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This manual describes program DPotFit, which performs least-squares fits of diatomic molecule spec-

troscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, flu-

orescence series, and tunneling predissociation level widths, involving one or more electronic states and

one or more isotopologues, to determine analytic potential energy functions defining the observed levels of

each state. Four families of analytical potential functions are available in the current version of DPot-

Fit: the Expanded Morse Oscillator (EMO) potential, the the Morse/Long-Range (MLR) potential, the

Double Exponential/Long-Range (DELR) potential, and Šurkus’ Generalized Potential Energy Function

(GPEF), which incorporates a variety of polynomial potential forms. DPotFit also allows the fit to de-

termine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet state Λ-doubling or
2Σ splitting radial strength functions for one or more of the electronic states.

DPotFit always reports both the 95% confidence limit uncertainty and the “sensitivity” of each fitted

parameter; the latter indicates the number of significant digits which must be retained when rounding,

in order to ensure that predictions remain in full agreement with experiment. It will also, if requested,

apply a “sequential rounding and refitting” procedure to yield a final parameter set defined by a minimum

number of significant digits, while ensuring no significant loss of accuracy in the predictions yielded by

those parameters. The program can also use a set of read-in constants to make predictions and calculate

deviations [ycalci − yobsi ] for any chosen input data set.

c©Robert J. Le Roy, Jenning Seto and Yiye Huang, 2006-2013.



1 General – The Radial Hamiltonian

In recent years, it has become increasingly common to analyse diatomic molecule spectroscopic data by

performing “direct potential fits”, in which observed transition energies are compared with eigenvalue

differences calculated from an effective radial Schrödinger equation based on some parameterized analytic

potential energy function. This effective radial Hamiltonian may also include radial strength functions char-

acterizing the atomic-mass-dependent adiabatic and non-adiabatic Born-Oppenheimer breakdown (BOB)

functions, and (if appropriate) radial strength functions that account for Λ-doubling in singlet states or

doublet splittings in 2Σ states. Partial derivatives of calculated eigenvalue differences with respect to the

parameters defining the potential energy and other radial functions are then used in least-squares fits to

determine an optimized radial Hamiltonian for the system. This report describes a robust and flexible

computer program for performing this type of analysis that may be downloaded freely from the www site

http://leroy.uwaterloo.ca/programs/.

As in most direct-potential-fit (DPF) data analyses reported to date, the present code is based on an ef-

fective radial Schrödinger equation derived by Watson [1, 2], in which atomic-mass-dependent nonadiabatic

contributions to the kinetic energy operator are incorporated into an effective “adiabatic” contribution to

the electronic potential energy function and into the non-adiabatic BOB contribution to the effective cen-

trifugal potential of the rotating molecule. Following the conventions of Refs. [3, 4, 5], the resulting effective

radial Schrödinger equation for isotopologue α of molecule A–B in a singlet electronic state with electronic

angular momentum projection quantum number Λ, may be written as

{
−

ℏ
2

2µα

d2

dr2
+

[
V

(1)
ad (r) + ∆V

(α)
ad (r)

]
+

[J(J + 1)− Λ2]ℏ2

2µα r2

[
1 + g(α)(r)

]}
ψv,J (r) = Ev,J ψv,J (r) . (1)

Here, V
(1)
ad (r) is the total electronic internuclear potential for the chosen reference isotopologue (labeled

α=1 ), ∆V
(α)
ad (r) is the difference between the effective adiabatic potentials for isotopologue α and that

for the reference species (α=1), g(α)(r) is the non-adiabatic centrifugal potential correction function for

isotopologue α, and µα is Watson’s “charge-modified reduced mass” [1]:

µα = µWα ≡ M
(α)
A M

(α)
B

/(
M

(α)
A +M

(α)
B − CHARGE×me

)
, (2)

in which CHARGE is the net ±(integer) charge on the molecule, me is the electron mass, andM
(α)
A andM

(α)
B

are the isotope masses of the neutral atoms A and B forming isotopologue α of species A–B CHARGE. Each

of ∆V
(α)
ad (r) and g(α)(r) can be expressed as the sum of two terms, one for each atom, whose components

have magnitudes inversely proportional to the masses of the specific atomic isotopes [1, 2, 6, 3]:

∆V
(α)
ad (r) =

∆M
(α)
A

M
(α)
A

S̃A
ad(r) +

∆M
(α)
B

M
(α)
B

S̃B
ad(r) , (3)

g(α)(r) =
M

(1)
A

M
(α)
A

R̃A
na(r) +

M
(1)
B

M
(α)
B

R̃B
na(r) . (4)

Here, ∆M
(α)
A ≡M

(α)
A −M

(1)
A is the difference between the mass of the isotope of atom A in isotopologue

α and in that the reference isotopologue (α= 1), while the expressions employed to represent the mass-

independent S̃
A/B
ad (r) and R̃

A/B
na (r) radial functions can be found in §2.3. Straightforward extensions of

Eq. (1) to take account of the e/f Λ-doubling splittings that occur for singlet states with Λ 6= 0 [5], or of

the doublet splittings of the rotational levels of 2Σ states, are presented in §§2.4 and 2.5.
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Figure 1. Illustrative plots of the expansion variables of Eqs. (5) and (6) showing the ‘data range’ asso-

ciated with an analysis for the X 1Σ+
g state of Li2 [10]. The solid curves are for the case rref = re

(variable yeqp (r)), while the dashed curves correspond to rref = 1.5 re (y1.5rep (r)).

2 The Potential Energy Function

2.1 The Radial Expansion Variable

Program DPotFit currently allows the potential energy function for a given electronic state to be repre-

sented by one of four families of analytic model potentials. Most of these functions are expressed in terms

of radial variables of the form

yeqp (r) =
r p − re

p

r p + re p
, (5)

yrefp (r) =
r p − rref

p

r p + rref p
, (6)

in which p is a small positive integer (p = 1, 2, 3, 4, . . . ), re is the equilibrium internuclear distance of

V
(1)
ad (r) , and rref is a reference distance chosen as the expansion centre for this variable (usually rref > re).

Most of the early work employing this type of variable fixed rref = re [7, 8, 9]. However, that is not an

essential constraint, and it has been shown that fixing rref at some distance between re and the outer end

of the data-sensitive region tends to allow accurate fits to be achieved with a smaller number of expansion

parameters [10, 11, 12]. Note that one of the models described below uses two different expansion variables

of this type, defined by different values of the (integer) power. In that case, a second (integer) label q

( q 6= p ) is introduced to identify that second radial variable.

The nature of these variables is illustrated by Fig. 1 for a range of values of p [10] and two values of

rref . The fact that yeqp (r) and yrefp (r) approach finite limits both as r → 0 and as r → ∞ means that

functions of these variables will also approach finite values in these limits. At the same time, the fact that

yeqp (r)∝ (r − re) and yrrefp (r)∝ (r − rref) at distances near their respective expansion centres means that

they will be effective expansion variables for properties that change significantly in those regions. This

mapping of the infinite radial domain r ∈ [0,∞) onto the finite interval yp(r) ∈ [−1,+1] greatly facilitates

the imposition of proper theoretical constraints onto the behaviour of the potential function both at long

range and in the very short-range region. Moreover, it means that functions defined as finite power series in
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one of these variables will not have singularities at either very small or very large values of r . Furthernore,

for larger values of p the resulting potential ebergy functions will be increasingly strongly inhibited from

having implausible spurious extrema in the extrapolation regions at small or very large values of r [7, 8, 9].

Early applications [13, 14, 15, 16] of this type of radial variable were based on the single variable

yeqp (r) of Eq. (5). However, in later applications [10, 12, 17] it was found that use of an expansion variable

yrrefp (r) centred at a distance rrref > re can, with no loss of accuracy, lead to much more compact and

robust potential function expressions than could otherwise be obtained. Such results are readily explained

by examining the differences the difference between the solid and dashed curves in Fig. 1, for a given value

of p. For example, for p=4 , the solid curve for yeq4 (r) is flat and lies very close to its upper-limit value

of +1 over a substantial fraction of the ‘data region’. As a consequence, expansions in that variable would

be unable to represent accurately any properties that vary significantly across this domain. In contrast,

the corresponding variable rrref4 (r)=y1.5re4 (r) changes significantly across the entire data region, and hence

may be expected to provide a robust and compact description of properties that vary across this whole

domain.

The radial variable of Eq. (5) is a special case of a more general expansion variable introduced by Šurkus

et al. [18] (see §2.7). They chose to represent the overall potential function as a power series in their version

of yeqp (r), and specified that the value of p should be based on the asymptotically dominant inverse-power

term in the intermolecular potential for the state of interest. However, our present use of this variable is

based upon our finding [19, 4, 5, 20, 21, 13] that an expansion in powers of yeqp (r) or yrrefq (r) for some small

integer power of p or q that is greater than 1 (say, {p, q} = 2, · · · , 6 ) greatly reduces any propensity

for the resulting expansion to “extrapolate badly” outside the radial interval to which the data are most

sensitive.

In any case, values of p , q , and rref must be selected by the user and specified in the main input data

file. Some guidance regarding how to choose appropriate values of these parameters may be found below

and in Refs. [14] and [17].

2.2 The Expanded Morse Oscillator (EMO) Potential Function

The first type of potential function form considered here is the Expanded Morse Oscillator or EMO function

[7], which has the form of a Morse potential [22] in which the exponent coefficient varies with distance.

Other functions of this type have been introduced by Coxon and Hajigeorgiou (the “GMO” potential) [23]

and by Dulick and co-workers (the “MMO” potential) [24], but because of its simpler form and better

extrapolation behaviour, only the EMO function is considered here. An EMO (or EMOp) potential has

the form

VEMO(r) = De

[
1− e−β(r)·(r−re)

]2
(7)

in which De is the well depth, re the equilibrium internuclear distance, and

β(r) = βEMO(y
rref
p (r)) =

Nβ∑

i=0

βi y
rref
q (r)i , (8)

As discussed in Refs. [19, 5, 20], for cases in which rref = re , an appropriate choice of q (usually > 1 ) in

the definition of yrrefq (r) can prevent extrapolation problems at large r , but does not always resolve such

problems at small r . However, such residual extrapolation problems can usually be solved by setting the

expansion centre rref at some distance greater than re.
1

1 An early attempt to address problems associated with extrapolation to short distances involved allowing the exponent

polynomial of Eq. (8) to have a lower order for r < re than for r > re [5, 20, 21, 13, 16]. However, the introduction of a

variable rref parameter obviated this option. See the example of AgH illustrated in §9.4.2
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The EMO (or EMOp ) potential is a very flexible form that has been used successfully in a number of

demanding data analyses involving both ‘normal’ single well potentials [7, 8, 21] and a state whose potential

function has an additional ‘ripple’ [20]. However, the fact that [De − VEMO(r)] dies off exponentially at

large r makes it a less than ideal function for representing states for which the data extend fairly close

to the dissociation limit. This problem stimulated the development of two of the other potential function

forms discussed below.

2.3 The Morse/Long-Range (MLR) Potential

At long range, all intermolecular potential functions may be described as a sum of inverse-power terms,

with the limiting long-range behaviour being

V (r) ≃ D − Cm1/r
m1 − Cm2/r

m2 − . . . (9)

in which the powers m1 , m2 , . . . etc., are determined by the nature of the atoms to which the given

molecular state dissociates [25, 26], and the coefficients Cmi
may often be calculated from theory. It

is therefore desirable to use a potential form that has the limiting behaviour of Eq. (9), especially if the

data set includes vibrational levels lying fairly close to dissociation. This consideration stimulated the

development of the Morse/Long-Range (MLR) potential form [13, 14, 15, 10, 11]:

VMLR(r) = De

{
1 −

uLR(r)

uLR(re)
e−β(r)·yeqp (r)

}2

, (10)

in which De is the well depth, re the equilibrium internuclear distance, the exponent coefficient β(r) =

βMLR(r) is a (fairly) slowly varying function of r , and the desired long-range behaviour is defined by the

attractive contribution to Eq. (9):

uLR(r) =
Cm1

rm1
+

Cm2

rm2
+ . . . +

CmLast

rmLast
, (11)

while uLR(re) is the value of this function at re . If the long-range function of Eq. (11) has only a single term,

then the MLR potential reduces to the Morse/Lennard-Jones (or MLJ) potential,2 which was introduced

almost two decades ago [27, 28], and has been used in a number of detailed data analyses [29-37]. However,

the MLJ potential is merely a simpler version of the general MLR potential form.

Since yeqp (r) → +1 as r → ∞ , at long range the MLR function of Eq. (10) becomes

VMLR(r) ≃ De −

{
2De e

−β∞

uLR(re)

}
uLR(r) = De −

Cm1

rm1
−

Cm2

rm2
− . . . (12)

in which

β∞ ≡ lim
r→∞

βMLR(r) = ln

{
2De

uLR(re)

}
. (13)

Thus, the limiting asymptotic value of the exponent coefficient function βMLR(r) is defined by the values

of De , re , and the coefficients Cmi
of the inverse-power terms included in uLR(r). In order to use the

MLR potential form, it is clearly necessary to know appropriate values for the powers mi [25, 26], and to

have realistic estimates of the coefficients Cmi
. When no realistic estimate of the leading (smallest-power)

coefficient Cm1 is available, the MLR form has no significant advantages over the simpler EMO function,

which will probably be more ‘robust’. However, if the leading inverse-power coefficient Cm1 is known, but

no proper estimate of the value of the second coefficient Cm2 is available, it may be desirable to make a

2 In early work [27, 28] this was called a Modified Lennard-Jones (MLJ) oscillator. However, since elimination of the

exponential term yields a Lennard-Jones(2n, n) potential, while elimination of the (re/r)
n pre-factor yields a Morse-like

potential function, its algebraic form suggests that Morse/Lennard-Jones is probably a more appropriate label.
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plausible ad hoc estimate of the latter, and employ the two-term MLR form rather than the simpler MLJ

function, because more reasonable long-range extrapolation behaviour is thereby imposed [13]. In the rare

cases in which vibrational data extend very close to the dissociation limit, it may also be possible to treat

one or more of the long-range potential coefficients as free parameters to be optimized in the fit [14, 10, 12].

The algebraic form of Eq. (10) means that at sufficiently long range VMLR(r) always takes on the form

of Eq. (12). To achieve this, the exponent coefficient function β(r) is required both to approach the value

β∞ defined by Eq. (13) asymptotically, and to be sufficiently flexible to describe the shape of the potential

function well accurately. Its functional form should also prevent or discourage the potential from having

unphysical extrema in the two extrapolation intervals: where r → 0, and between the data region and the

asymptotic limit. To this end, β(r) is written as a constrained polynomial in the variable yrrefq (r), in which

the separate variable yrrefp (r) acts as a switching function [19, 4, 5, 13, 10]: 1

β(r) = βMLR(y
rref
p,q (r) = yrrefp (r) β∞ +

[
1− yrrefp (r)

] Nβ∑

i=0

βi y
rref
q (r)i . (14)

Note that the power p appearing here is the same as that used to define the distance parameter yeqp (r)

in the exponential term in Eq. (10). While most of the early work with this model was performed with

q = p , it has since been shown that use of a separate power q < p in the power-series portion of Eq. (14)

can lead more compact and robust potential functions [10, 11, 12].1

One restriction associated with the MLR form is a limitation on the allowed value of p , depending

on the particular set of powers mi that define the terms contributing uLR(r). The algebraic form of the

exponent coefficient function of Eq. (14) implies that at large r the exponential term in the MLR function

takes the form e−β∞(1 +A/rp + . . .). This has the effect of adding a term having the form (ACm1) /r
m1+p

to Eq. (12) [14, 10]. As a consequence, the leading contributions to long-range behaviour of VMLR(r) will

only truly be defined by the specified version of Eq. (11) if the power p defining the exponent variables

satisfies the constraint p > (mLast −m1) , where mLast is the power of the last (i.e., highest-power) term

contributing to uLR(r) [14, 10, 11]. It may also be desirable to set p = mnext −m1 , in which mnext is the

(inverse) power associated with the first long-range term predicted by theory that is not included in the

chosen definition of uLR(r).

As discussed in Ref. [10], there are no formal restrictions on the choice of the power q defining the the

radial variable in the power series part of Eq. (14). Practical experience suggests [10, 12, 29] that when

values q = 1 or 2 , the potential is more likely to be unstable in the extrapolation region(s). However, the

optimum choices for q (and p, subject to the constraint p > (mLast−m1) ) may be guided by consideration

of the manner in which the potential function approaches its limiting long-range behaviour. In particular,

VMLR(r) always takes on the limiting behaviour of Eq. (12), a rearrangement of which yields

Ceff
m1

(r) ≡ rm1 [De − VMLR(r)] ≃ Cm1 +
Cm2

rm2−m1
+ . . . (15)

Thus, a plot of Ceff
m1

(r) vs. 1/rm2−m1 must approach the intercept Cm1 with slope Cm2 , and it should bridge

the extrapolation interval between the “data region” and this limiting behaviour in a smooth, monotone

fashion. Figure 2 shows plots of this type for a number of otherwise equivalent potentials for the ground-

state of Br2 [29], for which the leading terms in the long-range potential correspond to m = 6, 8, and

10.3 While all of the six potentials considered do eventually achieve the predicted linear approach to the

intercept C theory
6 with slope C theory

8 , it is clear that for model potentials with=4 or 5, there are physically

3 There is also a very weak repulsive m = 5 term [30], but it has no discernable effect outside the immediate neighbourhood

of the intercept [29].
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Figure 2. Tests of the long-range extrapolation behaviour of various fitted potentials for the X 1Σ+
g state

of Br2 associated with different MLR models N rref
p,q , where N = Nβ . [Adapted from Fig. 7 of Ref. [29].]

implausible extrema in the extrapolation interval between the ‘data-sensitive region’ and that intercept.4

Moreover, the Ceff
6 (r) plot for the 113.105,7 potential fails to display the positive curvature away from this

limiting slope implied by the existence of the C10/r
10 term, probably because of ‘stiffness’ of the q = 7

radial variable. Thus, only potentials for which q = 6 have physically reasonable extrapolation behaviours

for this species.

