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Abstract—We demonstrate DPCube, a component in our
Health Information DE-identification (HIDE) framework, for
releasing differentially private data cubes (or multi-dimensional
histograms) for sensitive data. HIDE is a framework we devel-
oped for integrating heterogenous structured and unstructured
health information and provides methods for privacy preserving
data publishing. The DPCube component uses differentially
private access mechanisms and an innovative 2-phase multidi-
mensional partitioning strategy to publish a multi-dimensional
data cube or histogram that achieves good utility while satisfying
differential privacy. We demonstrate that the released data cubes
can serve as a sanitized synopsis of the raw database and, together
with an optional synthesized dataset based on the data cubes, can
support various Online Analytical Processing (OLAP) queries
and learning tasks.

I. INTRODUCTION

Recent studies and advisory reports [16], [14] have pointed

out that information sharing with appropriate privacy protec-

tion is one of the most critical challenges of our time to

help revolutionizing health care. The current HIPAA Privacy

Rule does not protect privacy as well as it should and an

entirely new approach to protecting privacy in health research

is needed.

Privacy preserving data analysis and data publishing [3],

[6], [4] has received considerable attention in recent years as

a promising approach for sharing information while preserving

data privacy. There are two models for privacy protection

[3]: the interactive model and the non-interactive model. In

the interactive model, a trusted curator (e.g. hospital) collects

data from record owners (e.g. patients) and provides an access

mechanism for data users (e.g. public health researchers) for

querying or analysis purposes. The result returned from the

access mechanism is perturbed by the mechanism to protect

privacy. In the non-interactive model, the curator publishes

a “sanitized” version of the data, simultaneously providing

utility for data users and privacy protection for the individuals

represented in the data.

Differential privacy [3], [4] is widely accepted as one of the

strongest known unconditional privacy guarantees. It requires

that the outcome of computations to be formally indistinguish-

able when run with and without any particular record in the

Fig. 1. HIDE Framework

Fig. 2. Differentially Private Datacube Release

dataset, as if it makes little difference whether an individual

is being opted in or out of the database. Non-interactive data

release with differential privacy has been recently studied with

hardness results obtained and it remains an open problem to

find efficient algorithms for many domains [5]. A few recent

works [12], [17], [10] considered the problem of releasing

data for general predicate counting queries. While promising,

the query strategies being used are data-oblivious in that they

are determined by the query workload, a wavelet matrix, or

a hierarchical matrix without taking into consideration the

underlying data. DPCube uses an adaptive query strategy

that explicitly exploits the underlying data indirectly observed

by a differentially private interface. Our viewpoint is that

more efficient and effective solutions could be achieved by

exploiting the characteristics of the underlying dataset.



We demonstrate DPCube, as a component in our Health

Information DE-identification (HIDE) framework, for non-

interactive release of differentially private data cubes (or multi-

dimensional histograms), and demonstrate its feasibility using

real medical data and use cases. Health Information DE-

identification (HIDE) [8], [7], [9] is an open-source software

and framework we have developed for integrating heteroge-

nous structured and unstructured data sources and provides

methods for privacy preserving data publishing. An overview

of the HIDE framework is shown in Figure 1. DPCube is

the component for releasing statistical data cubes (in addition

to the de-identified records) implementing and extending the

multidimensional partitioning techniques [18]. An overview

of DPCube is shown in Figure 2. An interactive differential

privacy interface is used to provide a differentially private

access to the raw database. The DPCube algorithm implements

a 2-phase partitioning strategy which accesses the data through

the interface and generates a differentially private equi-width

cell histogram and a v-optimal subcube histogram of the raw

database. Given a user-issued query, an estimation component

uses the histograms and computes an answer using inference or

estimation techniques [10], [18]. We demonstrate that the his-

tograms can serve as a sanitized synopsis of the raw database

and, together with an optional synthesized dataset based on the

histograms, are useful to support count queries and other types

of Online Analytical Processing (OLAP) queries and learning

tasks.

Contributions. We summarize the technical contributions of

the demonstrated system below. First, the DPCube component

provides a non-interactive mechanism for releasing differ-

entially private multi-dimensional data cubes. A common

interactive differential privacy mechanism is to add calibrated

noise to a query result determined by the privacy parameter

and the sensitivity of a query. The composability of differential

privacy [13] ensures privacy guarantees for a sequence of

differentially-private queries or computations with additive

privacy depletions in the worst case. Given an overall privacy

requirement or privacy budget, it has to be allocated to

subroutines or individual queries to ensure the overall pri-

vacy. This limits the applicability of an interactive differential

privacy interface, especially for health data sharing scenarios

where multiple users have to share a common privacy budget

for exploratory data analysis. In contrast, the non-interactive

approach uses a carefully designed query strategy to allocate

the privacy budget and access the raw database resulting in

released data cubes which can be then used to answer an

arbitrary large number of queries or for various data analysis

tasks.

