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Fig. 1: Illustrative results for our approach. (a) shows a semidense map estimated from a monocular sequence in a desktop

environment. Notice that it only contains high-gradient areas. (b) shows a map of the low-gradient areas, under the planar

assumption. (c) is the dense map of the scene, built from the two previous contributions.

Abstract— This paper proposes a direct monocular SLAM
algorithm that estimates a dense reconstruction of a scene
in real-time on a CPU. Highly textured image areas are
mapped using standard direct mapping techniques [1], that
minimize the photometric error across different views. We
make the assumption that homogeneous-color regions belong
to approximately planar areas. Our contribution is a new
algorithm for the estimation of such planar areas, based on the
information of a superpixel segmentation and the semidense
map from highly textured areas.

We compare our approach against several alternatives using
the public TUM dataset [2] and additional live experiments
with a hand-held camera. We demonstrate that our proposal for
piecewise planar monocular SLAM is faster, more accurate and
more robust than the piecewise planar baseline [3]. In addition,
our experimental results show how the depth regularization of
monocular maps can damage its accuracy, being the piecewise
planar assumption a reasonable option in indoor scenarios.

I. INTRODUCTION

SLAM, standing for Simultaneous Localization and Map-

ping, aims to estimate the pose of a mobile sensor and a

map of its surrounding environment in real-time. Monocular

SLAM, relying on a single camera as the only input, has

become a particularly valuable research topic during the last

decade. The small size, low weight and low consumption

of a monocular camera make it an excellent sensor for

autonomous robots –Micro Aerial Vehicles (MAVs) [4],

driverless cars [5] or underwater vehicles [6]–, augmented

reality demos [7] and 3D scanners [8].

One of the hardest challenges in monocular SLAM is the

estimation of a fully dense map of the imaged scene. A

monocular camera is a bearing-only sensor; and its pixel

depths are estimated from their correspondences in other

views. These correspondences are found by comparing the

photometric patterns in the candidate pixel neighborhoods.

As a result pixels in textureless areas cannot be reliably

matched across views and accurate 3D reconstructions are

usually limited to areas of high image gradients.

In this paper we follow the line initiated in [3], [9] and

model the environment with 3D points for high-gradient

areas and 3D planes for low-gradient areas. The assumption

made is that image areas with low photometric gradients

are mostly planar; which is met in most indoors and man-

made scenes. Low-gradient image areas are segmented using

superpixels [10]. Our experiments, using standard public

datasets, show that this assumption allows to estimate dense

and accurate indoor maps using a monocular camera. See an

illustrative result of our approach in figure 1.

The contribution of this paper is a new initialization

scheme for the piecewise planar areas that is more efficient,

robust and accurate than the baseline used in [3]. We compare

several monocular SLAM alternatives including semidense,

piecewise planar and dense; and discuss their performance.

We show that our piecewise planar monocular SLAM im-

proves the accuracy and density of a semidense algorithm

with a lower computational cost than a dense one.

The rest of the paper is organized as follows. Next section

describes the related work. Section III gives an overview of

our system. Section IV details the direct-based methods that

we use to estimate semidense maps and track the camera

pose. Section V details our proposal for piecewise planar

reconstructions. Finally, section VI shows our experimental

results and section VII concludes.



II. RELATED WORK

A. Direct SLAM

Direct visual SLAM [1] refers to a class of SLAM algo-

rithms, recently appeared, that uses the raw pixel intensity

values to estimate a map of the environment and the camera

motion. This is in contrast to the more traditional feature-

based methods [11], [12] that used the image coordinates of

a set of salient point correspondences. In principle, direct

methods are not limited to salient points and hence can

exploit the information from every pixel of the image –

with some limitations we discuss below. We can classify

such methods as semidense and dense. Note that some of

the systems presented below also use features for camera

localization.

1) Semidense SLAM: Semidense visual SLAM only

makes use of the high-gradient image pixels, as those are

the only ones producing reliable matches.

SVO [13] –standing for semidirect visual odometry–

uses feature correspondences as an implicit result of direct

motion estimation instead of an explicit feature extraction

and matching. The direct tracking is refined with bundle

adjustment.

