DPM: A MEASUREMENT SYSTEM FOR DISTRIBUTED PROGRAMS
by

Barton P. Miller

Computer Sciences Technical Report #592

April 1985

DPM: A Measurement System for Distributed Programs

Barton P. Miller

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

DPM is a system for monitoring the execution and performance of distributed pro-
grams. An important characteristic of its design is the simplicity of each part of the design.
This simplicitv has resulted in a system of tools that has wide range of applications and that
was relatively easy 1o construct.

First, we start with a simple model of distributed computation based on message
interactions. We use this model of computation to develop a structure for a measurement
tool for distributed programs. The tool structure was used to guide the implementation of
DPM for both the DEMOS/MP and Berkeley UNIX operating systems.

The power of DPM is shown in two directions. The first is the type of performance
information that can be obtained by using DPM. This information currently includes
measuring communication statistics, dynamic program structure and parallelism. The
second direction is the flexibility of the tool. DPM can be used for post mortem analysis of
a program’s performance, real time performance monitoring, and generating data to be used
by the operating system for such things as a scheduler for load balancing.

Rescarch supported by the Natjonal Science Forndation gramt MCS-8010686 . the Stae of Calilornia MICRO program.
and the Delense Advance Research Projects Agency (DoD) Arpa Order Noo 4031 monitored by Naval Electronic Svsiem Com-
mand under Contract No- N0O0039-82-C-0235

|30

So I gquoted the [irst law of the Meniat at her: A
process cannol be understood by stopping il
Understanding must move with the flow of the pro-
cess. musi join it and [low with i1, "

Paul Mau'dib in Dune
by FRANK HERBERT

1. Introduction

This paper presents a framework for a system to measure the performance of distributed pro-
grams. This framework includes a model of distributed computation, a description of the measure-
ment principles and methods, and a guideline for implementing these ideas. We have constructed a
measurement svstem (called the Distributed Programs Monitor, or DPM) based on these concepts.
DPM has been implemented and used for measurement studies on two different operatings systems

{DEMOS/MP [Miller, Presotto & Powell 85] and Berkeley UNIX[Joy er al 831).

Collecting data about a program’s performance is not enough: we must supply some form of
interpretation or analysis of the data. We include, as part of DPM, several analysis techniques that
can provide information about the structure, the amount of parallelism, and the communications pat-

terns of a distributed program.

DPM is more than a particular implementation of a measurement facility. It provides a frame-
work for other activities that are based on the monitoring of a distributed program. Some of these
activities include real time monitoring and display of the activities of a program, and use of the meas-

urement data for feedback scheduling activities such as load balancing.

1.1. Overview

The driving principle in the design of DPM is simplicity. The model of distributed computa-
tion is simple in the sense that it is general enough 10 make it applicable to a wide range of systems.
Our methods of measurement are simple to insure easv implementation. The implementation of our

tools is simply structured to provide confidence in their correctness.

The goal of simplicity has produced two subordinate goals, consistency and transparency. The
goal of consistency requires us to maintain a constant view as we progress from model of computa-
tion, to measurement system, to implementation, and finally to analysis. For example, suppose with
wish to monitor a program that was sending and receiving messages. The programmer would use
SEND and RECEIVE primitives. The measurement system should be based on these primitives, and the
analysis procedures should work at the same level. We do not want the measurements to be based at
a lower level, such as the network protocol, as this could overwhelm the programmer with informa-
tion about packets, message routing, and bit error detection. Likewise, we would not want to base
the measurement on a high level of semantics, such as formal descriptions of program behavior
[Baiardi ¢r a/ 83]. This might delete valuable information. Our model does not preclude the use of
formal descriptions; we could still use a formal description of program behavior but this description

would be based on the primitive events (in this example) of message SEND and RECEIVE.

The goal of transparency enforces simplicity of use for the programmer. To measure a pro-
gram we should not have to recompile, re-link, or write in a special style or language. We should
not have to supply special information to the measurement system to have it function correctlykn
Transparency also means that the performance of the program being monitored is not significantly
disturbed. A monitor built in software will always have some affect on a program’s performance, but
our design goal is to minimize this effect. This goal will influence both the design and the imple-

mentation of the measurement svstem.

