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Abstract: Nowadays, state-of-the-art direct visual odometry (VO) methods essentially rely on points
to estimate the pose of the camera and reconstruct the environment. Direct Sparse Odometry (DSO)
became the standard technique and many approaches have been developed from it. However, only
recently, two monocular plane-based DSOs have been presented. The first one uses a learning-based
plane estimator to generate coarse planes as input for optimization. When these coarse estimates are
too far from the minimum, the optimization may fail. Thus, the entire system result is dependent
on the quality of the plane predictions and restricted to the training data domain. The second one
only detects planes in vertical and horizontal orientation as being more adequate to structured
environments. To the best of our knowledge, we propose the first Stereo Plane-based VO inspired by
the DSO framework. Differing from the above-mentioned methods, our approach purely uses planes
as features in the sliding window optimization and uses a dual quaternion as pose parameterization.
The conducted experiments showed that our method presents a similar performance to Stereo DSO, a
point-based approach.

Keywords: visual odometry; direct method; planar features; second-order optimization; stereo camera

1. Introduction

A requirement for a mobile robot’s autonomy is the ability to extract useful information
from the environment and create a map by using its sensors, while the robot explores the
environment and simultaneously locates itself with that map. The research areas that
address this problem using cameras as the main sensor are called Visual Odometry (VO)
and visual Simultaneous Localization and Mapping (vSLAM).

According to Chen et al. [1], these techniques can be classified into two main different
approaches: feature-based or direct techniques. The first is based on the extraction of
features present in successive images to, through correspondence between these features,
determine the pose of the robot and reconstruct a sparse map. The second approach
minimizes the photometric error between a set of pixels of two images using a homography
function. Both techniques are used in either monocular, stereo or RGB-D camera systems.

While early works paid more attention to the quality of pose estimates, with the
extraction of sparse environment information, recent works have focused on improving
the quality and density of the mapping in the SLAM process. More accurate sensors,
computer processing power increase and new techniques contributed to the emergence
of (semi-)dense and/or large-scale maps in VO and visual SLAM systems [2]. Now, some
techniques allow choosing the density of the map according to the computational resources
available [3].

These maps can be constructed with many types of features present in the environment,
starting from geometric primitives, such as points [4], lines [5] and planes [6], to more com-
plex structures, for instance, quadrics [7], cubics [8] and objects detected via Convolutional
Neural Networks (CNNs) [9].
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A predominance of techniques based on keyframes is observed in direct methods [10,11],
which in general store point information in certain frames along a path traveled by the
robot. Thus, point-based maps are widely used in such techniques. One of the reasons for
this is the fact that high-gradient regions are present in corners and edges, which can be
used to obtain disparity maps and create point-based maps. However, the use of points
for map representation could be computationally expensive as far as the number of points
increases and they do not contribute to the overall interpretation of the 3D structure of the
mapped environment since each point is represented independently.

A more appropriate map representation, when the desired requirement is to use
features that optimize the relationship between density and stored information, is to make
use of planar regions. Planes are dominant in structured environments, both internal
and external, and can be expandable, representing a large part of the scene with a few
parameters [7]. Planes make possible the use of some constraints, such as Manhattan
constraints [6,7], to restrict the relationship between planes in the environment, producing
more consistent maps. Furthermore, it is possible to assign semantics to planar regions,
since a region can represent, for example, walls or the floor and a set of planar regions can
represent more complex structures [12].

The most prominent direct VO approach in recent years was developed by
Engel et al. [10], called Direct Sparse Odometry (DSO). This technique initially developed
for monocular cameras is based on point cloud and has become popular due to the quality
of the results obtained in estimating odometry with reduced information. Several works
have been developed from this technique. However, only recently, works developed by
Wu and Beltrame [13] and Xu et al. [14] presented the first methods that use planes within
the DSO framework.

In the first mentioned planar technique, the inverse depth of a pixel, used as the
feature parameter in the DSO method, is expressed as a function of the homogeneous plane
variables. This plane representation can also be understood as the coefficients of a unit
quaternion [15]. Although this technique presents a valid description of the use of planes in
the DSO framework, it requires that sufficiently good initial estimates of planes be obtained
for the optimization to converge. To solve this problem, this technique made use of a plane
estimator based on a CNN, which restricts the whole approach to the data domain used to
train the network. In addition, it causes the method to depend on the quality of network
predictions to initialize properly.

The second mentioned planar technique uses points that are part of the same plane to
add a constraint to the optimization and increase the accuracy of the odometry results. This
technique prioritizes indoor environments as far as it detects vertical and horizontal planes.

A representation of planes that is also minimal and follows the natural evolution of
the DSO approach is the inverse depth of three image points [16]. The use of this approach
makes possible the employment of disparity-based algorithms, which estimate point depth,
already used by DSO. Furthermore, this approach causes the map features to be interpreted
in two ways, i.e., as a set of three points or as a planar region formed by three vertices.
This dual interpretation can be advantageous in situations in which point segmentation
algorithms in image planes fail, causing points from different planes to be present in the
same segment.

Thus, inspired by the DSO approach, the goal of this paper is to present a purely
direct stereo VO framework that performs mapping with planar regions, represented by
three-point inverse depths.

