
DPF: Fast, Flexible Message Demultiplexing using Dynamic Code Generation

Dawson R. Engler, and M. Frans Kaashoek
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, U.S.A.

fengler,kaashoekg@lcs.mit.edu

Abstract

Fast and flexible message demultiplexing are well-established goals
in the networking community [1, 18, 22]. Currently, however, net-
work architects have had to sacrifice one for the other. We present
a new packet-filter system, DPF (Dynamic Packet Filters), that pro-
vides both the traditional flexibility of packet filters [18] and the
speed of hand-crafted demultiplexing routines [3]. DPF filters run
10–50 times faster than the fastest packet filters reported in the
literature [1, 17, 18, 27]. DPF’s performance is either equivalent
to or, when it can exploit runtime information, superior to hand-
coded demultiplexors. DPF achieves high performance by using a
carefully-designed declarative packet-filter language that is aggres-
sively optimized using dynamic code generation. The contributions
of this work are: (1) a detailed description of the DPF design, (2)
discussion of the use of dynamic code generation and quantitative
results on its performance impact, (3) quantitative results on how
DPF is used in the Aegis kernel to export network devices safely and
securely to user space so that UDP and TCP can be implemented
efficiently as user-level libraries, and (4) the unrestricted release of
DPF into the public domain.

1 Introduction

Rapid demultiplexing is important in order to neither waste pro-
cessing cycles nor add latency to end-to-end message time [1].
Application-specific demultiplexing is important so that applica-
tions can explore new protocols without kernel modification [18].
Previously, networking architects have had to trade flexibility for
performance to demultiplex messages efficiently. For example, the
packet-filter model [18] is flexible, but its cost has precluded its
use in high-performance networking systems. Instead, networking
systems use hand-crafted demultiplexing routines that can only be
extended or altered by kernel architects [13, 23, 26]. The packet
filter system described in this paper, Dynamic Packet Filters (DPF),
achieves these twin goals of flexibility and performance by us-
ing a carefully-designed declarative packet-filter language that is
amenable to aggressive dynamic code generation. DPF filters run
13–26 times faster than PATHFINDER filters, the fastest numbers

This work was supported in part by the Advanced Research Projects Agency under
contract N00014-94-1-0985 and by a NSF National Young Investigator Award.

Copyright c1996 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or
(permissions@acm.org).

reported in the literature [1, 17, 18, 27]. DPF’s performance is
equivalent to, and in some situations can even exceed, the perfor-
mance of hand-coded demultiplexors.

Message demultiplexing is the process of determining which
application a message is for. Like other packet demultiplexors,
DPF uses packet filters to demultiplex messages. Packet filters are
predicates written in a small safe language [18]. Logically, a packet
filter examines all incoming network packets; those messages that
satisfy its predicate are delivered to its associated application. This
approach allows new protocols to be implemented outside of the
kernel and then downloaded into the packet filter driver, greatly
increasing flexibility [18].

Packet filters are interpreted, which entails a high computational
cost. This cost is sufficiently high that, to the best of our knowledge,
all high-performance networking systems except for the x-kernel
project [1, 12] avoid them completely. For example, the Pere-
grine RPC system [13], the remote read/write model of Thekkath
et al. [23], and the Active message model [26] all use hard-wired
in-kernel demultiplexing routines. We show that applying dynamic
code generation to packet filters can improve their performance to
the point that they are equivalent in efficiency to (and in some cases
faster than) hand-crafted in-kernel routines, while retaining all of
the flexibility of the packet filter model.

The key in our approach to making filters run fast is dynamic
code generation. Dynamic code generation is the creation of ex-
ecutable code at run time. Its most important property is that it
allows the use of runtime information to improve code generation.
Dynamic code generation (or dynamic compilation) is directly anal-
ogous to static compilation except that, since it occurs at runtime, it
must be made much more efficient. Dynamic code generation can
be used to compile a packet filter specification down to actual ma-
chine code. While dynamic code generation has been considered a
possible mechanism for improving the performance of packet filters
since their inception [18], it has been deemed too “complicated” to
implement [18]. A contribution of our work is to show that dynamic
code generation can be used in a straightforward manner.

