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Abstract. A new Monte Carlo (MC) algorithm, the ‘dose planning method’ (DPM), and its
associated computer program for simulating the transport of electrons and photons in radiotherapy
class problems employing primary electron beams, is presented. DPM is intended to be a high-
accuracy MC alternative to the current generation of treatment planning codes which rely on
analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport
equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in
1 mm? voxels) which agree to within 1% in dose maximum with widely used and exhaustively
benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A
representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water
phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern
desktop workstation. DPM achieves this performance by employing transport mechanics and
electron multiple scattering distribution functions which have been derived to permit long transport
steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm
is a ‘mixed’ class simulation scheme, with differential cross sections for hard inelastic collisions
and bremsstrahlung events described in an approximate manner to simplify their sampling. The
continuous energy loss approximation is employed for energy losses below some predefined
thresholds, and photon transport (including Compton, photoelectric absorption and pair production)
is simulated in an analogue manner. The §-scattering method (Woodcock tracking) is adopted to
minimize the computational costs of transporting photons across voxels.

1. Introduction

Several researchers have recently suggested that Monte Carlo (MC) based systems will
soon become the dominant vehicles for dose computation in radiotherapy treatment
planning (Bielajew 1994a, 1997, Mohan 1997, Hartmann-Siantar et al 1997). The superior
accuracy of the MC method, which converges to results which are exact to the degree to
which physical parameters are known, over that of deterministic models has long been well
established. Public domain codes such as EGS4 (Nelson ef al 1985, Bielajew ef al 1994),
ITS (Halbeib 1989, Halbeib et al 1992), MCNP (Briesmeister 1993), and PENELOPE (Bar6
et al 1995, Salvat et al 1996, Sempau et al 1997) have all been extensively benchmarked
against experimental data for a wide range of materials and energies. EGS4 in particular has
been thoroughly tested in the specific region of dosimetric interest (Rogers and Bielajew
1989b, 1990), and is widely accepted as a computational standard for radiotherapy dose
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calculations.  Further, the near equivalence of the prevalent MC codes has also been
established (Rogers and Bielajew 1989a, Andreo 1991), and their differences shown to be
of little significance in the radiotherapy dose calculation problem7.

By contrast, the deterministic algorithms currently used for calculating electron dose in
treatment planning systems rely on analytic approximations to the solution of the transport
equation which fail to adhere to their limiting conditions in certain radiotherapy applications.
Errors up to 50% for electron beams (Cygler et al 1987) and up to 30% for problems involving
photon and electron transport near inhomogeneities (Ma et al 1999) have been reported.
These discrepancies arise because the deterministic methods are based on approximate
analytical solutions of the transport problem in semi-infinite media which are then modified
semiempirically to account for inhomogeneities. Such methods are often not adequate for
treatment planning computations in which interfaces between materials with large differences
in density and/or atomic numbers (e.g. soft tissue, bone and air) play an important role. MC
based techniques, on the other hand, are capable of modelling heterogeneities with a fine
granularity.

Thus far, the impediment to the widespread implementation of MC based methods for
dose computation has been that, even with continuing advances in computer architecture
and clock speed, the currently available codes are quite slow. The practical requirement
imposed by clinical radiotherapy treatment planning systems is to provide dose distributions
of sufficient accuracy (~2-3% of the dose maximum) within a time of practical clinical
relevance (X5 min) and with a modest investment in computer hardware. Though most MC
programs are sufficiently fast for simulating dose deposition in homogeneous media and simple
geometries, radiotherapy applications involve numerous variations of material and density
over small distances. Patient geometry is usually simulated as a map of densities over a
large number (128%) of relatively small (~1-4 mm) parallelepipeds (voxels), obtained from
computed tomography (CT) scans. Currently, Monte Carlo simulation of absorbed dose for
such large-scale problems is feasible only when employing computer resources of a scale not
generally available in medical centres (Hartmann-Siantar et al 1995, 1997, Ma et al 1999).

Recently, Keall and Hoban (1996), Neuenschwander and Born (1992), Neuenschwander
et al (1995), Kawrakow et al (1996) and the PEREGRINE code (Hartmann-Siantar et al
1995, 1997) have attempted to surmount the CPU constraint by significantly modifying the
basic MC electron transport algorithm. These new methods rely on some combination of
simplifying the physics to different degrees of accuracy; reusing all or parts of particle histories;
and/or implementing parallel processing (requiring a significant investment in hardware). In
this work we present anew MC algorithm, the ‘dose planning method’ (DPM) for the simulation
of coupled electron—photon transport in radiotherapy treatment planning without reliance on
these limiting approximations and requirements.

DPM employs the standard condensed history model for electron transport, and falls into
what has been called by Berger (1963) a ‘mixed’ scheme for the treatment of energy losses,
treating large energy transfer collisions in an analogue sense and using the continuous slowing
down approximation (CSDA) to model small-loss collisions. Gains in performance derive from
a series of significant enhancements to the algorithm for transporting particles from point to
point (the ‘transport mechanics’) and corresponding reformulation of the distribution functions
describing the physics, as described below.

The first modification involves the employment and refinement of a new step size
independent multiple-scattering theory (Kawrakow and Bielajew 1998b). Our method

T The comparisons performed by Rogers and Bielajew employed the ETRAN code (Berger 1963, Seltzer 1989, 1991)
from which the electron transport physics (with some subtle modifications) for ITS and MCNP was derived.
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is a robust implementation of the Lewis (1950) formulation of Goudsmit—Saunderson
theory (Goudsmit and Saunderson 1940a,b). Both provide exact solutions for the angular
distribution of an electron traversing a given distance. However, the Lewis formulation
allows the cross section to vary along the path according to the CSDA energy-loss model.
The underlying cross section used here is the screened Rutherford cross section with the
Moliere screening factor (Moliere 1947), after that implemented in Moliere’s small-angle
multiple-scattering theory (Moliere 1948) and employed in the EGS4 code with a correction
for large angle suggested by Bethe (1953). From the validity of the EGS4 code for radiotherapy
applications, we infer that the use of this form is sufficiently accurate. In addition to being
derived under an exact framework, because it can be recast into a form independent of energy,
the Kawrakow-Bielajew multiple scattering formulation provides a vehicle which can be
exploited to permit transport across inhomogeneities, as discussed later. Use of the Kawrakow—
Bielajew distribution provides one other advantage. Larsen (1992) has demonstrated that the
accuracy of a transport simulation scheme for charged particles is dominated by the faithfulness
of the multiple-scattering theory it employs. In the limit of small electron step size, the
correct solution to the transport equation is guaranteed if and only if the multiple-scattering
theory faithfully reproduces the discrete single-scattering distributions. To our knowledge,
the Kawrakow-Bielajew formalism yields the only purely multiple-scattering distribution
function which is correct in the multiple-, plural- and single-scattering regimes. Thus, DPM
is guaranteed to always converge to a correct solution as the step size is reduced.

