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Abstract
Pattern-based classification was originally proposed to
improve the accuracy using selected frequent patterns,
where many efforts were paid to prune a huge number
of non-discriminative frequent patterns. On the other
hand, tree-based models have shown strong abilities
on many classification tasks since they can easily build
high-order interactions between different features and
also handle both numerical and categorical features
as well as high dimensional features. By taking the
advantage of both modeling methodologies, we propose
a natural and effective way to resolve pattern-based
classification by adopting discriminative patterns which
are the prefix paths from root to nodes in tree-based
models (e.g., random forest). Moreover, we further
compress the number of discriminative patterns by
selecting the most effective pattern combinations that
fit into a generalized linear model. As a result, our
discriminative pattern-based classification framework
(DPClass) could perform as good as previous state-of-the-
art algorithms, provide great interpretability by utilizing
only very limited number of discriminative patterns,
and predict new data extremely fast. More specifically,
in our experiments, DPClass could gain even better
accuracy by only using top-20 discriminative patterns.
The framework so generated is very concise and highly
explanatory to human experts.

1 Introduction
Various algorithms and models have been introduced for
classification. Generalized linear classification models,
such as support vector machine [25] and logistic regres-
sion [12], usually have reasonably good performance but
lack of the power of modeling complex high-order in-
teractions between features. Tree-based models, such
as random forest [1] and gradient boosted trees [11],
have been deployed in many practical settings and of-
ten achieved high accuracy, because the high model
complexity of trees provides the chance of high-order
combinations of different features. Neural network is

another kind of powerful classifiers, especially in image
classification problems [14], which models nonlinear re-
lationship among features and usually performs with
high prediction accuracy. However, in real world ap-
plications, many people favor generalized linear models
instead of complex models, including trees and neural
networks, as long as the accuracies are enough in prac-
tice, because they are mature, flexible, more efficient
when making prediction, and easier to be understood
by providing probabilistic interpretation [12]. The low
interpretability makes complex models not suitable for
many applications, such as classification problems in
medical applications and scientific domains, in which
feature importance and contribution of feature combina-
tions from the model could be highly useful for obtaining
intuitive understanding of the application. The ultimate
goal would be to construct accurate models that are also
simple enough to interpret.

To address this challenge, one possible solution is
to feed constructed high-order features to generalized
linear models and enhance accuracy and interpretability.
Along this direction, many previous pattern-based
models have been established in the recent decade
and demonstrated powers in several domains, including
(1) association rule-based classification on categorical
data [22, 18, 30, 4, 29, 27]; (2) frequent pattern-based
classification on text [19, 17] and graph [15, 6] data;
(3) discriminative pattern-based classification on general
data [2, 3], which mine discriminative patterns starting
with frequent patterns and have shown their advantages
over both tree-based models and generalized linear
models. Many efforts are paid to prune a huge number
of non-discriminative frequent patterns in those models,
however, the number of extracted patterns utilized
in later classification models is at the magnitude of
thousands, which is still large.

In this paper, we propose a novel discriminative
patterns-based classification framework (DPClass) with
the goal to generate a very concise high-order classifi-
cation model. The key component of DPClass is a fast



and effective pattern extraction algorithm. Instead of
starting with frequent patterns, we first train tree-based
models to generate a large set of hypothetical high-order
patterns, and then we explore all prefix paths from root
nodes to leaf nodes in the tree-based models as our dis-
criminative patterns. Finally, we further compress the
number of discriminative patterns by selecting the most
effective pattern combinations that fit into a general-
ized linear model with high classification accuracy. In
this way, DPClass generates a set of discriminative high-
order patterns with high predictivity and interpretability.
From another perspective, we can view DPClass as a
way to compress the multiple trees based models by only
selecting the most discriminative pattern combinations
and fitting them into a generalized linear model. Surpris-
ingly, DPClass achieves comparable or even improved
performance over the original tree-based models with
only storing dozens of robust discriminative patterns.
Such models can also be extremely useful for application-
s (e.g., mobile apps), where model storage and online
computational cost are restricted.