The proposed framework is, to the best of our knowledge, the first stereo plane-based
VO inspired by the DSO framework. Moreover, we first introduce the use of dual quater-
nions in parameterizing the robot pose for direct methods. According to Wang et al. [17],
among the various existing rigid body representations, the unit dual quaternion offers the
most compact and computationally efficient screw transformation formalism.

This paper is organized as follows. Section 2 is a literature review of the main works
in the area of direct VO and visual SLAM. In Section 3, a brief introduction of the main
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theoretical components addressed in this paper is presented. Then, Section 4 presents
the Direct Planar Odometry framework. Section 5 presents the results of the proposed
technique, as well as a discussion about them. Finally, in Section 6, we highlight the main
ideas and contributions of this work and present some prospects for future works.

2. Related Works

This section presents a literature review of the developed techniques of Direct VO
and visual SLAM. These techniques are classified according to the generated map as point-
based or plane-based. Subsequently, SLAM methods that use dual quaternions for pose
parameterization are presented. Finally, the main contributions of this paper are listed.

2.1. Point-Based Direct VO/SLAM

One of the most popular approaches has been the technique developed for monocular
cameras called Large-Scale Direct SLAM (LSD-SLAM) [18]. LSD-SLAM presents a direct
SLAM framework that generates a consistent large-scale map. For this, a semi-dense
depth map, obtained from high-gradient pixels, is used in the image alignment. In the
pose parameterization, the Lie group SIM(3) is applied and in addition to the rigid body
parameters (rotation and translation), a scale parameter is added. Finally, this method
achieves a consistent global map formed by 3D points through pose-graph optimization.
A stereo camera version [11] and an extension of it [19], as well as an omnidirectional
camera approach [20], have also been developed.

Recognizing some deficiencies in LSD-SLAM, mainly in pose estimation, some re-
searchers have proposed improvements to the framework. Wang et al. [21] proposed to
improve the initial estimation of VO by incorporating a constant-velocity model to provide
initial estimates for the optimization, whereas Zhang et al. [22] developed a learning-based
confidence model, which applied to the depth map helps in choosing the best pixels to be
used in the optimization.

Later, the same research group that developed LSD-SLAM proposed DSO, which
brought significant improvements in monocular odometry by optimizing camera poses,
intrinsic and map parameters, boosting results through the use of photometric camera
calibration. Subsequently, several versions of this work were presented, mainly addressing
the use of different camera types [3,23], a modification with loop closure [24] and using
predictions provided by deep learning techniques [25]. Yang et al. [26] proposed a semi-
supervised network called StackNet for deep monocular depth estimation; these estimates
were incorporated to overcome scale drift, an intrinsic limitation in monocular VO. The so-
called Deep Virtual Stereo Odometry (DVSO) framework incorporates the left disparity
prediction in the depth initialization and the right prediction in the bundle adjustment
process using a virtual stereo term. More recently, Yang et al. [27] developed the D3VO,
which integrated three pieces of information predicted by a semi-supervised network to
benefit a monocular odometry method. More specifically, they used a network based on
MonoDepth2 [28] which, besides predicting depth and relative camera pose, also retrieves
photometric uncertainty and brightness transformation parameters. These predictions were
then used through the processing framework, respectively, serving as initial values for both
the front-end tracking and back-end optimization, performing inter-frame illumination
alignment and weighting the photometric residuals.

Other approaches based on the DSO technique have also been developed. One of these
approaches was SalientDSO [29] which, inspired by human vision, searches for regions
of interest in the image that serves as input to the system. Parallelization of the original
approach was proposed by Pereira et al. [30]. In addition, semi-direct approaches that
mix direct VO methods and indirect ones to refine keyframe pose are also present in the
literature [31–33].
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2.2. Plane-Based Direct SLAM

One of the first real-time direct SLAM techniques to gain notoriety was the work
proposed by Silveira et al. [16], who developed a monocular SLAM, using planes to
generate the map, optimized by Efficient Second-order Minimization (ESM). To obtain
initial estimates of the parameters, an approach that couples the proposed direct technique
with a filter-based method was adopted.

Plane parameterization using the depths of three points, represented by three non-
collinear pixels in a given image patch, is also introduced in the mentioned approach. This
representation was employed on several square-shaped patches, subdividing the image,
to estimate the plane parameters. In some situations in which patches are projections of
regions with more than one plane in the scene, not necessarily all pixels of the patch will be
contained in the same plane as the three points used in the parameterization. Such pixels
can affect the correct estimation of the parameters.

In the approach DPPTAM [34], a monocular technique based on LSD-SLAM is devel-
oped using a semi-dense depth map. In the mentioned paper, the image is segmented using
superpixels [35] and the points of the semi-dense map are projected onto the image and
clustered according to plane parameterization segmentation performed by the superpixels.
After that, the planes are estimated using Singular Value Decomposition (SVD) applied to
the points clustered in each superpixel. DPPTAM keeps the points of a superpixel, allowing
the use of non-convex regions. However, this is not a compact representation, since all the
points of the superpixel are stored. In other words, the same problem of point-based visual
SLAM techniques remains.