LSD-SLAM [1] –standing for Large Scale Direct Monoc-

ular SLAM– performs a probabilistic filtering-based depth

map estimation which is tracked using direct image align-

ment. LSD-SLAM includes a pose graph optimization and

loop closure to extend the algorithm to large scale scenarios.

As it main weakness, the low textured areas are not recon-

structed.

[14] also builds a probabilistic semidense approach. Dif-

ferently from [1] it is built on top of a feature based SLAM

and again low textured areas are not reconstructed.

2) Dense SLAM: Differently from the above ones, dense

visual SLAM methods aim to estimate a depth for every pixel

both high and low-gradient ones. [7], [15] where the first

ones presenting dense results in real-time using a monocular

camera. They not only minimize the difference between

image intensities, but include a regularization term enforcing

smooth solutions. This latest term is crucial for reconstruct-

ing low-gradient pixels. GPU processing is usually required

to achieve real-time.

REMODE [16] (standing for Regularized Monocular

Dense reconstruction) propose to integrate a Bayesian es-

timation of the inverse depth into the variational formula-

tion. Uncertainty of the inverse depth is used to decrease

the regularization in those areas with a low inverse depth

uncertainty. Bayesian estimation offers a natural way to reject

unreliable measurements in an on-line fashion. The camera

pose optimization is based on features, similarly to [14].

B. Piecewise Planar Models from Visual Data

Piecewise planar and Manhattan models are a popular

choice to obtain offline dense reconstructions in man-made

environments. [17] achieves impressive results from a stereo

sequence. [18] hypothesizes planes based on a sparse 3D

reconstruction and tests their photometric compatibility in

several views. [19] uses the Manhattan assumption –three

dominant perpendicular directions– and superpixel classifi-

cation to extract a room layout from a single view. [20],

[21] use a multiview sparse feature map to estimate a more

robust layout.

[3] assumes that the homogeneous-color regions from a

superpixel segmentation are planar, and estimates a map

composed of such planar areas and salient points. Planar

areas are initialized by superpixel triangulation. Our con-

tribution is an initialization based on superpixels and a

semidense map that is faster and more accurate. [9] uses

multiview superpixels and layout to estimate an accurate

dense map using direct methods.

III. OVERVIEW

Figure 2 shows a simplified scheme of our algorithm.

The computation is divided into three threads. The first one

tracks the camera pose for every sequence frame In using

a semidense map (section IV-A). The semidense map is the

output of the second thread, that estimates the inverse depth

ρu for the high-gradient pixels of a keyframe Ik (section IV-

B). The keyframes are selected from the sequence frames

using certain heuristics. Finally, the third thread estimates

at a lower frame rate a dense map of the scene using the

piecewise planar assumption and regularization (section V).

1st thread 

2nd thread 

3rd thread 

CameraTracking 

Keyframe extraction Semidense mapping 

3D Superpixels (3DS) Dense mapping 

In Tn 

Ik ρu 

ρ 𝜋 

Fig. 2: Overview of our approach.

IV. TRACKING AND MAPPING HIGH-GRADIENT PIXELS

A. Tracking High-Gradient Pixels

The transformation from the current camera frame to the

global frame Tn is estimated based on the photometric repro-

jection error rpu using the inverse compositional approach

[22]. The photometric error for the ith pixel pi
u is defined as

rpi
u = (Ik(F(TkT̂ pi

u))− In(F(Tn pi
u))) (1)

where F is the pinhole camera model. In pi
u the subindex

u stands for points of high gradient, to differentiate it

from a general point pi. The tracking thread only uses a

subset of image points, composed of high-gradient points

and superpixel contours. Sections IV-B and V-A detail how

the 3D position for those is obtained.

We seek to estimate the transformation T̂ from the closest

keyframe Ik to the current frame In. Tk is the transforma-

tion from the last keyframe to the global reference frame.

The seed for the transformation Tn comes from a constant

velocity motion model –although this step is ignored if the

photometric reprojection error is higher after applying it.



The tracking minimization is as follows

T̂ = argmin
T

rpu . (2)

rpu =
n

∑
i=1

wi(r
pi

u)2. (3)

The residuals are reweighted (wi) with a robust cost

function to remove the influence of outliers –in particular,

occlusions.