The second major innovation introduced by DPM lies in the use of new transport
mechanics, i.e. the algorithm for moving charged particles from point-to-point in media given
the composition of the material traversed, the length of the step and the multiple-scattering
angle. Larsen’s work suggests that the schemes employed in current general-purpose codes
are not optimal, and that a measure of the quality of a transport mechanism is measured by how
quickly it converges to the small step size limit. Transport schemes can be characterized also by
their adherence to the exact spatial-angular moments first reported by Lewis (1950), and a new
scheme with high-order convergence has been reported recently (Kawrakow and Bielajew
1998a). The implementation of this new method is computationally and algorithmically
demanding, however, and so DPM has adopted the ‘random hinge’ schemef employed in
PENELOPE. This algorithm has been shown to be almost as accurate as the Kawrakow—
Bielajew (1998a) transport mechanics in preserving the basic Lewis moments, but has a
much simpler implementation. Recent work of Larseni and of Bielajew and Salvat (2000)
demonstrates that higher-order convergent schemes exist, but they were not studied due to
algorithmic complexity.

A third new technique introduced by DPM is the use of large electron transport steps,
in which many voxels may be traversed before sampling a multiple scattering angle. This is
made possible because of the stability of the random hinge algorithm across heterogeneities, the
accuracy of the Kawrakow—Bielajew distribution, and because the multiple-scattering angle,
when the step size is suitably scaled in terms of energy and scattering in the medium (as
described below), is very nearly independent of atomic number. This feature of multiple
scattering distributions has been shown to be rigorously true in small-angle theory (Bothe
1921a,b, Wentzel 1922, Moliere 1948, Bielajew 1994b). We thus assume that the small
residual dependences on the media of both the scattering distributions and of the random hinge
Lewis moments can be safely ignored for radiotherapy-class problems, and relatively large
steps (of the order of 5 mm) can be employed.

T We are grateful to Dr Ronald Kensek of Sandia National Laboratories for this colourful nomenclature.
¥ We are grateful to Dr Ed Larsen of the University of Michigan for providing us with this information ahead of
publication.
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Because the differential cross section is a fairly strong function of energy and there is
significant energy loss over the long steps taken in DPM, a fourth modification has been
introduced which scales the step sizes by the number of (material and energy dependent)
transport mean free paths traversed. This preserves the total amount of scattering modelled by
the multiple-scattering distribution functions over the long steps, and is essential for permitting
tracking across sharp heterogeneities.

In these as well as other features, DPM exploits the small dynamic range (in energy and
material) of radiotherapy class problems. Energies are limited to those between ~100 keV
and ~20 MeV, and, while the program has been benchmarked against a wide range of atomic
numbers for completeness, because in most clinical applications only a few low-atomic-number
materials are seen, certain cross sections and distribution functions are determined by scaling
them appropriately to exactly computed data for water.

In the following sections, we present in detail the multiple-scattering model, electron
transport mechanics, treatment of large energy loss processes, the photon transport algorithm,
and cross-voxel transport found in DPM. Results from electron dose deposition simulations in
homogeneous and inhomogeneous phantoms, as well as in a CT geometry, are then presented,
followed by a section devoted to the analysis of CPU run time and of the simulation efficiency
achieved.

2. Multiple scattering

In all condensed history MC programs, the effect of the large number of elastic interactions
which occur over a given pathlength is modelled by means of a multiple scattering theory.
The theory of Goudsmit and Saunderson (1940a) (GS hereafter), which is exact if the cross
section is constant over the step, describes the angular deflection of electrons after travelling
a given pathlength s in terms of transport coefficients g, (¢ =0, 1. .. 00), defined by

1
g =1—/ do P(@)p(@). (1)
-1

Here w = cos @ is the angular deviation with respect to the initial electron direction, Py is the
£th Legendre polynomial and the quantity

o(w)

_ 2
fll do’ o (o) @

p(w) =
represents the probability density function (PDF) associated with the single-event differential
cross section (DCS) o (w). Under this formalism, the angular distribution of electrons having
traversed a distance s is given by

F di£+1P)(s>d 3)
cs(w) do 2 ( 2) (@) exp S8 ) do (
where X is the elastic scattering mean free path (MFP) 1/N o, given that N is the atom density
of the medium and o is the total microscopic cross section. An important consequence of
this formalism is that the transport coefficients fully characterize the elastic scattering process.
Note that this series diverges for @ = 1, because of the presence of uncollided particles.
Numerically, this divergence appears as an instability in Fgg when values of s /A (the number
of MFPs along s) fall below 100.

As the GS model is exact only in as much as the transport coefficients are exact, o (w) must
be chosen carefully. Scattering from a screened Rutherford potential, though not rigorously
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accurate, provides a physically sound model for single elastic collisions, and leads to a PDF

2n(1 +n) i @
(1+2n—w)
where 7 is related to the screening parameter in the Rutherford potential. An advantage of using
the screened potential PDF is that analytical expressions for all of the transport coefficients can
be derived in terms of 1. Further, n can be arbitrarily set so as to reproduce the first transport
coefficient g; obtained from numerical integration of more accurate (and computationally
cumbersome) DCSs found elsewhere (Mayol and Salvat 1997). Typical values of n for water
in the energy range relevant for radiotherapy fall in the interval from 1078 to 10~*. In practice,
a thousand coefficients are enough to ensure the convergence of the GS series except for
very small pathlengths, and the approximate small momentum method of Kawrakow and
Bielajew (1998b) can be used to calculate these coefficients.

Direct use of the screened Rutherford cross section and the GS theory, however, requires
an impractical amount of computer memory to store accurate numerical representations of the
resulting steeply forward-peaked distribution. Following Kawrakow and Bielajew (Kawrakow
and Bielajew 1998b), this difficulty can be overcome by a change to a new angular variable u,
which is defined so that the relation
du 2B(1+ B) 5
dow| (1+42B—w)? ®)
is fulfilled, where B represents a free parameter that is called the ‘broad screening’ parameter,
to associate it with the screened Rutherford shape. Moreover, if the boundary conditions

u(w=1=0 and ulw=-1)=1 (6)

are imposed, equation (5) together with (6) fully determine u, and the expression for the new
variable u is found to be

Pr(w) =

1+B

u=(1- a))m. @)
The PDF g (u) of the new variable is related with the GS distribution through
Fas(@) = q(u) d—”‘ =g 20D ®)
dw (1+2B — w)?

and so ¢ can be interpreted as a ‘correction’ factor that transforms a screened Rutherford PDF
into the GS distribution. Equation (8) also shows that the sampling of @ values according to
the PDF Fs(w) can be readily carried out using the rejection method, employing g (1) as the
rejection function.