We have designed, implemented, and tested DPF. User-level
measurements show that DPF demultiplexes messages 25–50 faster
than MPF [27] and 13–26 faster than PATHFINDER [1], the fastest
packet filter demultiplexor in the literature. In addition, DPF scales
better with the length of a filter than PATHFINDER, making it better
suited for deep protocol stacks. We have also integrated DPF with
Aegis, an exokernel operating system [10]. DPF allows Aegis to
export the Ethernet interface safely and efficiently to applications;
this structure allows all protocols to be implemented completely as
libraries in user space. Measurements from Aegis’s user-level UDP
and TCP implementations, which use DPF for filtering packets,
show that this structure can achieve performance as good as or
better than hard-coded in-kernel implementations while retaining a

1

(
Check Ethernet header
(12:16 == 0x8) && # IP datagram?
Skip over ether header (14 bytes)
(SHIFT(6 + 6 + 2)) &&

Check IP header
(9:8 == 6) && # Check protocol : TCP is 6
(12:32 == 0xc00c4501) && # Check IP src addr (192.12.69.1)
Skip past IP header (assume fixed sized; 20 bytes)
(SHIFT(20)) &&

TCP header
(0:16 == 1234) && # Check source port (2 bytes)
(2:16 == 4321) # Check destination port (2 bytes)

)

Figure 1: DPF filter to recognize TCP/IP packets.

high degree of flexibility.
The remainder of the paper is structured as follows. Section 2

discusses the design of DPF and its filter language. Section 3
describes DPF’s implementation using dynamic code generation.
Section 4 reports on DPF’s performance and compares its perfor-
mance to other packet filters. Section 5 describes how we use DPF
to run UDP and TCP as user-level libraries. Section 6 relates DPF
to other work. In Section 7 we conclude.

2 Dynamic Packet Filter

DPF’s packet filter language is a declarative language that is used by
protocols to describe the message headers that they are looking for.
Similarly to the languages used in MPF [27] and PATHFINDER [1],
it can handle a wide range of possible protocols and supports frag-
mentation.

A DPF packet filter is composed of a sequence of boolean com-
parisons (or atoms) linked by conjunctions. Logically, a filter’s
atoms are checked in order after packet reception (our declarative
language avoids most side-effects, allowing re-ordering for effi-
ciency). If all atoms are true, then the filter accepts and the packet
is delivered to the associated application.

Figure 1 shows an example packet filter. Each atom is specified
using the standard set of arithmetic operators, with the addition of
the ‘:’ and SHIFT operators. The ‘:’ operator is used to read packet
data. It takes as arguments a base (specified in bytes) and a size
(specified in bits). The base can be either a constant or an indirect
load from the message itself. The SHIFT operation shifts the base of
the message pointer, allowing arbitrary predicates to be composed
using relative addressing.

A new filter is merged into the set of active filters as follows:

1. Filters are written by clients, and then preprocessed into a
low-level representation. This form is then shipped to the
packet filter engine.

2. The packet-filter engine parses the filter into its constituent
atoms, which are checked for syntactic and semantic errors
and turned into an expression tree. As a performance trick,
checking is elided for atoms that are duplicates of already
vetted atoms. For example, when TCP filters are downloaded,
only the first filter’s atoms are subject to rigorous checking —
the others can be verified with a byte comparison that ensures
they are identical.

3. As in PATHFINDER, the set of active filters is stored in a trie
data structure. New filters are merged into the trie along the
path with the largest prefix match. The point of this operation

is to collapse similar prefixes, eliminating unnecessary com-
putation. This optimization is profitable due to the fact that
many network communications use the same set of protocols
(e.g., TCP/IP, UDP) and, as a result, their associated filters
will check the same set of conditions. Merging the filters
eliminates duplicate checks. Both equivalent and disjunctive
atoms are merged. Two atoms are disjunctive if they share an
identical expression tree on one side of the equality operator,
but compare to different constants. When found, these atoms
are merged and a hash table is used to determine which (if
any) of the merged atoms were satisfied.

4. Atoms that were not merged into the main filter trie are con-
nected to it with an “or” branch: during message demul-
tiplexing these branches are checked one at a time until a
filter accepts or no more branches remain. Currently these
branches are sorted by reference count and checked from
largest reference count to smallest. After a new or branch
is created, the atoms that it contains are traversed, and an
unlinked code fragment is generated from them (we discuss
this operation below).

5. After merging the new filter into the master filter, if code was
generated, the system re-traverses the master filter, copying
the code associated with each changed atom into a linear block
of memory. Cleanup is performed (e.g., jumps are back-
patched and the instruction cache is flushed) and execution
continues.

2.1 DPF/Operating system interface

The DPF system is modular and easily integrated into network
subsystems. Its public interface (given in Table 1) is comprised
of three functions: dpf insert (used to insert a filter), dpf demux
(used to demultiplex messages), and dpf delete (used to delete
filters). System specific details of message alignment, minimum
packet size, cache flushing, and a memory allocation function are
provided as defaults that can be overridden.

3 Implementation

This section first discusses how DPF uses dynamic code generation
and then reports on a number of optimizations that it performs.

3.1 Dynamic code generation

DPF exploits dynamic code generation in two ways: by using it to
eliminate interpretation overhead by compiling packet filters into
executable code, and by using filter constants to aggressively opti-
mize this executable code. For portability, DPF uses the machine-
independent VCODE dynamic code generation system [8].