Our measurements are done passively, as opposed to systems that interact with the computa-
tions — such as is the case with interactive debuggers. By this, we mean that actions such as
redirection of messages, breakpoints, and modifications of the message streams are not allowed.
DPM is an observer of the computation, and not a participant. There are designs (for example,
see |Schiffenbauer 817) that provide transparent control and monitoring of interprocess communica-

tion. The complexity of such a design and the ditficulty of implementing on a multi-user system has

FONow that we say have ©77 The opiion is sl available © aogment the smcasorenenmt sysiem with. ¢g o compilen

supplicd information

made this alternative unattractive.

1.2. What is a Distributed Program? And Other Definitions

Our model of distributed computation provides the guidelines for the design of DPM. It is not
a formal model in that we do not use it as the basis for mathematical analysis; rather, the model can

be considered as a reference point for the design and implementation of the measurement system.

We define a distributed program to be a collection of processes cooperating to perform some
computation. The component processes are not constrained to run on the same machine. No
assumptions are made about the locations of the processes. The two extremes are the case where all
processes run on the same machine, and the case where each process runs on its own machine. The

tools and methods that we are describing do not depend on how the program is distributed.

Machine
boundary

N

Computation

Figure 1.1: A Distributed Computation

A distributed program (more simply called a compuiarion) is made up of processes which are
the basic building blocks of a computation. A process consists of an address space containing code
and data, and an execution stream. Each process has access only o its own address space.
Processes do two things: compute and communicate. Computing is the normal execution of instruc-
tions and does not affect the state of other processes. These instructions are referred to as internal
events. Communication is the means by which a process will interact with other processes and the
operating system. Interactions are referred to as exiernal events. The complexities of the distributed
environment become apparent when a process in a computation interacts with another part of the

computation. A computation is illustrated in Figure 1.1.

Communication is based on messages. A message allows the copving of part of one process’s
address space into that of another process. A message is an interaction involving exactly two
processes: the process originating the data (the sender) and the process consuming the data (the
receiver). We make no restrictions on the structure of the message delivery. The communications
path may be unidirectional or bidirectional. The message passing operations may be svnchronous or
asynchronous. Message delivery may or may not be guaranteed or required 10 preserve message
order. Message paths may be dynamically or statically created and destroyed, and the processes in
the computation may be dynamically created and destroved. We make no assumptions about the net-
work or facility underlying the communications mechanism. Our model of computation applies to a

wide range of systems because of its simplicity.

Our model of computation does not include svstems that have processes with shared address
spaces. Conceptually, a shared memory system can be modeled as a message based system (and vice
versa)[Lauer & Needham 79]. In practice, the interactions in a message based system are generally

easier 1o detect than in a shared memory system, and therefore easier 1o monitor.

Processes execute on machines that do not have direct access 10 each other’s memories. Each
machine has a portion of the operating system running on it to support process execution, communi-

cations, memory management, and device management. The communication functions supplied by

the operating system provide for interprocess communications both within and between machines.

2. The Measurement Structure

Our structure of measurement follows the basic philosophy of *“look, but don’t touch’ with
respect to the program that is being studied. The goal is minimal disturbance of the execution of the
program. This means that the computation being measured should not execute more slowly or
achieve different results because it is being measured. If the cost of measurement is high, then the

act of measuring a computation could substantially change its execution behavior.

Process A Process B

Internal
event

xi=x+1

Send Message

-

Lyiernal
event

lrace

discard

Figure 2.1: Events and the Measurement Model

Figure 2.1 gives an overview of event detection and our measurement model. Internal events
are not visible from outside of a process and are therefore not detected. In our measurement struc-

ture, the detection of external events is referred to as merering. A trace is produced for each event

that is detected. After the trace is produced, a decision is made whether or not to keep the trace.
The selection decision is called filtering. If the trace is kept, it is stored until it processed to provide
results that may be used to understand the behavior of the process (and the overall computation). We

call the processing of the traces analysis.

The metering stage of measurement will lie within the kernel of the operating system because
of the desire not to change the program itself. The facility should be simple, so as to make the
necessary modifications as simple as possible. Changes to an operating system kernel are typically
much more difficult than those 1o parts of the system outside the kernel’. Alternatively, the event
detection could be placed in the language runtime library, compiler generate code, or inserted
directly by the programmer. While these methods may be simpler to build, they provide for less
generality and less transparency. For example, these alternatives might require the programmer to

use a particular language or might allocate one of the available file descriptors.