2.1. Optimizing q

Rejection sampling for w will be accurate and efficient and will require a manageable amount
of computer memory only if g (u), which depends only on s /A, n and B, is sufficiently smooth.
The introduction of the arbitrary parameter B in equation (8) provides a degree of freedom
that can be exploited to manipulate the shape of g to bring this about. The requirement that g
be as smooth as possible can be expressed mathematically as

1

0
— | du[l —¢]*=0. 9
3B J, ull —q] &)
Since g () is a PDF, its integral is 1 and the former equation simplifies to
9 1
— dug*=0 (10)

aB J,
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Figure 1. g surface for s = 1 cm as a function of the angular variable u# and the logarithm of
the kinetic energy in eV. Note that the vertical scale is linear. The lower limit £, of the energy
interval considered is chosen to be slightly larger than energy E, for which the residual range is
1 cm. At energies below E;, the surface collapses to the plane ¢ = 1, and the parameter B in (8)
goes to 0o, yielding an Fgg of 1/2, which implies isotropic scattering. To avoid this singularity in
the interpolating routine, one must cut off at a slightly greater value, Ey . This, of course, implies
the need for a last-step strategy, that is, the last step is treated as a special case.

which can be solved analytically (Kawrakow and Bielajew 1998b) to obtain B as a function
of s/A and 7.

A fairly good approximation for B(s/A, ) (and for the corresponding ¢) can be obtained
in the small-angle limit, i.e. when s/A is not very large and the scattering is weak (equivalent
to 1 being small). It is noted that within this approach, which has been extensively studied
by Bielajew (1994b), neither g nor the ratio B/n depend on 7, making the interpolation
process somewhat simpler. However, as large step sizes are required to significantly reduce
computation time in DPM, the conditions necessary to apply this simplification will not be
met, and a numerical solution of the exact expression in (10) is used instead.

Since s, as discussed in a later section, is almost always expressed as a function of the
kinetic energy of the electron, E, and since XA and the screening parameter n are also functions
of E, g depends only on the dynamic variables u and E. In figure 1 a plot of the surface ¢ (u; E)
is presented for s = 1 cm, showing that the change of variable introduced in equation (7) does
indeed produce a smooth g. Typically, less than 20 kB (varying slightly with the selected s (E))
are needed to reproduce ¢ with a mean accuracy better than 0.1%. The problem of sampling
the GS distribution has thus been reduced to interpolating g (u; E).

2.2. Multiple scattering with energy losses

Since electrons lose energy continuously as they pass through matter and the elastic scattering
cross section is a fairly strong function of the electron energy, there is dependence on energy
in both X and g, in the exponential in (3). Lewis (1950) first accounted for this by recasting s
as an integral over energy loss in the continuous slowing down approximation, noting that the
pathlength can be expressed in terms of energy loss as

s—/E d—E=R(E)—R(E—AE) (11)
~ Je_ar S(E) ‘
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Here S(E) is the energy-dependent energy loss per pathlength or CSDA stopping power, and
R(E) is called the CSDA range. The average energy loss AE for an electron with initial
energy E travelling a given distance s can be determined by inverting the CSDA range, as in

AE = E — R"YR(E) — ). (12)

Thus Lewis was able to introduce energy dependence into (3) by using (11) to write s /Age in
the exponential as an integral over energy loss

For—S 1 £ Gy
L@ =) +5 ) P@)exp ( - : dE — (13)

£=0 —AE

in which

G, = - (14)
is defined as the £th inverse transport MFP. The first inverse MFP, G, is often referred to
as the scattering power. As Fi depends only on the dynamic variables w and E, the change
of variable (7) and the condition (10) can be applied as before with the GS distribution.
Again, this process splits F into a screened Rutherford PDF and a g (u; E) surface, which
now includes the effect of the energy losses within the CSDA model. Neither the memory
storage nor the simulation time are significantly affected by this change. However, because
the integral in (13) must be evaluated numerically for each ¢, the computation time required to
generate the table from which ¢ will be interpolated during the execution of DPM does increase
considerably. Fortunately, this needs to be done just once for a given material. It is worth
noting that, unlike other schemes (Kawrakow and Bielajew 1998a), the method presented here
is rigorously exact within the CSDA model, and the only approximation introduced involves
the assumption of a screened Rutherford potential.

The importance of including energy losses in the multiple-scattering theory for large
pathlengths is apparent from figure 2, which shows the difference in depth dose profiles for a
10 MeV electron beam in water when the more accurate Lewis approach is used instead of the
GS scheme.

2.3. Electron transport mechanics

Since large pathlengths must be used to attain appreciable speed up of MC electron transport
computations, the mechanism used to generate final phase space variables after a transport step
plays a critical role in determining the accuracy of the model. As noted earlier, the efficacy of a
given transport model can be evaluated by its faithfulness in reproducing the spatial and angular
moments of the phase variables and the spatial and angular distributions, at the end of a given
step. A comparison of transport mechanics methods has been performed by Larsen (1992) and
by Kawrakow and Bielajew (1998a). They concluded that when the energy loss along a step
is disregarded, PENELOPE’s random hinge model (Fernadndez-Varea et al 1993) provides an
excellent compromise between speed and accuracy, and is therefore well suited for a fast MC
code. The random hinge transport method is described as follows. The pathlength s is split in
two substeps of lengths

sa =E&s and SB = 8§ — SA (15)

respectively, where £ is a random number between O and 1. A first substep s4 is taken in
the initial electron direction, after which the particle is deflected according to any multiple-
scattering law which provides polar and azimuthal deflection angles ® and ® determined over
the entire step s. A second substep is then taken over the remaining distance sg in the new
direction. For a particle directed along the z-axis starting at location X = 0, provided that
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Figure 2. Depth dose profiles of a 10 MeV electron beam in water calculated showing the effect
of substituting a model based on the GS theory (full curve) by another based on the Lewis’ theory
(broken curve). The pathlength was set to 1 cm.

the scattering law is correct and disregarding energy losses along the step, it can be shown
that this method yields average values of the normalized penetration depth z/s and lateral
displacement (x> + y?)/s2, which are correct to O(s). Other moments preserved to this order
accuracy include (zv;)/s (for |[v| = 1), (xvyx + yv,)/s, zz/s2 and (x% + yz)z/s3.

