

observations as the correlation between the independent DLWallsky surface-based observations (AERI and

pyrgeometer) remains >0.85 (see Text S2 in the supporting information). From Figure 6a, the Δσj
2 for

DLWallsky (green line) reflects the finding that ERA-Interim typically underestimates the variance contributed

by clouds. We conclude this because the Δσj
2 for DLWclrsky (blue line) is near 0, consistent with the

comparisons in section 4.1.1 and Figure 2. This is true even at short time scales, suggesting that the

discrepancy arises from the forecast model. About 41% of the absolute value of Δσj
2 in DLWallsky between

ERA-Interim and the surface-based observations is confined to periods less than 6 days when the correlation

Figure 6. Squared correlation coefficient (r
2
) as a function of period calculated between the time series of flux from

surface-based observations and from ERA-Interim reanalysis data (dashed lines; y axes on the left column). Parameter r
2

is shown for the downwelling longwave all-sky flux (DLWallsky, green) and the downwelling longwave clear-sky flux

(DLWclrsky, blue) for (a) all times, (b) summer, (c) winter, (d) autumn, and (e) spring. Also shown are the variance differences
(∆σ

2
; solid lines; y axis on the right column), as ERA-Interim minus surface-based observations, for both DLWallsky and

DLWclrsky. The x axes are periods (on a log2 scale for readability). The gray scale shows the percentage of the time series at
each scale influenced by edge effects (see text for a detailed description of the parameters and uncertainties).
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is also low. The remaining 59% of the absolute value of Δσj
2 is spread over longer time scales where the

correlation is high, and we expect that most variability does not arise from local processes. Seventeen percent of

the absolute value of DLWclrsky Δσj
2 is also found between 6days and 90days (75% >90days, 8% <6days).

The two remaining features in Δσj
2mark the semiannual and annual time scales at 16% and 8%, respectively,

for the DLWallsky. The width of the analyzing wavelet at these scales is large enough that edge effects are

important, but note that edge effects are mostly subtractive. The errors are also observable in the raw data;

smoothing the difference between the original time series (i.e., ERA-Interim minus surface-based observations)

reveals periodicities at approximately 180days in the DLWallsky and 365days in the DLWclrsky with amplitudes

of 5 to 10Wm�2. Further examination of these features shows that the semiannual cycle in ERA-Interim is

smaller than the surface-based observations, although the phasing is accurate (note that the correlation is high

for these periods). The difference in the semiannual cycle is due to an underestimation of the cloud response

to the semiannual cycle in ERA-Interim because this cycle is well represented by the ERA-Interim DLWclrsky,

but not DLWallsky. The annual cycle in the DLWclrsky is where most of the Δσj
2 in DLWclrsky occurs; the DLWallsky

annual error is affected by this and shows a similar feature. The shift in the location of the DLWallsky annual cycle

Δσj
2 peak to a period smaller than 365days may be an artifact of edge effects. However, differences in the

seasonal representation of clouds in ERA-Interim could also produce this result by causing a phase shift in

the seasonal cycle when compared to the surface-based observations. For both the DLWallsky and DLWclrsky, the

differences in the annual cycle are positive (ERA-Interim has more variance), whereas most of the differences at

other periods are negative.

We performed a sensitivity study to determine the influence that grid spatial resolution has on the results

and found that the correlations are not sensitive to grid resolution, but the bias increases with coarser grid

resolution. The sensitivity study is described in Text S1 in the supporting information.

In summary, the wavelet analysis shows that the Δσj
2 for periods smaller than the semiannual cycle,

ERA-Interim generally underestimates the cloud radiative impact, most in summer and least in spring.

The exception is autumn when ERA-Interim overestimates the cloud radiative impact at periods of

approximately 6 days and 28 days.

4.3. Spatial Distribution of DLWcldforce Across the GrIS

In this section, the spatial distribution of DLWcldforce from ERA-Interim is analyzed in the context of the results

from the previous sections. A sensitivity studywas performed to determine how the results from the comparison

at Summit may be extended for interpretation at other locations on the GrIS. The sensitivity study is

described in Text S2 in the supporting information.

