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Abstract

For almost a decade, Content-Based Image Retrieval has
been an active research area, yet one fundamental prob-
lem remains largely unsolved: how to measure percep-
tual similarity. To measure perceptual similarity, most re-
searchers employ the Minkowski-type metric. Our exten-
sive data-mining experiments on visual data show that, un-
fortunately, the Minkowski metric is not very effective in
modeling perceptual similarity. Our experiments also show
that the traditional “static” feature weighting approaches
are not sufficient for retrieving various similar images. In
this paper, we report our discovery of a perceptual distance
function through mining a large set of visual data. We call
the discovered functiondynamic partial distance function
(DPF). When we empirically compare DPF to Minkowski-
type distance functions, DPF performs significantly better
in finding similar images. The effectiveness of DPF can be
well explained bysimilarity theoriesin cognitive psychol-
ogy.

Keywords: content-based image retrieval, data mining, per-
ceptual distance function, similarity search.

1 Introduction

Research in content-based image retrieval has steadily gained
momentum in recent years as a result of the dramatic increase
in the volume of digital images. To achieve effective retrieval,
an image system must be able to accurately characterize and
quantify perceptual similarity. However, a fundamental chal-
lenge — how to measure perceptual similarity — remains
largely unanswered. Various distance functions, such as the
Minkowski metric, earth mover distance[5], and fuzzy logic,
have been used to measure similarity between feature vectors
representing images. Unfortunately, our experiments show that
they frequently overlook obviously similar images and hence
are not adequate for measuring perceptual similarity.

Quantifying perceptual similarity is a difficult problem. In-
deed, we may be decades away from fully understanding how
human perception works. In this project, we mine visual
data extensively toreverse-engineera good perceptual distance
function for measuring image similarity. Our mining hypothe-
sis is this: Suppose most of the similar images can be clustered
in a feature space. We can then claim with high confidence that
1) the feature space can adequately capture visual perception,

and2) the distance function used for clustering images in that
feature space can accurately model perceptual similarity.

We perform our mining operation in two stages. In the first
stage, we isolate the distance function factor (we use the Eu-
clidean distance) to find a reasonable feature set. In the second
stage, we freeze the features to discover a perceptual distance
function that can better cluster similar images in the feature
space. In other words, our goal is to find a function that can
keep similar images close together in the feature space, and at
the same time, keep dissimilar images away. We call the dis-
covered functiondynamic partial distance function(DPF). We
empirically compare DPF to Minkowski-type distance func-
tions and show that DPF performs remarkably better.

Briefly, the contributions of this paper are as follows:

� We construct a mining dataset to find a feature set that can
adequately represent images. In that feature space, we find
distinct patterns of similar and dissimilar images, which lead
to the discovery of DPF.

� Through empirical study, we demonstrate that DPF is very
effective in finding images that have been transformed by ro-
tation, scaling, downsampling, and cropping, as well as im-
ages that are perceptually similar to the query image (e.g.,
images belonging to the same video shot). Our testbed shows
that DPF outperforms Minkowski-type functions by25 per-
centiles in recall.

2 Discovering DPF

To ensure that sound inferences can be drawn from our min-
ing results, we carefully construct the training dataset. First,
we prepare for a dataset that is comprehensive enough to cover
a diversified set of images. To achieve this goal, we collect
60; 000 JPEG images from Corel CDs and from the Internet.
Second, we define “similarity” in a slightly restrictive way so
that individuals’ subjectivity can be safely excluded. (We ad-
dress the problem of learning subjective perception in [1, 6].)
For each image in the60; 000-image set, we perform24 trans-
formations including scaling, downsamping, cropping, rota-
tion, and format transformation. (Details of these transforma-
tions are explained in the extended version of this paper [4].)
The total number of images in the testbed is1:5 million.

Our experimental results (see Section 3) show that the per-
ceptual distance function discovered during the mining process
on this training dataset, which has a slightly restrictive defini-
tion of similarity, can be used effectively to find other percep-
tually similar images. In other words, our testbed consists of
a reasonable representation of similar images, and the mining
results (i.e., training results) can be generalized to testing data
consisting of perceptually similar images produced by other
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(a) Similar Images (b) Dissimilar Images

Figure 1: The Distributions of Feature Distances.
methods (e.g., changing camera parameters).

From each image, we extract144 features including color,
texture, and shape as its representation. We discuss what these
features are, and why they are chosen in [4]. In the remainder
of this section, we focus on examining the Minkowski metric
and its family. We explain why these functions are ineffective
for measuring image similarity, and present our DPF solution.