Ma et al. [36] developed CPA-SLAM, a real-time visual SLAM technique developed for
RGB-D cameras that mix photometric and geometric alignment in the same optimization.
To estimate planes, the keyframe is segmented into many regions and a global plane model
that uses graph optimization is applied in all local observations.

As mentioned previously, the recent work by Wu and Beltrame [13] presented the
first planar DSO-based technique. For each point chosen at each new image, parameters
of the plane represented by unit quaternions are estimated. When a set of neighboring
points projected from different keyframes in the current frame have the same descriptor,
a planar region is determined and inserted into the optimization. The prediction strategy
is performed using the PlaneNet [37] technique, which estimates the planes present in
each pixel from a color image. This CNN-based technique is time-consuming and its
efficiency depends on the domain of the network training data, which in practice limits the
applicability of the framework as a whole.

The second planar DSO-based approach (PVI-DSO) is presented by Xu et al. [14],
who developed a visual-inertial odometry (VIO) technique that fuses coplanar constraint
regularities to improve the accuracy of the localization. In this application, only vertical
and horizontal planes are detected, prioritizing its use in structured environments.

All approaches mentioned above showed a preference for point-based maps in direct
SLAM applications. Among the few direct techniques found that use planes, none of them
is a stereo-based framework.

2.3. Pose Parameterization

Different parameterizations for the pose have been used in visual SLAM and VO
techniques. The homogeneous transformation matrix T ∈ SE(3) alongside its algebra se(3)
has been one of the preferred approaches of the main direct SLAM methods. Virtually all of
the techniques presented in this paper use this approach or a similar one, such as SIM(3),
which takes into account the scale factor.

One parameterization that is not new but that has recently been employed in visual
SLAM techniques is unit dual quaternion. According to Thomas [38], quaternions are of vital
importance in representing spatial rotations; however, a lack of precise understanding of
the meaning of its operations leads to an underutilization of quaternion-derived techniques,
such as dual quaternions.
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According to Kenwright [39], dual quaternions are compact, unambiguous, singulari-
ty-free and computationally minimalist for rigid transformations. In addition, they offer the
most compact way to represent rotations and translations. More recently, they have been
employed in visual SLAM techniques based on stochastic filters [40–45], and some based
on graph-SLAM [46,47] have been observed. Despite the wide use of this parametrization
in feature-based SLAM approaches, our approach is the first to use it in direct VO.

2.4. Contributions

The main contribution of this work is the development of a plane-based direct VO
technique inspired by the DSO approach. To the best of our knowledge, our work is the first
purely direct stereo VO approach to use planes as features. The proposed plane parameteri-
zation represents a natural evolution of the DSO technique and has the following qualities:

• From the pose optimization point of view, the vertices of the planar region do not
need to be part of the same real scene plane. For these cases, it is possible to interpret
the feature as a set of three points. Thus, there is no need for differentiation of points
and planes in the mathematical formulation of the problem.

• As a consequence of the previous statement, this parameterization allows the use of
fast but low accuracy, algorithms for segmenting pixels into planes, not hindering the
performance of the technique as a whole.

• Inspired by the DSO technique, which uses only a set of 8 pixels per point in the
parameter optimization, this work uses only 8 pixels per vertex of the planar region,
which represents only 24 pixels per plane. Depending on the distance between vertices,
it can describe a large planar area in the scene with a small amount of data.

• This approach allows the three vertices of an existing planar region to be reused to form
new planar regions, even contributing to a better coupling between the map elements.

A second contribution is the use of dual quaternion for representing the pose, that
being the first direct VO technique that uses this type of parameterization.

3. Theoretical Background

In this section, the basic concepts for the development of this work are presented,
starting with the homography model, which is dependent on the camera pose and the
planes in the environment. Then, the basic concepts of the unit dual quaternion, the plane
parameterization and the efficient second-order optimization model are presented. Some
of these topics have been presented in a previous study by the authors, which compares
different parameterizations of a plane [48]. However, for didactic purposes, we decided to
present these concepts again in this article.

3.1. Plane-Based Two-View Homography

Figure 1 shows the projections of point P = [x, y, z, 1]>, belonging to the plane π,
on the reference image I∗ and the image I . It is assumed that the projections
p∗ = [u∗, v∗, 1]> ∝ K[I3 0]P and p = [u, v, 1]> ∝ K[R t]P, where I3 is a 3× 3 identity matrix,
K is the intrinsic parameters matrix, R is the rotation matrix and t is the translation vector.
The equation that maps p∗ to p is given by:

p ∝ KRK−1p∗ + z∗−1Kt, (1)

where z∗−1 is the inverse depth of the point P, relative to the reference frame I∗ and, in this
case, ∝ means an up-to-scale equality.
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Figure 1. Homography between two images given a plane.

The relationship between the plane π and the inverse depth z∗−1 is given by:

z∗−1 =
1
ρ∗

n∗>K−1p∗, (2)

where plane π is parameterized by the unit normal vector n∗ and its distance ρ∗ from the
reference frame. Thus, substituting z∗−1 in Equation (1) by Equation (2), we find:

H = K(R + t · n∗>ρ )K−1,

p ∝ Hp∗, (3)

such that n∗ρ = n∗/ρ∗ and H is the homography matrix. Finally, multiplication between H
and p∗ leads to:

p = w(H, p∗) =
[

h11u∗+h12v∗+h13
h31u∗+h32v∗+h33

; h21u∗+h22v∗+h23
h31u∗+h32v∗+h33

; 1
]>

, (4)

where hij means homography matrix element.
The parameters of the homography matrix H are nρ, representing plane informa-

tion, R and t, representing a pose. Since the front-end of this work estimates pose and
plane parameters separately, the optimization formulation of the plane and pose will be
presented independently.