The filtering stage provides for a flexible set of rules 1o perform data reduction. This facility

allows easy change to the selection criteria and easy adapting 10 new or changed trace types.

The analvsis of the data provides a summary of execution of the computation. It is at the
analysis stage that useful information is provided about the computation. The goal of the measure-
ments dictate the type of analysis being performed and the overall structure of the measurement sys-

tem (see Sectlion 4).

Our design is similar in structure to the METRIC system[McDaniel 75]. The separation of
function used in METRIC provides flexibility in the location of data detection, selection, and
analysis. Our design differs from METRIC in several ways. First, METRIC was not transparent:
programmers had to explicitly insert trace calls into their programs. Second, METRIC used a dif-
ferent model of distributed processing. The design of METRIC incorporates the concept of a broad-

cast network media, with the structure of the network visible to the measurement tools.

F As o rule of thumb. the elfort necessary (including design. coding, and westing) to put a given function in the operat-
ing svstem kernel is 10 times greatcr than implementing the same function outside the kernel (in o process). A simikar stae
ment can be made when moving kernel Tunctions into microcod

3. The Measurement Facility

The measurement facility is described by the events that we measure and the structure of the
measurement tools. The measurement tools consist of the previously mentioned components (meter,
filler, analysis) and a user interface. We describe the events, meter, filter, and user interface in this

section. The analyses are described in Section 4.

3.1. Events and Trace Records

There is a set of meter events that reflect the basic operations as seen by the programmer of a
distributed computation. The structure of the metering stage is very simple due to the small set of
meter events (currently about 10). These event types are, for the most part, the same across the dif-
ferent operating systems supporting the measurement facility. These events consist primarily of
activities that reflect interactions between processes (such as a message being sent and received).
Other events related to communications are also recorded. This group of events consists of actions
that effect the creation, modification, and destruction of communications paths. The last group of
evenlts that are recorded pertain to the state of the processes in the computation. The basic events are
the creation of a process, the starting and stopping of its execution, and the destruction (termination)
of the process. Depending on the system from which the measurements are being extracted, there

may be slight variations in the details of the data collected with each event type.

METRIC (and other systems) allowed the users to specify their own event trace types. It would
be easy o add such a mechanism 1o DPM. Only the meter would need (o be changed and these
changes would be minor. We chose to not provide this facility for reasons of transparency. User

defined traces would require explicit use of the trace facility within the processes being measured.

Included with each event trace is a standard header describing the trace. The header of an

event trace contains the following fields:

MACHINEID The machine from which the trace came.

PROCTIME The amount of CPU time used by this process up to the time this
trace was generated. PROCTIME is independent of the load on the
host system.

TRACETYPE The type of event described by this trace.

pC The program counter indicating the location in the process causing
the event.

The event trace types are: SEND, RECEIVECALL, RECEIVE, MESSAGEQUEUED, CREATEPATH, DES-

TROYPATH, CREATEPROCESS, STARTPROCESS, STOPPROCESS, and DESTROYPROCESS.

The meter traces do not include the contents of the messages sent by the users. The meter
traces record only the occurrence of an event and information about which processes were involved.

This results in less trace data to communicate and store.

Even though we do not include the message contents in the traces, we can still detect activity
within the processes that are being measured. By using the PC information in the trace header we

can identify the specific procedure within the process that caused the event.

3.2. Metering

Metering is the activity that takes place within the operating system kernel to extract the events
of interest. This portion of the measurement facility is the onlv change required to the supporting
operating system. There are two basic parts to metering. The first part is the collection of the infor-
mation that is needed 10 form a trace. The second part is a communications path over which to pass

the wace information.

The point in the operating system kernel where the necessary information is available must be
located to meter the specified events. At these points, we insert meier probes in the code of the ker-
nel. These probes are procedure calls to a software module (merer module) that is responsible for
passing the traces to the filter. The parameters particular to the specific trace being generated are
passed to the meter module with the procedure call. These values, along with the standard format

header, are passed to the filter.

10

A communications path, called the mefer path, must be available to the metering routines for
sending traces to the filter stage. This meter path should be reliable in the sense that messages sent
are eventually delivered. Messages should not be lost or duplicated. It is possible that later stages of
DPM (the analysis stage) might be able to detect such anomalies in the data, but it is a good policy to
iry to reduce these problems as much as possible. There is no constraint on message ordering.
Each trace includes the local machine time; hence the analysis stage is able to restore (partial) mes-

sage order.