2.1 Minkowski Metric and Its Limitations

The Minkowski metric is widely used for measuring similarity
between objects (e.g., images). Suppose two objectsX andY
are represented by twop dimensional vectors(x1; x2; � � � ; xp)
and (y1; y2; � � � ; yp), respectively. The Minkowski metric
d(X;Y ) is defined as

d(X;Y ) = (

pX

i=1

jxi � yij
r)

1

r ; (1)

wherer is the Minkowski factor for the norm. Particularly,
when r is set as2, it is the well known Euclidean distance;
whenr is 1, it is the Manhattan distance (orL1 distance). An
object located a smaller distance from a query object is deemed
more similar to the query object. Measuring similarity by the
Minkowski metric is based on one assumption: the similar ob-
jects should be close to the query object in all dimensions.

A variant of the Minkowski function, the weighted
Minkowski distance function, has also been applied to mea-
sure image similarity. The basic idea is to introduce weight-
ing to identify important features. By assigning each feature a
weighting coefficientwi (i = 1 � � � p), the weighted Minkowski
distance function is defined as

dw(X;Y ) = (

pX

i=1

wijxi � yij
r)

1

r : (2)

By applying a static weighting vector for measuring simi-
larity, the weighted Minkowski distance function assumes that
similar images resemble the query image(s) in the same fea-
tures. For example, the weighted Minkowski function implic-
itly assumes that the important features for finding a scaled im-
age are the same as the important features for finding a cropped
image.

We can summarize the assumptions of the Minkowski met-
ric as follows:

� Minkowski function: All similar images must be similar in
all features.

� Weighted Minkowski function: All similar images are simi-
lar in the same way (e.g., in the same set of features) [7].

We questioned the above assumptions upon observing how
similar objects are located in the feature space. For this pur-
pose, we carried out extensive data mining work on the1:5M-
image dataset. To better discuss our findings, we introduce a
term we have found useful in our data mining work. We define
the feature distanceon theith feature asÆi = jxi � yij; i =
1; � � � ; p.

In our mining work, we first tallied the feature distances be-
tween similar images (denoted asÆ+), and also those between
dissimilar images (denoted asÆ�). Since we normalized fea-
ture values to be between zero and one, the range of bothÆ+

andÆ� are between zero and one. Figure 1 presents the dis-
tributions ofÆ+ andÆ�. Thex-axis shows the possible value
of Æ, from zero to one, They-axis (in logarithmic scale) shows
the percentage of the features at differentÆ values.

The figure shows thatÆ+ andÆ� have different distribution
patterns. The distribution ofÆ+ is much skewed toward small
values (Figure 1(a)), whereas the distribution ofÆ� is more
evenly distributed (Figure 1(b)). We can also see from Fig-
ure 1(a) that a moderate portion ofÆ+ is in the high value range
(� 0:5), which indicates that similar images may be quite dis-
similar in many features. This observation suggests that the
assumption of the Minkowski metric is inaccurate. Similar im-
ages are not necessarily similar in all features.

Next, we examined whether similar images resemble the
query images in the same way. We tallied the feature distance
(Æ+) of the144 features for different kinds of image transfor-
mations. Figure 2 presents four representative transformations:
GIF, cropped, rotated, and scaled. Thex-axis of the figure de-
picts the feature numbers, from1 to 144. The first108 features
are various color features, and the last36 are texture features.
The figure shows that various similar images can resemble the
query images in very different ways. GIF images have larger
Æ+ in color features (the first108 features) than in texture fea-
tures (the last36 features). In contrast, cropped images have
largerÆ+ in texture features than in color features. For rotated
images, theÆ+ in colors comes close to zero, although its tex-
ture feature distance is much greater. A similar pattern appears
in the scaled and the rotated images. However, the magnitude
of theÆ+ of scaled images is very different from that of rotated
images.

We summarize our observations as follows:

� Similar feature distanceis distributed differently fromdis-
similar feature distance. Similar feature distanceskews to-
ward small values, whiledissimilar feature distanceshows
more even distribution.

� Similar images do not resemble the query images in all fea-
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(a) GIF Images (b) Cropped Images
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(c) Rotated Images (d) Scaled Images

Figure 2: The Average Feature Distances.
tures.

� Images similar to the query images can be similar in differ-
ing features. For example, some images resemble the query
image in texture, others in color.