In summary, our main contributions are as following.
• DPClass can learn a very small amount (e.g., 20) of in-

terpretable patterns involving high-order interactions
among original features, as verified in our synthetic
experiment.
• DPClass can compress multiple trees based models

into a low-dimensional generalized linear model and
make the online prediction extremely fast.
• DPClass has comparable accuracy as the previous

state-of-the-art algorithms and sometimes even better
in our experiments on various real world datasets.

2 Related Work
Pattern-based classification is a well-studied problem
traditionally from the perspective of frequent pattern
mining. Association rules are the easiest way to make
connections between frequent patterns and classification
labels [30, 18]. A more effective solution is to first
generate frequent patterns as a large pattern pool and
then apply different heuristics, such as information gain,
to select the most discriminative patterns based on labels,
which will be further used in classical classifiers [2, 3, 8].
However, there are several problems in these methods.
The first problem is that the number of frequent patterns
in the pool are often very large, which leads to expensive
computational cost during pattern selection. The second
one is that the number of selected patterns can be as large
as thousands for many applications, which limits the
interpretability of the classification model and also causes
the inefficiency in the classification steps. Another minor
issue is that the discretization of continuous variables
is a little bit tricky and thus makes the performance

unstable.
One kind of the state-of-the-art classification models

is tree-based models. Both decision tree and boosted tree
models are explainable but quite sensitive to the training
data. Traditional ensemble methods using multiple trees,
such as random forest [1] and gradient boosting decision
trees [10], greatly reduce the risk of overfitting and
enhance the performance, while the interpretability is
scarified and thus our proposed method is significantly
different from this category. As noticed by Ren et
al. [24], because the growth and pruning in different
trees are all independent, the global refinement could
provide chances to get better performance. However,
the increased models size of those multiple trees based
models sacrifices the interpretability. Another popular
usage of multiple trees based models is utilizing them
to induce new feature spaces. The most common way
to induce features from trees is to encode each tree as
a flat index list and each instance to a binary vector
indexed by the trees [24, 13, 7, 23, 20]. Vens et al. [28]
further transfers the binary vectors into a inner product
kernel space using a support vector machineand shows
improved classification accuracy. Furthermore, pairwise
interactions have also been introduced to improve the
classification and regression [21], which is actually a
two-layer trees model. Although some of these models
have already applied post-pruning techniques for trees,
the dimension of newly created feature space is still
high due to a large number of trees constructed. For
example, in the most recent work by Ren et al. [24],
after many efforts on pruning, the model size of the
pruned random forest is still around megabytes, which
still keeps the prediction slow for real-time applications.
In our experiments, the results show that our proposed
framework DPClass could deliver comparable results
using only top-20 discriminative patterns, which is
substantially reduced even compared to the most efficient
model in Ren et al. [24] that is specially designed for
visualization tasks.

By utilizing high-order discriminative patterns in a
generalized linear model, pattern selection can be per-
formed by existing feature selection algorithms. Simply
selecting patterns with highest independent heuristics
such as information gain and gini index [16] is limited
to very simple tasks, because most powerful patterns
selected by such heuristics can introduce redundancy
and potentially the overfitting issue. As classification
labels are given, LASSO [26] is widely used in feature
selection tasks as well as forward selection [5]. Due to
the relatively large number of candidate discriminative
patterns, backward selection, another popular feature
selection technique, might be not suitable in our set-
tings. Therefore, we only adopt LASSO and forward



selection into our framework DPClass to select discrimi-
native patterns and compare their performances in our
experiments.