There must be a method for allowing the programmer to specify the message path to the filter
stage for processes being metered. This requires the addition of a new system function (system call)

allowing a message channel 1o be specified.

Meltering, to the extent possible, should not increase the complexity of the host kernel. In fact,
few procedure calls are added in the existing host kernel code. The number of these calls inserted in
the kernel is about the same as the number of different types of traces. In the same spirit of minim-
izing complexity, the metering stage uses the same message facility as already exists in the host

operating system for its communication channel to the filter stage.

We try 1o minimize the performance overhead of generating the trace messages. Two mechan-
isms help in this effort. The first is buffering of the trace messages. The major cost in generating
the traces is sending the message over the meter connection. We typically buffer up to 50 traces (for
each process) before sending a trace message. The second mechanism that contributes to the perfor-
mance is that the meter module can access the communications routines with substantially less over-
head than could a process.

We also try to minimizing the cost of nor generating traces. This is the cost incurred for a pro-
cess that is not being monitored. One extra test and conditional branch (an “*if’” stalement) is added

to each system call activity. This is not enough to cause a measurable change in performance.

11

3.3. Filtering

Filtering is the data selection and reduction stage in the measurement system. It reduces both
the size and number of traces as they are produced. Data is received from the metering stage, fil-
tered, and then passed on to the analysis stage or stored for later analysis. The scheme currently
used in the measurement system is based on a general, one level, pattern matching algorithm. More
sophisticated schemes (such as presented in [Bates & Wileden 83]) may be used in subsequent ver-
sions of DPM. This filter also allows for the specification of trace record formats, so that the filter

can process traces coming from different systems.

The location of the metered processes and the location and number of filter processes are a
source of flexibility in the measurement system. The choice of how to attach processes to filters pro-

vides the ability to do many tvpes of analyses (see Section 3.3.3).

3.3.1. Trace Description and Selection

The filter receives three types of input. These are the descriptions of the trace record formats,
the selection rules for filtering, and the trace records themselves. The descriptions and the selection
rules are processed al the time the filter begins its execution. These stay in effect while the trace

records are processed.

header 0,
machine,0,4,16
traceType,4,4,10
procTime,8,4,10
pc,12,4,10;

SEND 1,
fromTask,0,4,16
toTask,4,4,16
channel,8,4,10
code,12,4,10
sendLink,16,4,10
passLink,20,4,10;

Figure 3.1: Trace Description

A trace record consists of a header, standard for all types of traces, and an type dependent por-
tion. The trace descriptions consist of a description of the header format, and a description of the
type dependent part of each trace. Figure 3.1 gives a sample of a description for the header and a
SEND trace (for the DEMOS/MP version). The first part of the trace description gives the name (in
this example “*header’” or “*SEND’’), and the value identifying that trace type. Following this is an
entry for each field in the trace. Each entry contains the name of the field (1o correspond with those
that will be specified in the selection rules), its offset into the message, the length of the field, and a

default number base for displaying the field.

Using the descriptions, it is possible 1o take traces from different systems, in different formats,
and process them in a uniform manner. As the filter receives each trace, it compares the trace
against a set of selection rules. Each rule is a pattern that, if matched, specifies that the current trace
is to be accepted. A rule is a list of selection fields which specify the conditions for acceptance of
each field. A selection field is a field name, a selection condition (comparison operator), and a
value. A selection field is satisfied if the evaluated condition is true. If all selection fields in a selec-
tion rule are true, the trace is accepted. The possible conditions are >, <, =, s, =, and =. Fig-

ure 3.2 shows a simple set of selection rules.

machine=3, traceType=1, time>10000;
machine=1, type=1, fromTask=20003, toTask=30003 channel =0;

Figure 3.2: Simple Selection Rules
The value specified with each selection field has several options. The value may be either a
simple value, a wildcard ***7 (a value that matches anv value), or a field name. In the case where
the value is a field name, the value of the field specified for the selection field is compared to the
named field (also contained within this record). Any value may be prefixed with the the discard indi-
cator “*#’7, so that if the trace is accepted, this field is eliminated from the trace. This allows the size

of the traces to be reduced. Figure 3.3 shows a more interesting set of selection rules.