For plane estimation, the pose between two images is considered to be known. This rel-
ative pose can be static, i.e., given by the stereo baseline, and temporal, given by successive
images of the left camera. Thus, Equation (3) becomes:

p ∝ H(n∗ρ)p
∗. (5)

In the step for obtaining the relative pose of subsequent images from the left camera,
the structure information is considered known and Equation (3) becomes:

p ∝ H(R, t)p∗. (6)

3.2. Problem Formulation

In contrast to the DSO approach, the optimization technique used to estimate planes
and poses in this work is Efficient Second-order Minimization (ESM). This second-order
technique, presented by Malis [49], has as its main advantage the need to determine only
first-order approximations.

The photometric error is formulated as a non-linear optimization problem and it is
defined as:

min
ζ, θ

=
1
2

n−1

∑
i=0

{
I
[
w(H(T(ζ), n∗ρ(θ)), p∗i )

]
− I∗[p∗i ]

}2
, (7)
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where ζ represents pose parameters and θ represents plane parameters.

3.2.1. Plane Optimization

The plane is estimated by the optimization considering the relative pose between a
given frame and a reference frame is known. Therefore, Equation (7) is rewritten to include
only n∗ρ as parameter in the optimization:

min
θ

=
1
2

n−1

∑
i=0

{
I
[
w(H(n∗ρ(θ)), p∗i )

]
− I∗[p∗i ]

}2
, (8)

where the photometric error element di(θ) = I
[
w(H(n∗ρ(θ)))p∗i )

]
− I∗

[
p∗i
]

is part of
the residual vector d(θ) of size (n× 1) and θ represents the vector of parameters of nρ∗ ,
such that:

n∗ρ(θ) = g(θ), (9)

where g(·) is the function that maps the parameter vector of the plane θ to its normal
representation n∗ρ , applied in Equation (3).

Similar to other optimization methods (e.g., Newton), ESM is an iterative method.
To determine the new estimate θk+1, a function dependent on the previous estimate θk and
the ∆θ increment is applied:

θk+1 ← f (θk, ∆θ), (10)

where f (·) represents the theta update function, which depends on the relation between
n∗ρ and θ. The optimization will estimate new values of θ until the established stopping
criterion is satisfied.

On the assumption that d(θ) is expanded in a second-order Taylor series around the
point θ = θ̂, we have:

d(θ) = d(θ̂) + J(θ̂)∆θ+
1
2

∆θ>M(θ̂)∆θ+ O(‖∆θ‖3), (11)

where J(θ̂) and M(θ̂) are the Jacobian and Hessian evaluated at θ = θ̂ and ∆θ = θ− θ̂,
respectively.

As a central feature of the ESM method, in Equation (11) the Hessian matrix must be
expressed in terms of Jacobian. To enable this, the Jacobian is expanded in a first-order
Taylor series and we obtain:

J(θ) = J(θ̂) + ∆θ>M(θ̂) + O(‖∆θ‖2) =⇒
∆θ>M(θ̂) = J(θ)− J(θ̂)−O(‖∆θ‖2). (12)

Thus, by substituting ∆θ>M(θ̂) in Equation (11) with Equation (12) and dropping the
second- and third-order residuals, we have:

d(θ) ' d(θ̂) +
1
2

[
J(θ) + J(θ̂)

]
∆θ. (13)

Applying the optimization condition from Equation (8) and solving it, we find:

∇∆θ

[
1
2

d(θ)2
]∣∣∣∣∣

∆θ=∆θ◦

= 0 =⇒

1
2

[
J(θ) + J(θ̂)

]
∆θ◦ = −d(θ̂). (14)

where ∆θ◦ is the optimal increment that satisfies the optimization criterion.
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The Jacobians of Equation (14) can be defined by applying the chain rule. Therefore,
we have:

J(θ̂) = JI JwJn̂∗ , (15)

J(θ) = JI∗JwJn∗ . (16)

Applying the same simplifications adopted by Silveira et al. [16], we assume that
Jn̂∗ ≈ Jn∗ . Thus, Equation (14) becomes:

Jθ∆θ = −d(θ̂), (17)

where Jθ = 1
2 (JI + JI∗)JwJn̂∗ , d(θ̂) is the photometric error vector with all pixels applied

in the optimization, JI∗ and JI are the image gradient of the reference and current frames
and Jw is the matrix demonstrated by Benhimane and Malis [50]. Jn̂∗ is the Jacobian of
H
(

n∗ρ(θ)
)

relative to the parameters of θ.
Finally, the increment of ∆θ is given by:

∆θ =
(

J>θ Jθ

)−1
Jθ

(
−d(θ̂)

)
. (18)

3.2.2. Plane Parameterization

There are several ways to parameterize a plane and the chosen parameterization
influences the efficiency of the optimization. Following Lins et al. [48], the parameterization
applied in this work uses the inverse depth information of three non-collinear pixels
belonging to the reference image (Figure 2). Considering that these three points are in the
same plane, the vector θ is defined as:

θ =
[

1
z∗1

1
z∗2

1
z∗3

]>
, (19)

where z∗1 , z∗2 and z∗3 are the depth of these points.