For the optimization we use a minimal parametrization of

the camera pose. The rigid body transformation T is mapped

to the tangent space se(3) of the euclidean space SE(3)

at the identity. The tangent space is also named the twist

coordinates ε = (w,v)t ∈ R
6, where w ∈ R

3 is the angular

velocity and v ∈ R
3 is the linear velocity. ε is mapped into

SE(3) by the exponential map T = expse(3)(ε) and the inverse

is done by the logarithmic map ε = logSE(3)(T ) .

In the inverse compositional approach the update for the

current camera pose Tn is calculated as

Tn = TnT̂−1 (4)

T̂ is calculated applying the Gauss-Newton update in the

energy functional of equation 3

δ ε̂ =−(JTWJ)−1JTWr (5)

T̂ = expse(3)(δ ε̂) (6)

Where W and r are the matrix for the weights of the

Tukey’s robust cost function and the residuals vector respec-

tively. J is the jacobian of the residual J = ∂ r
∂ε . To obtain it

we use the chain rule:

J =
∂ r

∂ε
= Jr

F JF
Tk

J
Tk
ε (7)

Where Jr
F are the gradients of the residual reference

keyframe, JF
Tk

is the derivative of the projection model with

respect to the transformationTk and J
Tk
ε is the derivative of

the transformation Tk with respect to the motion ε .

Note that using the inverse compositional approach the

Jacobians are always calculated in the last keyframe, and

there is no need to update them until a new frame becomes

a keyframe since the transformation Tk, the points pu and

the gradients of the keyframe Jr
F are constant during the op-

timization. This approach significantly accelerates the motion

estimation.

To bootstrap our system we follow a similar approach to

[1], assigning as the depth map for the first frame a plane

parallel to the image plane at random depth. The depth map

converges to the ground truth after a few keyframes in most

of the cases.

B. Mapping High-Gradient Pixels

Rapid camera motions require high-frequency map up-

dates for the camera pose not to lose track. Similarly to

[1], our system maintains a semidense map of high-gradient

points that can be quickly updated and serves for camera

tracking as described in section IV-A. This semidense map

is not only used for tracking, but also for the estimation of

the planar surfaces described in section V.

For each high-gradient pixel u, its inverse depth ρu is

estimated by minimizing the photometric error ro
ph for several

overlapping views.

ρ̂u = argmin
ρu

ro
ph (8)

ro
ph = ||(Ik(s

k
u)− Io(s

o
u)|| (9)

so
u = G(sk

u,Tk,To,ρu) (10)

sk
u are the pixel coordinates of a template around the pixel

u in the image Ik. G is the function that backprojects the

template sk
u from the keyframe Ik at a distance ρu and then

projects it to the overlapping image Io.

For the first overlapping image we perform and exhaustive

search in the epipolar line. In the rest of the images the search

space is constrained by the current depth estimation and its

uncertainty.

The optimization is performed using pixel coordinates and

the optimal pixel coordinate ŝo
u is then transformed into

its corresponding optimal inverse depth ρ̂u(ŝ
o
u). We repeat

this process in 10 overlapping images yielding 10 inverse

depth hypotheses ρ̂u[1−10]for every high-gradient pixel in the

reference keyframe. σρ̂u [1−10] is approximated assuming an

uncertainty of one pixel in the overlapping image:

σρ̂u [1−10] = (ρ̂u[1−10](ŝ
o
u[1−10])− ρ̂u[1−10](ŝ

o
u[1−10]+1)) (11)

We perform three additional procedures to remove poten-

tial outliers from our estimation and regularize the solution.

• Gradient direction. The inverse depth of the pixels

whose epipolar line is perpendicular to the gradient

direction cannot be reliably estimated from stereo [1].

We only estimate the depth for pixels having gradi-

ents around the epipolar direction and within a certain

threshold.

• Temporal consistency. An estimated inverse depth is

likely to be an inlier if the inverse depth hypotheses

from several image pairs are similar. If the inverse depth

hypotheses span over the epipolar line, the estimated

inverse depth might be an outlier [23]. Inverse depths

are sorted and we look for compatible values between at

least 5 out of the 10 hypotheses. We calculate the ratio

between the difference of the maximum and minimum

optimal inverse depths (5 at least) and their global

standard deviation σρ̂u
.