The inclusion of energy losses along s reduces the accuracy of the random hinge model.
Indeed, Larsen’s analysis of the spatial moments is valid only when the scattering power, G,
and other inverse transport MFPs do not depend on s, or equivalently, on the energy E. For
long steps s, these conditions will not be met and a modified formulation of random hinge
mechanics must be employed. We begin by noting that exact Lewis moments (indicated by
(-)L) under the CSDA energy-loss model are given by

S _ l/Sds’exp[—Kl(s’)] ~1— lfsds’ Ki(sh) ~ 1 — 256G, (5) (16)
0 S Jo 2

S K 3

for the penetration depth and

2+ 2 4 s s’
L L R ety / ds” explK1(s")] (1 — exp[—K2(s")])
S 3S 0 0
4 ' ! s " " 2 s
_ﬁfo ds/o ds" Ka(s") = 535G (Z) (17)
for the lateral displacement. K, is defined as
$ s
Kg(s)E/O ds’ Gy(s)) ~ sG, (5) (18)

with K| called the ‘scattering strength’. These relations use a first-order Taylor expansion
for Gy (s), and neglect terms containing products of two or more K,s. This gives an upper
bound for the Lewis lateral displacement and an acceptable approximation for values of s not
extremely large and energies not too low. If energy loss is taken into account in sampling cos 6
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and PENELOPE’s mechanics (equation (15)) is used otherwise, the random hinge moments
can be computed to be (Fernandez-Varea et al 1993)

(z)p _ 1+(cosf) l+exp[-Ki(s)] =~ 1 s
e R ; ~1 - 355G, (2) (19)
and
<x2+y2)P_1 2 _2 ~2 S
T = 2= (eos?0) = S —expl-Ka(9)) = 5562 (5) . 20)

We therefore see that the effect of ignoring energy loss in the transport mechanics is equivalent
to evaluating the G, (s)s at the step mid-point rather than the correct distances of s/3 or s /4.
As G (s) increases as s increases (and E decreases), (z)p slightly underestimates the true value
(z)L, and (x?+ y?)p substantially overestimates (x> +y?); . In physical terms, the PENELOPE
model overestimates the scattering for very large pathlengths. Computations of these moments
for 10 MeV electrons in water with a pathlength of 1 cm show that the PENELOPE model is in
error by less than 0.1% for the penetration (z), but gives an excess lateral displacement of about
3%. These discrepancies increase with decreasing energy, with the lateral displacement error
rising to approximately 10% at 4 MeV. Moreover, this deviation is systematic and compounds
as the total pathlength travelled by the electron increases.

The above analysis suggests a modification of the random hinge model which preserves
the Lewis moments by sampling uniformly in scattering strength K I(A) rather than in distance
s, i.e.

KM = £K1(s). 1)

An electron is then transported until it ‘accumulates’ a scattering strength equal to K I(A), where
a deflection is imposed. The electron is then moved the pathlength required to exhaust the
scattering strength K| (s) — K I(A) . It can be shown that this non-uniform PDF for the first substep
distance s, yields correct values for the average penetration depth, lateral displacement and
other spatial moments to first order in G| and s G, when a linear approximation is adopted for
G(s). Perhaps more importantly, in addition to correcting for the scattering overestimation,
this new transport mechanism also provides a basis for simulating scattering across material
or density boundaries. Time saved in multi-voxel transport offsets by far the additional book-
keeping required in calculating the K accumulated over the steps. The details of the transport
through voxels is presented in a subsequent section.

3. Discrete electron energy loss interactions

DPM employs what Berger (1963) has categorized as a class II mixed simulation scheme
for energy losses. Hard interactions, i.e. those yielding energy loss above given cut-offs, are
simulated discretely using an analogue (event-by-event) model. Soft events, which are much
more frequent but result in energy transfer below the cut-offs, are modelled as contributing
to a continuous deposition of energy throughout the transport step, and are accounted for in
the CSDA approximation through the use of a restricted stopping power, as described later.
In addition to resulting in energy loss to the primary electron, hard ionization events generate
secondary electrons and hard bremsstrahlung collisions generate secondary photons. The
energy loss of the primary and the phase state of the secondary particles is generated by
sampling from the appropriate PDFs describing the processes.
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3.1. Hard inelastic collisions

DPM uses the Mgller DCS, oy, to treat inelastic collisions of electrons with atomic electrons.
The Mgller cross section, which was derived for collisions with free electrons at rest, is given
by

2ret Z kK k y — 1)’ k
=22 | - KR4 2
om(k) mUZEkZ[ +<1—k> 1—k+< Y )( +1—k>] 22)

where e is the charge of the electron, m its rest mass, v its speed, y is the ratio of its total energy
E +mc? to its rest energy, Z is the number of electrons in the target molecule and k = W/E is
the fraction of kinetic energy lost. Note that in the Mgller formalism, the maximum allowed
value of k is 1/2 due to the indistinguishability of the projectile and target electrons.

The inverse MFP ){,ﬁ for hard inelastic events (those above the cut-off Wy) in
homogeneous media is easily derived by integrating (22)

2net ZN [ 1 =2k —1\* /1 -1\ 1—k
g = =2t ML (Y ke )+ () 1M
mv? E |km(1 —km) y 2 y km

(23)
where N is the number of molecules per unit volume and
%%
ky = ?M (24)
In the limit that mc? < E and ky < 1, equation (23) can be approximated as
A mc*W,
Ay o~ e ™ (25)
Zp Np2me*

where A is the atomic weight of the species and N4 is Avogadro’s number. By default, DPM
sets Wy = 200 keV, as knock-on electrons with less than that energy have ranges much
smaller than the minimum 1 mm voxel size. For water, (23) yields a value of Ay roughly
equal to 2 cm and practically independent of E, as shown by equation (25). The simple Zp/A
dependence on medium composition implicit in (23) will be exploited later in transport across
voxel boundaries.

When a Mgller interaction takes place, the fraction k of energy lost is sampled from the
normalized PDF based on (22) by combining the rejection and composition methods (Salvat
and Fernandez-Varea 1992), and a knock-on electron is generated and its energy, direction and
position stored for later transport. Since energy losses are usually much larger than the binding
energies, the approximation that target electrons are initially free and at rest is appropriate. A
knock-on electron will then have a kinetic energy equal to W and a direction of movement
determined by the conservation of momentum. Naming 6, as the angle formed between this
direction and the velocity of the incoming electron, it is found that

W(E +2mc?
E(W +2mc?)