Figure 2. The figure shows three non-collinear points, belonging to the plane π and projected onto
the reference image I∗ with depths z∗1 , z∗2 and z∗3 , respectively.

For this parameterization, as introduced by Equation (9), the function which maps the
parameters θ to n∗ρ is given by:

n∗ρ = Mθ, (20)

where:
M = K>

([
p∗1 p∗2 p∗3

]>)−1
, (21)
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p∗1,2,3 are the pixel coordinates, in the reference image, of the three points and K is the
matrix of intrinsic parameters. The update rule, given by f (·) function (Equation 10) is:

θk+1 ← θk + ∆θ. (22)

3.2.3. Pose Optimization

The problem of estimating the pose parameters is solved in the same way as plane
optimization. In this case, Equation (7) becomes:

min
ζ

=
1
2

n−1

∑
i=0
{I [w(H(T(ζ)), p∗i )]− I∗[p∗i ]}

2, (23)

where T ∈ SE(3) represents the homogeneous transformation matrix belonging to the
Lie group of rigid transformations. Similarly, the goal of this step is to find the unit dual
quaternion ζ = [q0, q1, ..., q7]

> ∈ R8, which represents pose parameters and such that the
reprojection error is minimal.

Using ESM, we find a similar result to that obtained in the plane optimization, given by:

Jp∆ζ = −d(ζ̂), (24)

where Jp = 1
2 (JI + JI∗)JwJT̂J

ζ̂
represents the Jacobian of pose and the vector d(ζ̂) is the

reprojection error. Finally, the pose increment is given by:

∆ζ =
(

J>p Jp

)−1
Jp(−d(ζ̂)). (25)

3.2.4. Unit Quaternion

Quaternions were introduced by Hamilton in 1866 as an extension of the complex
number theory to formulate a four-dimensional manifold [38]. A quaternion is a four-
component number consisting of a scalar part q0 and a vector part q. Formally, a general
quaternion q is defined as:

q = q0 + q

= q0 + q1i + q2 j + q3k,
(26)

where its conjugate is given by q∗ = q0 − q. The vector form is q = [q0 q1 q2 q3] ∈ R4 and
the orthogonal complex numbers~i,~j and~k are defined, such that~i2 =~j2 =~k2 =~i~j~k = −1.

The addition of two quaternions a = a0 + a and b = b0 + b is a + b = [a0 + b0, a1 +
b1, a2 + b2, a3 + b3]

> and the product of two quaternions is given by the Hamilton
product, where:

ab =


a0b0 − a1b1 − a2b2 − a3b3
a0b1 + a1b0 + a2b3 − a3b2
a0b2 − a1b3 + a2b0 + a3b1
a0b3 + a1b2 − a2b1 + a3b0

. (27)

When the scalar part is equal to zero, the quaternion is written as q = [0, q] and is
called a pure quaternion. Since q = q1i + q2 j + q3k is a three-dimensional vector, clearly
there is a one-to-one correspondence between vectors in 3D space. In addition, a quaternion
with a unit length, where ‖q‖ = 1, is called a unit quaternion and can be used to represent
rotation about an axis (denoted by the unit vector n) and an angle θ as follows:

q = cos
θ

2
+ n sin

θ

2
. (28)
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3.3. Unit Dual Quaternion

A dual quaternion, denoted by ζ, is defined as a dual number comprised of two
quaternion components:

ζ = qr + εqd, (29)

where qr and qd are quaternions representing the real and dual parts, and ε denotes the
dual unit, which is defined by ε2 = 0 and ε 6= 0. Equivalently, the dual quaternions can be
defined as an eight-dimensional vector space:

ζ = [q0 q1 q2 q3 q4 q5 q6 q7]
>, (30)

where the first four elements represent the real part and the last four elements represent
the dual part. The unit dual quaternion is subject to the constraint ζ · ζ∗ = 1, where
ζ∗ = [qr

∗ qd
∗] is its conjugate.

As the unit quaternions can be used to represent rotations, the unit dual quaternions
can be used to represent rigid transformation [39]. Thus, the real part of the unit dual quater-
nion is a unit quaternion that represents rotation and the dual part represents translation
combined with rotation:

qr = [q0 q]> (31)

and
qd =

1
2

t · qr, (32)

where t = [0 t]> is a pure quaternion formed with position vector.
To link the unit dual quaternions with optimization, the homogeneous transformation

matrix T ∈ SE(3) is given in terms of the unit dual quaternion:

T(ζ) =
[

R(qr) 2qd · qr
∗

0 1

]
(33)

and the update rule used in optimization is given by:

rk+1 ← rk · ∆r = qr∆qr + ε(qr∆qd + qd∆qr), (34)

where the updated pose rk+1 is obtained by the multiplication of the pose rk and the
optimization increment ∆r through the Hamilton product.