Because an atom represents a single comparison, the code gen-
erated for it is mapped to a basic block of machine instructions:
i.e., control enters from the top of an atom and leaves at the bot-
tom (via a branch). Code generation is done with one pass over
the atom’s expression tree. This pass performs register allocation,
simple delay slot scheduling, and instruction selection and emis-
sion. Register allocation and delay slot scheduling are modeled on
Proebsting [19]. Instruction selection is a matter of translating the
operators of the atom’s expression tree to the instructions supplied
by the underlying hardware. There is a direct mapping between
these operations and machine instructions (e.g., “&” maps to and);
as a result, instruction selection is simple. Finally, code is emitted
using a set of simple macros. As noted above, each atom is a basic
block, and ends with a jump and (possibly) a delay slot: these are
left unfilled until the code is instantiated.

2

Operation Description
int dpf insert(struct dpf ir *filter) dpf insert inserts filter filter. It fails if the filter is malformed, if

memory allocation required to incorporate it fails, or, optionally, if
the filter is already present. On success it returns a filter id.

int dpf delete(int fid) Delete filter fid inserted using dpf insert. It fails if the filter does
not exist.

int (*dpf demux)(void *msg, unsigned nbytes) The function pointer dpf demux is called to demultiplex a packet.
It takes as arguments a pointer to the message (msg) and a message
size, in bytes (nbytes). It returns the id of the accepting filter, or “0”
if no filter accepts.

Table 1: DPF Interface

Since dynamic code generation occurs at runtime, its main cost
is the time required to emit code. We have taken care to ensure
that the compilation process described in the previous paragraph
happens only once — when an atom is first installed. By caching this
code, subsequent recompilations of an atom (such as needed when
new branches are added to the main filter trie) can be performed by
copying the cached code.

To minimize the need to regenerate the demultiplexor function,
DPF tracks the common case where a filter was merged with the
main filter trie without adding new nodes or requiring modification
to existing ones. Operationally, this situation translates to a filter
only requiring entries to be added to the hash tables used to check
disjunctions. As long as new hashing functions do not have to be
created (e.g., to check for collisions, or to use a different hashing
strategy), code does not have to be regenerated.

As we describe above, the current DPF implementation copies
atom blocks into contiguous memory to construct the demultiplex-
ing routine. An alternative approach would be to thread the code
blocks using jumps. This method would provide cheaper code gen-
eration since forming the jumps between blocks is (usually) more
efficient than copying the several words of memory containing atom
instructions. However, it makes demultiplexing routines less effi-
cient since control would not “fall through” from one atom to the
next but, rather, would have to be forcibly redirected using a jump.
We intend to investigate this alternative as we scale DPF to support
environments with tens of thousands of filters,

3.2 Optimizations

Packet filter optimizations can be either intra-filter [17] (within a
filter) or inter-filter [27, 1] (between filters). Dynamic code gener-
ation is an intra-filter optimization. In this paper, we are interested
in isolating the effects of dynamic code generation. To this end,
we re-implemented the applicable inter-filter optimizations used by
PATHFINDER (the fastest packet filter engine in the literature) in
the context of DPF; by holding this optimization framework con-
stant, we can obtain a clear picture of the effects of dynamic code.
To the best of our knowledge, the optimizations presented in this
subsection are not implemented by PATHFINDER or any other
current packet filter engine.

Runtime constants The simplest optimization is encoding filter
constants directly into the instruction stream. For example, the filter
presented in Figure 1 lists the source and destination ports as well
as the source address. Because these values are constant over the
filter’s lifetime, they can be incorporated as immediate operands in
the instruction stream itself, eliminating indirections.

Since many of these constants are filter-specific as opposed to
protocol-specific (e.g., they are known only after a connection is
established), a statically coded demultiplexor cannot access them
directly. Instead, it must track such information in memory vectors
(or hash tables) and access it via costly indirection. In other words,

since DPF can exploit filter-specific constants, it can be faster than
hand-crafted demultiplexors. For example, in Figure 2 the check
for the source IP address (192.12.69.1) can be encoded directly in
the instruction stream.

Fast disjunctions Disjunctions compare a given expression against
a range of possible values. In systems such as MPF and PATHFINDER,
these values are not known a priori, and so a general-purpose, pos-
sibly expensive hash function must be used, along with checks for
collisions, etc. However, since DPF knows both the number and the
actual values that must be compared, it can exploit this information
to make disjunction resolution more efficient. For example, if the
number of words to compare against is small (say 1–3), the hash
table is completely eliminated and comparisons are performed di-
rectly (as a series of branches), saving the cost of hash table lookup.
As another example, since the number and value of keys are known
at runtime, DPF can select among several hash functions to obtain
the best distribution and then the chosen function directly in the in-
struction stream. Furthermore, since DPF knows at code-generation
time whether keys have collided, it can eliminate collision checks
if no collisions have occurred.