13

machine=#%*, traceType=1, time=4#*, procTime=4#%*, code=4#%*;
type=8, readTask=writeTask, size=1024;

Figure 3.3: Selection Rules

3.3.2. Early Filtering

A crude level of filtering is done before the trace messages leave the kernel (metering stage).
The motivation for this is to reduce the volume of trace messages if the tracing paradigm permits.
The metering causes no significant performance decrease for the process being metered or for the

host kernel: the early filtering is a simple selection.

For each operation that can be traced (e.g., SEND), there is a flag which indicates whether that
operation is to be metered. If this flag is not set, no traces of this type are generated for the filter. If
an analysis required only the events of a message being sent and received, then all other trace types

could be ignored, reducing the effects of the measurements on system performance.

The selection flags are combined into a bit mask and stored with the description of the meter
path for each process. There must be a system function (system call) that allows the selection flags

to be specified.

3.3.3. Configurations

Figure 3.4 shows a sample configuration for metering user processes. Several processes form-
ing a computation are sending traces to a single filter, which is selecting and storing the data for later

analvsis. We would expect this structure to be useful to a programmer evaluating a new program.

Different configurations provide for the ability to apply the measurement svstem to different
problems. For example, the configuration in Figure 3.4 could be extended to have the filter collect
data on all communications activities within a single machine. This type of configuration could allow
measurement of message quantity and frequency, queue lengths, and process scheduling. Our meas-
urement svstem can gather these different types of information which traditionally required special-
ized tools 1o be built. It 1akes no extra work to extend this type of measurement to a collection of

machines, or to the entire system.

14

Process
D

Process

Process
C

Filter

gy IR 1
&
N

Figure 3.4: Computation with Single Filter

If network (communication) load is critical, then we can have a filter on each machine and
merge the trace records when the computation has terminated. 1f CPU load is critical, then the filter

process(es) can be placed on its own machine.

An alternative 10 the post mortem processing of the traces is to process them as they are pro-

duced and selected by the filter (in real time). This is discussed further in Section 5.

3.4. User Interface

The user interface 1o DPM is a command interpreter that allows the programmer to specify the
(1) program (processes) to run, (2) events to monitor, (3) name of the filter (with descriptions and
templates, if the standard filter is used), and (4) the analyses to be run on the trace data after it is col-
lected. A complete description of the command language and structure of the user interface is given

in [Macrander 84, Miller ¢/ af 85].

15

4. Analysis Techniques

A collection of data needs some form of interpretation to have some meaning. A basic tenet of
this paper is that the measurement model and techniques, and the associated tools, can provide useful
data. To demonsitrate this, we describe several approaches for the analysis of the trace data generated

by our measurement system.

4.1. Basic Communications Statistics

We have defined a computation o be a collection of cooperating processes. The processes
cooperate, and the cooperation is based on some communications mechanism. It is reasonable then
to want to know the nature of the communications between processes. Several basic questions come
to mind. Who is talking to whom? (Which processes are talking to which other processes?) What is
the volume (total message traffic) of the communications? How frequent (time density) are the com-

munications? How large are messages?

In addition to these basic questions, a few more interesting queries come to mind. Given infor-
mation about the arrival and consumption of messages, we can derive information about the message
queues. It is possible to gather statistics such as the maximum, and average queue lengths for each
process. With the same information we can obtain the minimum, maximum, and average time that a
message waits in the incoming message queue before it is consumed by the process. However, we
are not restricted to minimum, maximum and average. We can collect data to record the distribution

of the various measurements.

There are several reasons why these message statistics are useful. When first studying a distri-
buted program (or the traces of a distributed program’s execution), it is useful to get an overview of
its behavior. The message quantity and density statistics give a first view of the interactions in the
computation. This gives the programmer an initial indication of the behavior of the program. Infor-

mation such as local (intramachine) and remole (intermachine) message levels can also be obtained.

16

The message queue length information can help in structuring the program. Suppose we have
a program that provides some service by receiving request messages, performing some action, and
then replying to the requesting process. If many requests are being handled at one time, then the
server program may involve several processes working together. If we know that the message queues
for awaiting requests are large, then we should structure the server to handle requests differently, or

allocate more resources (e.g., machines) to the server.