3.2. Hard bremsstrahlung interactions

The bremsstrahlung DCS for an electron impinging on a neutral atom with Z electrons to
produce a photon with energy W = kE can be written as

2

Z
og(k) = ﬁf (k) 27)
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where g is the electron velocity in units of the speed of light. Except for very high values of Z
and low values of E, the leading term in (27) removes almost all the dependence of og (k) on
E and Z, and the correction f is a smooth function of k. Seltzer and Berger (1985) have given
a tabulation of f (k) in terms of Z and E for selected Z values. For materials and energies
typically seen in radiotherapy problems, the data contained in these tables can be roughly
approximated by means of a linear function

f k) = a(l — bk) (28)

with a and b being material- and energy-independent constants selected by performing a fit to
the tabulated data. Inaccuracies in this approximation have little effect for most problems of
interest, as the parameters a and b are weak functions of E and Z in the radiotherapy regime.

For compounds or mixtures, DPM relies on the additivity rule, replacing Z> in
equation (27) with

z2, = Zqi 72 (29)

where ¢; and Z; represent the stoichiometric index and the atomic number of the ith atom
respectively. (For the sake of simplicity, the symbol Z2, will be used throughout in place of
Z:)
q
For a given cut-off energy for bremsstrahlung production Wg, the inverse MFP resulting
from this approximate DCS is

' = Zz;’;“ (mé —b(1 — kB)> (30)
where kg = Wg/E. In the limit mc?> < E and kg < 1, equation (30) can be approximated as
)\B:L<ln£—b>_] 31)

Z2pNya Wg

which shows that Ag has a mild variation with E at high energies. This fact, along with the
linear scaling of Ag with Z%p/A will be used to facilitate cross-voxel transport.

The analogue simulation of hard bremsstrahlung events, despite their infrequent
occurrence, is necessary to accurately reproduce the fluctuations of the kinetic energy of
impinging electrons. As the Mgller DCS depends on the energy loss roughly as k=2 and the
bremsstrahlung DCS as k~! (equations (22) and (27) respectively), large energy losses are
more likely to happen when the latter type of interaction occurs. As a result, a non-negligible
fraction of incident electron energy straggling is caused by bremsstrahlung.

The random sampling of the PDF corresponding to the normalized op (k) can be performed
using f (k) in equation (27) as a rejection function. The angular deflection of the incoming
electron is small and can be neglected and the scattering angle of the secondary photon is set
equal to its mean value, approximately given by (Heitler 1954)

I/I’lC2

e ¢

which is the approximation adopted in the original version of EGS.

4. Photon interactions

Photon transport is described following a conventional analogue MC treatment until the
energy falls below some user-defined absorption energy. Three processes, photoelectric
absorption, Compton scattering and pair production, are considered. The inverse MFPs for
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these interactions are taken from those generated by the PENELOPE preprocessing program
MATERIAL. In radiotherapy class problems, Compton scattering is the only significant dose
delivery mechanism, and so approximations have been adopted for treating photoelectric and
pair production interactions.

Photoelectric absorption, which is relevant only at very low energies and for high atomic
numbers, is simulated by assuming that all the energy is locally deposited. DPM does not
generate secondary electrons or relaxation radiation, so it is therefore convenient to set the
electron and photon absorption energies above the highest absorption edge of the highest Z
material in the problem. In most applications, DPM uses absorption thresholds of 50 keV for
photons and 200 keV for electrons.

Pair production is important only at the high end of the energy range relevant to
radiotherapy, and only for high atomic numbers, and so some very rough approximations
are made. DPM assumes that for the first emerging particle, all kinetic energies are equally
probable, and generates two electrons travelling in the same direction as the incident photon.
Both particles are tracked as electrons, and one is randomly selected upon stopping to emit
two annihilation photons travelling in randomly selected opposite directions. This approach
disregards the differences in the cross sections and stopping powers between the created
electron and positron (and the small possibility of in-flight annihilation of the positron),
approximations which are justified by the relatively small impact of this effect in practical
problems.

Compton interactions are assumed to involve free electrons at rest, and therefore binding
effects (accounted for by means of the incoherent scattering function) and the Doppler
broadening (Ribberfors 1975) of the energy of the scattered photon are ignored. These
approximations are in general excellent for energies above 1 MeV, and are even more
applicable to radiotherapy problems, where the only sources of low-energy photons are either
contamination in the accelerator head and relatively rare hard bremsstrahlung interactions.
DPM determines the energy of the scattered photon by sampling the Klein—Nishina DCS using
the recipe contained in EGS4 (Nelson et al 1985). The recoil electron, which has direction and
energy determined by the energy and momentum conservation laws, is stored in the secondary
stack and simulated afterwards.

Photon histories terminate when the energy falls below a user-defined absorption energy
or when they reach the geometry limits.

5. Transport across inhomogeneous voxel boundaries

As noted previously, a Monte Carlo electron transport algorithm sufficiently fast for clinical
radiotherapy treatment planning will require the use of transport steps significantly greater than
patient geometry voxel dimensions. This is problematic, as patient geometry (composition and
density), which is typically inferred from CT datat, varies across almost every voxel boundary.
Conventional MC programs are not capable of single-step transport over boundaries between
differing media because the cross sections used in their multiple-scattering laws are medium
dependent. Because DPM uses the medium-invariant g (x) function to describe multiple
scattering, however, transport across inhomogeneities is possible, as described below.

T Following the method of Knoos et al (1986), the program CTCREATE (Ma ef al 1995) has been developed for the
OMEGA BEAM (Rogers et al 1995) project, and is publicly available.
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5.1. Electrons

The atomic number and density dependences of the physical models adopted by DPM have
been examined in detail in the preceding sections. Here we describe how the particular forms
of these quantities can be exploited to permit rapid simulation of electron transport in voxelized
geometries.

In typical mixed class II electron transport MC models, electrons are started in an initial
direction with an initial energy and transported in a series of steps until they exit the problem
geometry or their energies fall below a user defined absorption cut-off. A transport step involves
linear translation of the particle along its direction vector until a boundary is crossed, a hard
collision takes place, or a multiple elastic scattering event is imposed. The details of how
DPM determines when various events occur is presented here. Note that the computations
described below of the distances travelled prior to the simulation of the different events are
done in parallel as the electrons traverse the voxels.

o The distance to a Mgller collision is sampled according to
M= —AMm lIlE (33)

where Ay is the Mgller MFP, equation (23), for some reference material (which will be
assumed to be, without loss of generality, pure water) and & represents a random number
uniformly distributed in (0, 1). A look-up table with values of Ay on a grid of energies
dense enough to allow accurate numerical interpolation is calculated beforehand and read
from an input file during the initialization of DPM.