3 Preliminaries
In this section, we will give formal definitions of key
concepts in our problems and framework.

3.1 Problem Formulation For a binary classifica-
tion task, we assume that the training data is a set of
n data points in a d-dimensional feature space togeth-
er with their labels (x1, y1), (x2, y2), . . . , (xn, yn), where
∀i(1 ≤ i ≤ n), yi ∈ {+1,−1},xi ∈ Rd. It is worth noting
that the values in the data point xi can be either contin-
uous (numerical) or discrete (categorical). As categorical
features can be transformed into several binary dummy
indicators, we assume xi ∈ Rd without loss of generality.
In some previous pattern-based models, such as DDP-
Mine [3], patterns are mined based on categorical values
and thus they are only able to handle the continuous
variables after carefully manual discretizations, which
might be tricky and often requires prior knowledge about
the data.

Our proposed framework, DPClass, will first gener-
ate a discriminative pattern pool within a reasonable size
and then select top-k patterns based on their prediction
accuracy or a cardinality regularization using a general-
ized linear classification model on training data. Since
the number of selected patterns can be controlled, we
hope these patterns provide us informative interpretabil-
ity with reasonable predictive power. In addition, for
new test data, we will only need to evaluate a very small
set of patterns and make predictions with a generalized
linear model efficiently.

3.2 Definition First of all, we define the patterns in
our classification problem. Traditional frequent patterns
are only applied on the categorical data or itemset data.
Discretization is needed for continuous variables. Instead
of directly comparing the numerical values, we introduce
the thresholding boolean function here.

Definition 1. Condition is a thresholding boolean
function on a specific feature dimension. It is in the
form of (x·,j < v) or (x·,j ≥ v), where j indicates the
specific dimension and v is the threshold value. The
relational operator in a condition is either < or ≥.

Note that the threshold values in DPClass are not
specified by users beforehand. In some previous pattern-
based models, such as DDPMine [3], users have to choose
a method to discretize values of continuous variables
prior to pattern mining. DPClass makes all these values

automatically determined based on the training data
without any human interventions.

Example 1. Suppose xi ∈ R10, one possible condition
is that x·,1 < 0.5. Another example could be x·,2 ≥ 0.5.

Similar to traditional itemset, which are usually
defined by a set of items, we define the pattern as a set
of conditions. More formally, we use conjunctions to
concatenate different conditions.

Definition 2. Pattern is a conjunction clause of
conditions on specific feature dimensions. More formally,
it is defined as following.

(x·,j1 < v1) ∩ (x·,j2 ≥ v2) ∩ . . . ∩ (x·,jk
≥ vk)

where k is the number of conditions within this pattern.
Note that different patterns can have different k values.

Example 2. Suppose xi ∈ R10, one possible pattern is
that (x·,1 < 18) ∩ (x·,3 ≥ 100) ∩ (x·,9 < 0.5).

After we have defined patterns, we define discrimi-
native patterns as following.

Definition 3. Discriminative Patterns refer to
those patterns which have strong signals on the clas-
sification task given by the labels of data. For example, a
pattern with very high information gain on the training
data should be a discriminative pattern.

Example 3. Suppose xi ∈ R10 and the labels are
generated as following.

yi = [(xi,1 ≥ 1)∩ (xi,2 < 0)∪ [(xi,1 < 18)∩ (xi,3 ≥ 100)]

Then, both patterns (xi,1 ≥ 1) ∩ (xi,2 < 0) and
(xi,1 < 18) ∩ (xi,3 ≥ 100) should be among the most
discriminative patterns. Of course, some similar patterns
containing or having overlaps with these two patterns
might also be discriminative patterns.

Discriminative patterns may have some overlapped
predictive effects. Some discriminative patterns are
special cases of others. For example, in the previous
example, both patterns (xi,1 ≥ 1) ∩ (xi,2 < 0) and
(xi,1 ≥ 1) ∩ (xi,2 < 0) ∩ (xi,3 < 0) could indicate
a positive label. However, the second pattern only
encodes a subset of data points encoded by the first
pattern and thus does not provide extra information for
classification. This common phenomenon makes directly
taking the top discriminative patterns based on some
independent heuristics wastes the budget of the number
of patterns, if linear combination of these patterns are
not synergistic. Therefore, we propose to select the top-k
patterns by their predictive performance to make the
selected patterns complementary and compact.
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Figure 1: Overview of DPClass Framework

Definition 4. Top-k Patterns is a size-k subset of
discriminative patterns, which have the best performance
(i.e., the accuracy in classification tasks) based on the
training data.