(ρ̂max
u [i,i+n]− ρ̂min

u [i,i+n])/σρ̂u
< 2 (12)



σρ̂u
=

√

√

√

√

(

i+n

∑
k=i

1

σρ̂u
2
[k]

)−1

(13)

The test is therefore repeated for n = [4, ...,9] and

for i = [1, ...,10− n] spanning all different hypotheses

combinations. The final optimal inverse depth ρ̂u is the

average of the temporally consistent hypotheses.

• Spatial consistency. Applying the smooth world as-

sumption, neighboring pixels should have similar in-

verse depths. We run a test for the spatial similarity

of the contiguous pixels inverse depths. The equations

12 and 13 are also applied for this test. Instead of

computing them using the inverse depth hypotheses

for every pixel, they are computed using the optimal

inverse depths values of the pixel and its neighbors. n =
max(#neighbors−1,1) and i = 1 in this case, therefore

we require at least one match between the pixel and

its neighbors. Again, we perform the average of the

spatially consistent optimal inverse depths to smooth

the final depth map.

Finally, the inverse depth estimation is scaled against the

previous map. This helps to keep the scale in sequences with

large changes in depth.

The 3D points with less uncertainty will be used for robust

tracking –section IV-A– , reliable 3D superpixel estimation

–section V-A– and variational mapping –section V-B.

V. MAPPING LOW-GRADIENT PIXELS

A. 3D superpixels

The accurate semidense mapping from section IV-B and

the 2D superpixels are used to efficiently estimate 3D planar

superpixels.

First, each keyframe Ik is segmented into a set of super-

pixels Sk = {s1, . . . ,si, . . . ,sm} using the algorithm of [10].

Each 3D point pu from the semidense map is then projected

on the keyframe u = F(Tk pu). The 3D points pu are assigned

to the superpixels if their projections u lie within a threshold

ξ –see algorithm 1.

Algorithm 1 Point to Superpixel Contour Assignment

1: procedure POINT SUPERPIXEL MATCHING(M,S )

2: for pu ∈ M do ⊲ For every point in the map

3: pu ∈∅

4: for si ∈ S do ⊲ For every superpixel

5: u = F(Tk pu) ⊲ Point’s projection

6: if distance(u,C (si))< ξ then ⊲ If the

point’s projection is within a distance to the superpixel

contour

7: pu ∈ C (si) ⊲ The point belongs to the

contour

8: end if

9: end for

10: end for

11: end procedure

The 3D points associated to the contour of every super-

pixel pu ∈ C (si) are used to robustly fit a plane πi using

singular value decomposition. We use RANSAC [24] for

outlier rejection and consider three additional metrics to

evaluate the quality of the estimated plane.

• Normalized residuals test. We calculate the ratio be-

tween the distances of the 3D points to the plane and

the distances between the 3D points to themselves. If

this ratio is less than a threshold –0.05 in this paper–

the match is accepted.

• Degenerated cases. We look for degenerated cases

where multiple solutions occur. For example, some

contours might be close to a 3D line and have one

dominant dimension. We avoid this cases by seeking for

degenerate rank in the singular value decomposition.

• Active search, temporal consistency. Following a similar

approach than [3], we actively search the 3D superpixels

in the superpixels of neighboring frames by calculating

the error between the reprojected contour and the con-

tours of the potential matches in the neighbors frames.

The reprojection error for a 3D contour point pu ∈C (si)
of a superpixel si in a camera Tj is computed using the

standard pinhole model F .

ε j = u j
si
−F(Tj pu) (14)

Where u
j
si

stands for the closest point to F(Tj pu) in

contour of superpixel si in camera j. If enough overlap-

ping in the reprojection is achieved for superpixel si in

camera j, the match is accepted. If at least two matches

are achieved for si, the 3D superpixel is accepted.

This active search of superpixels is of key importance,

as it can reject the erroneous data association between 2D

superpixels and 3D contours. This erroneous data association

comes from the fact that a contour is surrounded by at least 2

superpixels and it is not possible to discern what superpixel

corresponds to the contour using only one view. The active

search seeks for consistency between multiple views and it

helps mitigate the problem.