Second, DPCube implements and extends the novel multi-

dimensional partitioning strategy [18] which is crucial to the

utility of the resulting data cubes or the synthetic dataset. For

relational data, DPCube uses a two-phase algorithm that gen-

erates a most fine-grained equi-width cell (unit) histogram and

a v-optimal subcube histogram based on the cell histogram.

The multi-dimensional partitioning component incorporates a

uniformity measure that seeks to produce close to uniform

partitions so that approximation errors within partitions are

minimized. In data warehouse literature, a data cube consists

of a set of cuboids which can be viewed as the projection of a

fact table on a subset of dimensions, producing a set of cells

with associated aggregate measures. Using this terminology,

DPCube publishes a base cuboid and a generalized cuboid

where cells are grouped into sub-cubes or partitions and aims

to minimize the error for random predicate counting queries.

This differs from the recent work [2] which attempts to publish

a subset of cuboids to minimize the error for the complete set

of derived cuboids. Once the subcube histogram is generated,

the estimation component further boosts the accuracy by

applying estimation or inference techniques to answer a query

using the released histograms.

Finally, as DPCube is integrated into the HIDE software,

it gives practitioners an entire toolkit of privacy preserving

data publishing techniques on both structured and unstructured

data. The DPCube component can be applied to both struc-

tured data tables as well as the extracted patient-centric data

from the text.

The demonstration will show various components and new

features of HIDE (including more advanced extraction com-

ponents), with a particular focus on DPCube, and demonstrate

the utility of the released data cubes to several classes of

OLAP queries and learning tasks. The audience can freely

issue random count queries with different parameter settings,

observe the result, and compare it with the result from the

original database, the interactive mechanism, as well as other

alternative approaches. It will also show under-the-hood how

the partitions are generated for various datasets and combina-

tions of dimensions. The audience will also be able to see how

various fields are automatically extracted from text reports and

the data is then used to generate differentially private multi-

dimensional histogram views of the data.

Software Availability. HIDE including DPCube is

an open-source project and the software is available

for download (http://code.google.com/p/hide). More

information about the project is also available online

(http://www.mathcs.emory.edu/hide).

II. SYSTEM DESCRIPTION

HIDE consists of three major layers: information extrac-

tion, data linking, and privacy preserving data publishing.

The privacy preserving data publishing layer can be further

classified into record and aggregate publishers. The record

publisher is used to publish de-identified (using HIPAA safe-

harbor method) or anonymized individual records with a given

privacy principle such as k-anonymity and l-diversity. The

aggregate publisher provides a differentially private interface

to the underlying data and is used by the DPCube algorithm as

described below for releasing statistical data with differential

privacy.



A. Differentially Private Interface

DPCube uses a differentially private interface in HIDE sim-

ilar to PINQ [13], for any access to the original database such

that the released data guarantees differential privacy. HIDE

provides differentially private operators for database aggregate

queries such as count (NoisyCount) and sum (NoisySum)

which add Laplace noise to the original answer to enforce

differential privacy.

B. DPCube Partitioning

DPCube publishes statistical data of the original datasets

through multi-dimensional hypercubes or cuboids. An OLAP

cuboid is a multi-dimensional representation of a measure

for a set of dimensions that are a projection of a relational

table. Each dimension corresponds to an attribute and each

cell represents an aggregated measure (such as count and

sum). For example, a 3-dimensional cuboid for the census

data may have the dimensions Age, Education, and Income

and the measure Population Count. One cell of the cuboid

may correspond to (Age = 30, Education = “Bachelors”,

Income = 80K) with a population count of 5000. Our key

novelty is that we publish generalized cuboids where cells are

grouped into sub-cubes or partitions exploiting the underlying

distribution of the data. When the measure is population count

or frequency (relative count), the cube can be considered as a

multi-dimensional histogram.

DPCube uses an innovative two-phase partitioning strategy

as shown in Figure 2. First, a cell based partitioning based on

the domains (not the data) is used to generate a fine-grained

equi-width cell histogram. A differentially private data cube,

Dc is created by adding Laplacian noise to the count of each

cell. Second, a multi-dimensional partitioning is performed on

Dc, the differentially private cell histogram which gives an

approximation of the original data distribution.

The key step is the multi-dimensional partitioning. We

want to find the partitioning that maximizes the utility of the

released Dp data cube. DPCube uses an innovative kd-tree like

partitioning strategy that seeks to produce close to uniform

partitions, essentially resulting in a v-optimal histogram [15].