Here we have an assumption that the training and
testing data have the same distribution, which is widely
assumed in classification problems. In this case, the
accuracy on training data is similar to the testing data
if our model is not overfitted.

Example 4. In the last example, ideally, top-2 patterns
should be {(xi,1 ≥ 1) ∩ (xi,2 < 0), (xi,1 < 18) ∩ (xi,3 ≥
100)}.

4 Methodology
In our proposed DPClass framework, as shown in
Figure 1, a constrained multiple tree-based model is
trained on the training data. By adopting every prefix
path from the root of a tree to any of its non-leaf nodes as
a discriminative pattern, a large discriminative pattern
pool is ready for further top-k discriminative patterns
selection. We propose two different solutions to select
top-k discriminative patterns based on the training data,
both showing promising performance in our experiments.

4.1 Constrained Multiple Tree-based Model for
Discriminative Patterns Generation The first com-
ponent in DPClass framework is the generation of high-
quality discriminative patterns, as shown in Algorithm 1.
We use tree bag to refer the set of instances fallen into
a specific node in the decision tree. The random decision
tree [1] introduces the randomness via bootstrapping
training data, randomly selecting features and splitting
values when dividing a large tree bag into two smaller
ones.

In real-world applications, discriminative patterns
are usually somehow frequent, and the length of such
patterns are not too long. More specifically, we
assume that the number of instances satisfying a given
discriminative pattern should be at least σ, and the

Algorithm 1: Discriminative Pattern Generation
Require: n training instances (xi, yi), the
number of trees T , the depth threshold D, and
minimum tree bag size σ
Return: A set of discriminative patterns for
further selection.
P ← ∅
for t = 1 to T do

Build a random decision tree [1] with
maximum depth D and minimum tree bag
size σ.
for each non-leaf node u do
P ← P ∪ {root→ u}

return P

length of discriminative patterns is no more than D.
As one of the most famous multiple tree-based models,
random forest [1] is the best fit addressing both these
requirements if we treat every prefix path from the root
of a tree to its non-leaf node as a discriminative pattern.
First of all, distributions of labels of instances in a tree
bag always have low entropy. Therefore, the patterns
are discriminative on the training data. Secondly, it
provides many putative patterns from various random
decision trees trained on different bootstrapped datasets.
Moreover, the depth threshold D and the minimum tree
bag size σ can be naturally added as constraints during
the growth of trees.

4.2 Pattern Space Instances in their original feature
space are now mapped into the pattern space using a
set of discriminative patterns, as shown in Algorithm 2.
For each discriminative pattern, there is one correspond-
ing binary dimension describing whether the instances
satisfying the pattern or not. Because the dimension
of the pattern space is equal to the number of discrimi-
native patterns which is a very large number after the
generation phase, we need to further select a limited
number of patterns and thus make the pattern space
small and efficient. It is also worth a mention that this



Algorithm 2: Construct Pattern Space
Require: n instances (xi), a discriminative
patterns set P
Return: n instances in pattern space (x′i)
for i = 1 to n do

x′i ← 0
for j-th pattern Pj in P do

if xi satisfies pattern Pj then
x′i,j ← 1

return (x′i)

Algorithm 3: Top-k Pattern Selection: Forward
Require: n training instances (xi, yi), a set of
discriminative patterns P and k
Return: Top-k discriminative patterns set Pk
and a generalized linear model f(·)
Pk ← ∅
for t = 1 to k do

for each pattern p in P do
x′ ← construct pattern space(x,Pk ∪ {p})
g(·)← a generalized linear model [25] on
(x′i, yi)
accp ← g(·)’s training accuracy

Pk ← Pk ∪ {arg maxp accp}
x′ ← construct pattern space(x,Pk)
f(·)← a generalized linear model on (x′i, yi)
return Pk, f(·)

mapping process is able to be fully parallelized for further
speedup.