When performing fits to an MLR form it is necessary to consider a range values of rref , Nβ and q in

order to determine an optimal model. Figure 3 illustrates how the quality of fits to data for ground-state

Ca2 depends upon these three parameters. As expected, for either q = 3 or q = 4, the quality of fit improves

and the breadth of the region over which dd has a minimum increases with Nβ. However, for larger q values

the expansion variable is “stiffer”, and higher Nβ values tend to be required to give the same quality of

fit. This is the reason that the range of rref over which values of dd lie near their minimum is narrower for

{q = 4, Nβ = 7} (solid square points) than for {q = 3, Nβ = 7} (open square points), and the dd minimum

for {q = 4, Nβ = 6} lies well above those for the other cases. Moreover, for most of the Nβ = 8 cases

associated with either value of q, between one and three of the fitted βi values have uncertainties greater

that 100%. Thus, the results on this figure lead to a recommendation of {q = 4, Nβ = 7, rref = 6.85 Å} as

the optimum MLR model for this Ca2 system.

2.3.1 A More General Definition of uLR(r): Inclusion of Damping Functions

While all potential energy functions take on the limiting behaviour of Eq. (9) at very large r, at shorter

distances, overlap of the electron distributions of the interacting atoms reduces the strength of the inter-

action energies associated with the even-inverse-power ‘dispersion’ terms contributing to this expression.

This consideration led a number of groups to propose models for representing this ‘damping’ behaviour

4 Note, however, that these implausible extrema in Ceff
6 (r) plots are not accompanied by discernably irregular behaviour in

plots of the potential functions VMLR(r) themselves.
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Figure 3. Dependence of dimensionless root-mean-square deviation dd of fits to 3553 fluorescence series

data for the X 1Σ+
g state of Ca2 [31, 32] on the parameters rref , q, and Nβ. These are results of fits to

MLR potentials whose long-range tails are defined by Douketis-type damping with s = −1 and fixed

theoretical values of the C8, and C10 [33] coefficients, but with C6 allowed to be a fitted parameter

[11].

[38-42]. Another consideration here is the fact that the quadratic term in Eq. (10), which defines the

short range repulsive wall of an MLR potential, contains the factor [uLR(r)]
2. As a result, if there is

no damping, at very short range the strength of this term will grow as 1/r2mlast , which is much steeper

than the exponential-type behaviour expected for the repulsive wall of a normal potential energy function.

These concerns led to the introduction of an (optional) alternate definition for the long-range potential

incorporated in Eq. (10), namely,

uLR(r) = Dm1(r)
Cm1

rm1
+ Dm1(r)

Cm2

rm2
+ . . . + DmLast

(r)
CmLast

rmLast
. (16)

Two types of damping function are currently allowed by DPotFit. One is a generalized [17] version of

the damping functions of Douketis et al. [34]:

Dds(s)
m (r) =

(
1 − e

−
bds(s)·(ρ r)

m
−

cds(s)·(ρ r)2
√

m

)m+s

, (17)

and the other is a generalized version [17] of the Tang-Toennies damping function [35]:

Dtt(s)
m (r) = 1 − e−btt(s)·(ρ r)

m−1+s∑

k=0

[btt(s) · (ρ r)]k

k!
. (18)

The parameters bds(s) and cds(s) in Eq. (17) and btt(s) in Eq. (18) are system-independent constants

determined in Ref. [17] from fits to ab initio m = 6, 8 and 10 damping functions for two ground-state

hydrogen atoms (for which ρ ≡ 1 , see below) obtained by Kreek and Meath [36]. The original versions

of these functional forms corresponded to the cases s=0 for the Douketis et al. [34] form and s=1 for
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the Tang-Toennies form [35]. The constant ρ appearing in Eqs. (17) and (18) is a system-dependent range

parameter introduced by Douketis et al. [34]: for a pair of interacting atoms A and B, it is defined by the

combining rule [34]

ρ ≡ ρAB = 2 ρA · ρB/(ρA + ρB) , (19)

in which ρA = (IAp /I
H
p )

2/3 is defined in terms of the ratio of the ionization potential of the atom in question

(IAp ) to that of an H atom (IHp ). This is a physically plausible parameterization, since the diffuseness of

an atom’s electron distribution tends to vary inversely with its ionization potential, and it is very easy to

apply, since accurate IAp values are readily available for all atomic species.

The nature of these generalized definitions of the two families of damping functions means that at very

small r,

lim
r→0

{
D(s)

m (r)/rm
}

∝ rs (20)

for all values of m and s. The results of Kreek and Meath [36] show that the actual very short-range

behaviour of dispersion energy damping functions correspond to s= 0 . If the overall potential function

model consists simply of a sum of damped dispersion terms plus a short-range repulsion term, the s = 1

limiting behaviour of the original Tang-Toennies function [35] presents no practical problem, since the

essential requirement of preventing the attractive inverse-power terms from becoming infinite as r → 0

is still achieved. However when the attractive long-range tail of the potential appears as a multiplicative

factor, rather than an additive term, as in the case of the MLR potential, damping functions for which

s > 0 are physically unacceptable, as they would cause the repulsive wall of the potential to turn over

and go to zero as r → 0. As discussed in Ref. [17], these considerations led to our recommendation that

the damping functions used in the MLR potential be s = −1 (IDF = −2) versions of the Douketis-type

damping function of Eq. (17). However, the code currently allows a user to make other choices for s or to

use the generalized Tang-Toennies function of Eq. (18).

2.3.2 Treatment of Interstate Coupling near the Asymptote:

States of Li2 dissociating to Li(2S) + Li(2P )

The above discussion of the MLR form focused upon use of the inverse-power sums (11) or (16) to represent

the long-range potential. However, it is not necessary to restrict uLR(r) to these forms, and they can take

on any form dictated by theory. For example, in recent applications to states of Li2 dissociating to the

Li(2P1/2) + Li2(
2S1/2) asymptote, uLR(r) has been represented by one of the roots of a diagonalization

arising from two-state [10] or three-state [12] coupling near that asymptote. In particular, the theory of

this interstate mixing presented in Refs. [37, 38] shows that the expression for the 2×2 roots may be written

in closed form as

uA-F
LR (r) = −

Aso

2
+

CΣ
3 + CΠ

3

2 r3
+

CΣ
6 + CΠ

6

2 r6
+

CΣ
8 + CΠ

8

2 r8
(21)

±
1

2

{(
CΣ
3 − CΠ

3

3 r3
+
CΣ
6 − CΠ

6

3 r6
+
CΣ
8 − CΠ

8

3 r8
− Aso

)2

+ 8

(
CΣ
3 − CΠ

3

3 r3
+
CΣ
6 − CΠ

6

3 r6
+
CΣ
8 −CΠ

8

3 r8

)2
}1/2

in which Aso is the (positive) difference between the 2P1/2 and 2P3/2 atomic spin-orbit level energies, and

CΣ
m /C

Π
m are the long-range coefficients associated with the relevant coupled states [10]. Use of the ‘+’ sign

in front of the square root term yields the correct long-range tail for the A 1Σ+ state, while use of the ‘−’
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Figure 4. Comparison of β(yrrefq (r)) functions for ground-state Ca2 determined from DPFs of spectro-

scopic data to SE-MLR models based on rref = re (round points, blue curve and lines), and

rref = 1.5 re (square points, red curve and lines) [Figure taken from Ref. [44], with permission].

sign yields that for the 0+u component of the b 3Πu state [37]. The analogous theory for the long-range tail

of the 1 3Σ+
g state potential, which involves 3-state coupling near the asymptote is described in Ref. [12].

The ease with which DPotFit can treat these special cases further illustrates capabilities of the MLR

functional form.

2.3.3 A Spline-Pointwise Representation of the MLR Exponent Coefficient β(r)

All existing applications of the MLR potential have been based upon employing a polynomial function

such, as Eq. (14) to represent the exponent coefficient β(r). However, while preliminary work showed some

promise [39, 40], it is not yet clear whether that form can provide a practical, compact, and accurate

representation of double-minimum potentials or of shelf-state potentials. A novel approach introduced by

Pashov and co-workers [41, 42, 43], in which the potential is defined as a cubic spline through a set of

points whose energies are the parameters of the model, has proved remarkably successful for treating such

systems. However, a relatively large number of points (typically & 50) are required to define a potential

accurately in this way, and such functions can only be extrapolated sensibly outside the data region if an

analytic repulsive wall and the theoretically predicted inverse-power long-range tail are attached in some

ad hoc manner.

An alternative approach now under investigation [44] is the ‘Spline-Exponent-MLR’ (SE-MLR) function

which uses Pashov’s ‘spline-pointwise’ approach to define the exponent coefficient β(r) in the MLR potential

function form of Eq. (10). In particular, β(r) is defined as a ‘natural’ cubic spline function passing through

β(rj) = β(yrrefq (rj)) values at a specified set of yrrefq (rj) values, and those β(rj) values become the parameters

defining the shape of the potential. Following the Pashov approach [41, 45], the exponent coefficient

function is written as

β(r) =

Nβ∑

k=1

Sk(y
ref
q (r)) βk , (22)

in which the spline ‘basis functions’ Sk(y
ref
p (r)) are completely defined by the chosen mesh of values of
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yrefq (rj). A straightforward application of the chain rule of calculus then yields the partial derivatives

required for the least-squares fit procedure:

∂V (r)

∂βk
= 2De

{
1−

uLR(r)

uLR(re)
e−β(r)·yeqp (r)

}(
uLR(r)

uLR(re)
e−β(r)·yeqp (r)

)
yeqp (r) Sk(y

ref
q (r)) . (23)

Although the least-squares problem is non-linear, the fact that the Sk(y
ref
p (r)) functions are independent

of the parameter values {βk} yields some computational simplifications.

In using the SE-MLR form, it is important to realize that the radial variable yrefq (r) used to define

β(r) should normally be defined by a value of rref that is significantly greater than re. This is necessary

in order to assure that the chosen mesh of points samples the full range of β(yrefq (r)) values appropriately.

This consideration is illustrated by Fig. 4, which compares the SE-MLR exponent coefficient functions β(r)

determined from of fits to an extensive data set for the X 1Σ+
g state of Ca2 [32, 14, 44] that were performed

using, in turn rref = re (blue points, curve and lines), and rref = 1.5 re (red points, curve and lines). Both

of these cases placed two points, equally-spaced in yrefq (r), at r less than re and 14 points, equally-spaced

in yrefq (r), at r greater than re, together with one point at r = re and one at yrefq = 1, which corresponds

to the limit r → ∞. Consideration of this figure makes it quite clear that when using the same number of

spline points, it will be easier to obtain an accurate description of β(r) using points based (in this case)

on rref = 1.5 re.
5

2.4 The Double-Exponential/Long-Range (DELR) Model Potential

The need for a flexible analytic potential function with a barrier that protrudes above the potential asymp-

tote at distances r > re stimulated the development of the double-exponential/long-range (DELR) poten-

tial function form [19, 5],

VDELR(r) =
{
Ae−2β(r)·(r−re) − B e−β(r)·(r−re) + De

}
− uLR(r) , (24)

in which the exponent coefficient β(r) is defined as the same type of simple power series in yrrefp (r) used

for the EMO potential (see Eq. (8)). The only published application of this form to date [5] used different

power-series orders for r ≤ re and r > re in order to avoid unphysical extrapolation behaviour at small r.

However, subsequent experience with the MLR form has led us to treat β(r) as a single simple polynomial,

with the introduction of an expansion centre parameter rref located at some distance greater than re
serving to ensure stable short-range behaviour. In this case, inclusion of a repulsive term in the additive

long-range function uLR(r) (which in principle may be attractive or repulsive) served to introduce the

potential function barrier that was being modeled.

The pre-exponential coefficients A and B in Eq. (24) are defined in terms of the well depth De (relative

to the potential asymptote) and the equilibrium distance re by the expressions

A = De − uLR(re) − u′LR(re)/β0 , (25)

B = 2De − 2uLR(re) − u′LR(re)/β0 , (26)

in which u′LR(re) ≡ [duLR(r)/dr]r=re . If uLR(r) = 0 the DELR potential becomes the EMO function

of Eq. (7). However, other choices of uLR(r) allow it to represent the outer wall of a potential function

with a barrier [5], a multi-term attractive inverse-power long-range potential, or even the outer well of a

double-minimum or shelf-state potential.

5 Note that the SE-MLR option is not yet fully implemented.
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In the present version of DPotFit, the long-range function uLR(r) in Eq. (24) is assumed to be defined

by the same type of sum of damped or undamped inverse-power terms represented by Eqs. (11) or (16).

Note, however, that the present sign convention for this uLR(r) function is the opposite of that used in

Ref.[5]. The damping functions Dm(r) may be defined by either of by Eqs. (17) or (18), but since uLR is

an additive, rather than multiplicative contribution to the potential, the damping function parameter s

is allowed to have positive values, while negative values should be used only with care. Of course, other

damping function expressions [46, 47] or entirely different types of expressions for VLR(r) could equally

well be used in the DELR type of potential form.

2.5 Hannover Polynomial Potentials (HPP)

The three following subsections describe potential forms that have been introduced into the DPotFit

code to allow us to reproduce and compare with the results of published fits that were performed using

them. Perforance of fits using these optional potential forms has not been rigorously tested, and the use

of the MLR or EMO forms described above is generally recommended.

One of the most widely used of these alternate potential function forms is the ‘Hannover polynomial

potential’ (HPP) or “X-representation” function, which has the form [48, 49]:

VHPP(r) = AI e
−BI(r−RI) for r < R I (27)

=

Nβ∑

i=0

βiXp
i for R I ≤ r ≤ RO (28)

= De −
∑

m

Cm

rm
+ AO e

−BO(r−RO) for r > RO (29)

in which

X =
r −Rm

r + bRm
(30)

Rm is an ‘arbitrarily chosen’ expansion centre that is close to the position of the potential minimum, and

the parameter b is manually chosen to optimize the potential slope at short distances. The expansion

coefficients βi are determined from the fit to the data. The parameters AI and BI defining the exponential

function used to extrapolate to short distances are defined by the requirement that there be a smooth

connection to the polynomial function at r = RI. Similarly, with the long-range coefficients Cm defined by

theory, the parameters AO and BO defining the exponential term parameters in Eq. (29) must be chosen

so as to provide a smooth connection to the polynomial expansion function at the outer switching point

r = RO.

2.6 Tang-Toennies Exponential/Van der Waals Potentials (TTP)

The Tang-Toennies potential (TTP) consists of a simple exponential repulsive term and a sum of damped

attractive inverse-power terms [35, 50]:

VTTP(r) = ATT e
−br −

∑

m

Dm(r)
Cm

rm
. (31)

Only even values of m ≥ 6 were considered by Tang and Toennies [35, 50, 51], and their damping functions

were always the s = +1 version of Eq. (18). However DPotFit allows the use of any specified powers mi,

allows the damping functions to be defined by either of Eqs. (17) or (18), and allows the user to choose

the parameter ‘s’ which determines the limiting short-range behaviour of the damped inverse-power terms

(see Eq. (20)). Note, however, that for positive (attractive) Cm values, necessarily s ≥ 0. In the DPotFit
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implementation of the TT potential, the input values of the exponent coefficient b, the equilibrium distance

re, and the Van der Waals coefficients {Cm} are employed to define De and the pre-exponential factor

A = ATT.

2.7 Šurkus’ Generalized Potential Energy Function (GPEF)

The sixth family of potential functions is a generalization of the familiar Dunham polynomial potential

[52] which Šurkus et al. [18] introduced and called the Generalized Potential Energy Function (GPEF).

Using a modified but exactly equivalent expression for this expansion variable (devised by Seto [9]), the

GPEF potential form is

VGPEF(r) = c0 z
2
q


1 +

Nβ∑

i=1

ci zq
i


 , with zq =

(rq − re
q)

(aS rq + bS req)
. (32)

For appropriate choices of the (fixed) parameters aS and bS , this expansion takes on a number of familiar

forms:

• Setting q=1 , aS=0 and bS=1 yields Dunham expansions [52].

• Setting q=1 , aS=1 and bS=0 yields Simons-Parr-Finlan (SPF) expansions [53].

• Setting q=1 , aS= bS=0.5 yields the Ogilvie-Tipping (OT) potential expansion [54].

• Setting aS=bS=1 yields the expansion variable yeqp (r) of Eq. (5).

When aS 6= 0 this function always asymptotically approaches a finite limit with a 1/rq functional

behaviour. Thus, if appropriate constraints are applied to the coefficients, it can in principle be required

to have the theoretically predicted limiting long-range behaviour of Eq. (9) [18, 55]. However, except for

the relatively simple case in which q is set equal to the power of the leading long-range term in Eq. (9) [18],

such constraints have proven to be too unwieldy for practical use.