The mechanics of this optimization are similar to the manner
in which optimizing compilers treat C switch statements, which
require that a given expression be matched against a constant. A
small range of values is searched directly, sparse values are matched
using binary search, and dense ranges are matched using an indirect
jump.

Subsequent optimizations only require a preprocessing step, not
complete dynamic code generation. However, they aid dynamic
code generation’s effectiveness.

Atom coalescing The first optimization in this category is the co-
alescing of adjacent atoms. For example, assuming word alignment,
the checks of source and destination ports in Figure 1 examine two
two-byte quantities that are contained in the same word, allowing
us to collapse this comparison into a single operation:

TCP header before coalescing
(0:16 == 1234) && # Check source port
(2:16 == 4321) # Check destination port

TCP header after coalescing
(0:32 == 283182290) # 283182290 ==

((4321 << 16) j 1234)

Because this optimization eliminates a control flow change, it can
save more than the few instructions required for the load, com-
parison and branch. For example, in architectures with branch
prediction hardware, eliminating branches implies one fewer pos-
sible misprediction. Note that atom coalescing is most useful when
the current alignment is known or can be predicted (see below).

3

Alignment estimation Because neither packet filters nor mes-
sages can be trusted, traditional packet-filter systems perform a
number of checks to guard against errors. For example, packet-filter
engines treat every load and store as potentially unaligned. Mem-
ory operations must therefore first be checked for proper alignment
to eliminate unaligned access traps. We optimize this process by
finding a lower bound for the alignment of the message-pointer
base register. The general algorithm is to record the effects of every
SHIFT instruction on the base message register. For example, this
register starts word-aligned: if all subsequent shifts are by constants
that are multiples of four, then this bound stays the same. However,
if a shift by two bytes occurs, then the lower bound on this register
becomes two.

As a side-effect of alignment information propagation DPF
eliminates constant SHIFT operations by adding its operand to the
message offset of subsequent atoms. This optimization saves about
one addition instruction for each protocol header.

There are two complications to alignment estimation, both aris-
ing from indirect loads. If shifts are performed using indirect loads
then the value loaded cannot be determined statically and must be
pessimistically assumed to be only byte-aligned. Fortunately, com-
putations are usually performed on this value before it is used to shift
the message pointer. For example, consider a possible expression
to shift past a variable-sized IP header:

skip over variable IP header
(SHIFT((4:8 & 0xf) << 2))

Shifting the result to the left by 2 (multiplying by 4) ensures that the
message register is word-aligned. The alignment heuristic works
by traversing the expression tree of shift instructions looking for
such operations (e.g., multiplication, left-shift, and masks).

Bounds-check aggregation To ensure protection, packet filters
are constrained from accessing memory outside the current mes-
sage. In traditional packet-filters, this protection is enforced by
checking each message reference for legality. For better perfor-
mance, DPF eliminates bounds checks by using aggregation. This
optimization works by scanning forward from each shift instruction
to find the load with the largest offset. Before the shift is performed,
we check that this offset is valid. If it is, then execution contin-
ues, and no more bound checks are performed until the next SHIFT
instruction. If the check fails, then the filters along this path are
considered to have rejected and are skipped. An extension to this
optimization is to simply scan forward until either a shift using an
indirect load is found, and only then recalculate the bounds check.
This optimization aggregates all bounds checks to a single point
in time and has the pleasant side effect of being a cheap way of
eliminating packets.

3.3 Results of optimizations

Figure 2 demonstrates the net effect of these optimizations by
showing the code DPF generates for the first three atoms of the
filter described in Figure 1. As can be seen, DPF generates efficient
code: all alignment checks have been eliminated, all filter constants
have been encoded in the instruction stream, all delay slots have
been filled, and the optimal number of registers (2) has been used.
Furthermore, we have been able to exploit the fact that the minimum
message size is 64 bytes: since the filter only references the first 40
bytes of the message, all bounds checks have been eliminated.