4.3 Top-k Patterns Selection After a large pool
of discriminative patterns is generated, further top-
k selection needs to be done to identify the most
informative and interpretable patterns. A naive way
is to use heuristic functions, such as information gain
and gini index, to evaluate the significance of different
patterns on the classification task and choose the top
ranked patterns. However, the effects of top ranked
patterns based the simple heuristic scores may have a
large portion of overlaps and thus their combination
does not work optimally. Therefore, to achieve the
best performance and find complementary patterns, we
propose two effective solutions: forward selection and
LASSO, which make decisions based on the effects of
the pattern combinations instead of considering different
patterns independently.

4.3.1 Forward Pattern Selection Instead of ex-
hausted search of all possible combinations of k discrim-
inative patterns, we gradually add the discriminative
patterns one by one while each newly added discrimi-

Algorithm 4: Top-k Pattern Selection: LASSO
Require: n training instances (xi, yi), a set of
discriminative patterns P, k, and a small value ε
Return: Top-k discriminative patterns Pi and a
generalized linear model f(·)
Pk ← ∅
l← 0, r ← +∞
x′ ← construct pattern space(x,P)
while l + ε < r do

λ← (l + r)/2
w← arg minw Equation 4.1
if non-zero weighted patterns ≤ k then
Pk ← {p|p’s weight is non-zero}
r ← λ

else
l← λ

x′ ← construct pattern space(x,Pk)
f(·)← a generalized linear model on (x′i, yi)
return Pk, f(·)

native pattern is the best choice at that time [5], which
provides an efficient approximation of the exhausted
search. Since we use a generalized linear classification
model to combine the selected discriminative patterns,
when we have fixed the first k′ discriminative patterns,
we empirically add one more discriminative pattern with
the biggest improvement of the training classification
accuracy based on k′ + 1 discriminative patterns, as
shown in Algorithm 3. As we have mentioned before,
when assuming training and testing data have the same
distribution, using training accuracy is very reasonable.

4.3.2 LASSO based Pattern Selection L1 regu-
larization (i.e., LASSO [26]) is designed to make the
weight vector sparse by tuning a nonnegative parame-
ter λ. Since we are actually selecting features in the
pattern space, for a given λ, we optimize the following
loss function to get a subset of patterns which are most
important.

L =
n∑
i

l(x′Ti w, yi) + λ · ‖w‖1(4.1)

where, x′i is the mapped binary feature representation
in pattern space of i-th instance; w is the weight vector
in the generalized linear model; l(·, ·) is a general loss
function such as logistic loss. To ensure there are at most
k patterns having non-zero weights in the pattern space,
we should carefully choose a value for λ. It is important
to assume that there exists some hidden importance
rankings among features and once the weight of a feature
becomes non-zero in a given λ = v, it will also be non-
zero for almost any smaller λ < v. Therefore, we propose



Algorithm 5: Prediction
Require: n testing instances (xi), top-k
discriminative patterns set Pk, and the
generalized linear model f(·)
Return: predictions of testing instances ŷi
x′ ← construct pattern space(x,Pk)
for i = 1 to n do

ŷi ← f(x′i)
return ŷ

a binary search algorithm as shown in Algorithm 4.
In this paper, we adopt the LASSO implementation
in GLMNET [9] for binary classification, whose loss
function is the cross entropy.

4.4 Prediction Once the top-k discriminative pat-
terns are determined, for any upcoming new test in-
stance, we first map it into the learned pattern space
and apply the pre-trained generalized linear model, as
shown in Algorithm 5. As the number of patterns is
limited, both the mapping into the pattern space and
the prediction of the generalized linear model will be
extremely fast.

4.5 Time Complexity Analysis To build up a
single random decision tree with depth threshold D and
minimum tree bag size σ, by assuming both numbers of
random features and random partitions are small and
fixed constants, the time complexity is O(nD), because
the total number of instances on each level of the tree
is n. Therefore, to generate T trees in total, the time
complexity is O(TnD) in the generation step.