2.8 Fixed Pointwise Potential

The final type of potential function which can be used by DPotFit to define the vibration-rotation

levels of a given electronic state is one that is defined by a fixed set of read-in turning points. The

dense grid of potential function values required for solving the radial Schrödinger equation for that state

is then generated by interpolating over and extrapolating beyond the read-in points using user-specified

procedures. Potentials of this type are fixed, having no free parameters that can be varied in a fit to

experimental data. Inclusion of this type of function allows fits to data involving multiple electronic states

to make use of previously reported pointwise potentials for one (or more) of the states of interest.

2.9 Term-Value and Band-Constant Representations

One often encounters cases in which there are too few data to allow an analytic potential function to be

determined for a given state, but it must still be taken into account because it is at one end of a set of

transitions to some other state for which a potential function is being determined. In some cases the levels

of that state may be accounted for as the origins of fluorescence series, but it is often more convenient to

treat all of the observed levels of that state as independent term values Tv,J,p in the fit. Alternatively, it

may be convenient to represent all of those observed levels by a set of band constants:

E(v, J) = Gv +Bv[(J(J + 1)] − Dv[(J(J + 1)]2 + Hv[(J(J + 1)]3 + . . . (33)

=
∑

m=0

Km[J(J + 1)]m .
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Both choices are allowed by DPotFit. While their use will tend to increase greatly the number of

independent parameters being determined, often by hundreds or thousands, this usually presents little

difficulty, since the fit will be linear with respect to these parameters. Use of one of these representations

for all states but one can also be a convenient way of removing interparameter correlations involving those

states in order to facilitate the determination of a good preliminary potential function model for a each

state in the early stages of an analysis.

3 Born-Oppenheimer Breakdown Radial Functions

Following the discussion of Ref. [4], the radial strength functions characterizing the atom-dependent potential-

energy and centrifugal BOB corrections of Eqs. (3) and (4) are expanded in the form utilized for the

exponent coefficient-function of the MLR potential:

S̃A
ad(r) = yeqpad(r) u

A
∞

+ [1− yeqpad(r)]

NA
ad∑

i=0

uAi yeqqad(r)
i , (34)

R̃A
na(r) = yeqpna(r) t

A
∞

+ [1− yeqpna(r)]

NA
na∑

i=0

tAi yeqqna(r)
i . (35)

The structure of Eqs. (34) and (35) allows the asymptotic behaviours and equilibrium properties of these

functions to be explicitly specified by the user or determined in a fit. In particular, the limiting asymptotic

value of S̃A
ad(r) is uA

∞
. Hence, if the zero of energy is defined as ground-state atoms separated at r∼∞

(our recommended convention), then uA
∞

≡ 0 for all electronic states that dissociate to yield ground-state

atoms, while for a state that dissociates to yield atom A in an excited electronic state, uA
∞

is determined

by the associated atomic isotope shift [4]. For all states dissociating to ground-state atoms, uA0 and

uB0 then define the difference between the well depths of those states for different atom–A and atom–B

isotopologues,

δD(α)
e (X) =

∆M
(α)
A

M
(α)
A

uA0 +
∆M

(α)
B

M
(α)
B

uB0 , (36)

However, for excited electronic states the uA0 and uB0 parameters define the electronic isotope shift. Alter-

natively, if one wished to define the potential minimum of the ground state as the absolute zero of energy,

one would fix uA0 (X) = uB0 (X) = 0 and the values of uA
∞

and uB
∞

would then define the isotopologue

dependence of the ground-state dissociation energy via an experession analogous to Eq. (36). A user of

DPotFit may select this (not recommended) alternate convention by choosing, in the input data file, to

fix uA0 (X) = uB0 (X) = 0 while allowing uA
∞

and uB
∞

to be varied freely. In either case, uA0 and uB0 would

determine the electronic isotope shift for excited states.

As discussed in Ref. [4], the limiting asymptotic value of the centrifugal BOB correction function R̃A
na(r)

should always be tA
∞

= 0 unless the species in question is a molecular ion that yields A+ or A− upon

dissociation, in which case qA
∞

would have a small non-zero value [4]. For example, for a molecular ion

ABCHARGE that dissociates to yield a neutral atom B plus the atomic ion ACHARGE, this limit is

tA
∞

=
µW

µ(ACHARGE, B
) − 1 ≈

Qme

MA
+

(
Qme

MA

)2

+

(
Qme

MA

)3

+ . . . , (37)

in which µ = µW is the charge-modified reduced mass of Eq. (2), and µ(ACHARGE, B) is the usual two-particle

reduced mass of the ion ACHARGE with the neutral atom B. At the other limit, a convention commonly

associated with use of the Watson radial Hamiltonian of Eq. (1) is to fix the leading power-series coefficient
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of Eq. (35) as tA0 =0 , as it is 100% correlated with uA1 and it represents an indeterinate integration constant

in the theory [1, 2, 4]. However, the value of g(α)(r=re) is related to observable electronic properties of the

molecule [56, 57, 58], so that when measurements of those properties are available, it may be appropriate

to fix tA0 at some specific non-zero value, or even to allow it to be varied in the fit. DPotFit allows a

user to select any of these options.

The integer pad should be set equal to the leading (smallest-power) term in the long-range potential

of Eq. (11) or (16), pad = m1 , if the effective adiabatic potentials for ‘minor isotopologues’ are to have

the same limiting functional behaviour as that for the reference isotopologue.6 However, there are no such

physical constraints on the integers qad, pna, and qna that define the other radial variables appearing in

Eqs. (34) and (35), so they must be selected manually by the user ( q = 3, · · · , 6 are reasonable trial values)

subject to the twin objectives that the resulting functions provide a compact and accurate representation

of the data, and that that they approach their asymptotic values without having spurious extrema in the

intervals outside the data-sensitive region (see Fig. 3 of Ref. [4]). It is often convenient to set the powers

qad equal to pad and qna equal to pna in order to yield expressions for S̃
A/B
ad (r) and R̃

A/B
na (r) that involves

only a single type of radial variable [13]. Moreover, since EMO functions do not have any inverse-power

limiting long-range behaviour, DPotFit sets pad = qad in Eq. (34) when an EMO function is used for the

potential energy.

Although the BOB parameterization of Eqs. (1), (3) and (4) is preferred for a number of reasons

[3], the formally equivalent alternate parameterization of Watson’s original paper [1] has sometimes been

used by some other research groups, and DPotFit allows a user to employ either formulation. In the

Watson approach, the effective adiabatic potential for the reference isotopologue V
(1)
ad (r) is replaced by

the “clamped nuclei ” potential VCN(r) to give the radial equation:

{
−

ℏ
2

2µα

d2

dr2
+

[
VCN(r) + ∆V

(α)
ad,W(r)

]
+

[J(J + 1)− Λ2]ℏ2

2µα r2

[
1 + g

(α)
W (r)

]}
ψv,J(r) = Ev,J ψv,J(r) , (38)

while the mass-independent radial functions in the potential energy and centrifugal BOB terms are scaled

by the factors me/M
(α)
A and me/M

(α)
B , in which me is the electron mass:

∆V
(α)
ad,W(r) =

me

M
(α)
A

S̃A
ad,W(r) +

me

M
(α)
B

S̃B
ad,W(r) (39)

g
(α)
W (r) =

me

M
(α)
A

R̃A
na,W(r) +

me

M
(α)
B

R̃B
na,W(r) (40)

Program DPotFit requires the user to select either this parameterization or that of Eqs. (3) and (4)

by specifying an appropriate value of the parameter BOBCN in the input data file (see §9.3). In either

case, the radial strength functions S̃
A/B
ad (r) and R̃

A/B
na (r) are expanded as in Eqs. (34) and (35), but the

magnitudes of the expansion parameters will differ by the factors ∆M
(α)
A/B/me for S

A/B
ad,W(r) and M

(1)
A/B/me

for R
A/B
ad,W(r).

4 Λ-Doubling Splittings for Singlet States

It was shown in Ref. [5] that for singlet states with Λ > 0 , the effect of Λ-doubling splittings may be taken

into account by inclusion of an additional term in the effective radial Hamiltonian, to yield

6 This assumes that the effective adiabatic potential V
(1)
ad (r) for the reference isotopologue has a long-range tail defined by

Eq. (11) or (16).
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{
−

ℏ
2

2µα

d2

dr2
+

[
V

(1)
ad (r) + ∆V

(α)
ad (r)

]
+

[J(J + 1)− Λ2]ℏ2

2µα r2

[
1 + g(α)(r)

]
(41)

+ sgΛ(e/f) ∆V
(α)
Λ (r) [J(J + 1)]Λ

}
ψv,J (r) = Ev,J ψv,J (r) ,

in which sgΛ(e/f) is a dimensionless numerical factor defined by the e/f parity of the level of interest

(see below), and the overall Λ-doubling function is defined as 7

∆V
(α)
Λ (r) =

(
ℏ
2

2µα r2

)2Λ

fΛ(r) . (42)

We know of no theoretical predictions regarding the long-range behaviour expected for the λ-doubling

function ∆V
(α)
Λ (r) other than that provided by the first term on the right-hand side of Eq. (42). We

therefore choose to write the mass-independent radial function fΛ(r) as a simple polynomial expansion in

the reduced variable yeqpΣ(r) of Eq. (5), that is,

fΛ(r) =

NΛ∑

i=0

wΛ
i yeqqΛ(r)

i , (43)

in which the expansion coefficients wΛ
i have units 8 1/(cm−1)2Λ−1. The fact that yeqq (r) → 1 as r → ∞

means that fΛ(r) will necessarily approach a finite value in this limit, and hence that at long range

∆V
(α)
Λ (r) → 0 as 1/r2Λ.

If the dominant perturbing state giving rise to the Λ-doubling has 1Σ+ symmetry, then sgΛ(e/f)=+1

for e-parity levels, and equals 0 for f -parity levels. Similarly, if that perturbing state has 1Σ− symmetry,

then sgΛ(e) = 0 and sgΛ(f) = −1 . Alternatively, if the identity of the dominant perturbing state is

unknown or if one does not wish to make any a priori assumption about its symmetry, sgΛ(e/f) is

normally set to + 1
2 for e-parity levels and − 1

2 for f levels. DPotFit requires the user to select one of

these conventions for sgΛ(e/f) when fitting to or predicting Λ-doubling splittings for a given electronic

state.

5 Doublet Splittings for 2Σ States

In 2Σ state molecules, the quantum-number label J is normally assigned to the total angular momentum,

which is the vector sum of the spin (~S) and nuclear rotational ( ~N) angular momenta, i.e., ~J = ~N+ ~S . The

interaction of ~N with the total electron spin angular momentum ~S gives rise to a term in the Hamiltonian

with the form γ ~N · ~S , which causes shifts of the e and f parity components of a given rotational level

that increase linearly with N . A derivation analogous to that used for Λ-doubling [5] yields the following

effective radial Hamiltonian for an electronic state with 2Σ symmetry:
{
−

ℏ
2

2µα

d2

dr2
+

[
V

(1)
ad (r) + ∆V

(α)
ad (r)

]
+

N(N + 1)ℏ2

2µα r2

[
1 + g(α)(r)

]
(44)

+ sgΣ(e/f ;N) ∆V
(α)
Σ (r)

}
ψv,J (r) = Ev,J ψv,J(r) ,

in which sgΣ(e;N) = +N/2 , sgΣ(f ;N) = −(N + 1)/2 and

∆V
(α)
Σ =

(
ℏ
2

2µα r2

)
fΣ(r) , (45)

7 Note that while the derivation of Ref. [5] only addressed the case of Λ-doubling in Π states, the present implementation

has been extended to handle states for which Λ > 1 .
8 This assumes, of course, that the factor ℏ

2/(2µα r2) has units cm−1.
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and as for the case of Λ doubling, the radial function is expanded as

fΣ(r) =
∑

i=0

wΣ
i yeqqΣ(r)

i , (46)

in which the expansion coefficients wΣ
i are dimensionless.

In spite of their different mass and quantum-number dependence, the formal structure of the treatments

of Λ-doubling {e/f} splittings and 2Σ state {e/f} splittings are quite similar. As a result, the control

parameters governing this treatment are input to DPotFit through the same set of READ statements, and

the integer input parameter IOMEG formally associated with the definition of the value of Λ (see Read
#6

in §9.3) is used to distinguish between the two cases.

6 Computational Methods

6.1 Solving the Radial Schrödinger Equation

The central computational activity of programDPotFit is solving the effective radial Schrödinger equation

of (1), (38), (41) or (44) many hundreds or thousands or tens of thousands of times. In particular, in each

cycle of the iterative non-linear fit, it must solve one of these equations in order to determine the upper-

and lower-state eigenvalues of every transition in the data set with a numerical accuracy at least an order of

magnitude better than the experimental uncertainty for that datum. It also must determine the associated

radial eigenfunctions in order to generate the partial derivatives of every eigenvalue with respect to each

of the parameters in the Hamiltonian for that electronic state:

∂Ev,J

∂pj
=

〈
ψv,J(r)

∣∣∣∣∣
∂Ĥ

∂pj

∣∣∣∣∣ψv,J(r)

〉
(47)

These quantities are required to provide the partial derivatives of each datum with respect to all parameters

of the model, that are required by the least-squares fitting procedure.

DPotFit performs these eigenvalue/eigenfunction calculations using a numerical propagation algo-

rithm based on the famous Cooley-Cashion-Zare subroutines SCHR [59–63]. The present version of those

routines incorporates several unique features, such as the ability to locate quasibound (or tunneling-

predissociation) levels automatically, and calculate both their widths and the partial derivatives of those

widths with respect to the potential function parameters [5, 64–66]. This last capability is required for

cases in which measured tunneling predissociation level widths are included in the experimental data set

being analyzed [5]. Most details and features of the Schrödinger-solver routine SCHRQ used by DPotFit

are described in the manual for program LEVEL [66], and hence need not be discussed here. However, it is

important to point out the role and significance of three parameters that control the numerical propagation

procedure, each of which must be specified in the input data file.

The accuracy of the eigenfunctions and eigenvalues obtained using subroutine SCHRQ is largely deter-

mined by the size of the fixed radial mesh RH (read on line #10 of the data file) used in the numerical

integration of Eq. (1), (38), (41) or (44). For potentials that are not too steep or too sharply curved,

adequate accuracy is normally obtained by using an RH value that yields a minimum of ∼ 50 mesh points

between adjacent wavefunction nodes in the classically allowed region. An appropriate mesh size (in units

Å) may be estimated using the ‘particle-in-a-box’ expression

RH = π/
(
NPN× [µ×max{E − V (r)}/16.857629205]1/2

)
(48)

in which NPN is the selected minimum number of mesh points per wavefunction node (say 50), max{E −

V (r)} is the maximum of the local kinetic energy (in cm−1) for the levels under consideration (in most
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cases it is approximately the potential well depth De), the reduced mass µ is in amu, and the numerical

factor is ℏ
2/2 expressed in “spectroscopists’ units” [amu cm−1 Å2]. A value of NPN that is too small yields

unreliable results, while a value that is too large may require excessive computational effort, and require

that array dimensions be made inconveniently large. Note that while Eq. (48) is a useful guide, a careful

user should always examine the effect of different RH values on the calculated band constants written to

output channel-7 in order to ensure that the calculation yields results that have an accuracy appropriate

for their particular application.

The numerical integration is performed on the interval from RMIN to RMAX (see Read statement #10)

using the Numerov algorithm [59, 67]. These bounds must lie sufficiently far into the inner and outer

classically-forbidden regions (where Veff(r) > Ev,J ) that the wavefunction has decayed by several orders of

magnitude relative to its amplitude in the classically-allowed region. The present version of the code prints

warning messages if this decay is not smaller by a factor of at least 10−9; if such warnings are printed, a

smaller RMIN or larger RMAX value should be used to remove them and to ensure that the desired accuracy

is achieved. However, if RMIN lies too far into the classically-forbidden regions and [VJ(r) − E] becomes

extremely large, then the integration algorithm may become numerically unstable for the specified mesh

size. If it does, a warning message is printed, and the beginning of the integration range is automatically

shifted outward until the problem disappears. However, use of a slightly larger value of RMIN will cause

such warning messages to disappear and (marginally) reduce the computational effort. For most diatomic

molecules, a reasonable value of RMIN is ca. 0.5 − 0.8 times the smallest inner turning point for the levels

involved in the data set, but for hydrides or other species of low reduced mass, even smaller values may be

required.

The program internally defines the upper bound on the range of numerical integration as the smaller

of the read-in value of RMAX or the largest distance consistent with the specified mesh and the internally-

defined (see §8.2) potential energy array dimension. As with RMIN, the choice of RMAX is not critical so

long as (for truly bound states) the wave function has decayed to an amplitude much smaller than that in

the classically allowed region, and the same relative amplitude decay test (of 10−9) is used for it. However,

due to the anharmonicity of typical molecular potential curves, the requisite values of RMAX are much

larger for highly excited vibrational levels than for those lying near the potential minimum. Moreover, for

quasibound levels, RMAX should lie in the classically-allowed region beyond the outermost potential function

turning point for the level in question.