3.4. Summary of DSO

DSO is a keyframe-based approach, in which each keyframe is responsible for storing
several high-gradient points, distributed over the image. Using a sliding window procedure,
only a fixed amount of keyframes are kept in the system. Whenever a new keyframe needs
to be created, an old keyframe is discarded. Each point of each keyframe has its inverse
depth estimated through disparity, refined through Gauss–Newton optimization and kept
in a semi-dense depth map.

A total of 2000 points, distributed along the keyframes belonging to the sliding window,
are chosen and called active points. Whenever a new frame is available, these points are
used to estimate the new pose. Later, the active points are used in the sliding window
optimization, which is responsible for refining the pose estimates of all the keyframes of the
sliding window and the depth parameters of the active points. In the global optimization,
the intrinsic camera parameters and the affine brightness correction factors are also refined.

The energy function used in DSO is given by Equation (35):

E = ∑
p∗∈Np

ωp

∥∥∥∥(I [p]− b)− ea

ea∗ (I
∗[p∗]− b∗)

∥∥∥∥
γ

, (35)
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where p can be found by Equation (1), a∗, b∗, a, b are the brightness parameters of the
reference and current images and ωp is a gradient-dependent weighting factor. Np consists
of the set including all pixels in the optimization. ‖ · ‖γ represents the Huber norm.

As active points leave the scene or become occluded, they are marginalized and other
points are activated. When many points of a single keyframe are discarded, the entire
keyframe is marginalized and a new keyframe is inserted into the sliding window.

4. Direct Planar Odometry (DPO) with Stereo Camera

The proposed framework is based on DSO and is organized according to Figure 3.
The system is divided into two parts: front-end and back-end. The front-end is composed
of the system initialization, the tracking step and the creation and deletion of keyframes
from the sliding window. The back-end is responsible for optimizing all the parameters
belonging to the sliding window keyframes.

T1

KF1 KF2 KFMax

T2

L

R
...

T3 T4 Tn

Front-end

Initialized? Tracking
New Stereo

Frame 

New

KeyFrame? 
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Back-end
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Sliding Window

Sliding 

Window 

Active 

Keyframes
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Regions

Sliding 

Window 

N

YY

N

Figure 3. Framework of the proposed approach.

In the system startup, the first stereo pair is detected and a set of high-gradient pixels,
distributed over the entire left image of the stereo pair, is selected. The inverse depth of
each pixel is estimated through disparity and refined through optimization. Some of these
points are used for planar region creation, which will be part of the first keyframe of the
sliding window.

When the second stereo pair is available, the tracking algorithm estimates the relative
pose between the keyframe and the current frame. Then, through a set of rules, the system
checks if it is necessary to turn the current frame into a new keyframe. If so, points from
the current frame are selected to form new immature planes, which are a set of planes
from which the active planes are selected, i.e., the planes that will be part of the optimiza-
tion. Moreover, whenever a new keyframe is created, the sliding window optimization is
performed. Additionally, this step is also responsible for managing planar regions from a
given keyframe inside the sliding window.

4.1. Initialization

The first step carried out in initialization is the selection and depth estimation of
high-gradient points in the left image. The procedure for point and depth estimation is
the same as in Stereo DSO [3]. These points are used to create planar regions in the image.
This step is carried out by creating a set of triangles generated by the 2D Delaunay triangle
algorithm. This routine differs from PVI-DSO [14], which uses 2D Delaunay triangulation
over the DSO depth map.

Finally, the initialization is performed at different resolutions of the image (pyramid
levels) and the estimated features are used in the tracking step. The planar regions gener-
ated at the original image resolution are activated and stored in the first frame, which is the
first keyframe of the sliding window.
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4.2. Tracking

As indicated in Figure 3, the tracking step is performed between the left camera
images. Using the formulation presented in Equation (25), parameterized with unit dual
quaternions (Section 3.3) and using planar regions, the relative pose between the current
frame and the newest keyframe can be determined by the tracking algorithm. The active
planes, applied in the tracking step of all keyframes in the sliding window, are projected
in the newest keyframe. In addition, as in DSO, the constant motion model is used for
estimating the initial pose and in optimization, an image pyramid approach is employed.

4.3. Keyframe Creation and Disposal

The creation and exclusion of new keyframes follow a similar rule to the one adopted in
DSO [10]. Their work uses three criteria for creating a new keyframe: the optical flow mean
squared error (MSE), the optical flow MSE without rotation and the relative brightness
factor between two images. Since this work does not use brightness parameters, only the
first two criteria are used to manage when new keyframes should be created.

In our approach, the management keyframe exclusion is effected with two criteria:
the keyframe number of planar regions participating in the sliding window optimization
and the keyframe age. Keyframes with fewer active planar regions and that are not among
the two newest keyframes have priority to be discarded. Like the DSO, a limit of seven
keyframes is defined to be kept in the sliding window.

4.4. Planar Region Creation and Disposal

In the DSO approach, when a new keyframe is inserted into the sliding window,
a series of high-gradient points are selected from the left-image keyframe. Some of these
selected points are observations of keyframe points, inside the sliding window. To prevent
these points from being inserted in the newest keyframe, the DSO uses a distance map.
It expresses the distances of map elements to points of all sliding window keyframes,
projected onto the image of the newest keyframe. Thus, the system can discard points with
the same image position as existing points.