Figure 7 shows the average DLWcldforce across Greenland from ERA-Interim for all months and for each

season. (Note that due to the characteristics of the DLWcldforce distributions, as shown in Figure 2, the

average value does not necessarily coincide with the modal value). There are distinct patterns in the spatial

distribution of DLWcldforce across the GrIS and noticeable differences in the patterns between seasons.

In general, lower values shift from the northern GrIS in winter to the east in summer. In each season,

the location of Summit (denoted with an “X”) lies in a transition zone between relatively high DLWcldforce

and relatively low DLWcldforce. Starkweather [2004] also reported that Summit was positioned in a meridional

transition zone for the net radiative effect of clouds, but Figure 7 indicates that this zone is spatially complex

with respect to DLWcldforce.

The spatial characteristics in all seasons appear closely tied to the topography of the ice sheet. Low values

wrap around the edges of the north and east slopes. Higher values in the southeast appear in the relatively

low elevation region (saddle) between the north and south domes in all seasons except summer. The annual

average pattern (Figure 7a) corresponds closely to the pattern of annual average precipitation reported by

Ohmura and Reeh [1991] if DLWcldforce is assumed to be positively correlated with precipitation. The fetch of air

may be an important driver for the spatial pattern of DLWcldforce, producing orographic effects that may explain

the higher DLWcldforce on the windward (western) side and lower DLWcldforce on the leeward (eastern) side.

Further investigations of winds at the cloud level are needed to confirm this, but it is consistent with the

findings of Ohmura and Reeh [1991] who found a strong zonal gradient in summer with southwesterly 850mb

winds transecting the GrIS. Ohmura and Reeh [1991] also report a strong component of southeasterly winds

traveling up the GrIS through the saddle in winter.
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To better understand the representation of the thick clouds and thin clouds across the GrIS, fractional

occurrence of DLWcldforce was calculated for two categories of DLWcldforce based qualitatively on Figure 2c,

intermediate values (20Wm�2<DLWcldforce< 50Wm�2) and high values (DLWcldforce> 50Wm�2). Recall

that intermediate and high values likely correspond to optically thin (or averages of clear and cloudy conditions

over the 3 h period) and optically thick clouds, respectively. The results are shown in Figures 8 and 9. (Note that

some of the smaller-scale variability in Figures 8 and 9 is nonphysical and appears to reflect the pattern of

the grid. We believe that this nonphysical smaller-scale variability is associated with the net clear-sky longwave

flux field, LWclrsky, that was used to derive DLWcldforce from ERA-Interim, described in section 2.3 and that it

is accentuated by category averaging in Figures 8 and 9). In general, ERA-Interim shows more intermediate

DLWcldforce occurrences over the central ice sheet in the region near Summit (~30–35% of time) and fewer

around the periphery (<25%), suggesting that orographic effects may influence the preference for thin clouds

(Figure 8). In winter and spring when the higher frequencies of intermediate DLWcldforce are measured over

Summit by both ERA-Interim and surface-observations, the higher frequencies are also found closer to the

southwest coast as opposed to the north and northwest, as in summer and autumn.

The spatial patterns of thick clouds (Figure 9)more closely resemble the spatial patterns of the average DLWcldforce

(Figure 7), in particular to the north and east where relatively few occurrences of high DLWcldforce (likely thick

clouds) appear. In summer, there is a high frequency of high DLWcldforce values over the northwestern GrIS,

      a) All Months

      b) Summer (JJA)       d) Autumn (SON)

      c) Winter (DJF)       e) Spring (MAM)

Figure 7. The average downwelling longwave cloud radiative forcing (DLWcldforce) across Greenland for the July 2010
through August 2012 time period derived from ERA-Interim. Summit is marked with an X.
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and Summit is situated at the edge of this feature. The transition between these locations corresponds to the

dominant summer southwesterly wind patterns reported by Ohmura and Reeh [1991]. The actual frequency

of large DLWcldforce at Summit is higher than is estimated by ERA-Interim, so it is likely that this feature spreads

farther to the east than shown by ERA-Interim. In winter, and to some extent spring when ERA-Interim more

accurately captures the frequency of high DLWcldforce at Summit, the transition zone has a weaker gradient

across the central GrIS. Summit resides in the transition zone in autumn when the gradient is very strong.