6.2 Calculating Second Virial Coefficients

For species formed from ground-state rare-gas atoms, measured virial and transport property coefficients

may be used together with spectroscopic data in a combined analysis to determine a potential energy

function for the species in question. DPotFit is currently able to fit to a combination of virial coefficients

with all types of spectroscopic data [68]. Second virial coefficients are calculated in the usual fashion, from

a sum of a classical term with first and second quantum corrections [69], that is,

B2(T ) = Bcl(T ) +

(
h2

2µ

)
BI

Q(T ) +

(
h2

2µ

)2

BII
Q(T ) + . . . (49)

in which the classical term may be written as

Bcl(T ) = − 2π NA

∫
∞

0

[
e−V (r)/kBT − 1

]
r2 dr , (50)
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with NA the Avogadro’s number, kB the Boltzmann constant, and m the atomic mass. The first quantum

correction, BI
Q(T ), is given by

BI
Q(T ) = 2πNA

(
1

48π2 (kBT)3

)∫
∞

0
e−V (r)/kBT

(
dV (r)

dr

)2

r2 dr , (51)

while the second quantum correction, BII
Q(T ), is obtained as

BII
Q(T ) = − 2πNA

(
1

1920π4 (kB‘T)4

)∫
∞

0
e−V (r)/kBT

[(
d2V (r)

dr2

)2

+
2

r2

(
dV (r)

dr

)2

(52)

+
10

9kBT

1

r

(
dV (r)

dr

)3

−
5

36(kBT)2

(
dV (r)

dr

)4
]
r2 dr .

Since all three terms are explicit functions of the potential energy function and its radial derivatives, it is a

straightforward matter to evaluate the partial derivatives of B2(T ) with respect to the potential function

parameters that are required for the least-squares fit procedure.

7 Fitting Strategies

7.1 Initial Trial Parameters

In a DPF treatment of experimental data, the observables – the transition energies or tunneling lifetimes –

are not linear functions of the parameters of the radial functions characterizing the effective Hamiltonian.

As in any non-linear least-squares procedure, it is essential to have a set of realistic initial trial values of all

fitting parameters. For BOB radial functions and Λ-doubling or 2Σ-splitting radial functions, this presents

little practical difficulty. All of those functions are relatively weak, and practical experience indicates that

if their parameters are initially all set to zero or (for the w0 coefficient for Λ-doubling or 2Σ splitting)

given some plausible small initial trial value, and then let go free, the fits are stable and well-behaved.

However, one would not normally try to obtain an accurate final determination of those supplementary

radial strength functions until a realistic description of the potential energy function for the reference

isotopologue V
(1)
ad (r) has been obtained.

For the potential energy function V
(1)
ad (r) (or VCN(r)) itself, the problem of determining initial trial

parameters is somewhat more challenging, and a number of strategies have been used. From a conventional

preliminary analysis of the data, it is usually fairly straightforward to obtain a good estimate of the potential

minimum position re , which is a central parameter in all of the model potentials. It is usually also not

difficult to obtain a plausible initial estimate for the well depth De , which is a central parameter in the

EMO, MLR and DELR potential models. However, experience suggests that this initial trial value of De

should often be held fixed until a good fit to some associated set of exponent expansion coefficients {βi}

is obtained.

The most generally useful method for generating a realistic set of initial trial βi values is to fit a set of

approximate potential function points generated in some other manner to the chosen potential form. For

example, one might use a conventional “parameter-fit” analysis of the data set of interest to determine

analytic level energy expressions, such as Dunham expansions or near-dissociation expansions [70], and

then use the resulting functions to generate a pointwise RKR potential for that state [71]. Alternatively,

one may use ab initio predictions to define such a preliminary potential, or (say, for a double minimum

potential) a combination of RKR and ab initio points. A companion program named betaFIT has been

developed for fitting such input potential arrays to determine realistic estimates of the exponent expansion
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coefficients {βi} of an EMO, MLR or DELR potential, or of the power-series coefficients {ci} of a GPEF

potential [72].

It is very important to realize that direct potential fits of the type performed by DPotFit are highly

non-linear, and care must be taken to prevent them from diverging. To that end, when initial trial values of

each of the fitting parameters are read in, DPotFit requires the user to specify, one-by-one, whether each

parameter is to be held fixed or varied in that particular fit. This allows a user to release a small number

of parameters (say, re , β0 and β1 ) initially, while holding all others fixed, and then when preliminary

optimized values of those parameters have been determined, they may replace the original trial values in

the input data file and a new fit be performed that allows additional parameters (say β2 β3 and β4 ) also

to be free. This sort of stepwise procedure is often necessary if the fit to determine the main supporting

potential is to be stable. However, once a converged value of re and set of {βi} parameters have been

determined, the basic description of the system is normally sufficiently well defined that all BOB and/or

Λ-doubling or 2Σ splitting parameters may be released at the same time.

As an alternative to the use of a code such as betaFIT to determine a complete set of trial {βi}

parameters in a single step, one may also proceed in a stepwise manner by initially considering only a

fraction of the data and a small number of parameters, and then progressively extending the range until

the whole data set has been included. By specifying parameters VMIN, VMAX and JTRUNC in Read
#6,

DPotFit allows a user to limit the range of data to be utilized in a given fit without having the edit the

data file This makes it quite straightforward to restrict the vibrational range of the data to be considered

to (say) v = 0 − 3 and fit to a potential model that has only (say) re , β0 and β1 as free parameters,

with all higher-order βi (for i ≥ 2 ) fixed at zero. Once a converged fit to that restricted data set has been

obtained, the vibrational range of data and number of βi parameters may be extended, using initial trial

values of zero for the added higher-order coefficients βi , and the process repeated until the entire data set

has been included.

7.2 Multi-State Fits

If one is performing a fit to data involving more than one electronic state, it is often‘ necessary to utilize

a stepwise procedure – initially optimizing parameters for one state at a time – before proceeding to the

final step in which all parameters are freed simultaneously. This tends to be necessary because a relatively

poor initial representation of one state can inhibit one’s ability to determine an optimum representation

for another. In some cases, this might be a simple matter of first performing a one-state fit to the pure

rotational and vibration-rotation data for a selected state, and then holding its parameters fixed while

performing a two-state fit that includes the electronic transition data and varies only the parameters of

the second state. When a good model is determined for the second state, the two-state fit would then

be repeated while allowing the parameters for both states to be fitted simultaneously. However, when

electronic transition data are available, they are usually the only source of information about the upper

vibrational levels of a given state, so they cannot be ignored when one is attempting to obtain a good

description of that state.

The best way to treat this problem is then firstly to fit to all of the data (electronic and other)

involving the first (usually ground) state, while representing the levels of all other electronic states either

as individual term values, or by sets of band constants for each isotopologue. While a relatively large

number of parameters (sometimes thousands, when term values are fitted!) tend to be required for such

fits, use of this approach means that the determination of parameters for the first state is not affected by

the model(s) chosen to represent the other state(s). This ability to represent the levels of a given state

by individual term values was first introduced in Version 1.2 of this code: the extension to allow fits to
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band constants is introduced here in Version 2.0. These options are invoked by giving the ‘potential-type’

parameter PSEL that is input via Read
#8 the value ‘− 2 ’ for a state whose levels are to be represented

by term values or ‘− 1 ’ for a state whose levels are to be represented by band constants (see §9.3). Once a

‘good’ fit is obtained to a model for the potential energy and any other radial functions required to describe

the first electronic state fully, the parameters describing that state may be held fixed in a two-state fit to

determine an optimum model for a second electronic state. After that has been done, the parameters for

both states should be fitted simultaneously. This stepwise procedure may then continue until all of the

data have been fitted simultaneously to models for all of the electronic states involved in the data set.

Of course, the PSEL = −1 or −2 options may also prove useful for cases in which only fragments of

information are available for a given state, or when level energy irregularities due to perturbations make a

potential function treatment impractical.

8 Using DPotFit

8.1 Units, Uncertainties and Parameter Rounding

The units of mass, length and energy used throughout this program, and assumed for all input data, are

u (amu), Å and cm−1, respectively. The values of the relevant physical constants occur in the program as

the single factor ℏ
2/(2µ) = 16.857629205/µ [cm−1 Å2] (with µ in amu) appearing in the effective radial

Schrödinger equations (1), (38), (41) or (44). This numerical constant is based on the 2010 CODATA

recommended physical constant values [73], while the atomic isotope masses stored in subroutine MASSES

were taken from the 2003 compilation of Ref. [74].

Because DPotFit performs weighted least-squares fits, each input datum must be accompanied by

an estimated uncertainty ui in the same units (usually cm−1) as the observable. The quality of a fit of

an M–parameter model to N input data which yields the predicted quantities {ycalci } is indicated by the

value of the dimensionless root mean square deviation dd, defined as

DRMSD ≡ dd =

{
1

N

N∑

i=1

[
ycalci − yobsi

ui

]2}1/2

, (53)

or by the related dimensionless standard error σf , defined as DSE ≡ σ̄f = dd
√
N/(N −M) . This data

weighting allows observables with very different magnitudes and very different absolute uncertainties (e.g.,

microwave vs. electronic band head data) to be treated concurrently in an appropriately balanced manner.

A “good” fit is one that yields DSE and dd values close to unity: a dd value of (say) 3.7 would mean

that, on average, the predictions of the model disagree with the input data by 3.7 times the estimated

experimental uncertainties. However, the occurrence of converged values larger than unity may simply

reflect the fact that the experimental uncertainties assigned to the data were overly optimistic.

In addition to reporting the 95% confidence limit (approximately ‘two-sigma’) uncertainty in each fitted

parameter, DPotFit follows the approach of Ref. [75] by also always listing the associated “parameter

sensitivity” (identified as PS in the output). This quantity is defined (see Eq. (4) of Ref. [75]) as the

magnitude of the largest change in the given parameter whose effect on the predictions of the model could

increase σ̄f by a maximum of (0.1/M) σ̄f . This parameter sensitivity indicates the degree to which any

particular fitted parameter value may be rounded off while having no significant effect (within the data

uncertainties) on the ability of the resulting parameter set to predict the input data accurately. For the

illustrative cases considered in Ref. [75], to three significant digits, rounding off all parameters at the first

significant digit of their sensitivity had no meaningful effect on the values of σ̄f or dd.

Another feature of DPotFit is its implementation (via subroutine NLLSSRR) of the automated “sequen-
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tial rounding and refitting” (SRR) procedure of Ref. [75], which minimizes the total number of significant

digits required to represent the overall parameter set with no (significant) loss of accuracy. Application of

this procedure involves a substantial increase (by up to a factor of M/2) in computational effort relative

to that required for an ordinary fit, so it is usually desirable to omit it in the many trial fits involved in

any global data analysis, such as the set of trial fits required to determine manually the optimum values of

rref and Nβ . Application of this SRR procedure is turned on or off by the value of the flag IROUND that is

set by the user in Read
#5 of the input data file. One would normally turn this flag off (set IROUND= 0 )

for preliminary analyses, and only turn it on when one wishes to generate a final parameter set to report

and distribute. As discussed in Ref. [75], in most cases setting IROUND=±1 yields a maximum degree of

rounding without significant loss of precision, but in some cases it may be necessary to set |IROUND| > 1

(see §9.3).

One final choice regarding the manner in which the least-squares fits are performed is whether or

not to perform “robust” fits. As described in Ref. [76] and references therein, robust least-squares fits

attempt to minimize the effect of data “outliers”, which are defined as observations that yield anoma-

lously large discrepancies with the model. When this choice is invoked, DPotFit adopts the approach

of Ref. [76] and replaces the normal least-squares data weights wi = 1/(ui)
2 by the ‘robust ’ weights

wrob
i = 1/

[
(ui)

2 + (ycalci − yobsi )2/3
]
. Because the latter depend on the then-current degree of agreement

of the data with the model, fits of this type are repeated iteratively, with the parameter values and the

weights being updated in each cycle until self-consistency is achieved. As a result, robust fits require sub-

stantially more computer time than normal fits do. Moreover, the fact that robust weighting reduces the

effect of large [ycalci − yobsi ] values on DSE and dd makes it more difficult to interpret differences in those

quantities obtained from fits to different versions of a model, and it may tend to obscure the presence

of systematic discrepancies that indicate shortcomings of the model, rather than of the data. However,

our (limited) experience with this option indicates that it can facilitate identifying ‘bad’ data as well as

local and/or systematic discrepancies from a model, when one examines the [ycalci − yobsi ] results in the

Channel-8 output file.

8.2 Array Dimensions, Input/Output Conventions, and Program Execution

The operation of program DPotFit involves the use of a number of moderately large multi-dimensional

integer and real-number arrays whose size is specified at the time the program is compiled. If those arrays

are unnecessarily large, it could slow or hinder computations on some computers. The current version of

DPotFit assumes (but does not require, as it is also compatible with F’90 and F’95 compilers) the use

of a Fortran-77 compiler that does not allow run-time array dimensioning. Thus, since one does not wish

to recompile the code case-by-case, setting those array dimensions at modest (but adequate) values should

facilitate computations by minimizing computer memory requirements. The parameters that set the upper

bounds on the sizes of the large arrays are set by PARAMETER statements contained in the utility routine

arrsizes.h, which is supplied with the program. If this file resides in the same directory as the source code

when the program is being compiled, Fortran compilers will automatically incorporate it into relevant

subroutines at compilation time through Fortran ‘include’ statements in the code. Parameters defined

in this way include the maximum number of isotopologues being consideredi, NISTPMX , the maximum

number of electronic states, NSTATEMX , the maximum number of fitting parameters, NPARMX , the maximum

number of data, NDATAMX , the maximum number of observed vibrational levels in any of the electronic

states considered, NVIBMX , and the maximum dimension for the radial arrays used to store the potential

energy and related functions, NPNTMX. A user should examine file arrsizes.h before compiling the code,

and assign these parameters values appropriate for the types of systems that they will be considering.
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DPotFit reads two separate input data files. The first one contains the experimental data being fitted;

its name is read in line #2 of the second data file. The second data file is the ‘instruction’ data file that

contains the initial trial parameters defining the model, plus the control variables that characterize the

problem and specify which type of fit is to be performed. It is the Fortran ‘standard input’ file read

on Channel 5. The structure of these data files and the definitions of and options for the various input

quantities are presented in § 9.2.

The program writes standard output to Channel-6 plus supplementary output files to a selection of

Channels 7 − 20. The output to Channel–X is written to the file WRITFILE.X, where WRITFILE is a

user-specified output filename that is input via line #3 of the (Channel-5) ‘instruction’ data file.

Channel-6 output summarizes the input data, describes the nature of the fit being performed, reports

the results of the fit, lists fitted parameters, their sensitivities, and their 95% confidence limit (aprox-

imately ‘two-sigma’) uncertainties, and presents a summary of the [ycalci − yobsi ] results.

Channel-7 output contains values of the band constants for all levels of all isotopologues in all states

involved in the analysis, as generated from the final results of the fit.

Channel-8 output consists of a full listing of the {[ycalci −yobsi ]} and {[ycalci −yobsi ]/ui} values for all data

utilized in the fit.

Channels 10–16 output files contain arrays of values of the various radial functions associated with the

model Hamiltonian, and the associated 95% confidence limit uncertainties.

Channel-10 contains the effective radial potential for the reference isotopologue V
(1)
ad (r) (or VCN(r)),

Channel-11 contains the radial exponent function β(r) for the EMO, MLR or DELR model po-

tentials,

Channels 12 & 13 contain the adiabatic BOB radial strength functions S̃A
ad(r) and S̃B

ad(r) , re-

spectively,

Channels 14 & 15 contain the non-adiabatic BOB radial strength functions R̃A
na(r) and R̃B

na(r) ,

respectively, and

Channel 16 contains the radial strength function associated with Λ-doubling or 2Σ level splittings,

fΛ(r) or fΣ(r) , as appropriate.

Channel 20 contains a listing of the potential function parameters determined by the fit, formatted so

as to facilitate their inclusion in the ‘instruction’ data file for a subsequent fit.

Those executing DPotFit in a UNIX or LINUX operating system environment may find it convenient

to do so using a shell named (say) rdpot , such as that shown below, which may be stored in the system

‘bin’ directory or the user’s ‘bin’ directory:

#!/bin/sh
# UNIX shell ’rdpot’ to execute the compiled version of program DPotFit named
# dpot.x, which is stored in the user directory /userpath/. The Channel-5
# input data file $1.5 and the output files WRITFILE.6, WRITFILE.7, ...
# etc., will be in the same directory.
#
time /userpath/dpot.x < $1.5
if [ -e MAKEPRED ]; then

rm MAKEPRED
fi
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Note that userpath is a path specifying the location of the executable file dpot.x on the user’s computer,

and MAKEPRED is defined below. This shell allows the program to be executed with the simple command:

rdpot filename

in which filename.5 is the data file containing the instructions regarding the type of fit to be performed.

filename may be any name chosen by the user, but it is usually convenient if it has a name which identifies

the particular case. If this file does not reside in the current directory, this name must also include the

relative path.

This program is written for serial execution, and the amount of computer memory required is ????

HELP, Toby !!!!!

8.3 Generating Sets of Predicted Transition Energies

DPotFit may also be employed to generate a set of predicted data {ycalci } from a given (fixed) set of

input parameters. This option is invoked by setting the value of the input variable in Read
#2, which is

normally the name of the file containing the experimental data, to be MAKEPRED . In this case the program

will use Read
#33 in the Channel–5 instruction data file to read specifications and selection rules for

bands for which the user wishes to generate predictions. The resulting predictions are written in the

normal Channel-8 output format to file filename.8 , and in ‘data input’ format to file filename.4 .