In contrast, in the construction of the DPO map, only active planes are used, i.e., planar
regions of all keyframes considered in the sliding window to participate in the optimization.
As they are composed of three points, the vertices of these regions are projected onto the
image of the newest keyframe with halved resolution. This resolution reduction procedure
is equivalent to expanding the vertex size in the newest image. The position in the image
of each projected vertex is used in the distance map, which has the same dimensions as the
reduced image.

All elements of the distance map are initialized with the integer 1000, representing
that still there are no nearby neighbor projected planes. Then, the indexes of the planar
region vertices are used to attribute zero in the corresponding distance map elements, a
value that indicates occupied positions. A rasterization process is also performed on each
planar region to insert zero in the inner parts of these planes, indicating that these elements
are also occupied positions.

To attribute values for other map elements, a point is chosen for each planar region
edge. These points are defined by the intersection of the edge with the line formed by the
region centroid and the remaining vertex, which is not part of the edge. From these points,
elements neighboring an element that has a smaller integer number get the smaller number
added to the number 1. Thus, this procedure allows the distance map to report the distance
from an element of the array to an edge of a planar region.

Each time a new keyframe is created, high-gradient points distributed throughout
the left image are selected. The depth of these points is estimated through disparity. Two-
dimensional Delaunay triangularization is applied to these points to generate a set of
triangles, which are considered immature planes whenever the depths of their vertices
are valid.
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Similar to DSO, part of these planes can be activated and included in the optimization,
according to the maximum number of regions. To be activated, an immature plane cannot
be an observation of another active plane. To achieve this, before a plan is activated, a check
of its position with respect to other active points is performed using the distance map.
Figure 4 shows an example of how new planar regions are created.

Figure 4. The example shows a sliding window formed by two old keyframes and one new keyframe.
In the first keyframe (KF. 1), there is an active planar region, represented by the triangle (red) and
its vertices (black). The second keyframe (KF. 2) has two active planar regions. The third keyframe
(KF. 3) shows projections of the vertices from the previous keyframes (black). The distance map is
exemplified in the fourth frame. Elements with zero indicate occupied positions with old edges.
Elements with values above zero represent the distance from the element to the edge. Thus, new
planes that fall at a certain distance from the edges of old activated planes are accepted to be
activated in the new keyframe. Finally, the last frame presents new activated planes (cyan) and their
vertices (blue).

When the number of active planes is greater than the defined maximum number,
the ones that leave the image or have a high residual are discarded. This procedure differs
from the one performed with DSO. In their method, parameters from the keyframe that
will be discarded are used one last time in the sliding window optimization.

4.5. Sliding Window Optimization

The optimization is performed with all active planes of all keyframes in the sliding
window. When a given plane of an active keyframe is visible in another one, we consider
this an observation. Thus, in this approach, an observation always takes place between
two keyframes. In addition, since the sliding window keyframes have geometric proximity,
a given planar region can have multiple observations.

The formulation of the sliding window optimization can be represented by:

min
Φ

=
1
2 ∑

k∈F
∑

θi∈Θ
∑

j∈obs(θi)

d(ζ jk, θi)
2, (36)

where Φ =
[
Φp, Φθ

]> is the vector with all optimized parameters, Φp is the vector of pose
parameters, Φθ is the vector of feature parameters, F represents the set of keyframes in
the sliding window, Θ is the set of active planar regions of a keyframe and obs(θi) is the
number of observations of a given planar region θi.

Since the pose parameters of the stereo pair are fixed, the feature observations realized
by the stereo pair are not directly added to the optimization. To take into account the infor-
mation of these observations, we perform a similar procedure carried out with Stereo DSO.
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This procedure consists of replacing the residual d of the temporal stereo observations with:

d(ζ jk, θi)
′ = λd(ζRL, θi) + (1− λ)d(ζ jk, θi), (37)

where d(ζ jk, θi)
′ is the weighted average of the static and temporal residuals, given that λ

is a constant fixed in 0.15 and ζ jk represents the relative pose between the keyframe k and
the j-th observation.

The increment ∆Φ of the parameters is given by:

∆Φ = [∆ζ, ∆θ]> = (J>J)−1J(−d′), (38)

where J = [Jp, Jθ ]
> represents the Jacobian matrices of the relative poses and active planar

regions and d′ =
[
d′1, d′2, ..., d′n

]> represents the residual vector of all observations.
As the DSO, this formulation also uses the concept of First Estimate Jacobian [51] in

the assembly of the Hessian matrix and Shur’s elimination; these are done similarly. In
addition, in their method, the marginalized variables in Shur’s elimination are points that
will be discarded. The proposed technique, on the other hand, marginalizes the active
features in the same manner as is common in indirect methods [52]. Moreover, since the
terms of the residuals in the optimization matrix depend on two frames, the adjoint dual
unit quaternion is used to relate relative pose to absolute pose [53]. An example of a
configuration of the sliding window can be viewed in Figure 5.