When an electron travels a distance ¢ inside a voxel, #y is decreased an amount A#y given
by

(Zp/A)vox
(Zp/A)water

This is continued at each voxel until #y drops to zero. A Mgller interaction is then
simulated, in which the energy lost by the incident electron is sampled from the Mgller
DCS of (22), and a knock-on electron is generated and placed in the secondary stack.
Note that for a homogeneous medium made of water, the scattering event occurs when
the distance ¢ accumulated over voxels equals #y;.

e The distance to a bremsstrahlung collision is sampled according to

Aty =t (34)

tg = —AB lnE (35)

where Ap is the bremsstrahlung MFP, equation (30), for the reference material, i.e. for
water. Again, an interpolation table is generated beforehand for Ag and read from an input
file during the initialization of DPM.

When an electron travels a distance ¢ inside a voxel, 7 is decremented by an amount equal
to

(Z%0/ A)vox
(Zzp/A)water

and this process is repeated until fg drops to zero. At that point a radiative event is
simulated, in which a photon is generated with an energy sampled from the bremsstrahlung
DCS of equation (27) and placed in the secondary stack. For a homogeneous medium
made of water, the interaction takes place when the total distance s travelled across voxels
equals 5.

Atg =t (36)
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e The total scattering strength K, given by equation (18) for £ = 1, is obtained for water
at the electron energy at the midpoint of the step. Values of K; as a function of energy
and a preset pathlength s are precalculated and read by DPM during its initialization. The
scattering strength prior to simulation of a multiple-scattering event is then sampled as

s = K™ =¢K, (37)

in accordance with the corrected version of the PENELOPE transport mechanics described
earlier (see equation (21)). It must be stressed that the units of tg are not those of distance,
but of scattering strength.

As each step ¢ is taken inside a voxel, the scattering strength prior to multiple scattering,
ts, is decreased by an amount equal to

t
t
Atg = / dr' G (1) ~ E[Gﬁvw(ﬂ =0)+G ™M =11 (38)
0

Once g is exhausted, the angular deviation is sampled from the Lewis PDF, as described
in previous sections, using the g (u#; E) surface corresponding also to water. After rotating
through the scattering angle to determine the new electron direction, linear transport is
resumed until a new quantity of scattering strength, given by

s=K®» =k — k™ (39)

is spent. After the distance corresponding to fs (as determined by summing the Afg
incurred while stepping through each voxel) is traversed, the process is repeated, with
a new total scattering strength K; determined by table look-up and a new #g sampled
according to (37). This procedure ensures that the actual pathlength is such that it produces
the same mean angular deviation as over a predefined reference pathlength for water.

e Apart from discrete events, the continuous energy loss of the electrons is computed at
each step. This is given by

t
AE = / dt’ SV (¢ (40)
0

where ¢ is the distance traversed in a given voxel prior to a hard collision or exiting the
voxel and S is the stopping power in the medium, ‘restricted’ to energy transfers below
the Mgller and bremsstrahlung production thresholds for the problem. For large ¢, S0
can vary over the step, and so the integral is approximated by first estimating the energy
loss over ¢ assuming that 58 s constant, and then averaging the stopping power over
the step, as in

(vox) (vox)
Sr |Eo + Sr |E07,S‘§vox)
2

Here E| is the electron kinetic energy at the beginning of the step and Ey — ¢ is what
(vox)

the energy would be if the stopping power were constant. Values of S, are precalculated
for a dense grid of energies and read by DPM during its initialization.

AE =1t 41)

S r(vox)

It should be noted that, since hard inelastic MFPs depend on the energy, the exact sampling
of the distance s to the next interaction of type ‘i’ is given by

£ = / dr’ 7' (@) exp[— f dmil(/’)]. (42)
0 0

Equations (33) and (35) assume that A(#) =~ constant across a voxel, which is computationally
cheap, quite good for Mgller collisions, and reasonably good for bremsstrahlung interactions.
However, because of the possibility of large energy loss occurring in a hard collision, the energy
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dependence of A(#) cannot be ignored when determining distances to additional interactions,
and so #y and g are recomputed individually whenever either type of hard collision takes
place.

The electron history terminates when it leaves the CT geometry or when its energy falls
below a user-defined absorption energy, E s, set by default to 200 keV that is the approximate
energy at which the electron CSDA range equals 1 mm, a typical voxel size.

One important advantage of this algorithm over conventional MC electron transport
schemes is that the scaling of the cross sections precludes expensive table look-ups when
each new voxel is encountered. More significantly, the number of multiple-scattering events
is dramatically reduced. In a conventional scheme, electrons are deflected not only when a
multiple scatter step is traversed, but also at every boundary crossing and prior to the simulation
of every hard inelastic collision. Thus DPM eliminates the majority of the computationally
expensive samples from the MS distributions and rotations through the scattering angles.

5.2. Photons

Since photons undergo a limited number of interactions before they are locally absorbed, their
transport is almost always treated in an analogue manner. This requires that the distance to
collision be recomputed at every medium boundary, as, unlike the case of electrons, there are
no simple scaling laws which can be applied. Since voxelized geometries can present frequent
changes of material in short distances (relative to photon MFPs), this imposes a significant
speed penalty.

To overcome this difficulty, DPM uses the §-scattering method of Woodcock et al (1965),
which avoids calculating intersections with the interfaces of all the visited voxels by exploiting
the fact that the distribution of collision distances ¢ contains the product of the probability of not
colliding prior to ¢ and the collision density. The method is implemented by first determining
the energy-dependent minimum total MFP A0™" (E) in the entire geometry. A distance to the
next interaction ¢ is then sampled using )»)(/mi“)(E), and the photon is transported through ¢,
ignoring all boundary crossings. Next, the material of the current voxel is determined, which
is simple and efficient for voxelized geometries. An interaction is simulated at ¢ only with
probability P equal to

(min)
— )LV

P = )LE/VOX)

(43)

where )\;"‘”‘) represents the total MFP in the current voxel. If an interaction does not occur, the
transport is continued. The quantity 1 — P, which is easily determined for every voxel, can be
considered to be the probability of a ‘fictitious’ event occurring, in which no phase space change
takes place. If an interaction does occur, its type is sampled according to the corresponding
probabilities P; (with ‘i’ representing Compton collision, photoelectric absorption or pair
production), which are

A (vox)
Pi=—%

= o (44)

A" represents the MFP of the interaction ‘i’ in the current voxel. The Woodcock method
will be efficient if there is only slight variation in A throughout the geometry, and so time
expended in stopping to analyse collisions which are then determined to be fictitious is less
than the time saved by not stopping to recompute A at each voxel boundary.
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Figure 3. Depth dose produced by a 10 MeV electron pencil beam impinging normally on a
semi-infinite water phantom using various reference step sizes.