9 Data File Structure and Input Parameter Definitions

9.1 The Experimental Data File

The experimental data are read from a file whose name is specified in the regular Channel–5 input data

file via Read
#2. The data must be collected into separate vibrational bands (or fluorescence series, or

sets of photo-association spectroscopy (PAS) binding energies, or tunneling predissociation level widths),

each characterized by the upper- and lower-state vibrational quantum numbers v′ = VP and v′′ = VPP ,

respectively, by the two-alphanumeric-character labels LABLP and LABLPP (enclosed between single quotes;

e.g. ’X0’) that have been chosen to label the particular upper and lower electronic states, and by the

(integer) mass numbers MN1 and MN2 of the atoms forming that particular isotopologue. The electronic

state labels must correspond to names used to identify the different electronic states in Read
#6 of the

Channel–5 input (see below).

For each such band, the data are read, one per line, with each datum consisting of the upper and lower

rotational quantum numbers, J ′ = JP and J ′′= JPP , respectively, the integer +1 (for e–parity levels) or

−1 (for f–parity levels) defining the e/f parity of the upper ( p′=EFP ) and lower ( p′′=EFPP ) levels, the

experimental datum yobsi =FREQ(i) and its uncertainty ui=UFREQ(i) . A datum line with JP < 0 signals

the end of the data set for this band or group, and asks the program to start the input for a new band.

The overall data input is assumed to be complete either at the end of the data file, or when a negative

value of the band-label quantum number v′=VP is encountered.

IBAND= 0
COUNT= 1

10 IBAND= IBAND+ 1
#1 READ(4,*,END=20) VP(IBAND), VPP(IBAND), LABLP, LABLPP, MN1, MN2

IF(VP(IBAND.LT.0) GOTO 20
#2 5 READ(4,*) JP(COUNT), EFP(COUNT), JPP(COUNT), EFPP(COUNT),FREQ(COUNT), UFREQ(COUNT)

IF(JP(COUNT).GE.0) THEN
COUNT= COUNT+1
GOTO 5

ELSE
COUNT= COUNT-1
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GOTO 10
ENDIF

20 CONTINUE

For a fluorescence series, this band-type data structure is retained, but the definitions of the ‘band’

and individual datum labels differ. In particular, setting the upper-state input parameter LABLP = ’FS’

identifies the data group as a fluorescence series and causes the ‘band’ parameters VP and VPP (see Read
#1

above) to be defined as the vibration-rotation quantum numbers v′ and J ′, respectively, for the emitting

level, and the transition labels JP and JPP (Read
#2 above) as the corresponding final (lower) state

vibration-rotation quantum numbers v′′ and J ′′, respectively. The parity label parameters EFP and EFPP

retain their usual meaning, so the former has the same value for all lines in a given fluorescence series

‘band’ or data-group. Note that for a fluorescence series, the quantities v′, J ′ and EFP are merely used to

label the various series, and they have no physical significance as far as the analysis is concerned. Indeed,

program operation is not affected if the same values of these quantities are used for several different series;

it just means that the distinct fitted origins of those several fluorescence series will have the same label in

the Channel-6 output file.

Another distinct data type that can be input using this same band-type data structure is a set of

individual-level binding energies, such as those yielded by photoassociation spectroscopy (PAS). In this

case the nature of the data-group is identified by setting the input upper-electronic-state band label as

LABLP = ’PA’ . As with fluorescence series, the data parameters JP, JPP and EFPP are defined as the

final-state level parameters v′′, J ′′, and parity p′′, respectively, while the ‘band parameters’ VP and VPP ,

and the data parameter EFP are all dummy variables that are ignored by the analysis.

PA-type data are expressed as (positive) binding energies, relative to the dissociation asymptote of the

given electronic state. They have special significance in the data analysis only if the vibrational energies

are represented by an expression in which the dissociation limit is an explicit parameter, i.e., only if EMO,

MLR or DELR functions are used for the potential energy function. If this is not the case, DPotFit

simply treats a PA-type data-group as an ordinary fluorescence series whose upper level is a free fitting

parameter.

Another type of experimental data that the program can use is a set of tunneling predissociation level

widths. Again, the band-type input data structure is retained, but in this case the input parameter value

LABLP = ’WI’ identifies this data-group as a set of FWHM level widths Γ(v, J) for levels of electronic state

LABLPP, and signals that the band parameters VP & VPP and the parity label EFP are dummy variables.

The input parameter JP is then the vibrational quantum number v, JPP is the rotational quantum number

J , and EFPP is the parity label of the predissociating level, while FREQ is its full width at half maximum

Γ(v, J) and UFREQ the estimated uncertainty in that value (both in cm−1).

A different type of ‘experimental’ data that can be used in a fit is a set of assumed-known potential

function values. This allows one to incorporate into an analysis ab initio potential energy values in the very

short-range region that is inaccessible to normal spectroscopic data. This type of input data is identified

by setting the input parameter value LABLP = ’VV’. The other band labels VP, VPP, MN1 and MN2 are then

all dummy parameters, and the ‘band’ input commands shown above are replaced by

COUNT= 1
10 IBAND= IBAND+ 1

#1 READ(4,*,END=20) VP(IBAND), VPP(IBAND), LABLP, LABLPP, MN1, MN2
IF(VP(IBAND.LT.0) GOTO 20
IF(LABLP.EQ.’VV’) THEN

#2 12 READ(4,*) R(COUNT), VV(COUNT), uVV(COUNT)
IF(R(COUNT).GE.0) THEN

COUNT= COUNT+1
GOTO 12
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ELSE
COUNT= COUNT-1
GOTO 10

ENDIF
ENDIF

20 CONTINUE

in which VV(COUNT) and uVV(COUNT) are the value and estimated uncertainty (in units cm−1) of the

potential energy function at the distance R(COUNT) Å. This type of data should normally be associated

with the reference isotopologue, or with MN1 = MN2 = 0.

A final type of experimental data that can be used in a fit is a set of measured second virial coefficients

[68]. In this case, one of the isotopologues specified in Read
#4 below should correspond to mass numbers

MN(1,IISTP) = MN(2,IISTP) = 0 to allow the abundance-averaged isotopic atomic masses to be used to

define the reduced mass in the virial coefficient calculation. This type of input data is identified by setting

the input parameter value LABLP = ’VR’. The vibrational band labels VP and VPP are then dummy

parameters, while the isotope labels should be set as MN1 = MN2 = 0. The ‘band’ input instructions for

this case then have the same structure as those for the preceding case of potential-function-value data:

COUNT= 1
10 IBAND= IBAND+ 1

#1 READ(4,*,END=20) VP(IBAND), VPP(IBAND), LABLP, LABLPP, MN1, MN2
IF(VP(IBAND.LT.0) GOTO 20
IF(LABLP.EQ.’VV’) THEN

#2 14 READ(4,*) TEMP(COUNT), BVIR(COUNT), uBVIR(COUNT)
IF(TEMP(COUNT).GE.0) THEN

COUNT= COUNT+1
GOTO 14

ELSE
COUNT= COUNT-1
GOTO 10

ENDIF
ENDIF

20 CONTINUE

Here, Bvir(COUNT) and uBvir(COUNT) are the value and estimated uncertainty (in units cm3mol−1)

of the second virial coefficient of the atomic species to which the molecule dissociates, at temperature

T = TEMP(COUNT) K.

As an illustration of this data file structure, the listing below presents portions of an experimental

data file used in an analysis to determine the potential energy function for the ground 1Σ+
g state of ArXe

[68] from a combination of microwave data [77], high-resolution vacuum laser spectroscopy [68], and virial

coefficient data [78, 79, 80]. Note that text beginning at the “%” sign on a line of the input data file are

comments that are ignored by the program.

0 0 ’X0’ ’X0’ 40 128 % v’ v" LABLP LABLPP MN1 MN2
3 +1 2 +1 0.19375109 3.3D-08 % J’ p’ J" p" FREQ UFREQ8
4 +1 3 +1 0.25830956 3.3D-08 % MW data of Jaeger et al. (1993)
5 +1 4 +1 0.32284639 3.3D-08
6 +1 5 +1 0.38735613 3.3D-08

-1 -1 -1 -1 -1.d0 -1.d0

0 0 ’X0’ ’X0’ 40 129 % v’ v" LABLP LABLPP MN1 MN2
3 +1 2 +1 0.19339688 3.3D-08 % J’ p’ J" p" FREQ UFREQ8
4 +1 3 +1 0.25783738 3.3D-08 % MW data of Jaeger et al. (1993)
5 +1 4 +1 0.32225632 3.3D-08
6 +1 5 +1 0.38664857 3.3D-08
7 +1 6 +1 0.45100778 3.3D-08
8 +1 7 +1 0.51532937 3.3D-08
9 +1 8 +1 0.57960754 3.3D-08

-1 -1 -1 -1 -1.d0 -1.d0
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0 0 ’X0’ ’X0’ 40 130 % v’ v" LABLP LABLPP MN1 MN2
3 +1 2 +1 0.19304902 3.3D-08 % J’ p’ J" p" FREQ UFREQ8
4 +1 3 +1 0.25737363 3.3D-08 % MW data of Jaeger et al. (1993)
5 +1 4 +1 0.32167676 3.3D-08
6 +1 5 +1 0.38595299 3.3D-08
7 +1 6 +1 0.45019693 3.3D-08

-1 -1 -1 -1 -1.d0 -1.d0

2 0 ’D0’ ’X0’ 40 132 % v’ v" LABLP LABLPP MN1 MN2
1 +1 0 +1 77239.1655 0.0012 % J’ p’ J" p" FREQ UFREQ
2 +1 1 +1 77239.2240 0.0012 % VUV data of Piticco & Merkt
3 +1 2 +1 77239.2817 0.0010 % from [JMS 264, 83 (2010)]
4 +1 3 +1 77239.3348 0.0011
5 +1 4 +1 77239.3867 0.0008
6 +1 5 +1 77239.4358 0.0011

...... omit 18 intermediate data to save space .................................
13 +1 14 +1 77237.9631 0.0020
16 +1 17 +1 77237.6269 0.0010
-1 -1 -1 -1 -1.d0 -1.d0

0 0 ’VR’ ’X0’ 0 0 % v’ v" LABLP LABLPP MN1 MN2
173.2 -141.2 2.d0 % Virial coefft. from Landbolt & Boernstein (2003)
198.2 -108.0 2.d0 % Virial coefft. from Landbolt & Boernstein (2003)
223.2 -86.5 2.d0 % Virial coefft. from Landbolt & Boernstein (2003)
273.2 -56.2 2.d0 % Virial coefft. from Landbolt & Boernstein (2003)
323.2 -36.7 2.d0 % Virial coefft. from Landbolt & Boernstein (2003)
203.0 -95.0 6.d0 % Virial coefft. from Schramm et al. (1977)
213.0 -84.5 6.d0 % Virial coefft. from Schramm et al. (1977)

...... omit 15 intermediate data to save space .................................
482.0 -5.1 6.d0 % Virial coefft. from Rentschler & Schramm (1977)
555.0 2.4 6.d0 % Virial coefft. from Rentschler & Schramm (1977)
626.0 4.9 6.d0 % Virial coefft. from Rentschler & Schramm (1977)
695.0 9.5 6.d0 % Virial coefft. from Rentschler & Schramm (1977)
-1 -1.0 -1.d0

9.2 The Channel–5 ‘Instruction’ Input File: Specifying the Model and the Fit

The logical structure and read statements of the Channel–5 data input that describes the system to be

treated, specifies the type of fit to be carried out, and inputs any necessary system parameters, is shown

below. The following subsection then provides a detailed description of the nature and options associated

with each of the input variables.

#1 READ(5,*) AN(1), AN(2), CHARGE, NISTP, NSTATES, LPRINT, PRINP
#2 READ(5,*) DATAFILE
#3 READ(5,*) WRITFILE

******************************************************************************
* Loop over isotopologues to read isotope masses
******************************************************************************

DO IISTP= 1,NISTP
#4 READ(5,*) MN(1,IISTP), MN(2,IISTP)

ENDDO
************************************************************************
* End loop over isotopologues
******************************************************************************
#5 READ(5,*) UCUTOFF, NOWIDTHS, IROUND, ROBUST, CYCMAX, uBv

******************************************************************************
* Begin loop over electronic states
******************************************************************************

DO 20 ISTATE=1,NSTATES
#6 READ(5,*) SLABL(ISTATE), IOMEG(ISTATE), VMIN(ISTATE), VMAX(ISTATE),

1 JTRUNC(ISTATE), EFSEL(ISTATE)
#7 IF(VMAX(ISTATE.1).LT.0) READ(5,*) (VMAX(ISTATE,ISOT), ISOT= 1, NISTP)

#8 READ(5,*) PSEL(ISTATE), VLIM(ISTATE), BOBCN(ISTATE), OSEL(ISTATE)
IF(PSEL(ISTATE).EQ.-2) GOTO 20
IF(PSEL(ISTATE).EQ.-1) THEN

************************************************************************
* If fitting to band constants, must specify no. for each v and isotop.
************************************************************************

DO I= VMIN(ISTATE,1),VMAX(ISTATE,1)
#9 READ(5,*) VTST,(NBC(I,IISTP,ISTATE),IISTP= 1,NISTP)
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ENDDO
ENDIF

#10 READ(5,*) RMIN(ISTATE), RMAX(ISTATE), RH(ISTATE)
IF(PSEL(ISTATE).EQ.0) THEN

#11 READ(5,*) NPT, NUSE, IR2, ILR, NCN, CNN
#12 READ(5,*) RFACT, EFACT, VSHIFT
#13 READ(5,*) (XI(I), YI(I), I= 1,NTP)

EXIT
ENDIF

IF((PSEL(ISTATE).GE.2).AND.(PSEL(ISTATE).LE.5)) THEN
c** For an MLR or DELR or HPP or TT-type potential ...

#14 READ(5,*) NCMM(ISTATE), rhoAB(ISTATE), IDF(ISTATE, IDSTT(ISTATE)
DO m= 1,NCMM(ISTATE)

#15 READ(5,*) MMLR(m,ISTATE), CmVAL(m,ISTATE), IFXCm(m,ISTATE)
ENDDO

ENDIF
c** For a GPEF potential ...

#16 IF(PSEL(ISTATE).EQ.6) READ(5,*) AGPEF(ISTATE), BGPEF(ISTATE)
c** For all PSEL > 0 cases ...

#17 READ(5,*) DE(ISTATE), IFXDE(ISTATE)
#18 READ(5,*) RE(ISTATE), IFXRE(ISTATE)
#19 READ(5,*) APSE(ISTATE), Nbeta(ISTATE), nPB(ISTATE), nQB(ISTATE), RREF(ISTATE)

DO I= 0, Nbeta(ISTATE))
#20 READ(5,*) BETA(I,ISTATE), IFXBETA(I,ISTATE)

ENDDO
#21 READ(5,*) NUA(ISTATE), NUB(ISTATE), pAD(ISTATE), qAD(ISTATE)

c** Adiabatic potential energy BOB function parameters for atom-A
IF(NUA(ISTATE).GE.0) THEN

DO I= 0, NUA(ISTATE)
#22 READ(5,*) UA(I,ISTATE), IFXUA(I,ISTATE)

ENDDO
#23 READ(5,*) UAinf, IFXUAinf

ENDIF
c** Adiabatic potential energy BOB function parameters for atom-B

IF(NUB(ISTATE).GE.0) THEN
DO I= 0, NUB(ISTATE)

#24 READ(5,*) UB(I,ISTATE), IFXUB(I,ISTATE)
ENDDO

#25 READ(5,*) UBinf, IFXUBinf
ENDIF

#26 READ(5,*) NTA(ISTATE), NTB(ISTATE), pNA(ISTATE), qNA(ISTATE)
c** Non-adiabatic centrifugal BOB function parameters for atom-A

IF(NTA(ISTATE).GE.0) THEN
DO I= 0, NTA(ISTATE)

#27 READ(5,*) TA(I,ISTATE), IFXTA(I,ISTATE)
ENDDO

#28 READ(5,*) TAinf, IFXTAinf
ENDIF

c** Non-adiabatic centrifugal BOB function parameters for atom-B
IF(NTB(ISTATE).GE.0) THEN

DO I= 0, NTB(ISTATE)
#29 READ(5,*) TB(I,ISTATE), IFXTB(I,ISTATE)

ENDDO
#30 READ(5,*) TBinf, IFXTBinf

ENDIF
IF(IOMEG(ISTATE).NE.0) THEN

c** Lambda-doubling or 2\Sigma splitting expansion parameters
#31 READ(5,*) NwCFT(ISTATE), Pqw(ISTATE), efREF(ISTATE)

IF(NwCFT(ISTATE).GE.0) THEN
DO I= 0, NwCFT(ISTATE)

#32 READ(5,*) wCft(I,ISTATE), IFXwCft(I,ISTATE)
ENDDO

ENDIF
ENDIF

ENDDO
c***********************************************************************
c End of loop over electronic states
c***********************************************************************

IF(DATAFILE.EQ.MAKEPRED) THEN
c** To generate a predicted spectrum, loop over bands & read specifications
70 CONTINUE

#33 READ(5,*,end=99) VP(IBAND), VPP(IBAND), LABLP, LABLPP, MN1, MN2,
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1 PP, PPP, JMAXX, J2DL, J2DU, J2DD
IBAND= IBAND+ 1
IF(VP(IBAND).GE.0) GO TO 70
ENDIF

c***********************************************************************
c End of Channel-5 input data file
c***********************************************************************

9.3 Definitions and Descriptions for the Channel-5 Input File Data

Read integers identifying the molecule and system.
#1. READ(5,*) AN(1), AN(2), CHARGE, NISTP, NSTATES, LPRINT, PRINP

AN(1) & AN(2) are integer atomic numbers of the atoms 1 & 2 forming the molecule.