4.2. Detecting Paths of Causality

When we wrile a computation consisting of several processes, we specify the order and fre-
quency of the communications in the computation. We specity this information for each interaction
between processes. We establish rules and protocols to provide for the correct execution of the pro-
gram. But when the entire computation is executing, the overall interactions are more complex than
this static picture of the computation suggests. The increased complexity comes from parallel execu-
tion within the computation and from the fact that several partially completed activities maybe be

simultaneously active within the computation.

The model of computation in which we are interested for this analysis is that of a server. A
server is a computation thal receives requests from processes outside the computation, computes a
result (involving one or more of the processes within the computation), and then returns the result o
the requesting process. There are several questions to be answered about the behavior of a server.
One questions is: given a request message received by the server, what message paths within the
server are most commonly traveled? This question can be translated to: what sequences of interpro-
cess communications occur most frequentlv? For sequences of length two, we can derive this infor-
mation from the basic message statistics (see Section 4.1). The message statistics cannot provide
information about longer sequences of interactions. Related to the longer sequences of interactions is
a second question: given a process that has just received a message, where will that process next send
a message? This question can also be viewed as determining a branching probability, given a

specific input to a process.

17

The basic strategy for causality analysis is 10 identify each request to the server, and follow the
sequence of interactions within the server caused by that request. To do this, we first collect SEND
and RECEIVE traces and a graph of the events in the processes is constructed, with arcs in the graph
between each corresponding send and receive (see Figure 4.1). This graph represents the complete

collection of interactions between processes during the life of the computation.

Process A Process B Process C

Figure 4.1: Sample Computation Graph for Causality Analysis

To reduce the complexity of analyzing such a large quamity of data, we convert the problem to

one of manipulating character strings. Each process in the computation is assigned a single letter

18

designator. The two events corresponding to a message being sent and received are designated by the
letter for the sending process, followed by the letter for the receiving process. For example, the first
send and receive pair in Figure 4.1 would be the string:

AB
We create a list of strings, where each string represents one request to the server and the subsequent
activity within the server. These strings are called causaliiy strings.

There are three types of processes that are visible during a causality analysis. The first type of
process is the server process. This process is contained within the computation that is providing ser-
vice. The second type of process is the requestor process. Requestor processes are the customers of
the server. They make requests and receive results. The last type of process is the sysfem process.
System processes are those processes to which the server makes requests. The system processes may
be other servers, or perhaps a host kernel. Messages received from a requestor indicate a request
for service from the server computation. Messages (o system processes from the server are ignored
(as are the responses), as we are interested in tracing the flow of control through the server, and not
through external processes.

The algorithm for building the causality strings traverses the entire computation graph. The
list of causality strings is built by:

(1) searching for each message receive event from a requestor process:

(2) for each such receive, the message sends immediately following the receive are identified;

(3) the message receives corresponding to sends in (2) are identified (i.e., the message arcs are
followed), and steps (2) and (3) are repeated for each receive.

A causality string is initially a single character, which is the process performing a message
receive that was detected in step (1). Each time a send is followed (i.e., a message arc is traversed)
to its corresponding receive (step (2)), an additional letier (identifying the receiving process) is added
to the causality string. Events associated with system processes are ignored in this algorithm. For

example, the causality strings for Figure 4.1 are:

19

ABA
ABCBA

Once we have the causality strings, there are several results that we can obtain from them.
The first result is identifying the most commonly traveled paths through the server. We store these
strings in lexicographical order with a value indicating the number of times that the string has
occurred in the computation. This list of strings identifies the most commonly occurring message

sequences.

Given three processes, A, B, and C, we use the causality strings to compute the probability that
process A, having just received a message from process B, will next send a message to process C.
This information is obtained by generating all of the substrings of length three, and then tabulating
them. The probabilities cannot be calculated from the simple message statistics since these statistics
do not correlate message receives with the corresponding message sends.

This analysis technique was used in a study of the DEMOS/MP file system[Powell 77, Miller,
Presotio & Powell 85]. The DEMOS/MP file system consists of four processes (Request Interpreter,
Directory Manager, Buffer Manager, and Disk Interface) which function together to provide a file

service 0 user processes.

Machine O Machine | Machine 2 Machine 3

Switch Filter Process
Board anager
emory
Manager

Machine 4 Machine 5 Machine 6

Buffer Request

Manager Interp.
Disk Directory

Interface Manager

Figure 4.2: Layout of System Processes for File System Test

The file system was run under heavy loads (many user processes) and its execution was moni-
tored by DPM. The configuration for the measurement is shown in Figure 4.2. User processes
were distributed among most of the machines. The trace data that was collected was used to build the
graphs and strings described previously. Substrings of length three were used to compute the proba-
bility of messages flowing between the file system processes and these probabilities were used to con-
struct the diagram in Figure 4.3. This figure shows the flow of data and control within the file sys-

tem.