An additional benefit of dynamic code generation is that the
fixed cost of starting the packet-filter engine itself is small. In the
example we look at, only two registers are needed. As a result, the
latency of invoking the packet filter from an interrupt handler (in a
manner similar to some hand-crafted message demultiplexors such

Check Ethernet header
(12:16 == 0x8) &&
lhu t1, 12(a0) # 12:16 (a0 holds pointer to message)
li t0, 0x8 # Load 0x8
bne t1,t0,$next # Branch to next filter if not equal

SHIFT(6 + 6 + 2) && (is optimized away)

Check protocol: TCP is 6
(9:8 == 6) &&
lbu t1,9+14(a0) # 9:8 after propogating ethernet header size
li t0,6 # load 6
bne t1,t0,$next # Branch to next filter if not equal

Figure 2: Generated MIPS R3000 code to recognize the first three
atoms of an Ethernet/IP/TCP header (after optimization).

as Thekkath et al. [23]) is small, since the handler must only save
and restore a handful of registers to classify a packet. In contrast,
an interpretive packet-filter engine is a more heavy-weight entity
that has large register requirements; these requirements cause a
commensurate increase in register saves and restores, increasing its
latency.

3.4 Concerns

The main concern arising from the use of dynamic code genera-
tion is portability. Fortunately, compiler technology has reached
the threshold where portable dynamic code generation systems are
beginning to be made freely available. For instance, DPF uses the
public-domain VCODE dynamic code generation system [8]. Lan-
guage support for dynamic code generation has even been added to
high-level languages such as C [4, 9] making the generation code
code at runtime no more complex than the implementation of stat-
ically generated code. However, even if an implementor eschews
the use of a portable system, writing the machine-specific pieces of
DPF is not difficult, since the amount of machine-specific code that
must be written is small: packet filters use a simple, restricted set of
operations (e.g., all operations are unsigned, freeing implementors
from supporting floating-point and signed integer operation). Our
initial implementation of DPF took such an approach. Not includ-
ing the instruction macros themselves (which are freely available in
systems such as the New Jersey Toolkit [20]), it was a few hundred
lines of machine-dependent source. Compared to the overall effort
required in other parts of the kernel, this is a rather small amount
of code to write and, in our experience, can take as little as one to
two days to construct. Finally, the use of dynamic code generation
can be a simplifying mechanism, since it removes the need for a
packet-filter expression evaluator.

4 Performance

In this section we evaluate DPF’s performance. Our experiments
are based on those of PATHFINDER [1]. The PATHFINDER and
MPF numbers were taken from the literature [1] (we were able to
independently verify those for MPF). To ensure meaningful com-
parisons between the systems, we ran our experiments on the same
hardware (a DECstation 5000/200) and in user space. One mil-
lion trials were run per experiment; the total time was then divided
to give the time for a single run. Time was measured using the
getrusage system call.

Disjunction overhead The time to perform a disjunction varies
as the number of dependent filters increases. In Table 2 we vary
the number of filters, keeping them identical in all but a single dis-
junctive atom (the destination port). As the number of dependent

4

Header type 1 filter 2 filters >= 3 filters

Fixed 1.14 1.23 1.39
Variable 1.27 1.35 1.51

Table 2: Time to recognize both fixed and variable sized TCP/IP
headers; times are in microseconds.

Filter Unexpected Expected
MPF 71 35
PATHFINDER 39 19
DPF 1.5 1.5

Table 3: Time to recognize 10 fixed-sized TCP/IP headers; times
are in microseconds.

filters increases, more comparisons must be performed. When this
number becomes greater than three, we generate a simple hashing
function to efficiently match disjunctions. The difference between
the time to recognize a single filter and the time to recognize a
given filter using hash tables is almost 20%, showing that the opti-
mizations DPF performs based on the number of hashed keys are
worthwhile.

Classi�cation overhead Figure 3 presents the time to classify
packets destined for one of ten TCP/IP filters for each of the three
systems. The numbers for MPF and PATHFINDER were taken
from [1]. To ensure a meaningful comparision, we have been care-
ful to use equivalent filters.

Because interpretation is expensive, both MPF and PATHFINDER
maintain a cache of recently recognized filters; on message arrival,
this cache is checked first. Given DPF’s filter classification speed,
our current implementation does not use caching. As can be seen,
DPF is 25–50 times faster than MPF and 13–26 times faster than
PATHFINDER, depending on whether or not the filter was cached
(“expected”). Clearly, dynamic code generation is profitable.

Scalability This experiment measures the recognition overhead
of each additional level in the protocol stack. Each level is rep-
resented by two simple atoms, so that a depth of two implies
four atoms, a depth of three six atoms, etc. This experiment
was performed using a single active filter. As Figure 3 shows,
the DPF implementation is approximately 35–40 times faster than
PATHFINDER, again because of the use of dynamic code genera-
tion.