6. Results

Results from simulations performed using DPM are compared here with results generated by
EGS4 and PENELOPE. EGS4 has been extensively benchmarked against experimental data
(Rogers and Bielajew 1989b, 1990) for radiotherapy problems, and is widely accepted as a
standard. PENELOPE has likewise shown excellent agreement in a variety of comparisons
with experimental and other Monte Carlo results (Bar6 ef al 1995, Sempau et al 1997).
Additionally, as DPM draws much of its physics data from PENELOPE’s comprehensive and
easily manipulated database, any discrepancies between DPM and PENELOPE should reflect
differences in algorithms rather than differences in the underlying data or physical constants
and models.

In order to fully exercise the approximations in DPM, a set of problems involving both
homogeneous and multi-layered geometries and a wide range of materials (including several
not typically seen in radiotherapy problems) has been simulated with all three codes.

6.1. Step size selection

The use of the condensed history method introduces an inherent error in Monte Carlo
simulations, as elegantly characterized by Larsen (1992), who showed that it vanishes
as the pathlength s tends to zero. But as efficient computation depends on taking long
steps, ascertaining the longest multiple scattering step which preserves the accuracy of the
simulation is of critical importance, and so is addressed by all conventional MC electron
transport programs. Common treatments allow particles to advance until either some
predetermined fraction of their initial kinetic energy is lost (e.g. PENELOPE when C2 is
active, EGS4 with the ESTEPE option, ETRAN, ITS, MCNP) or until some fixed pathlength
has been travelled (e.g. PENELOPE when the option HFPMAX is active, EGS4 with the
SMAX option). Another frequently used technique (e.g. PENELOPE when C1 is active,
EGS4 by default) limits s by fixing the mean angular deviation and calculating the step size
accordingly.



New optimized MC code—the dose planning method (DPM) 2279

3.0 T

N
(3]
t
1

N
o
}
1

—— 5 mm steps
---- 2 mm steps

dose (MeV cmzlg)
&

iy
o
!
T

—-— 1 mm steps
- EGS4/PRESTA
0.5 + i
0.0
0 2
depth (cm)

Figure 4. Depth dose produced by a 5 MeV electron pencil beam impinging normally on a semi-
infinite water phantom using various reference step sizes.

In DPM, the step size issue arises even though ¢(u) has been shown to be a function
of u and E rather than s. The energy dependence of g is driven by the energy dependence
of s/A(E), and since A(E) is fixed by the reference material, in order to use precomputed
tabulated values of ¢ () in sampling for w, s must be set in advance. The maximum value
of s which preserves accuracy in a simulation can be determined by comparing simulation
results for increasingly smaller step sizes. In figure 3, we show depth dose curves computed
by DPM for one million 10 MeV electrons incident on a homogeneous phantom of 1283
1 mm voxels, using g(u) and K; calculated with step sizes ranging from 1 cm to 1 mm.
There is little appreciable difference in the results for steps shorter than 5 mm. Note that
because of the computation of energy loss in each voxel and the modelling of hard inelastic
collisions, the computing time for a simulation is not directly proportional to the number of
steps. The CPU usage for the simulations shown in this figure increase by only a factor of two
while the step size decreased tenfold. At lower energies, there is more scatter for the same
distance s, and the use of long steps maximizes the underlying condensed history error, as
is seen in figure 4. In the first case (s = 5 mm), the fall of the DPM curve occurs just after
completing the second step, reflecting the failure of the last one or two steps in reproducing
the remaining part of the depth dose. This behaviour disappears when the pathlength is
reduced to 1 or 2 mm. From these two sets of results, we determined that roughly 8-10
scattering events per history are necessary to reproduce depth dose profiles accurately, and that
no further accuracy is attained by moving to steps of 1/20th of the range. By contrast, EGS4
requires the simulation of several multiple scattering events in every voxel traversed by the
electron.

6.2. Homogeneous phantoms

Figures 5 to 9 show deposited depth dose curves for electron beams in semi-infinite phantoms
made of different materials of interest in radiotherapy. The differences between EGS4, DPM
and PENELOPE are equal to or less than 1.25% of the dose maximum in all cases and the
statistical uncertainty of the curves presented are of the order of 0.2% of the dose maximum,
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Figure 5. Depth dose produced by a 10 MeV electron pencil beam impinging normally on a
semi-infinite water phantom.
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Figure 6. Dose integrated over planes perpendicular to the y-axis (that goes parallel to the water
surface) produced by a 10 MeV electron beam impinging normally on a semi-infinite water phantom
ina5 x 5cm? field.

and step sizes of 5 mm are used. Energy cut-offs of 200 keV for electrons and 50 keV for
photons were used for all cases. In figure 5, the depth dose curve computed by MCNP is also
included. It is interesting to note that the results from DPM generally lie inside the envelope
of the results from the other programs.

6.3. Effects of hard collision physics approximations in DPM

The next set of problems was specifically designed to test the limits of the approximate scaling
of the hard collision cross sections used in DPM. Recall that DPM samples the distance to a
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Figure 7. Depth dose for an 18 MeV normal pencil beam in a semi-infinite bone phantom.
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Figure 8. Depth dose for a 10 MeV normal pencil beam in an air phantom.

hard inelastic interaction as if the MFP were independent of energy along the path up to the
interaction point. This approximation works well for Mgller interactions due to the relatively
slow variation of their MFP over the relevant energy range, as reflected in equation (25).
Although still acceptable, it does not work equally well for bremsstrahlung, equation (31).
Therefore a small error is introduced at those energies for which the bremsstrahlung
contribution to the dose is not negligible. Since the slope of the bremsstrahlung MFP as
a function of the electron energy is negative in the region of interest, DPM systematically
underestimates this MFP. This effect is equivalent to an overestimation of the radiative stopping
power, which will appear as an increase in the dose at shallow depths when it dominates over
other sources of error.

In figures 10 and 11 depth dose curves in water for 15 and 20 MeV beams are represented
to show the increase of the overestimation of the radiative stopping power as the energy of the
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Figure 9. Depth dose for a 15 MeV normal pencil beam in a titanium phantom.
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Figure 10. Depth dose for a 15 MeV pencil beam impinging on water.

beam increases. Despite the approximation on the bremsstrahlung cross section, the agreement
is good and no correction for this effect is needed below 20 MeV.

Figure 12 shows the effect of these approximations in an extreme case, that is, for a
very high-Z material and at the highest energy considered. With the current DPM model,
discrepancies of up to 8% are seen between DPM and other MC programs. By switching to a
method in which energy loss between collisions is accounted for in updating g, the difference
between DPM and both PENELOPE and EGS4 can be reduced to 3—-5%, as seen in the figure.
However, as this introduces a computational overhead of close to 10% because of the frequency
with which the cross sections must be computed and this effect is significant only for thick
targets and very high Z, this correction is not retained in the basic DPM model.
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Figure 11. Depth dose for a 20 MeV pencil beam impinging on water.
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Figure 12. Depth dose produced by a 20 MeV pencil beam on a tungsten (Z = 74) phantom.