21

Dirvctory

Manapel

96 %
100 %

Builer
Manager

Request

Interp

Buller

Managen

Figure 4.3: File System State Diagram

The interesting result is that by using a general performance tool, such as DPM, and knowing

nothing about the internal structure of the file system, we can obtain valuable information about its

internal operations.

(h

3)

For example, from Figure 4.3, we can conclude:

Messages from users go to the Directory Manager only 4% of the time (corresponding to file

opens). This provides us with the ratio of file opens to reads/writes.

The Request Interpreter asks the buffer manager for data, and 73% of the time a result is
immediatelv returned. 27% of the time the buffer manager must ask the Disk Interface for the

data. This represents the buffer hit raie (cache efficiency).

The Buffer Manager will ask the Disk Interface for additional blocks of data 17% of the time,

representing the frequency of following indirect references on the disk.

The above results give important structural information when provided to the

programmer/analyst of the file system. These results were provided without the need for specialized

measurement {ools.

v
[}

4.3. Measuring Parallelism in a Computation

One motivation for writing a distributing computation is to achieve an increase in its speed of
execution. This performance increase is obtained by means of parallel execution of the processes
within the computation. Once we construct a distributed program, the problem becomes: how do we
measure the amount of parallelism in the execution of our program? In addition, it is useful to be
able to project the amount of parallelism that can be achieved as we vary the location of processes

among machines.

The algorithm for the analysis of parallelism uses traces obtained from a particular execution
or executions of a computation. We can obtain these results even on sysiems that are currently run-
ning other users. The techniques used for this analysis are described in detail in [Miller 85] and a

study using this analysis is described in [Lai & Miller 84].

5. Variations en a Theme
5.1. Realtime Monitoring

In Section 4 we assumed that the data analyses were performed after the computation had com-
pleted. The structure of DPM provides the flexibility to use analysis routines that process trace data

as it is generated.

Consider the analysis of communication statistics presented in Section 4.1. This analysis could
be easily adapted to execute in real time. Associated with the analysis routine would be a graphic
display of the activities within the user program. Communication traffic are represented by colored
arcs between process nodes. As traffic levels increased, the color of an arc progresses from violet to
red, thus identifving active or /lior spois in the program. Other communication statistics, such as
average message sizes or input queue lengths, could also be displaved in this manner. The processes

are also colored — representing the amount (percentage) of time that the processes execute.

5.2. Feedback Scheduling (Load balancing and other uses)

The analvses discussed thus far are intended to provide the programmer or system manager
with information. This information mav result in the programmer restructuring the computation
being studied or the manager changing the environment in which the computation executes. In both

cases, a human being is part of the feedback loop.

1t is possible to return the results of some of the data analyses directly to the host system. After
the meter traces have been analyzed and reduced 1o some reasonable statistic, this information can be
passed directly to the host system to be used in scheduling decisions. The trace dala becomes direct

feedback to the host operating system.

We can use this structure to collect communications load data for process load balancing and
file migration decisions. The data collection for feedback scheduling looks similar to that described
in the previous section on system communications measurements. The same type of organization for
metering and filtering could be used. The filters would not store the selected data. After filtering,
the selected data would be passed on to the host system 1o provide data for scheduling. This is illus-

trated in Figure 5.1.

Feedback pathes

Process

Scheduler

'
f
'

\
H

Data collection

Figure 5.1: Measurement System for Feedback Scheduling

The type of resource scheduling that can make use of the meter data is limited by the frequency
with which the data needs to be collected. Activities that occur with about the same frequency as
interprocess communications, or with lower frequencies, would be reasonable to measure since the
meter traces themselves are messages. Activities more frequent than these would overly degrade sys-
tem performance. The measurement system can provide information that is gathered from other
sources. These other sources could be more traditional performance tools gathering data on machine

loading, memory usage, or paging activity. The meter message would be the medium that would

carry periodic summaries of these other activities.

6. Conclusion

DPM is a simple tool. Each piece was constructed to provide the needed functions by the most
straightforward means. This simplicity provided for its ease of construction (in two operating sys-

tems) and for the flexibility of its design.