Insertion overhead The time to insert a new filter depends sig-
nificantly on the number of nodes it contains. In our current system,
the “worst case” overhead is when a filter matches all nodes but the
last one, since all nodes in a filter must be checked for equality
against all others. The cost of this operation for the TCP/IP filter
used in our classification experiment is 220 microseconds. This
is approximately a factor of three slower than PATHFINDER. The
bulk of this difference is not caused by the overhead of dynamic
code generation, which accounts for less than 40% of insertion cost.
Rather, it is due to the overhead of translating the filter represen-
tation of client filters into the internal representation used by DPF
(30%) and by the simple algorithms we use to merge filters into the
existing filter structure (greater than 30%). Both of these overheads
are amenable to reduction through the use of more sophisticated
algorithms. While we intend to improve these times, we believe
that the current overhead is an acceptable tradeoff for an order-of-
magnitude performance improvement in packet recognition, since
it is repaid with just a handful of packet classifications.

0 2 4 6 8

depth

0

20

40

60

80

ti
m

e
(m

ic
ro

se
co

nd
s)

PATHFINDER
DPF

Figure 3: Time to recognize message versus depth of protocol stack;
times are in microseconds.

Comparison to hand coded Clark et al. [3] give an instruction
count of 57 instructions for an optimized hand-coded IP demulti-
plexor. Without disjunctions, our implementation requires approx-
imately 18 instructions. The main reason for this is that DPF can
aggressively exploit runtime constants. For example, by incorporat-
ing constants into the instruction stream, it eliminates table lookups
to check allowed values. Note that DPF generated code is as fast
as hand-crafted demultiplexors even when it cannot use runtime in-
formation: given the restricted domain in which filters are written,
DPF can perform the same optimizations that current compilers do
for packet filter expressions.

5 Using DPF

We have integrated DPF with the Aegis exokernel [10]. Although
our implementation is for an exokernel, DPF is mostly independent
of the operating system. For example, adding DPF to a standard
run-of-the-mill UNIX kernel should be relatively straightforward.

DPF allows Aegis to export the Ethernet interface securely and
efficiently to applications. Without a packet filter, the kernel would
need to query every application or network server on every packet
reception to determine who the packet was for. Packet filters can be
viewed as application code that is downloaded into the kernel. Pro-
tocol knowledge is limited to the application, while the protection
checks required to determine packet ownership are couched in a lan-
guage understood by the kernel. Fault isolation of the downloaded
code is ensured by careful language design (to bound run time)
and runtime checks (to protect against wild memory references and
unsafe operations).

By separating protection (determining who the packet is for)
from authorization and management (setting up connections, ses-
sions, managing retransmissions, etc.), fast network multiplexing
is possible while still supporting complete application-level flex-
ibility. This allows protocols to be implemented as user-level li-
braries, which can be tailored to application needs. As pointed
out by many others, such user-level protocols have many bene-
fits [6, 7, 15, 21, 25].

The design of the DPF was heavily influenced by the pervasive
reliance Aegis places on application use of library operating sys-

5

Protocol Latency Throughput

UDP 309 1.03
TCP 412 1.04

Table 4: Latency and throughput for UDP and TCP over Ethernet.
Latency in microseconds. Throughput in Mbyte/s.

tems. In particular, is not uncommon for many differently-authored
protocol implementations to be active on the same Aegis system.
The concrete effect of this situation is that there can be many differ-
ently structured packet filter specifications for each protocol family.
The challenge such diversity places on a packet filter system is that
if proper care is not taken in language design, it is very difficult
to merge these differently written packet filters, even though their
functionality is equivalent. To counter this difficulty we designed
the DPF language so that functionally equivalent but structurally
different packet filters can be put in a canonical form so that these
filters can be merged with other packet filters in the same protocol
family. The key to this process is the use of a declarative language
instead of an imperative one.

The one problem with the use of a packet filter is ensuring that
that a filter does not “lie” and accept packets destined for another
process. Simple security precautions such as only allowing a trusted
server to install filters can be used to address this problem. On a
system that assumes no malicious processes, the DPF language is
simple enough that in many cases even the use of a trusted server
can be avoided by statically checking a new filter to ensure that it
cannot accept packets belonging to another; by avoiding the use of
any central authority, extensibility is increased.

Using DPF we have implemented several protocols at user-level,
including UDP and TCP. We use these implementations in all our
applications to interact with the rest of our computing environment
(e.g., with our NFS server to retrieve and store files). The UDP
library uses one filter per connection. The TCP library uses one
filter for listening for a connection and one filter per established
connection. Both UDP and TCP are straight implementations of
RFC 768 and RFC 793, respectively. The TCP implementation is
not fully TCP compliant (it lacks support for fluent internetworking
such as fast retransmit, fast recovery, and good buffering strategies),
but it is complete enough to communicate correctly and efficiently
with other TCP implementations in other operating systems.