CHARGE is a (±) integer for the total charge on the molecule. It is used to generate Watson’s
charge-modified reduced mass for molecular ions; see Eq. (2).

NISTP is the number of isotopologues to be considered in the particular analysis (their identifying
mass numbers are read below).

NSTATES is the number of different electronic states associated with the data to be input and
analyzed.

LPRINT is an integer specifying the level of output to be generated by the least-squares subroutine
package NLLSSRR. Setting LPRINT=0 yields no internal printout except for convergence-failure
warning messages; this is the recommended choice when there are no problems with the fits.
If LPRINT < 0 , print converged unrounded parameters; if LPRINT ≥ 1 , also print converged
rounded parameters (when IROUND 6= 0); if LPRINT ≥ 2 , also print parameter changes on
each rounding step; if LPRINT ≥ 3 , also report parameter convergence criterion satisfied; if
LPRINT ≥ 4 , also print convergence test on each fitting cycle; if LPRINT ≥ 5 , also print the
change and uncertainty for each parameter in each fitting cycle.

PRINP is an integer parameter that controls whether ( PRINP > 0 ) or not ( PRINP ≤ 0 ) a summary
of the experimental data is printed immediately following its input. This option is useful only
for helping to identify problems in the input data; in most cases one should set PRINP ≤ 0 ,
since an analogous summary is always printed at the end of every (successful) run.

Read the name of the file containing the experimental data to be fitted in the analysis.

#2. READ(5,*) DATAFILE

DATAFILE is the name for the file containing the experimental data to be fitted; it may consist of
up to 40 alphanumeric characters and must be enclosed in single quotes with no leading blanks
(e.g., ’ Li2B(A-X).4 ’ ). If the file does not reside in the current directory, this name must
include the absolute or relative path. Note that if this file contains data for more states and/or
isotopologues than one wishes to consider in a particular analysis, they are simply ignored, so
it is not necessary to construct a separate data file if one wishes to consider only a subset of the
data (e.g., only the microwave transitions, or only the data for one particular isotopologue).
• If the program is being asked to predict data from a set of known input parameters (see § 5.3),
the filename read here must be MAKEPRED (i.e., the data file entry must be ’ MAKEPRED ’).

#3. READ(5,*) WRITFILE

WRITFILE is the root of the names used for the output files written to Channels 6–16 & 20, that
will have the names WRITFILE.6, WRITFILE.7, WRITFILE.8, . . . , WRITFILE.20, respectively.
WRITFILE may consist of up to 20 alphanumeric characters, and should be enclosed in single
quotes with no leading blanks (e.g., ’ EMO4(6,8)u3t1 ’ ). A distinct name should be chosen to
identify the results of each particular run; if the same name is used for subsequent runs, previous
files with those names will be over-written.
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Loop over the NISTP isotopologues, and for each, read the integer mass numbers of the two atoms. The
first isotopologue is defined as the reference species ( ISOT = α = 1) for the mass scaling of BOB radial
strength functions. The mass numbers for each isotopologue must be on a separate line.

#4 READ(5,*) MN(1,ISOT), MN(2,ISOT)

MN(1,ISOT) & MN(2,ISOT) : integer mass numbers of the atoms/particles 1 & 2 forming the iso-
topologue α=ISOT . The mass of a normal stable atomic isotope is taken from the tabulation
in subroutine MASSES; if MN is outside the range for the normal stable isotopes for the atom,
then the abundance-averaged atomic mass is used.

Read parameters allowing one to set global restrictions on the data set to be used without editing the
actual input DATAFILE, and to specify general features of the fit and output.

#5 READ(5,*) UCUTOFF, NOWIDTHS, IROUND, ROBUST, CYCMAX, uBv

UCUTOFF : causes any input spectroscopic data with uncertainties ui > UCUTOFF (a real number) to
be neglected. It does not apply to virial coefficient data or read-in potential function values and
their uncertainties.

NOWIDTHS : if NOWIDTHS > 0 , omit calculation of the partial derivatives of tunneling-predissociation
level widths of quasibound levels, and ignore any tunneling-level-width data (defined by SLABLPP= ’WI’)
in the data file; otherwise, set NOWIDTHS = 0.

IROUND : Setting (integer) IROUND 6=0 causes the “sequential rounding and refitting” procedure of
Ref. [75] to be implemented, with each parameter being rounded at the |IROUND|’th significant
digit of its uncertainty. If IROUND > 0 the rounding is applied sequentially to the remaining
free parameter having the largest relative uncertainty; if IROUND< 0 the rounding proceeds
systematically from the last free parameter to the first. If IROUND = 0 the fit simply stops
after full convergence and performs no parameter rounding; this last option saves considerable
computation time, and would normally be chosen except for a “final” fit to obtain parameters
for publication and/or distribution.

ROBUST is an integer that is set greater than 0 to cause the robust fitting procedure described at
the end of § 5.1 to be applied; otherwise (the normal case), it should be set equal to 0 (or
negative).

CYCMAX is an integer that sets an upper bound on the number of least-squares cycles allowed in
NLLSSRR. Normally MAXCYC ∼ 30 suffices. If larger values are required, there may be something
wrong either with the model or with the precision of the calculations.

uBv Setting the integer uBv > 0 causes the program to calculate and print to channel-7 the
uncertainties in the final Bv values due to the correlated-parameter uncertainties determined in
the fit. Otherwise, set uBv ≤ 0.

Now begin the loop over the NSTATES electronic states to be considered in the analysis.
This loop from s ≡ ISTATE =1 to NSTATES includes almost all of the rest of the Channel–5 input data.

First, read integer parameters characterizing the state, and (if desired) set limits on the ranges of the
rotational and vibrational levels to be considered for this fit.

#6. READ(5,*) SLABL(s), IOMEG(s), VMIN(s), VMAX(s), JTRUNC(s), EFSEL(s)

SLABL is a two-alphanumeric-character label for this electronic state, enclosed in single quotes (e.g.,
’X0’, ’a1’, ’f+’, ...), to identify it in the output and in the experimental data input file.

IOMEG : If IOMEG≥0 the electronic state is treated as a spin singlet with integer electronic angular
momentum projection quantum number IOMEG . For a state with 2Σ symmetry, set IOMEG=−2 .

VMIN & VMAX are data-range selection parameters. All data for this state associated with vibrational
levels outside the range VMIN to VMAX are ignored and are omitted from the analysis.
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JTRUNC is an integer data-selection parameter. If JTRUNC>0 , all data for this electronic state for
which J >JTRUNC are omitted from the analysis; if JTRUNC<0 all data with J <JTRUNC are
omitted.

EFSEL is an integer that allows a user to consider: a) only transitions involving e–parity levels of
this state, if EFSEL > 0 , b) only transitions involving f–parity levels of this state if EFSEL < 0 ,
c) all transitions if EFSEL = 0 (the normal case).

The code normally sets VMAX for minor isotopologues using first-order semiclassical scaling from the value
for isotopologue-1, but if (VMAX(ISTATE,1).LT.0), we override that approach and read in a ‘specified VMAX

value for each isotopologue. This is sometimes needed when a level search for a small-µ minor isotopologue
causes the code to stop because the highest level(s) cannot be found.
#7. IF(VMAX(ISTATE,1).LT.0) READ(5,*) (VMAX(ISTATE,ISOT), ISOT= 1, NISTP)

Read parameters to select the analytical potential function model, to specify the potential asymptote, to
select the representation to be used for BOB corrections, and to control the size of output print arrays.

#8. READ(5,*) PSEL(s), VLIM(s), BOBCN(s), OSEL(s)

PSEL is an integer which specifies the type of analytic function used for the potential.

If PSEL=0 use a fixed potential defined by interpolating over and extrapolating beyond a set
of input turning points using the program Level subroutine package PREPOT [66].

If PSEL=1 use the Expanded Morse Oscillator (EMO) form of §2.2.

If PSEL=2 use the Morse/Long-Range (MLR) potential form of §2.3.

If PSEL=3 use the Double-Exponential/Long-Range (DELR) form of §2.4.

If PSEL=4 use the Tiemann/Hannover polynomial of §2.5.

If PSEL=5 use the Tang-Toennies type potential of Eq. (31) in §2.6.

If PSEL=6 use Seto’s modification [9] of Šurkus’ Generalized Potential Energy Function
(GPEF) [18], as described in §2.7. Its parameters p, aS , and bS are input via Reads #16
and 19.

• Dunham expansions are generated by setting p = 1, aS = 0 & bS = 1 .

• SPF expansions are generated by setting p = 1, aS = 1 & bS = 0 .

• Ogilvie–Tipping expansions are generated by setting p = 1, aS = bS = 0.5 .

• These polynomial-type potentials usually have an undefined (or at best, indirectly-
defined) asymptote, so in these cases parameter VLIM defines the energy at the potential
minimum.

If PSEL=−2 the energy levels of the state are represented by independent terms values which
are labelled by vibrational quantum number v, rotational quantum number J and e/f parity
quantum number p. In this case, VLIM, BOBCN and OSEL are dummy parameters, and the
remainder of the Reads for this state, #9–32, are ignored.

If PSEL = −1 the energy levels of the state are represented by a set of band constants
{Gv, Bv, −Dv, Hv, . . .} for each vibrational level of each isotopologue. In this case, VLIM,
BOBCN and OSEL are dummy parameters, Read

#9 is used to input the number of such con-
stants for each state, and the remainder of the Reads for this state, #10–32, are ignored.

VLIM : Parameter VLIM specifies the fixed absolute energy (in cm−1) at the potential asymptote for
this state. The set of values of VLIM(ISTATE) define the absolute energy scale for this system.

BOBCN specifies the manner in which the BOB mass-scaling is to be done.
If BOBCN=0 , use the mass scaling of Eqs. (3) and (4) with isotopologue #1 as the reference
isotopologue.
If BOBCN=1 , combine use of the clamped-nuclei reference potential with mass scaling factors

me/M
(α)
A , of Eqs. (39) and (40).
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OSEL : if (integer) OSEL> 0 , write every OSEL’th point of the final potential energy, its exponent
coefficient function β(r), and any BOB radial function arrays to Channels 10-16; if OSEL≤ 0,
omit such output. Smaller (positive) values of OSEL yield larger output files written on a finer
radial mesh.

If PSEL = −1 , loop over vibrational levels VMIN to VMAX, reading in the vibrational quantum number
VTST = v and the number of Band Constants {Gv , Bv, −Dv, Hv, . . .} to be used for that level, for each
isotopologue, NBC(I,IISTP,ISTATE). If PSEL 6= −1 , ignore Read

#9.

DO i= VMIN(ISTATE,1),VMAX(ISTATE,1)
#9. READ(5,*) VTST,(NBC(I,IISTP,ISTATE),IISTP= 1, NISTP)

ENDDO

For all cases for which PSEL ≥ 0, read Read
#10.

#10. READ(5,*) RMIN(s), RMAX(s), RH(s)

RMIN & RMAX : are the inner and outer limits, respectively, of the range of numerical integration
(in Å). As zeroth order estimates, one may set RMIN≈ 0.6×(potential inner wall position) and
RMAX very large (say =99 Å); see §6.1.

RH : the numerical integration mesh size; see Eq. (48) in §3.

If PSEL = 0 , define a fixed potential for this state by reading, interpolating over and extrapolating beyond
a given set of turning points, in the manner specified here. For PSEL 6= 0 , skip Reads #11− 13.

#11. READ(5,*) NTP, NUSE, IR2, ILR, NCN, CNN

NTP : gives the number of turning point pairs to be input via Read
#13 to define the potential.

NUSE : Specifies how the interpolation is to be done. If NUSE > 0 , use NUSE–point piecewise
polynomials; if NUSE ≤ 0 , perform cubic spline interpolation. For highly precise and smooth
input points, such as those generated from an RKR calculation, NUSE=8, 10 or 12 is usually
most appropriate; for less precise or less dense points, such as those from ab initio calculations,
low-order piecewise polynomials (NUSE=4) or splines (NUSE≤ 0) are usually best.

IR2 : For very steep repulsive potential walls, better interpolation is often attained by interpolating
over r2×V (r) rather than over V (r) itself; setting the integer IR2 > 0 causes this to be
done (normally recommended). A comparison between results obtained with this option turned
on vs. off (setting IR2 ≤ 0 causes interpolation to be performed over V (r) itself) provides an
indication of the magnitude of “interpolation noise” uncertainties in the final results.

ILR : Specifies how to extrapolate from the outermost read-in turning points to the asymptote. For
a long energy extrapolation, a choice of ILR = −1, 0, or 1 is often most appropriate; however, if
the outer turning points extend moderately close to the dissociation limit (at VLIM), one should
set ILR ≥ 2 and specify the theoretically appropriate value of NCN (≥ 1 ), and if it is available,
also input an estimate of CNN (see below).

For ILR < 0 , fit the last 3 points to: V (r) = VLIM−A× exp[−b(r − ro)
2]

For ILR = 0 , fit the last 3 points to: V (r) = VLIM−A× rp × exp[−b r] .

For ILR = 1 , fit the last 2 points to: V (r) = VLIM−A/rB .

For ILR = 2 or 3 , respectively, fit the outermost 2 or 3 points to a sum of 2 or 3 inverse-power
terms, with powers differing by 2: V (r) = VLIM−

∑
ILR−1
m=0 CNCN+2m/r

NCN+2m .

For ILR ≥ 4 , fit outermost ILR turning points to a sum of ILR inverse-power terms, with
powers differing by 1: V (r) = VLIM−

∑
ILR−1
m=0 CNCN+m/r

NCN+m .

NCN: For inverse-power potential extrapolation with ILR ≥ 2 , NCN (> 0) specifies the (inverse)
power of the asymptotically dominant long-range term: V (r) ∝ VLIM − CNN/rNCN . Otherwise
(for ILR ≤ 1 ) it is a dummy parameter.
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CNN: For inverse-power potential extrapolation with ILR ≥ 2 , setting CNN 6= 0 causes the leading
inverse-power coefficient to be fixed at the read-in value CNN = CNCN [cm−1 ÅNCN] rather than to
be determined from a fit to the outermost turning points.

#12. READ(5,*) RFACT, EFACT, VSHIFT
#13. READ(5,*) (XI(I), YI(I), I= 1,NTP)

RFACT & EFACT : are multiplicative factors required to convert units of the NTP input turning
point distances XI(i) and energies YI(i) to Å and cm−1, respectively. If no conversion is required,
read in factors of 1.0D+00.

VSHIFT : An energy shift (in cm−1) to be added to the input potential point energies to make
them consistent with VLIM. It addresses the fact that ab initio or RKR turning points may be
expressed relative to an energy zero that is inconsistent with the user-specified asymptote energy
VLIM.

XI(i) & YI(i) : are the (distance, energy) input turning points defining the potential function.

If PSEL = 2− 5 (for an MLR, DELR, HPP or TT-type potential), specify the long-range potential energy
tail function uLR(r). For PSEL 6= 2− 5 , skip Reads #14 & 15.

#14. READ(5,*) NCMM(s), rhoAB(s),IDF(s), IDSTT(s)
DO i= 1, NCMM(s)

#15. READ(5,*) MMLR(i,s), CmVAL(i,s), IFXCm(i,s)
ENDDO

NCMM(s) is the number of inverse-power terms included in the definition of uLR(r) in Eq. (11) or
(16).

If rhoAB ≤ 0.0 , the long-range potential is the pure inverse-power sum of Eq. (11).

If rhoAB > 0.0 , include damping functions in uLR(r), and rhoAB = ρ ≡ ρAB is the system-
dependent scaling factor of Eqs. (19). In this case:

• IDF = 2s specifies the limiting short-range behaviour of the damping function to be
Dm(r)/rm ∝ rs = rIDF/2.

• If IDSTT > 0 , use the generalized Douketis-type damping functions of Eq. (17) (recom-
mended). Allows any integer −4 ≤ IDF ≤ 0 (IDF = −2 or −1 recommended).

• If IDSTT ≤ 0 , use the generalized Tang-Toennies-type damping functions of Eq. (18). Allows
even integers −4 ≤ IDF ≤ 4.

MMLR(i,s) is the power and CmVAL(i,s) the coefficient of the i’th contribution to uLR(r) in Eq. (11)
or (16), Cmi

/rmi . Positive CmVAL values yield attractive potential energy terms.

IFXCm(i,s) controls whether Cmi
=CmVAL(i,s) is to be fitted ( IFXCm≤ 0 ) or held fixed ( IFXCm=

1 ) in the fit. Fitting to one or more Cmi
values should only be considered if a substantial

amount of data is available for levels lying very near dissociation. Setting IFXCm> 1 causes this
Cm coefficient to be constrained to equal the value of parameter #IFXCm, which has a smaller
parameter # index than its own. E.g. to fix Cm for state ISTATE equal to the leading Cm value
for the first electronic state (ISTATE = 1), set IFXCm(s)=3 (since re and De are parameters #1
and 2, respectively). This allows one to fit simultaneously to potentials for two states with this
Cm coefficient allowed to vary subject to the constraint that the values for the two states always
remain the same.