5. Conclusions

In this study, we investigate the downwelling longwave flux (DLW) over Summit Station, Greenland, and

across the Greenland Ice Sheet (GrIS). We utilize observations of all-sky DLW (DLWallsky) and calculations of

downwelling longwave clear-sky flux (DLWclrsky) based on radiosonde observations and a radiative transfer

model. Downwelling longwave cloud radiative forcing (DLWcldforce), defined as DLWallsky�DLWclrsky, is also

used. These are compared to the same fluxes from the ERA-Interim reanalysis for the study period of July

2010 through August 2012. An analysis of the DLW observations at Summit as well as an evaluation of the

DLW in ERA-Interim are conducted using time-frequency decomposition (wavelet analysis), providing a more

comprehensive approach that complements the basic statistical comparisons presented. By separating out

      a) All Months

      b) Summer (JJA)       d) Autumn (SON)

      c) Winter (DJF)       e) Spring (MAM)

Figure 8. Fractional occurrence (in time) of intermediate downwelling longwave cloud radiative forcing (DLWcldforce)
(“intermediate” defined as 20m

�2
<DLWcldforce <50Wm

�2
) across Greenland for the July 2010 through August 2012

time period derived from ERA-Interim. Summit is marked with an X.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD021975

COX ET AL. ©2014. American Geophysical Union. All Rights Reserved. 12,333



individual time scales of variability, this approach allows for these time scales to be examined separately.

It therefore offers a way to examine some of the reasons for the differences between ERA-Interim and

the surface-based observations. The evaluation and analysis are presented in parallel, providing mutually

informative perspectives.

Using wavelet analysis, significant time scales of variability in DLWallsky are identified at Summit. Synoptic-scale

variability is generally not significant except in summer. Low-frequency variability (>2weeks) is significant

in all seasons. A shift in the low-frequency variability from 2months to 2–4weeks is seen as part of the

seasonal shift from winter to summer. Power at periods between 6 and 12 days is lower than would be

expected from the linearly damped, stochastically driven process of red noise calculated from the lag-1

autoregressive parameter. One mechanism for this is that 6 to 12 day variations of warm/moist/cloudy and

cold/dry/clear conditions are relatively weak. Notably, there is a lack of significant high-frequency variability

in the transition seasons, and variability may be acting over many time scales during these seasons. There

is relatively little significant power beyond red noise at any of the time scales of variability between 8 and

64 days in autumn, suggesting that red noise is a good description of the variability for those time scales

during that season. Spring is dominated by a strongly significant time scale of approximately 14 days,

suggesting that episodes of clouds and episodes of clear sky persist for relatively long stretches of time in

      a) All Months

      b) Summer (JJA)       d) Autumn (SON)

      c) Winter (DJF)       e) Spring (MAM)

Figure 9. Fractional occurrence (in time) of the large downwelling longwave cloud radiative forcing (DLWcldforce) (“large”

defined as DLWcldforce >50Wm
�2

) across Greenland for the July 2010 through August 2012 time period derived from
ERA-Interim. Summit is marked with an X. The dark red regions are fractional occurrences >0.5.
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spring. Many of these features are represented by ERA-Interim, and in fact, the wavelet power spectrum of

DLWallsky in ERA-Interim is qualitatively similar to the wavelet power spectrum from observations made at

Summit. However, due to a larger lag-1 autocorrelation, statistical significance against a background of red

noise is generally confined to periods between 0.5 and 4 days in ERA-Interim.

DLWclrsky is reasonably well represented by ERA-Interim despite the fact that no surface-based observations

over the GrIS were assimilated into the reanalysis during the study period. Overall, ERA-Interim underestimates

the frequency of high DLWcldforce (likely optically thick clouds) and overestimates the frequency of clouds

contributing to intermediate DLWcldforce (likely corresponding to optically thin clouds or variations of clear and

cloudy conditions during the 3h averaging period). The overestimation of intermediate values occurs mostly

in summer, but the underestimation of large values occurs throughout the year. This results in an overall low

bias in DLWallsky and DLWcldforce. The bias is mostly independent of time scale, so we propose that it is either

due to cloud generation processes in ERA-Interim or persistent errors in the spatial positioning of air masses.