6.4. Inhomogeneities

Several multiple slab configurations were chosen to test DPM with inhomogeneous geometries,
and results are presented in figures 13 to 15. Good agreement is found between the results
from the three codes, with differences of the order of 1% of the dose maximum, reaching a
maximum of 2% between PENELOPE and EGS4 or DPM in the higher-energy cases.

6.5. CT geometry

We present below results of dose computations using representative CT data to model density
variation in a voxelized geometry. As the default PENELOPE package was designed to work
with objects made of solid bodies with constant densities, it is unable to handle the density
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Figure 13. Depth dose in a water phantom with an air layer. The beam energy was 10 MeV.
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Figure 14. Depth dose in a water phantom with a bone layer. The beam energy was 18 MeV.

variations between neighbouring voxels present in the geometry of a real patient}. A utility
for modelling density variations between regions does exist in the EGS4 system, and so this
feature was exploited in generating simulation results for comparison with DPM.

In figure 16 a slice of the patient scan used for the current simulations is shown. Results
from these calculations, which assumed a fictitious 16 MeV electron beam, are presented in
figures 17 to 19. In order to facilitate comparisons of doses for individual voxels, a very
large number of histories (10°) were simulated. This number is orders of magnitude higher
than that required for a routine treatment plan simulation, and gives a standard deviation of
approximately 0.3% of the dose maximum for voxels of 1 mm on a side. The agreement

T A voxel based version of PENELOPE is currently being developed.
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Figure 15. Depth dose in a multilayered water/titanium/bone/water geometry. The beam energy
was 15 MeV.

between DPM and EGS4 is good, as expected from the previous results for homogeneous and
multilayered geometries. The differences in the voxel doses are less than 3% of the overall
maximum dose found in the geometry. If the differences are referred to the maximum dose in
each figure, only the case with the lowest dose (x = 28.5 mm) significantly exceeds 3% of that
maximum, ranging from 3 to 8%. Moreover, dose volume histograms (DVHs) were obtained
for a specific target volume (or region of interest, ROI) of the same CT shown in figure 16. In
figure 20 these DVHs are compared, showing an excellent agreement, with differences of the
order of a few per cent.

7. Timing and efficiency

In table 1 we present the measured CPU times required to run 1 million histories on several of
the test problems reported earlier. All runs were performed on an HP C3000 workstation, which
is based on a 400 MHz HP PA8500 CPU. The program was compiled with the HP-UX 77
compiler and the recommended optimization switches +04 +E1 +E4 +E6 -K +U77. The
reference step size was chosen to be the largest such that the DPM results lay within 1% of
the EGS4 results. This value was 0.5 cm in all cases except for 5 MeV on water, for which it
was necessary to use a 0.2 cm step. Note that the 16 MeV CT case requires more time than
the 20 MeV water case because the envelope of air and other less dense media under the beam
give rise to deeper penetration of the source particles, requiring more computations of energy
deposition and voxel crossings.

Table 2 presents results from a profiling study of DPM. Values are expressed in percentage
of overall CPU time spent in various process. Two important conclusions can be drawn.
First, the time taken in multiple scattering processes is quite small (~3%), implying that
little further speed-up can be achieved in electron transport Monte Carlo simulations through
manipulating step sizes. Second, a great deal of time (41%) is spent in voxel-to-voxel boundary
crossings and CSDA energy deposition calculations, two unavoidable tasks of any algorithm
based on mixed simulation of the inelastic interactions. Therefore, DPM can be considered
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Figure 16. CT image representing a slice located 5.5 cm deep in the z direction, perpendicular
to the paper. The x-axis goes from left to right and the y-axis points downwards. The ‘universe’
of the simulation consists in 128 x 128 x 128 cubic voxels of side | mm. A fictitious 16 MeV
electron beam coming along the positive direction of the y-axis was defined, entering the universe
through a 5 x 5 cm? square covering the range (x, z) = (3.9 — 8.9, 3.9 — 8.9) cm. 10? histories
were simulated to obtain the results presented in the next figures.

(This figure is in colour only in the electronic version, see www.iop.org)
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Figure 17. Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the
value of x = 28.5 mm. Notice that the considered voxels lay outside the source field.
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Figure 18. Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the
= 60.5 mm. Notice that the considered voxels lay directly under the source field.
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Figure 19. Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the
value of x = 94.5 mm. The considered voxels lay outside the source field.

to exhibit close to the maximum achievable efficiency for condensed history CSDA MC

codes.

8. Conclusion

A fast MC algorithm for the simulation of the dose deposited by electron—photon showers
under radiotherapy conditions has been developed. DPM takes advantage of a new transport
mechanics and an accurate multiple-scattering formalism independent of Z, permitting long
simulation steps across media boundaries, significantly increasing the efficiency of the
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Figure 20. Integral DVHs obtained for the ROI defined by a cube of 2 x 2 x 2 cm® centred at
x =64,y =5.9and z = 5.5 cm of the CT shown in figure 16.

Table 1. CPU time for one million histories.

Figure  Problem description CPU time (s)
5 10 MeV pencil beam on water slab 169.4
6 10 MeV broad beam on water slab 181.4
4 5 MeV pencil beam on water slab 111.2
10 15 MeV pencil beam on water slab 250.6
11 20 MeV pencil beam on water slab 327.0

17-20 16 MeV broad beam on CT geometry ~ 383.2

Table 2. Code profile. Use of CPU time in per cent for 16 MeV electrons incident on CT profile
phantom.

86 e transport =
55 transport through voxels =
14 geometry handling
41 CSDA E loss and translation

3 transport to collisions
3 sample scattering & rotations
25 data table look-ups

2 photon transport

11/0

11 tallying

computation without appreciably distorting the results. DPM has been shown to reproduce the
dose distributions calculated with high-accuracy state-of-the-art general-purpose MC codes
within an error of the order of 1.25% of the dose maximum, but with significant increase in
computational efficiency. Dosimetric results accurate enough for electron beam radiotherapy
applications can be generated in times of the order of 5 min on desktop workstations.
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Ithas been pointed out (Bielajew 1994a, 1997) that present radiotherapy treatment planning
systems, based on some type of analytic approximation to the solution of the transport equation
will, some day, be replaced by systems based on the much more accurate and conceptually
simpler MC methods. This work has shown that the use of these methods for both fast and
accurate simulation of the transport of electrons in CT geometries is indeed feasible.
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