It starts from the root node which covers the entire space. At

each step, a splitting dimension and a split value from the

range of the current partition on that dimension are chosen

heuristically to divide the space into subspaces. The algorithm

repeats until a pre-defined requirement (such as number of

data points in each partition) are met. In contrast to kd-

tree construction which desires a balanced tree, our main

goal is to generate uniform or close to uniform partitions

so that the approximation error when answering a query

with predicates smaller than the partitions is minimized. Thus

DPCube uses uniformity based heuristics to make the decision

whether and where to split the current partition. Concretely,

we do not split a partition if it is close to uniform and split

it otherwise. In addition to the variance-like metric defined

in [18], DPCube also implements information gain to favor

uniform or homogenous distributions in a similar way used in

a decision tree construction to favor the class homogeneity.

For comparison purposes, DPCube also includes an imple-

mentation of the hierarchical strategy used in [10], the kd-tree

strategy used in [11], and an implementation of the Wavelet

method [17]. Finally, to cope with the high dimensionality and

sparsity of the set-valued data such as symptoms, DPCube in-

cludes an implementation of the top-down partitioning strategy

proposed in [1].

C. DPCube Estimation

DPCube also includes an estimation component that further

boosts accuracy according to the released data cubes. In

addition to the proportional estimation using only the subcube

histogram assuming a uniform distribution within a partition

[18], we also adapted the inference technique in [10] origi-

nally designed for its hierarchical strategy to our two-phase

strategy. The basic idea is to apply probabilistic inference to

integrate multiple differentially private views (histograms) of

the original data to derive posterior distributions over the data

sets.

III. DEMONSTRATION

We plan to demonstrate the functionalities and utilities of

HIDE and DPCube and show the utility of the released data

cubes to several classes of OLAP queries and learning tasks.

Datasets. We will use the Adult dataset from the UCI

Machine Learning Repository (http://archive.ics.uci.edu/ml/)

containing census data. In addition, we plan to use sev-

eral medical datasets including the data from the Surveil-

lance, Epidemiology and End Results (SEER) Program

at NCI (http://seer.cancer.gov/data/) and the i2b2 datasets

(https://www.i2b2.org/NLP/DataSets). The SEER dataset con-

sists of a variety of cancer statistics. The i2b2 dataset consists

of example pathology reports that have been re-synthesized

with fake Protected Health Information (PHI). In addition,

we will use a large set of synthesized pathology reports (1

million reports) generated at the Department of Pathology and

Laboratory Medicine at the School of Medicine at UCLA to

demonstrate the performance of HIDE and DPCube.

Demonstrating Basic Functionality. We will demonstrate

loading structured and unstructured data into HIDE, de-

identifying and anonymizing the data, and releasing differ-

entially private data cubes using DPCube. We will use several

dimension combinations to demonstrate the data cubes gener-

ated by DPCube. Figure 3 shows a snapshot of the DPCube

interface for constructing the data cubes based on user input

parameters and the resulting cell and partition histograms

using a single dimension of Age. Using two dimensions, Age

and Income, the original data cube is shown in Figure 4. Figure

5 shows an example cell data cube with differential privacy

parameter α1 = 0.05. Figure 6 shows an example partition

data cube with each horizontal plane being one partition.

Finally, we will show the estimated cell data cube using the

estimation techniques and compare it to the original cell data

cube. Figure 7 shows an example estimated cell data cube.

We will show the errors of the different data cubes during the

demo.



Fig. 3. DPCube Interface

Fig. 4. Original Data Fig. 5. Cell Data Cube

Applications and User Interactions. We will demonstrate the

utility of the released data cubes for several applications with

user interactions and inputs. We will first show the utility for

several classes of OLAP queries. Count queries are supported

directly by the released data. Sum queries sum(A) for an

attribute or dimension A can be computed as
∑

i∈Sϕ
(ai ∗ ci).

Average queries avg(A) for an attribute or dimension A can

be computed as

∑
i∈Sϕ

(Ai∗ci)
∑

i∈Sϕ
(ci)

. Through the user interface,

the conference audience can freely issue predicate queries

using different parameter settings and observe the result. The

interface will compare the result with those from the original

database as well as other alternative approaches. In addition to

showing the data cubes visually and the query results, we will

Fig. 6. Partition Data Cube Fig. 7. Estimated Cell Data Cube

also show the errors of the query results and compare them

with several other state-of-the-art approaches.

The released data cubes can be also used for learning tasks

such as construction of decision tree and record linkage. We

will use classification and record linkage [11] as examples to

illustrate the utility of the data cubes.

Under-the-hood. For interested audiences, the demo will show

under-the-hood how the partitions are generated for various

combinations of dimensions and parameters, illustrating the

effect of the data distributions and the impact of algorithmic

parameters such as the partitioning threshold, different parti-

tioning metrics and heuristics, and different allocation of the

overall privacy budget among the two phases.
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