Table 4 lists the latency and throughput of the user-level UDP
and TCP libraries that use DPF. The experiments were performed
on a pair of 40-Mhz DECstation 5000/200s and measured using a
cycle counter. Latency was measured by sending a 60-byte message
with a 4-byte payload and waiting for a reply. Throughput for UDP
was measured by sending a train of six packets of 1,500 bytes and
waiting for a quick response. Throughput for TCP was measured
by writing 10 Mbytes in 8-Kbyte chunks over a TCP connection.
The maximum segment size was 1,500 bytes and the window size
was set to 8 Kbyte. Larger window size increases the throughput.
Both the UDP and TCP libraries checksum the pseudo-header, IP
header, UDP header, and user data.

The performance of the user-level implementations of UDP
and TCP using DPF are as good as hard-coded in-kernel imple-
mentations and better than other user-level implementations of the
internet protocols in user space over Ethernet [25, 15]. In fact,
our user-level implementations perform close to the possible limits;
Thekkath and Levy measure 340 microseconds between 25-MHz
DECstation 5000/200s for a user-level reliable raw RPC proto-
col [22], while we are measuring 309 microseconds on a faster
machine (40-MHz) but using IP and UDP with checksumming.
Part of the good performance is due to Aegis’s efficiency [10], but
from these numbers it is clear that DPF does not form a bottleneck

for achieving high performance communication while maintaining
a high degree of flexibility.

6 Related work

There have been four packet filter systems described in the lit-
erature [1, 17, 18, 27]. All of these systems use interpretation;
additionally, PATHFINDER considers the effect of hardware assis-
tance [1]. To the best of our knowledge, previous systems have not
used the optimizations we describe in this paper.

In the context of language design, DPF shares many similarities
with PATHFINDER. While DPF was developed independently of
PATHFINDER, its declarative style is similar to PATHFINDER’s
(e.g., the use of predicates and simple boolean atoms). The main
difference is generality. DPF appears to include a richer set of op-
erations than PATHFINDER, which restricts operations in order to
allow an easier encoding in hardware; since we compile to machine
code, we are unfettered by this constraint. One cost of a richer lan-
guage is that there are many structurally different representations of
functionally equivalent atoms (e.g., (4 + 0:16) is equivalent to (0:16
+ 4)). The presence of such structural artifacts can work against
inter-filter optimizations that rely on detecting similarities. In order
to counter such artifacts, we have developed a set of tree rewriting
rules that are applied to each atom to yield a single canonical form.

This is the first paper to systematically use and investigate the
effects of dynamic code generation on packet filter performance.
The idea of using dynamic code generation to improve packet filter
performance is an old one: Mogul et al. [18] mentioned dynamic
code generation as a possibility for improving packet filter perfor-
mance, but considered it “too complicated.” Thekkath et al. [24]
mentioned the use of dynamic code generation for packet filters as
well, but did not implement it. 1 Recently, Minshall and collegues
have experimented with the use of dynamic code generation in BPF
but have not reported on any results. 2 The system we developed
was first mentioned in Engler and Proebsting as a motivation for
dynamic code generation [11]. We hope that the performance im-
provements we demonstrate are a vindication of the packet filter
model for efficient demultiplexing, allowing packet filters to be as
useful in the context of Gb/sec networks as they are on Mb/sec
Ethernets.

The general use of dynamic code generation to speed up lan-
guage execution has a venerable tradition. Deutsch used it to im-
plement Smalltalk [5]; it was later used in Self [2]. We were also
influenced by Massalin’s use of dynamic code generation in the
context of operating system calls [16].

Recent work has concentrated on improving language-level sup-
port for dynamic code generation. Leone et al. [14] describe lan-
guage support for dynamic code generation in the context of a
restricted functional language. VCODE [8] and ‘C [9] provide a
portable, efficient means of generating machine code “on the fly”
(both systems are available publicly). Consel and Noël [4] describe
a technique for specializing programs with respect to run-time in-
variants.

7 Conclusion

We have presented a packet filter system, DPF, that uses dynamic
code generation to improve the performance of its packet-classifier
engine by 13–26 times that of the best numbers presented in the liter-
ature. Since the code DPF generates can exploit filter constants that
are not available to static implementations, it can even be faster than
hand-crafted demultiplexing routines. Its performance shows that
packet filters can work well even in the context of Gb/sec networks;

1Personal communication with Chandu Thekkath.
2Personal communication with Greg Minshall.

6

the simplicity of the system demonstrates that this performance can
be achieved with modest effort.

Acknowledgments

We thank Héctor M. Briceño and Dominic Sartorio for their help
with the development of DPF. We also thank Eddie Kohler and
Anthony Joseph for carefully proofreading this paper.

References

[1] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar. PATHFINDER: A pattern-based packet classifier.
In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pages 115–123, November 1994.