For the selection step, the complexity is mainly
determined by the number of discriminative patterns
induced by T random decision trees, which is dependent
on the total number of non-leaf nodes. As the maximum
depth of a single tree is D, there is an upper bound on
number of leaf nodes 2D. Starting from the tree bag size,
the number of leaf nodes should be no more than dnσ e.
Since the trees here are all binary trees, the number
of leaf nodes is one more than the number of non-leaf
nodes. Therefore, the number of discriminative patterns
|P| (i.e., the number of non-leaf nodes) is bounded by
T ·min{2D, dnσ e} − 1. If we solve logistic regression and
LASSO using (sub-)gradient descent algorithm, and thus
the time complexity per gradient step is only linear to
the dimension of features and the number of instances.
The time complexity is proportional to O(|P| · n · k2)
if forward selection is used, while it is proportional to
O(n·k ·|P|), if LASSO is used. By assuming the numbers
of iterations to converge are similar in LASSO and
forward selection, LASSO will be a little more efficient

Table 1: Datasets statistics.
Dataset # instances dimensions variable types
adult 45,222 14 mixed
hypo 37,72 19 mixed
sick 37,72 19 mixed

chess 28,056 6 mixed
crx 690 15 mixed

sonar 208 60 numeric
nomao 29,104 120 mixed
musk 7,074 166 numeric

madelon 1300 500 numeric

than forward selection.
When predicting new test instances, one can easily

figure out the bottleneck is mapping instances into
the learned pattern space. Therefore, in the batch
mode where instances are considered together, the
time complexity is O(n · k · D). In the streaming (or
online) mode where instances come one by one, the time
complexity is O(k · D), where k is the dimension of
learned feature space (or the number of discriminative
patterns) and D is the maximum number of conditions
in a single pattern.

It is worth mentioning that all modules can be fully
parallelized, leading to further speedup in practice.

5 Experiments
5.1 Datasets, Baselines, and Settings To demon-
strate the interpretability of DPClass, we generate a
synthetic dataset where the features are demographics
and lab test results of patients and the label is whether
the patient does have a disease. Assuming doctors can
diagnose the disease using some rules based on these in-
formation, we will check whether the top discriminative
patterns selected by DPClass are consistent with the
actual diagnosing rules.

DDPMine [3] is the previous state-of-the-art dis-
criminative pattern based algorithm. It first discretizes
the continuous variables such that frequent pattern min-
ing algorithm could be applied. Using frequent and
discriminative patterns, new feature space is construct-
ed and any classical classifiers could be further utilized.
Random Forest (RF) [1] is another baseline method
using same parameters as those in the random forest
used in DPClass, except for D. There is no limit on the
depth in RF.

We have selected several binary classification dataset-
s from UCI Machine Learning Repository as shown in
Table 1 with statistics of the number of instances and
the number of features. To compare with DDPMine, we
use the same datasets in the DDPMine paper, including
adult, hypo, sick, crx, sonar, chess, waveform, and mush-



Table 2: Test Accuracy on UCI Machine Learning Datasets tested in DDPMine. DDPMine outperforms decision
tree and support vector machine on all these datasets [2, 3]. RF refers the random forest without any constraints.

Dataset adult hypo sick crx sonar chess namao musk madelon
DPClass-F 85.66% 99.58% 98.35% 89.35% 85.29% 92.25% 97.17% 95.92% 74.50%
DPClass-L 84.33% 99.28% 98.87% 87.96% 83.82% 92.05% 96.94% 95.71% 76.00%

RF 85.45% 97.22% 94.03% 89.35% 83.82% 94.22% 97.86% 96.60% 56.50%
DDPMine 83.42% 92.69% 93.82% 87.96% 73.53% 90.04% 96.83% 93.29% 59.83%

room. Because both DDPMine and DPClass achieve
almost perfect accuracy (very close to 100%) on the
datasets waveform and mushroom, we omit them in this
paper. In addition, we are very interested in the perfor-
mance of DPClass on high-dimensional datasets (nomao,
musk, and madelon datasets), since DDPMine performs
poorly at high-dimensional data. In datasets crx, sonar,
chess, nomao, and musk, we cannot find the existing
train/test splitting. Therefore, we ourselves divide the
data into train/test (2:1) by unbiased sampling.