The above observations not only refute the assumptions of
Minkowski-type distance functions, but also provide hints as
to how a good distance function would work. The first point is
that a distance function does not need to consider all features
equally, since similar images may match only some features
of the query images. The second point is that a distance func-
tion should weight features dynamically, since various similar
images may resemble the query image in differing ways. Tra-
ditional relevance feedback methods [3] learn a set “optimal”
feature weights for a query. For instance, if the user is more
interested in color than in texture, color features are weighted
higher when similarity is computed. What we have discovered
here is that this “static” weighting is insufficient. An effective
distance function must weight features differently when com-
paring the query image to different images. These points lead
to the design of thedynamic partialdistance function.

2.2 Dynamic Partial Distance Function

Based on the observations explained above, we designed a dis-
tance function to better represent the perceptual similarity. Let
Æi = jxi � yij, for i = 1; � � � ; p. We first define sets�m as

�m = fThe smallest m Æ0s of (Æ1; :::; Æp)g:

Then we define theDynamic Partial Distance Function
(DPF) as

d(m; r) = (
X

Æi2�m

Æi
r)

1

r : (3)

DPF has two adjustable parameters:m and r. Parame-
ter m can range from1 to p. Whenm = p, it degenerates

to the Minkowski metric. Whenm < p, it counts only the
smallestm feature distances between two objects, and the in-
fluence of the(p �m) largest feature distances is eliminated.
DPF dynamically selects features to be considered for different
pairs of objects. This is achieved by the introduction of�m,
which changes dynamically for different pairs of objects. In
Section 3, we will show that DPF makes similar images ag-
gregate more compactly and locate closer to the query images,
simultaneously keeping the dissimilar images away from the
query images. In other words, similar and dissimilar images
are better separated by DPF.

3 Empirical Study

Our empirical study consists of two parts: training and testing.
In the training part, we used the same1:5M-image dataset to
predict the optimalm value. In the testing part, we used a
50K-image dataset to examine the effectiveness of DPF.

3.1 Predictingm Through Training

We used the60; 000 original images to perform queries. Ap-
plying DPF of differentm values to the1:5M-image dataset,
we tallied the distances from these60; 000 queries to their sim-
ilar images, and their dissimilar images, respectively. We then
computed the average and the standard deviation of these dis-
tances. We denote the average distance of the similar images to
their queries as�+d , of the dissimilar images as��d . We denote
the standard deviation of the similar images’ distances as�+d ,
of the dissimilar images as��d .

Figure 3 depicts the effect ofm (in thex-axis) on�+d , ��d ,
�+d , and��d . Figure 3(a) shows that asm becomes smaller,
both �+d and��d decrease. The average distance of similar
images (�+d ), however, decreases at a faster pace than that of
dissimilar images (��d ). For instance, when we decreasem
from 144 to 130, �+d decreases from1:0 to about0:3, a 70%
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Figure 3: The Effect of DPF.
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Figure 4: Search Performance of Differentm at r = 3.

decrease, whereas��d decreases from3:2 to about2:0, a38%
decrease. This gap indicates�+d is more sensitive to them
value than��d . Figure 3(b) shows that the standard deviations
�+d and��d observe the same trend as the average distances.
Whenm decreases, similar images become more compact in
the feature space at a faster pace than dissimilar images do.
Our training result indicates that whenm is set as114, similar
images are best clustered.

3.2 Testing New Distance Functions

The test dataset consists of100 similar-image sets, each set
is composed of30 images. Of these30 images, we have the
original image,24 transformed images (using the same trans-
formation methods described in Section 2), and five images
that are visually identified as similar. We then added50K ran-
domly crawled Web images to these100� 30 images to form
our testset.

We conducted100 queries using the100 original images.
For each query, we recorded the ranks of its similar images.
We experimented withm values from84 to 144, with r fixed
at three. Figure 4 depicts the experimental results.

The precision-recall curves of selectedm values are plotted
in Figure 4(a). The peak search performance is achieved when
m = 114, and it does significantly better than the Minkowski
distance (m = 144). Figure 4(b) plots the recall at selectedm
values for top-k retrievals. As we decrease the value ofm from
144, the recall improves steadily untilm reaches114, where
the peak performance is achieved. Our DPF outperforms the
Minkowski distance function by25 percentiles in recall.

Because of space limitation, we present extensive exper-
imental results and our comparison between the weighted
version of DPF and the weighted Minkowski metric in [4].
DPF consistently outperforms Minkowski-type function sig-

nificantly for finding similar images.

4 Conclusion

In this work we tackled one fundamental problem in im-
age retrieval—how to measure perceptual similarity between
images—using data mining techniques. We discovered thedy-
namic partial distance function(DPF) through mining a large
set of visual data, and showed that DPF outperformed the tra-
ditional functions by significant margins. The effectivenese of
DPF can be explained bysimilarity theoriesin cognitive psy-
chology [2, 4].
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