For the special case of the states of Li2 dissociating to the Li(2S)+Li(2P ) asymptote, to use the
Aubert-Frécon 2×2 or 3×3 diagonalization long-range form [38], set NCMM=6 with MMLR(i)=
3, x, 6, 6, 8, & 8 , for which the input values of CmVAL(i) are CΣ

3 , Aso , C
Σ
6 , C

Π
6 , C

Σ
8 and CΠ

8 ,
for i = 1 · · · 6, respectively, and
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• For the 2×2 tail of the A 1Σ+
u state, set x = MMLR(2) = 0.

• For the 3×2 tail of the 1 3Σg state, set x = MMLR(2) = −1.

• For the 2×2 tail of the b 3Πu state, set x = MMLR(2) = −2.

If PSEL=6 , read in parameters defining the expansion variable in the GPEF potential of Eq. (32);
otherwise, skip Read

#16.
#16. READ(5,*) AGPEF(s), BGPEF(s)

In the GPEF radial expansion variable of Eq. (32): aS = AGPEF and bS = BGPEF , while p = nPB

is input via Read
#19.

Read the dissociation energy and equilibrium distance of the potential function for this state.
#17. READ(5,*) DE(s), IFXDE(s)
#18. READ(5,*) RE(s), IFXRE(s)

DE ≡ De is the dissociation energy. This is a dummy variable for the case of a GPEF potential.

IFXDE controls whether De is to be fitted ( IFXDE≤ 0 ) or held fixed ( IFXDE> 0 ) in the fit.

RE is the equilibrium radial distance re for this state, and IFXRE controls whether it is to be fitted
( IFXRE≤ 0 ) or held fixed ( IFXRE> 0 ) in the fit.

Read integers specifying the form used for the exponent-coefficient function β(r), the order of the polyno-

mial defining the potential function V
(1)
ad (r) (or VCN(r)), and the nature of the radial variables of Eqs. (5)

and (6).

#19. READ(5,*) APSE(s), Nbeta(s), nPB(s), nQB(s), RREF(s)

For PSEL=2,

• Setting APSE(s) ≤ 0 invokes use of the constrained-polynomial expansion of Eq. (14) for
the exponent-coefficient function β(r) = βPE(r) of the MLR potential.

• Setting APSE(s) > 0 invokes use of the ‘Pashov-Spline’ expression for the MLR exponent
coefficient βSE(r) described in §2.3.3 [44, 72] (this option is not yet fully implemented).

For PSEL= 1–3, Nbeta is the order of the potential function exponent-coefficient polynomial ex-
pansion of Eq. (8) or (14).

For PSEL=4 , Nbeta is the order of the “X–representation” polynomial expansion of Eq. (28).

For PSEL=5 , set Nbeta = 0 and omit Reads #21-32.

For PSEL=6 , Nbeta is the order of the GPEF polynomial expansion of Eq. (32).

nPB = p, nQB = q and RREF = rref define the radial variables of Eqs. (5), (6), (14) and (32).

For PSEL > 0 , loop over the range i=0 to Nβ = Nbeta(s) and read initial trial values of the exponent
expansion parameters βi = BETA(i) of Eqs. (8), (14) or (28) or of the coefficients ci = BETA(i) of the
GPEF potential of Eq. (32). Skip this Read statement if PSEL ≤ 0 .

#20. READ(5,*) (BETA(I,s), IFXBETA(I,s), I=0, Nbeta(s))

BETA(I,s) is the initial trial value of the potential exponent expansion coefficients βi or (if PSEL=6)
of the GPEF expansion coefficients ci = βi .

IFXBETA(I,s) controls whether βi is to be fitted (IFXBETA≤ 0) or held fixed (IFXBETA‘> 0).

Now, read in parameters specifying the Born-Oppenheimer breakdown radial functions. First, for the
effective adiabatic functions S̃A

ad and S̃B
ad of Eqs. (3) and (34).

#21. READ(5,*) NUA(ISTATE), NUB(ISTATE), pAD(ISTATE), qAD(ISTATE)
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NUA = NA
ad and NUB = NB

ad are the (integer) orders of the polynomial in yqad(r) used to define the
effective adiabatic BOB radial function of Eq. (34) for atoms A and B, respectively. If NUA < 0
or NUB < 0 , omit the adiabatic BOB terms for that atom; i.e., skip Read s #22 and #23, or
Read s #24 and #25, respectively.

• Note: for a chemically homonuclear molecule ( AN(1)=AN(2) ), set NUB=−1 , as the parameters
for atom A are used for both atoms.

pAD(s) = pad and qAD(s) = qad define the nature of the radial variables ypad(r) and yqad(r)
appearing in Eq. (34). In cases for which NCMM(s) > 0 normally set pAD(s) = MMLR(1, s).

If NUA(s) ≥ 0, loop over i = 1 to NUA(s) while reading in initial trial values of parameters UA(i, s) = uAi
of Eq. (34) and integer parameter IFXUA(i, s) to control whether uAi is to be fitted ( IFXUA(i, s) ≤ 0 ) or
held fixed ( IFXUA(i, s) > 0 ).
#22. READ(5,*) UA(I,s), IFXUA(I,s), I=0, NUA(s)

If NUA(s) ≥ 0, read UAinf = uA
∞
, the limiting asymptotic value of the atom-A radial BOB function

S̃A
ad(R), and integer parameter IFXUAinf that controls whether UAinf is to be fitted ( IFXUAinf ≤ 0 ) or

held fixed ( IFXUAinf > 0 ).
#23. READ(5,*) UAinf, IFXUAinf

If NUB(s) ≥ 0, loop over i = 1 to NUB(s) while reading in initial trial values of parameters UB(i, s) = uBi
of Eq. (34) and integer parameter IFXUB(i, s) to control whether uBi is to be fitted ( IFXUB(i, s) ≤ 0 ) or
held fixed ( IFXUB(i, s) > 0 ).
#24. READ(5,*) (UB(I,s), IFXUB(I,s), I=0, NUB(s))

If NUB(s) ≥ 0 , read UBinf = uB
∞
, the limiting asymptotic value of the atom-B radial BOB function

S̃B
ad(R), and integer parameter IFXUBinf that controls whether UBinf is to be fitted ( IFXUBinf ≤ 0 ) or

held fixed ( IFXUBinf > 0 ).
#25. READ(5,*) UBinf, IFXUBinf

Now, read in parameters defining the non-adiabatic centrifugal BOB radial functions R̃A
na and R̃B

na of
Eqs. (4) and (35).

#26. READ(5,*) NTA(ISTATE), NTB(ISTATE), pNA(ISTATE), qNA(ISTATE)

NTA = NA
na and NTB = NB

na are the (integer) orders of the polynomial in yqna(r) used to define the
nonadiabatic centrifugal BOB radial function of Eq. (35) for atoms A and B, respectively. If
NTA < 0 or NTB < 0 , omit the centrifugal BOB terms for that atom; i.e., skip Read s #27 and
#28, or Read s #29 and #30, respectively.

• Note: for a chemically homonuclear molecule ( AN(1)=AN(2) ), set NTB=−1 , as the parameters
for atom A are used for both atoms.

pNA(s) = pna and qNA(s) = qna define the nature of the radial variables ypna(r) and yqna(r)
appearing in Eq. (35).

If NTA(s) ≥ 0, loop over i = 1 to NTA(s) while reading in initial trial values of parameters TA(i, s) = tAi
of Eq. (34), and integer parameter IFXTA(i, s) to control whether tAi is to be fitted ( IFXTA(i, s) ≤ 0 ) or
held fixed ( IFXTA(i, s) > 0 ).
#27. READ(5,*) TA(I,s), IFXTA(I,s)

If NTA(s) ≥ 0, read TAinf = tA
∞
, the limiting asymptotic value of the atom-A radial BOB function

R̃A
na(R), and the integer parameter IFXTAinf which controls whether TAinf is to be fitted ( IFXTAinf ≤ 0 )

or held fixed ( IFXTAinf > 0 ).
#28. READ(5,*) TAinf, IFXTAinf

If NTB(s) ≥ 0, loop over i = 1 to NTB(s) while reading in initial trial values of parameters TB(i, s) = tBi
of Eq. (35), and integer parameter IFXTB(i, s) to control whether tBi is to be fitted ( IFXTB(i, s) ≤ 0 ) or
held fixed ( IFXTB(i, s) > 0 ).
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#29. READ(5,*) (TB(I,s), IFXTB(I,s), I=0, NTB(s))

If NTB(s) ≥ 0, read TBinf = tB
∞
, the limiting asymptotic value of the atom-B radial BOB function

R̃B
na(R), and the integer parameter IFXTBinf which controls whether TBinf is to be fitted ( IFXTBinf ≤ 0 )

or held fixed ( IFXTBinf > 0 ).
#30. READ(5,*) TBinf, IFXTBinf

Finally, if the electronic angular momentum quantum number IOMEG(s) is not zero, read in parameters
defining the radial Λ-doubling or 2Σ spin-splitting radial strength function of Eqs. (43) or (46), respectively.

#31. READ(5,*) NwCFT(s), Pqw(s), efREF(s)

NwCFT is the order of the polynomial defining the radial strength function fΛ(r) or fΣ(r). If
NwCFT(s) < 0, omit Read

#32.

Pqw is the integer qΛ or qΣ defining the radial expansion variable yeqpΛ(r) in Eq. (43) or yeqpΣ(r) in
Eq. (46).

efREF : specifies the choice of reference (or zero-shift) parity levels for Λ–doubling splittings. Select
them as the f–parity sublevels when efREF=−1 , the e–parity sublevels when efREF=+1 , or
their mid-point when efREF=0 ; e.g., for a 1Π state, if efREF=−1 the f–levels are treated as
unperturbed and the e–levels shifted by + qB(v)[J(J + 1)] , . . . etc. For 2Σ splitting, efREF is
a dummy parameter.

If NwCFT(s) ≥ 0, loop over i = 1 to NwCFT(s) while reading in initial trial values of parameters
wCFT(i, s) = wi of Eq. (43) or (46), and integer parameter IFXwCFT(i, s) to control whether thia s wi is to
be fitted ( IFXwCFT(i, s) ≤ 0 ) or held fixed ( IFXwCFT(i, s) > 0 ).
#32. READ(5,*) wCFT(I,s), IFXwCFT(I,s)

To Generate predictions from a set of fixed system parameters.

Loop over Read
#33 for all bands for which predictions are desired, and for each one read the following.

Input stops at the end of the data file or if the read-in value of VP for a band is negative.

#33. READ(5,*) VP(IBAND),VPP(IBAND), LABLP,LABLP, MN1,MN2, PP,PPP, JMAXX,J2DL,J2DU,J2DD

VP(IBAND) & VPP(IBAND) : are the vibrational indices v′ and v′′, respectively, labeling that band.
Set v′=VP(IBAND)<0 to indicate the end of the prediction data set,

LABLP & LABLPP : are the two-alphanumeric-character names (enclosed in single quotes, as in
’ X0 ’) identifying the upper and lower electronic state for which the predicted band is to be
generated. Set LABLP=LABLPP to generate IR or MW transitions for that state.

MN1 & MN2 : are the integer mass numbers identifying the isotopologue for which the predictions
are to be generated.

PP & PPP : are integers with values +1, 0 or −1 to indicate the e/f parity of the upper ( p′ = PP )
and lower ( p′′=PPP ) levels in the band.

JMAXX, J2DL, J2DU & J2DD : generate predicted transition energies for J ′′=0 to JMAXX , subject
to the selection rule that ∆J=J ′−J ′′ runs from J2DL to J2DU in steps of J2DD .

9.4 Illustrative Sample Input Data Files

This program has been successfully applied to a wide variety of problems [7, 8, 28, 81, 4, 5, 20, 21, 13, 14,
15, 16, 10, 68, 11, 12, 29, 82]. The following subsection briefly describes two of these cases and presents
the associated Channel-5 instruction input data file.
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9.4.1 Determining the Potential Energy Function for the Ground X 1Σ+
g State of Ca2

This is the case described in Refs. [14] and [11], in which 3553 fluorescence series transitions from 180 levels
of the B 1Σ+

u state of Ca2 into 924 levels of the X 1Σ+
g state spanning 99.97% of its well [31, 32] are fitted

to an MLR potential whose long-range tail is defined by accurate fixed theoretical C8, and C10 values, but
with the C6 coefficient treated ss a free parameter.

20 20 0 1 1 0 0 % AN(1) AN(2) CHARGE NISTP NSTATES LPRINT PRINP
’../Ca2_X_FS.4’ % Name of PotFit input data file
’N7q4C6rr6_85’ % Writefile
40 40 % MN1(1) MN2(1)

1.d0 1 -0 0 30 0 % UCUTOFF NOWIDTHS IROUND ROBUST CYCMAX uBv
’X0’ 0 0 38 300 0 %(1) SLABL IOMEG VMIN VMAX JTRUNC EFSEL
2 0.d0 0 20 % PSEL VLIM BOBCN OSEL
3.00 99.0 0.0005d0 % RMIN RMAX RH

3 0.5870d0 -2 1 % NCMM rhoAB IDF IDSTT
6 1.04600000D+07 0 % MMLR(1) CMVAL(1) IFXCm(1)
8 3.06080000D+08 1 % MMLR(2) CMVAL(2) IFXCm(2)
10 8.34400000D+09 1 % MMLR(3) CMVAL(3) IFXCm(3)

1.102080181693D+03 0 % De IFXDe
4.277807094884D+00 0 % Re IFXRe

-1 7 5 4 6.85D+00 % APSE Nbeta nPB nQB RREF
-2.044539573798D-01 0 % BETA 0 IFXBETA 0
-1.400127193907D-01 0 % BETA 1 IFXBETA 1
4.725673963595D-02 0 % BETA 2 IFXBETA 2
4.978784800505D-02 0 % BETA 3 IFXBETA 3
5.665002150789D-02 0 % BETA 4 IFXBETA 4
6.977372610379D-02 0 % BETA 5 IFXBETA 5
3.617615587106D-02 0 % BETA 6 IFXBETA 6
5.342138733727D-02 0 % BETA 7 IFXBETA 7

-6 -6 3 3 % NUA NUB pAD qAD
-6 -6 3 3 % NTA NTB pNA qNA

9.4.2 Determining Potential Energy and BOB Functions for the Ground X 2Σ+ State of

MgH and MgD

This is the case described in Ref. [82], in which a fit to microwave, infrared and electronic data for the

X 2Σ+ and A 1Σ+ states of the 24Mg, 25Mg and 26Mg isotopologues of MgH and MgD was used to deter-

mine an M3LR(12) (i.e., Nβ = 12) potential energy function, as well as adiabatic (potential energy) and

non-adiabatic (centrifugal) BOB functions, and a radial strength function to characterize the 2Σ doublet

splittings. The fact that the data span almost the entire potential well while the long-range part of the

potential is important only at energies very close to dissociation is the reason for the relatively high orders

of the MLR exponent polynomial and the expansions for the BOB functions. In this case, the energy levels

of all three excited states are represented by independent term values

12 1 0 6 4 4 0 % AN1 AN2 CHARGE NISTP NSTATES LPRINT PRINP
’../data_MgHD_2012-01-27.4’ % Name of input data file
’tst_5412rref2_74’ % WRITEFILE
24 1 % MN1 MN2
25 1
26 1
24 2 % MN1 MN2
25 2
26 2
0.5 1 0 0 30 0 % UCUTOFF NOWIDTHS IROUND ROBUST CYCMAX uBv
’X0’ -1 0 -11 99 0 % SLABL IOMEG VMAX JTRUNC EFSEL
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11 10 10 15 11 11 % VMAX(istp), ISTP= 1,6
2 0.000 0 20 % PSEL VLIM BOBCN OSEL

0.60 99.50 0.0025 % RMIN RMAX RH
3 0.81 -2 1 % NCMM rhoAB IDF IDSTT
6 2.77550000D+05 1 % MMLR, CmVAL, IFXCm
8 3.45490000D+06 1 % MMLR, CmVAL, IFXCm
10 4.61400000D+07 1 % MMLR, CmVAL, IFXCm

1.110424552400D+04 0 % De IFXDe
1.729685380255D+00 0 % Re IFXRe

-1 12 5 4 2.74D+00 % APSE Nbeta nPB nQB RREF
1.170476601132D+00 0 % BETA 0 IFXBETA 0
1.080170651332D+00 0 % BETA 1 IFXBETA 1
2.673340658164D+00 0 % BETA 2 IFXBETA 2
2.483625825973D+00 0 % BETA 3 IFXBETA 3
7.400354782870D-01 0 % BETA 4 IFXBETA 4
1.921267534841D-01 0 % BETA 5 IFXBETA 5
6.071160601044D-01 0 % BETA 6 IFXBETA 6

-2.486057829458D+00 0 % BETA 7 IFXBETA 7
-7.676067408675D+00 0 % BETA 8 IFXBETA 8
-5.742858200526D+00 0 % BETA 9 IFXBETA 9
2.850001493731D+00 0 % BETA10 IFXBETA10
6.076990710549D+00 0 % BETA11 IFXBETA11
2.409626277526D+00 0 % BETA12 IFXBETA12