We also would like to see the impact of different
parameters of DPClass, such as k, the number of selected
discriminative patterns selected, and T , the number of
trees in the random forest.

In DPClass, the default setting is T = 100, D =
6, σ = 10,K = 20. We will show both results using
forward selection (DPClass-F) and LASSO (DPClass-
L) for selecting the top-k discriminative patterns.

5.2 Discovery of Interpretable Patterns We gen-
erate a small medical dataset to demonstrate the inter-
pretability of DPClass. For each patient, we draw several
uniformly sampled features as the following rules.
• Age (A). Positive Integers no more than than 60.
• Gender (G). Male or Female.
• Lab Test 1 (LT1). Blood Types. Categorical values

from {A, B, O, AB}.
• Lab Test 2 (LT2). Continuous values in [0,1].
In total, we have 105 random patients for training and
5 · 104 patients for testing.

The positive label of the disease is assigned to a
patient if at least one of the following rules holds.
• (age > 18) and (gender = Male) and (LT1 = AB)

and (LT2 ≥ 0.6)
• (age > 18) and (gender = Female) and (LT1 = O)

and (LT2 ≥ 0.5)
• (age ≤ 18) and (LT2 ≥ 0.9)

To make the classification tasks more challenging,
we add 0.1% noise to the training data. That is, 0.1%
labels in training will be flipped.

We apply both DPClass-F and DPClass-L on this
dataset. Both give the test accuracy 99.99%. The top-3
discriminative patterns found in both DPClass-F and
DPClass-L are listed as below. We observe that the
found patterns are quite close to the groundtruth rules

and thus demonstrate that our selected discriminative
patterns can provide high-quality explanation.
• (age > 18) and (gender = Female) and (LT1 = O)

and (LT2 ≥ 0.496)
• (age ≤ 18) and (LT2 ≥ 0.900)
• (age > 18) and (gender = Male) and (LT1 = AB)

and (LT2 ≥ 0.601)
We also apply DDPMine to this dataset but its

accuracy is only 95.64%, because the discretization is
difficult to be perfect. The top-3 patterns mined by
DDPMine are as following, which are quite different
from the expected.
• (LT2 > 0.8)
• (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.6)

and (LT2 < 0.8)
• (gender = Female) and (LT1 = O) and (LT2 ≥ 0.6)

and (LT2 < 0.8)

5.3 Compare to DDPMine DDPMine is the previ-
ous state-of-the-art pattern-based classification method,
which outperforms classical classification models includ-
ing decision tree and support vector machine [2, 3]. By
Testing on the same datasets in DDPMine paper, as
shown in the first 6 columns of Table 2, DPClass-F and
DPClass-L always have higher accuracy over DDPMine.
Except for sick dataset, DPClass-F has the highest ac-
curacy, while DPClass-L works best on sick dataset. It
seems like DPClass-F works a little better than DPClass-
L. However, their results are quite close to each other
and are both better than DDPMine’s on most datasets.

5.4 Impact of Top-k patterns The most interest-
ing parameter in DPClass is k, the number of discrimina-
tive patterns used in the final generalized linear model.
It controls the model size of the generalized linear model
used for prediction and thus affects its efficiency. Be-
cause the default value of k is 20 and its effectiveness
has been proved in previous experiments, we vary k from
1 to 40 to see the trends of both training and testing
accuracies on different datasets. In this experiment, we
only use those three datasets with existing training and
testing partition.

As shown in Figure 2, the test accuracy is always
following the trend of training accuracy and the training
accuracy is increasing as k grows. It demonstrates
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Figure 2: The impact of top-k patterns. Training and
testing accuracies are almost overlapped.
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Figure 3: The impact of the number of trees. Training
and testing accuracies are almost overlapped.
that our pattern selection based on training accuracy
is reasonable. In real world applications, k could be
determined by cross validations.