Transparency to the programmer extended the range of applications. We can measure any pro-
gram (including existing system services) and programs written in any language. We minimized the

restrictions on the use of the tool.

Consistency help in the construction of the measurement systems. 1t provided a unifying theme

throughout the design.

Two design decisions were made in DPM that have inspired some controversy. The first is the
lack of user defined event trace types. While this would be easy to add to DPM, we have resisted the
temptation so as to maintain transparency. The second decision was the lack of message contents in
the meter traces. An argument for the inclusion of message contents comes from monitoring the
synchronization protocols in a distributed database system. For example, the last traces we obtained
may have come during a commit/abort decision followed immediatelv by a svstem crash or deadlock.
We would like to be able 10 know whether a commit or abort was occurring and this might be diffi-
cult without knowing the contents of the synchronization. But the inclusion of the PC field in the
traces provides us with information on which procedure generated the trace events and this could
provide the additional information needed to discriminate between the commit and abort in our exam-

ple.

Research on DPM continues. The current analyses (communication statistics, paths of causal-
ity, parallelism) have provided usetful tools for program development. Work is ongoing in the areas

of real time monitoring facilities, feedback scheduling, and graphic display techniques.

References

[Baiardi ¢r af 83)
F. Baiardi, N. de Francesco, E. Matteoli, S. Stefanini, and G. Vaglini, “*Development of a
Debugger for a Concurrent Language,”” /Proc. of the ACM SIGSOFT/SIGPLAN Sofnware
Enginecrine Symp. on High-Level Debugging, pp. 98-106 Pacific Grove, Calif., (March 1983).

[Bates & Wileden 83]
P. Bates and J. C. Wileden, *“*An Approach to High-Level Debugging of Distributed Sys-
tems,”” Proc. of the ACM SIGSOFT/SIGPLAN Svinp. on High-Level Debugging, pp. 23-32 Asi-
lomar, Calif., (March 1983).

[Jov ¢r al 83]
W. Joy, E. Cooper, R, Fabry, S. Leffler, K. McKusick, and D. Mosher, **4.2BSD System
Manual,”” Computer Systems Research Group Technical Report, University of California,
Berkeley (Tuly 1983).

[Lai & Miller 84]
N. Laj and B. P. Miller, **The Traveling Salesman Problem: The Development of a Distri-
buted Computation,”” Technical Report UCB/CSD 84/212, University of California, Berkeley

(October 1984).

[Lauer & Needham 79]
H. C. Laver and R. M. Needham, “*On the Duality of Operating System Structures,’” Operatl-

ing Svstems Review 13(2) pp. 3-19 (April 1979).

[Macrander 8§4]
C. M. Macrander, “*Development of a Control Process for the Berkeley UNIX Distributed
Programs Monitor,”” M.S. Report, Computer Science Tech. Report UCB/CSD 84/216,
Unversity of California, Berkeley (December 1984).

[McDaniel 75]
G. McDaniel, "*“METRIC: A Kernel Instrumentation System for Distributed Environments,”’
Proc. of the Sixth Svinp. on Operating Svs. Principles, pp. 93-99 Purdue University, (November
1975).

[Miller, Presotto & Powell §5]
B. P. Miller, D. L. Presotto, and M. L. Powell, ““DEMOS/MP: A Distributed Operating Sys-

tem,”” submiiied for publicarion, ().

[Miller §5]
B. P. Miller, **Parallelism in Distributed Programs: Measurement and Prediction,”” Computer
Sciences Technical Report 2?77, University of Wisconsin-Madison (1985). Submitted for pub-

lication,

[Miller ¢r al 85}
B. P. Miller, S. Sechrest, and C. Macrander, “*A Distributed Program Monitor for Berkeley
Unix,”” Software - Praciice & Experience, (1o appear). Also appears in short form in the 5th
Int’l Conf. on Distributed Computing Sviems, Denver (May 1985).

[Powell 77]
M. L. Powell, **The DEMOS File System,”” PProc. of the Sixth Svinp. on Operating Svs. Princi-
ples, pp. 33-42 Purdue University, (November 1977).

27

[Schiffenbauer 81]
R. D. Schiffenbauer, **Interactive Debugging in a distributed computational environment,”’
Technical Report MIT/LCS/TR-264, MIT (September 1981).