L

R

L

R

L

R

Figure 5. The example shows a sliding window with three keyframes, with poses T(ζ1),T(ζ2) and
T(ζ3). There are two planar regions, θ1 belonging to the first keyframe, having three observations,
and θ2 belonging to the second keyframe, having two observations.

5. Experimental Results

For performance evaluation and comparison of the method, six sequences from the
KITTI dataset [54] were used. In each of these sequences, an average trajectory was used,
defined by the average of ten simulations. As an evaluation criterion, the Absolute Pose
Error (APE), implemented in Python’s EVO library [55], was used. This metric compares
the reference poses (ground truth) with the poses estimated with the VO/SLAM method.
For the simulations, whenever possible, we tried to use the same configuration parameters
as the DSO in the DPO. Thus, parameters such as the number of pixels per point or vertex
were set to eight (8) and the maximum number of active keyframes within the sliding
window was seven (7). The results for each sequence can be viewed in Tables 1–3. For each
sequence, the APE metric is given for each frame of the sequence. Information such as RMS
error, mean, median and standard deviation are also presented.
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Table 1. The absolute pose error (APE) for all frames of sequences 3 and 4 of the KITTI dataset.
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Table 2. The absolute pose error (APE) for all frames of sequences 6 and 7 of the KITTI dataset.
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Table 2. Cont.
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Table 3. The absolute pose error (APE) for all frames of sequences 9 and 10 of the KITTI dataset.
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Discussion

Analyzing the graphs of sequences 3, 4, 6, 7, 9 and 10 from the KITTI dataset, it is
possible to notice in Table 4 that in sequences 3, 4 and 7 the mean errors and standard
deviations were smaller in the DPO. In sequences 6 and 9, DPO mean errors were slightly
above the DSO. However, the maximum errors of the DPO were much larger than the DSO,
indicating large errors at isolated points of the trajectory. Finally, sequence 10 showed a
much smaller mean error and standard deviation for DSO. It is important to emphasize that
even without photometric camera calibration and optimization of brightness parameters,
the DPO presented a similar performance to the DSO and obtained better results in half of
the evaluated cases. However, of the six analyzed sequences, three presented a much higher
maximum error for DPO, a fact that might be partially justified by the lack of optimization
of illumination parameters. In the future, we intend to insert an illumination optimization
model into the proposed technique.

Table 4. Comparison of mean error, standard deviation and minimum and maximum error of the six
analyzed sequences between DPO and Stereo DSO.

Absolute Pose Error (APE)

Seq. Mean ± Std. Min. Max.
DPO DSO DPO DSO DPO DSO

3 4.53± 1.92 9.29± 4.71 1.68 1.32 9.10 2.46
4 1.35± 0.51 3.74± 2.08 0.32 0.09 3.46 8.03
6 8.35± 4.80 8.08± 3.55 1.69 1.55 24.61 15.87
7 2.48± 1.01 6.26± 2.29 0.18 2.31 4.59 10.84
9 15.37± 11.64 12.05± 3.70 1.52 3.82 38.54 17.80

10 7.85± 5.42 3.48± 2.06 1.61 0.56 23.07 10.43

From a computational cost point of view, we measure the frame per second (FPS) for
both methods. Although DPO was programmed on the stereo DSO platform, no multi-
threading parallelization or SSE (Streaming SIMD Extensions) instruction set was used
to accelerate the algorithm. Nevertheless, on a 7th-generation Intel core-i5 PC with 8 GB
RAM, the algorithm runs at a rate of about 1 FPS, while DSO runs at a rate of 5.63 FPS.
Looking at the computational cost from the perspective of the amount of data used in the
optimization, the number of active planes is limited to 667 planes in the sliding window.
Since each plane consists of three points, the maximum number of points per optimization
is 2001 points, equivalent to the number used by Stereo DSO.

Figure 6 presents an example of the map reconstructed by our method. From a set
of points, the planes used in the optimization are estimated from the Delaunay triangu-
larization. Although this approach is ideal for coupling vertices that belong to different
planes, for the sake of simplicity, in this first version the generated planes were considered
independent. From the map point of view, this work is seen as a first step in the devel-
opment of a map that can be used not only for odometry but also to represent structures
in the environment to aid trajectory planning. Although some of the planes determined
by the method may not represent real-world planes, Delaunay triangularization allows
non-planar regions to be approximated by planes.
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Figure 6. This figure shows a sample result, taken from KITTI sequence 3. The bottom right image
represents the resulting DPO trajectory. Sections with colors closer to blue indicate less positioning
error. The star indicates the position of the keyframe, shown in the lower left image. Finally, the top
image presents a sample 3D visualization of the map.

6. Conclusions

This paper presented a technique inspired by DSO, but instead of points, we make use
of planar regions as features. It also introduced the use of dual quaternions to represent
the camera’s poses in direct methods. Comparisons of the proposed technique with Stereo
DSO were performed and the presented results showed DPO accuracy within the DSO
standards, this being consistently superior in half of the experiments performed, given that
each sequence was evaluated several times. In the future, in order to improve the accuracy
of the odometry, we intend to add illumination parameters to the optimization, as well as
loop closure detection. Moreover, in order to improve the map representation, we intend to
make the features more susceptible to the inclusion of semantics, which could help in the
trajectory generation.
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