Although the accuracies are growing almost all the
time, it slows down much when k is greater than 20.
Therefore, we conclude that a very small k (e.g., k = 20)
is enough for these comprehensive real-world datasets,
which further proves that our proposed DPClass can
compress the model into a very tiny size while its
accuracy remains comparable.

5.5 Impact of number of trees Another important
parameter in DPClass is the number of trees needed to
generate the large pool of discriminative patterns. As we
argued before, a single tree is not enough to generate that
many patterns, and thus we have a strong motivation
to try T = 1 as an extremal case. The default value 100
works well in previous experiments, and thus we vary T
in {1, 10, 50, 100, 500, 1,000} to see the trends of both
training and testing accuracies. In this experiment, we
only use those three datasets with existing training and
testing partition.

As shown in Figure 3, when T = 1, the accuracy is
much lower than the other, which means only a single
decision tree is not enough for a diverse patterns pool.
According to the curves, one can easily observe and
conclude that a reasonable large T , such as 100, is enough
to achieve a reasonable result.

5.6 High Dimensional Data We are also interested
in high-dimensional datasets (i.e., at least 100 dimension-
s) because DDPMine is not effective in large dimensional

data. As the dimension of the original feature space
grows, we have to increase the depth threshold D, as
well as the number of trees T , to involve higher order
interactions and increase the number of candidate dis-
criminative patterns. Therefore, we set D = 10 and
T = 200. Meanwhile, the dimension of mapped pattern
space may also need to be increased due to the higher
complexity of problems. As a result, we set k = 50 in
nomao and musk. However, we kept k = 20 in madelon
because many features are noises.

As shown in last 3 columns of Table 2, DPClass can
always outperform DDPMine and generate comparable
results to those by the random forest model. More impor-
tantly, in madelon dataset, DPClass-F and DPClass-L
outperform random forest significantly and thus demon-
strate the robustness especially when the features are
high dimensional and noisy. It is also worth a mention
that the training process of DPClass is at least 10 times
faster than DDPMine in high dimensional datasets.

5.7 Scalability The test running time is linearly
proportional to the model complexity, which is related
to the number of patterns the model used. In our
experiments, DDPMine needs 100 to 1,000 patterns while
DPClass only needs 20, which indicates a significant
reduction of prediction runtime. Moreover, the random
forest without any constraints will contain more than
10,000 nodes (i.e., patterns), which is far more expensive.
Although the evaluation of random forest for a single
testing instance will traverse only a number of nodes
equals to the sum of depths in different trees, it always
needs more than 1,000 traverses in our experiments.
Therefore, DPClass is the most efficient model for testing
new instances, compared to DDPMine and random forest,
by achieving about 20 to 50 times speedup in practice.
Furthermore, DPClass could be fully parallelized for
further speedup.

6 Conclusion
In this paper, we propose an effective and concise dis-
criminative pattern-based classification framework (DP-
Class) to address the general classification problem and
provide interpretability by incorporating a limited num-
ber of discriminative patterns. DPClass first extracts
the prefix paths from root nodes to non-leaf nodes in
tree-based models as candidate discriminative patterns
and then further compress the number of discriminative
patterns by selecting the most effective pattern combi-
nations according to their predictive accuracy in a gen-
eralized linear model. Comprehensive experiments have
demonstrated that DPClass is able to model high-order
interactions and present a small amount of interpretable
patterns to help human experts understanding the clas-



sification tasks. Moreover, it provides comparable or
even better accuracy than the previous state-of-the-art
pattern-based classification model DDPMine and the
uncompressed random forest model.

In future, we plan to extend our DPClass to a
uniform machine learning framework DPLearn, which
supporting multi-classes classification, regression, and
ranking along the same discriminative pattern selection
direction. Another possible direction is to apply DPClass
to labeled textual and sequential data targeting on
finding interest patterns (e.g., language patterns).
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