[2] C. Chambers and D. Ungar. Customization: Optimizing
compiler technology for SELF, a dynamically-typed object-
oriented programming language. In Proceedings of PLDI ’89,
pages 146–160, Portland, OR, June 1989.

[3] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
analysis of TCP processing overhead. IEEE Communications
Magazine, 27(6):23–29, June 1989.

[4] C. Consel and F. Noel. A general approach for run-time spe-
cialization and its application to C. In Proceedings of the 23th
Annual Symposium on Principles of Programming Languages,
St. Petersburg, FL, January 1996.

[5] P. Deutsch and A.M. Schiffman. Efficient implementation of
the Smalltalk-80 system. In Proceedings of 11th POPL, pages
297–302, Salt Lake City, UT, January 1984.

[6] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences
with a high-speed network adaptor: A software perspective.
In ACM Communication Architectures, Protocols, and Appli-
cations (SIGCOMM) 1994, pages 2–13, London, UK, August
1994.

[7] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Clamvokis,
and C. Dalton. User-space protocols deliver high performance
to applications on a low-cost Gb/s LAN. In ACM Communica-
tion Architectures, Protocols, and Applications (SIGCOMM)
1994, pages 14–24, London, UK, August 1994.

[8] D. R. Engler. VCODE: a retargetable, extensible, very
fast dynamic code generation system. In Proceedings
of the SIGPLAN ’96 Conference on Programming Lan-
guage Design and Implementation, Philadelphia, PA, May
1996. http://www.pdos.lcs.mit.edu/˜engler/
vcode.html.

[9] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A lan-
guage for high-level, efficient, and machine-independent dy-
namic code generation. In Proceedings of the 22th Annual
Symposium on Principles of Programming Languages, 1995.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exoker-
nel: an operating system architecture for application-specific
resource management. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages 251–266,
Copper Mountain Resort, Colorado, December 1995.

[11] D.R. Engler and T.A. Proebsting. DCG: An efficient, re-
targetable dynamic code generation system. Proceedings of
ASPLOS-VI, pages 263–272, October 1994.

[12] N.C. Hutchinson and L.L. Peterson. The x-kernel: an archi-
tecture for implementing network protocols. IEEE Trans. on
Soft. Eng., 17(1), January 1991.

[13] D. B. Johnson and W. Zwaenepoel. The Peregrine high-
performance RPC system. Technical Report TR91-151, Rice
University, March 1991.

[14] M. Leone and P. Lee. Lightweight run-time code genera-
tion. In Proceedings of the Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, pages 97–106,
Copenhagen, Denmark, June 1994.

[15] C. Maeda and B. N. Bershad. Protocol service decomposi-
tion for high-performance networking. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Princi-
ples, pages 244–255, 1993.

[16] H. Massalin. Synthesis: an efficient implementation of fun-
damental operating system services. PhD thesis, Columbia
University, 1992.

[17] S. McCanne and V. Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In USENIX Techni-
cal Conference Proceedings, pages 259–269, San Diego, CA,
Winter 1993. USENIX.

[18] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet fil-
ter: An efficient mechanism for user-level network code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39–51, November 1987.

[19] T. A. Proebsting and C. N. Fischer. Linear-time optimal code
scheduling for delayed-load architectures. In Proceedings
of the SIGPLAN ’91 Conference on Programming Language
Design and Implementation, June 1991.

[20] N. Ramsey and M. F. Fernandez. The New Jersey machine-
code toolkit. In 1995 Winter USENIX, December 1995.

[21] V. Buch T. von Eicken, A. Basu and W. Vogels. U-Net: A
user-level network interface for parallel and distributed com-
puting. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, 1995.

[22] C. A. Thekkath and H. M. Levy. Limits to low-latency com-
munication on high-speed networks. ACM Transactions on
Computer Systems, 11(2):179–203, May 1993.

[23] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Separating
data and control transfer in distributed operating systems. In
Sixth International Conference on Architecture Support for
Programming Languages and Operating Systems, pages 2–
11, October 1994.

[24] C.A. Thekkath, H.M. Levy, and E.D. Lazowska. Efficient
support for multicomputing on ATM networks. Technical
Report TR93-04-03, University of Washington, April 1993.

[25] C.A. Thekkath, T.D. Nguyen, E. Moy, and E. Lazowska. Im-
plementing network protocols at user level. In ACM Com-
munication Architectures, Protocols, and Applications (SIG-
COMM) 1993, pages 64–73, San Francisco, California, Octo-
ber 1993.

[26] T. von Eicken, A. Basu, and V. Buch. Low-latency commu-
nication over ATM networks using active messages. IEEE
Micro, pages 46–53, February 1995.

[27] M. Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient
packet demultiplexing for multiple endpoints and large mes-
sages. In Proceedings of the Winter 1994 USENIX Conference,
1994.

7