3 13 6 4 % NUA NUB pAD qAD
1.300728351881D+00 0 % UA 0 IFXUA 0
4.148196460337D+00 0 % UA 1 IFXUA 1
2.612257669548D+00 0 % UA 2 IFXUA 2
4.341067654483D+00 0 % UA 3 IFXUA 3
0.000000000000D+00 1 % uAinf IFXuAinf

-1.517859106465D+01 0 % UB 0 IFXUB 0
3.753517600616D+01 0 % UB 1 IFXUB 1

-1.153600397884D+01 0 % UB 2 IFXUB 2
3.213195588821D+01 0 % UB 3 IFXUB 3
5.866458845349D+01 0 % UB 4 IFXUB 4
2.347347913310D+02 0 % UB 5 IFXUB 5

-1.543302677803D+03 0 % UB 6 IFXUB 6
-2.076874526486D+03 0 % UB 7 IFXUB 7
1.249385587088D+04 0 % UB 8 IFXUB 8
5.664228044773D+03 0 % UB 9 IFXUB 9

-4.993237165924D+04 0 % UB10 IFXUB10
1.007715179054D+04 0 % UB11 IFXUB11
7.172546964411D+04 0 % UB12 IFXUB12

-4.723470281067D+04 0 % UB13 IFXUB13
0.000000000000D+00 1 % uBinf IFXUBinf

-3 7 4 4 % NTA NTB pNA qNA
0.000000000000D+00 1 % TB 0 IFXTB 0
7.250023689953D-04 0 % TB 1 IFXTB 1
2.862180763657D-04 0 % TB 2 IFXTB 2
9.395028124006D-04 0 % TB 3 IFXTB 3
2.804097571256D-03 0 % TB 4 IFXTB 4

-1.917529464250D-03 0 % TB 5 IFXTB 5
-6.715122481617D-03 0 % TB 6 IFXTB 6
2.263936298448D-02 0 % TB 7 IFXTB 7
0.000000000000D+00 1 % tBinf IFXTBinf

3 4 0 % NwCFT Pqw efREF
4.619303623412D-03 0 % wCFT 0 IFXwCFT 0

-3.135099829025D-03 0 % wCFT 1 IFXwCFT 1
2.688086629368D-04 0 % wCFT 2 IFXwCFT 2
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-4.537525776361D-03 0 % wCFT 3 IFXwCFT 3

’A1’ 0 0 99 99 0 SLABL IOMEG VMAX JRUNC EFSEL
-2 0 0 20 % PSEL VLIM BOBCN OSEL
’A2’ 0 0 99 99 0 SLABL IOMEG VMAX JRUNC EFSEL
-2 0 0 20
’B0’ 0 0 99 99 0 SLABL IOMEG VMAX JRUNC EFSEL
-2 0 0 20
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[37] F. Martin, M. Aubert-Frécon, R. Bacis, P. Crozet, C. Linton, S. Magnier, A. Ross, and I. Russier,

Phys. Rev. A 55, 3458 (1997).
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Appendix A. Program Structure

The present section lists the names and outlines the functions of the various subroutines used by DPotFit,

and indicates their hierarchy. In particular, the level of indentation in this list indicates which subroutines

call which others.

DPOTFIT : The main program that reads the input data characterizing the molecular system and the type

of fit to be performed, calls the actual fitting routines, and prints descriptions of the system and the

results.

MASSES : A data subroutine containing the best current [74] values of the atomic masses (and other

properties) of all stable atomic isotopes. Its presence obviates the need for a user to look up

and type precise particle masses into the input data file.

READPOT : The subroutine that reads in and organizes the parameters and properties of the potential

energy, BOB, and (as appropriate) Λ-doubling or 2Σ splitting radial strength functions to be

used for a particular electronic state.

WRITEPOT : Writes out a complete listing of the parameters defining the potential energy and other

radial strength functions in the Hamiltonian. When called at the end of a run, it also lists the

uncertainties and sensitivities of the fitted parameters.

READATA : The data input subroutine for reading in, arranging, and characterizing the experimental

data to be used in the fit.

TVSORT : If the vibration-rotation levels of one or more states are to be represented by independent

term values, sorts through global data file, and for each isotopomer in state ISTATE: (i) finds

the number of transitions coupled to each level (v, J, p), (ii) for levels ordered by increasing v,

J , and p, add a free parameter for each level involved in one or more transitions, and (iii) label

each transition involving one of these levels by the index/counter of the parameter associated

with that term value.

PREPOT : A subroutine package, described in detail in the manual for program LEVEL [66], that can

generate a potential function by interpolating over a set of input points. This allows one to

run a ‘forward’ calculation (without performing a fit) to test the ability of a pointwise potential

function obtained from some other source to describe a given data set.

MAPPAR : A subroutine to convert the ‘external’ parameters characterizing the potential energy and

other radial functions into the ‘internal’ parameter array {PV(i)} used by the fitting subroutine

package NLLSSRR, and vise versa.

NLLSSRR : A general non-linear (or linear) least-squares fitting subroutine package that can also im-

plement (when input parameter IROUND 6=0 ) the “sequential rounding and refitting” procedure

of Ref. [75].

DYIDPJ : The key user-supplied subroutine required by NLLSSRR, that for each datum returns

the calculated value and partial derivatives with respect to all parameters of the model for

the current set of trial parameters.

VGEN : Prior to each cycle of fit, this subroutine updates the arrays of values of the potential

energy functions and of their partial derivatives w.r.t. their defining parameters.

Scalc when using the Pashov cubic spline approach to represent the MLR exponent-

coefficient function β(r), this routine returns values of the Sn(x) partial derivative

functions.
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Lkoef When using the Pashov cubic spline approach to represent the MLR exponent-

coefficient function, on calling this function subroutine with a list of ‘n’ spline ordinate

values, it returns the array of ‘rKL’ coefficients used for generating the ‘n’ Sn(x) spline

coefficient functions.

INITDD : At the beginning of each cycle of fit, this subroutine updates the sets of band

constants employed for generating the trial eigenvalues required by the Schrödinger

solver subroutine SCHRQ.

ALF : This (Automatic Level Finder) subroutine automatically determines the eigen-

values of all specified vibrational levels supported by a given potential energy curve.

SCHRQ : This is the core Schrödinger solver subroutine that provides the eigenvalue and

radial wavefunctions required for the data simulation and partial derivative calcula-

tions. A number of features of this routine are described in the manual for program

LEVEL [66].

SCECOR : If the normal level-finding method fails, SCECOR uses semiclassical dE/dv esti-

mates to attempt to hone in on the correct level energy .

CDJOEL : For a given vibrational level, this subroutine calculates the inertial rotational

constant and the first six centrifugal distortion constants. These band constants are

used to generate the trial eigenvalues required by SCHRQ for each datum.

DEDP : For each level energy associated with each datum, this routine generates and returns

the eigenvalue and its partial derivatives with respect to the various parameters required

for the least-squares fit.

DWDP : For each tunneling predissociation level width in the data set, this subroutine returns

values of its partial derivatives with respect to the parameters of the Hamiltonian.

locateTP : For a predissociation level-width calculation, this routine determines the

classical turning points required for the phase-integral calculations (to machine pre-

cision!).

PhaseIntegral : Evaluates the phase integrals required for calculating the tunneling

predissociation level widths and their partial derivatives with respect to parameters

of the Hamiltonian. ‘

DVIRDP : For each virial coefficient value in the data set, this subroutine generates the

corresponding value implied by the current potential function, and its partial derivatives

w.r.t. the various potential function parameters.

VPENp for virial coefficient calculations, generates and returns values of the potential

function and its first two radial derivatives, and of all of their partial derivatives w.r.t.

the potential parameters, at 8 quadrature points on each call. Currently only coded

for the case of an MLR potential.

FUNUNC : On completion of a fit, this subroutine generates and writes to Channels 10–16 arrays of

the values and the fully correlated 95% confidence uncertainties in the various radial functions

determined from the fit.

DIFFSTATS : On completion of a fit, summarizes dimensionless RMS deviations for the entire data

set on a band-by-band basis.

MKPREDICT : If the input parameter (see Read
#2) DATAFILE is equal to ′MAKEPRED′, this subroutine

reads input to cause the program to prediction transitions for specified bands which are generated

from by a complete fixed set of molecular-state parameters.
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Appendix B. Sample Program Output
Channel-6 output file yielded by the fit to data for ground-state Ca2 described in § 9.4.1.

Input data for 1 isotopomer(s)
********************************

Isotopomer Mass of atom-1 Mass of atom-2 Reduced mass
----------------- -------------- -------------- --------------
Ca( 40) - Ca( 40) 39.962590980 39.962590980 19.981295490

Use experimental data input file: ../Ca2_X_FS.4
Uncertainties for transitions involving quasibound levels modified to:

SQRT{(u(i;exp)**2 + ( 0.20*width)**2}
For electrically homonuclear molecules, BO correction functions are the same

for both atoms, so only the first sets of correction coefficients
UA(s) and TA(s) are used, and the mass scaling factors are sums over
the two individual atoms.

Fit uses standard 1/[uncertainty(i)]**2 data weighting
Non-linear fits are allowed a maximum of CYCMAX= 30 cycles

For state X0
integrate from RMIN= 3.00 to RMAX= 48.00 with mesh RH= 0.00050

==============================================================================

State X0 represented by an MLR(p= 5, q= 4) potential defined in terms of
======== exponent coefficient: beta(R)= betaINF*y5 +(1-y5)*Sum{beta_i*y4^i}

using exponent power series order 7 with radial variables:
with radial variable: y_{p,q} = (R^q - 6.850000^q)/(R^q + 6.850000^q)

uLR inverse-power terms incorporate DS-type damping with rhoAB= 0.5870000
defined to give very short-range Dm(r)*Cm/r^m behaviour r^{-1.0}
Dm(r)= [1 - exp(- 3.30(rhoAB*r)/m - 0.423(rhoAB*r)^2/sqrt{m})]^{m-1.0}

C6= 1.0460000D+07[cm-1 Ang^6]
C8= 3.0608000D+08[cm-1 Ang^8]

C10= 8.3440000D+09[cm-1 Ang^{10}]
These constants yield: betaINF= -0.1975595686

Parameter Initial Value Uncertainty Sensitivity
VLIM 0.000000000000D+00 -- --
De 1.102081323362D+03 0.0D+00 0.0D+00
Re 4.277802505981D+00 0.0D+00 0.0D+00
C 6 1.046000000000D+07 0.0D+00 0.0D+00
C 8 3.060800000000D+08 -- --
C10 8.344000000000D+09 -- --

beta( 0) -2.023830181671D-01 0.0D+00 0.0D+00
beta( 1) -1.434281568915D-01 0.0D+00 0.0D+00
beta( 2) 4.117395913512D-02 0.0D+00 0.0D+00
beta( 3) 4.994173725634D-02 0.0D+00 0.0D+00
beta( 4) 5.796606380251D-02 0.0D+00 0.0D+00
beta( 5) 7.791736140275D-02 0.0D+00 0.0D+00
beta( 6) 4.095935204535D-02 0.0D+00 0.0D+00
beta( 7) 5.104832694584D-02 0.0D+00 0.0D+00
beta_INF -1.975595686440D-01 -- --
C11{eff} -1.103784928085D+10 -- --

==============================================================================

Neglect data with: Uncertainties > UCUTOFF= 1.00D+00 (cm-1)
and State X0 data with J > JTRUNC= 300

or v outside range 0 to 38 for ISOT= 1

After Cycle # 1: DRMSD= 2.61426D+06 test(PS)= 2.6D+02 test(PU)= 4.3D+00
After Cycle # 2: DRMSD= 2.30588D+01 test(PS)= 1.4D-08 test(PU)= 2.4D-10
Full 2-cycle convergence: Max{|change/sens.|}= 1.4D-08 < 1 DRMSD= 2.31D+01

3553 data fit to 180 param. yields DRMS(devn)= 2.30588D+01 tst(PS)= 1.4D-08

After Cycle # 1: DRMSD= 2.30588D+01 test(PS)= 6.5D+03 test(PU)= 2.9D+00
After Cycle # 2: DRMSD= 6.19836D-01 test(PS)= 7.9D+03 test(PU)= 2.2D-01
After Cycle # 3: DRMSD= 6.20546D-01 test(PS)= 1.4D+02 test(PU)= 9.0D-02
After Cycle # 4: DRMSD= 6.19003D-01 test(PS)= 5.7D+01 test(PU)= 3.7D-02
After Cycle # 5: DRMSD= 6.18751D-01 test(PS)= 2.3D+01 test(PU)= 1.5D-02
After Cycle # 7: DRMSD= 6.18703D-01 test(PS)= 3.7D+00 test(PU)= 2.4D-03
After Cycle # 8: DRMSD= 6.18702D-01 test(PS)= 1.5D+00 test(PU)= 9.7D-04
After Cycle # 9: DRMSD= 6.18702D-01 test(PS)= 6.1D-01 test(PU)= 3.9D-04

Full 9-cycle convergence: Max{|change/sens.|}= 6.1D-01 < 1 DRMSD= 6.19D-01

====================================================================
For fit of 191 parameters to 3553 transitions, DSE= 0.63603356

====================================================================
The following 180 Fluorescence Series Origins were determined
------------------------------------------------------------
( v’, J’, p’; ISTP) T(value) Uncertainty Sensitivity
------------------------------------------------------------
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( 5, 67, +1; 1) 18847.271208 5.4D-03 2.6D-05
( 6, 97, +1; 1) 19247.655858 5.8D-03 2.2D-05
( 2,161, +1; 1) 19666.763087 8.6D-03 3.2D-05

........... omit 172 lies to save space .....................

( 9,121, +1; 1) 19892.615893 7.9D-03 7.2D-05
( 12,119, +1; 1) 20206.419041 6.7D-03 2.8D-05
( 12, 91, +1; 1) 19895.676097 6.3D-03 5.0D-05
( 11,125, +1; 1) 20172.567006 8.0D-03 7.1D-05
( 12, 63, +1; 1) 19665.007946 5.3D-03 2.1D-05
==============================================================================

State X0 represented by an MLR(p= 5, q= 4) potential defined in terms of
======== exponent coefficient: beta(R)= betaINF*y5 +(1-y5)*Sum{beta_i*y4^i}

using exponent power series order 7 with radial variables:
with radial variable: y_{p,q} = (R^q - 6.850000^q)/(R^q + 6.850000^q)

uLR inverse-power terms incorporate DS-type damping with rhoAB= 0.5870000
defined to give very short-range Dm(r)*Cm/r^m behaviour r^{-1.0}
Dm(r)= [1 - exp(- 3.30(rhoAB*r)/m - 0.423(rhoAB*r)^2/sqrt{m})]^{m-1.0}

C6= 1.0452922D+07[cm-1 Ang^6]
C8= 3.0608000D+08[cm-1 Ang^8]

C10= 8.3440000D+09[cm-1 Ang^{10}]
These constants yield: betaINF= -0.1972792053

Parameter Final Value Uncertainty Sensitivity
VLIM 0.000000000000D+00 -- --
De 1.102080181693D+03 5.4D-03 3.2D-06
Re 4.277807094884D+00 1.0D-05 6.7D-09
C 6 1.045292227971D+07 6.5D+04 8.8D-01
C 8 3.060800000000D+08 -- --
C10 8.344000000000D+09 -- --

beta( 0) -2.044539573798D-01 9.6D-04 9.2D-09
beta( 1) -1.400127193907D-01 5.6D-03 1.7D-08
beta( 2) 4.725673963595D-02 7.2D-03 2.6D-08
beta( 3) 4.978784800505D-02 7.2D-03 3.7D-08
beta( 4) 5.665002150789D-02 8.8D-03 5.0D-08
beta( 5) 6.977372610379D-02 1.6D-02 6.5D-08
beta( 6) 3.617615587106D-02 2.2D-02 8.3D-08
beta( 7) 5.342138733727D-02 1.2D-02 1.0D-07
beta_INF -1.972792052503D-01 -- --
C11{eff} -1.087599128775D+10 -- --

==============================================================================

===============================================================
*** Discrepancies for 180 bands/series of Ca( 40)-Ca( 40) ***
===============================================================

===========================================================================
3553 Fluorescence transitions into State X0 Ca( 40)-Ca( 40) in 180 series
===================================================== Avge. ===============
v’ j’ p’ #data v"min v"max AvgeUnc Max.Unc. Err/Unc DRMSD

---------------------------------------------------------------------------
5 67 e 33 0 22 8.3D-03 1.2D-02 -0.02681 0.654
6 97 e 37 0 21 7.6D-03 1.5D-02 0.02953 0.493
2 161 e 16 1 9 8.8D-03 5.0D-02 -0.00048 0.347
8 23 e 17 0 14 9.9D-03 1.5D-02 0.03919 0.603

........... omit 172 lies to save space .....................

12 119 e 21 0 13 7.4D-03 1.5D-02 -0.02231 0.489
12 91 e 12 0 9 1.1D-02 1.5D-02 -0.17082 0.743
11 125 e 9 0 8 1.2D-02 1.5D-02 0.18483 0.951
12 63 e 40 0 21 8.3D-03 1.8D-02 0.00723 0.616
----------------- For these 3553 lines, overall: -0.00413 0.619

==================================================================
Fit of 193 param to 3553 data: DRMS(devn)= 0.618702
==================================================================
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