As the DLWclrsky is reasonably well represented by ERA-Interim, it is more likely the former.

The cloud response to the semiannual cycle is also underestimated by ERA-Interim, but the DLWclrsky annual

cycle (thus also the DLWallsky annual cycle) is overestimated. Caution should be taken in interpreting the results

of the semiannual and annual cycles in the study because of the influence of edge effects in the wavelet

comparison. At shorter time scales, most periods show less variance in ERA-Interim. The lower variance

corresponds to weaker amplitudes from transitions between warm/moist/cloudy and cold/dry/clear skies in

ERA-Interim. Since the clear-sky component (DLWclrsky) of the DLWallsky is well represented by ERA-Interim, this

result can be interpreted as corresponding to the low bias from clouds (DLWcldforce) that was first identified

through basic statistical comparisons in section 4.1.1. The main exception to the low bias occurs in autumn

when variance at periods of ~1week and 4weeks is overestimated. This autumnal high bias may be associated

with fluctuations in the stronger gradient in cloud properties across the transition zone near Summit during

autumn compared to other seasons (Figure 8d), whereby ERA-Interim represents the location of Summit as

being cloudier and more like the atmosphere to the south of Summit (Figure 8d) than is measured.

Time series reconstructions of the surface-based observations and ERA-Interim are highly correlated (>0.8)

for longer time scales (>4 days), but correlations drop to near 0 at time scales less than ~4 days. The low

correlations are likely associated with differences in the spatial resolutions of the data sets, which are more

influential for short time scales. All of the time scales operate together in concert, so over the course of short

time periods (e.g., 1 day), the time series of DLW in ERA-Interim generally follow the evolution of the signal

measured at the surface. The wavelet comparisons show that this is driven mostly by time scales of variability

operating on periods greater than 4 days. Thus, variations over shorter periods should not be expected to

be accurately represented over the GrIS in ERA-Interim. This does not imply that the reanalysis cannot

determine the surface energy budget correctly. Unbiased yet uncorrelated high-frequency variability could

still yield an unbiased estimate of the surface energy budget in much the same way that this is possible with

measurements averaged over time.

Recent research has confirmed that a major contributor to DLWcldforce in the Arctic, liquid water in mixed-

phase and liquid-only clouds, is being underestimated by ERA-Interim at Summit [Bennartz et al., 2013].

Therefore, it is likely that the biases in cloud liquid water content are closely tied to the biases in DLW shown

in this paper. However, biases in clouds from models have also been tied to errors in the surface-based

temperature inversion [Pithan et al., 2013]. Further investigations are needed to see if the DLW biases in

ERA-Interim highlighted in this work could be tied to other biases, such as low-level stability. If the source of

the ERA-Interim error is related to larger spatial scale dynamics or low-level stability, the assimilation of

radiosondes launched from Summit may be sufficient to correct the problem, and future comparisons using

reanalysis data that include assimilations from Summit can assess this.

An analysis of the spatial distribution of DLWcldforce over the GrIS from ERA-Interim revealed that Summit is

located in a narrow transition zone of cloud radiative effects. Typically, lower DLWcldforce occurs to the north

and east, while higher DLWcldforce occurs to the southeast over the saddle between the north and south

domes. The orientation of the transition zone is seasonally dependent and most complex in autumn when

ERA-Interim exhibits competing biases in the cloud variability at different time scales. If clouds are indeed

thinner (or clear sky dominates) over the north and eastern regions of the GrIS, ERA-Interimmay be expected
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to perform better in those locations. The spatial patterning is also more closely controlled by the occurrence

of high DLWcldforce than intermediate DLWcldforce. Orographic influences may be associated with the high

frequency of thin clouds in ERA-Interim over the high elevations of the ice sheet. The pattern in high DLWcldforce

corresponds to previous research of the 850mb wind direction and precipitation by Ohmura and Reeh [1991].

Future research should identify connections between these processes and the transition zone if they exist.
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