The whole pipeline of plane estimation from planes and

superpixels is summarized in algorithm 2. We have observed

three main advantages of this approach over the baseline [3].

• Map completeness. [3] needs relatively large parallax to

initialize a superpixel by triangulation. Superpixels on

high-parallax views might be quite different and hence

difficult to match. We overcome these limitations by

initializing directly in the reference keyframe using the

existing 3D semidense map. As a result, we are able to

initialize a higher number of superpixels.

• Higher Accuracy. In [3] the triangulation was done from

two views. In this paper we incorporate the 3D informa-

tion of a very accurate semidense map, estimated from

more than two views.

• Lower cost. The initialization of [3] is very expensive

due to a Montecarlo search over the space of plane con-

figurations. Our initialization is a least-squares plane-

fitting problem with closed form solution. See table I



Algorithm 2 Plane from Points

1: procedure PLANE FROM POINTS(pu ∈ C (si))
2: d = f1(pu) ⊲ Average distance between the points

3: emin = ∞ ⊲ Minimum error

4: emax = 0.05 ⊲ Maximum normalized error allowed.

5: πi ⊲ Optimal plane

6: p = 0.99 ⊲ Probability for selecting only inliers

7: w = 0.5 ⊲ Inliers ratio

8: nhyp =
log1−p

log(1−w)4 ⊲ Number of hypotheses

9: for n ∈ nhyp do ⊲ For number of hypotheses

10: p∗u ∈ pu ⊲ 4 random points ∈ pu

11: [U,S,V,π] = svd(p∗u) ⊲ SVD for p∗u
12: e = f2(π pu)/d ⊲ Normalized (d) Robust ( f2)

error (π pu )

13: matchings = M(pu,R, t) ⊲ Matchings

in active search. Temporal consistency, Equation 14. It

depends on the pose of the neighboring cameras and the

superpixel extraction in them.

14:

15: inlier = T RUE

16: if e > emax then ⊲ Plane bad fitted.

17: inlier = FALSE

18: end if

19:

20: if rank(p∗u)< 3 then ⊲ Degenerated case.

21: inlier = FALSE

22: end if

23:

24: if matchings < 2 then

25: inlier = FALSE

26: end if

27:

28: if inlier == T RUE ∩ e < emin then

29: πi = π
30: emin = e

31: update(w) ⊲ Update inlier ratio

32: nhyp =
log1−p

log(1−w)4 ⊲ Update hypotheses

33: end if

34: end for

return πi

35: end procedure

for a time comparison.

B. Dense Mapping

A fully dense reconstruction –one depth for each pixel–

can be estimated using a similar approach to [9]. The

functional to minimize is a sum of three terms over the image

domain Ω.

Eρ =
∫

Ω
(λ1C(su,ρ(su))+G(u,ρ(u))+ (15)

+
λ2

2
M(u,ρ(u),ρp(u))∂u

The first term C(su,ρ(su)) is based on color difference

between the reference image and the set of short-baseline

Method
Computational cost [ms]

Contour extraction Init. Opt.

This paper ∼90 ms ∼20 ms ∼5 ms

[3] ∼180 ms ∼370 ms ∼5 ms

TABLE I: Cost comparison between [3] and this paper.

images. Every patch su of the reference image Ir is first

backprojected at an inverse distance ρ and projected again

in every close image I j.

ε(I j, Ir,u,ρ) = Ir(u)− I j(Tr j(u,ρ)) (16)

λ1 is a weighting factor that accounts for the relative

importance of the photometric and gradient regularization

terms.

G(ur,ρ(u)) regularizes the solution. The specific form of

this cost is

G(ur,ρ(u)) = g(ur)||∇ρ(u)||ε (17)

where ||∇ρ(u)||ε is the Huber norm of the gradient of

the inverse depth map and g(u) is a per-pixel weight that

decreases the regularization strength across image contours:

g(u) = e−α||∇Ir(u)||2 (18)

Where α is a constant. The third term measures how far is

the estimated depth from a piecewise planar reconstruction

based on superpixels

M(u,ρ(u),ρp(u)) = w||ρ(u)−ρp(u)||
2
2 (19)

ρp is the inverse depth prior coming from 3D superpixels

(see section V-A).

w the weight of Tukey’s cost function. Finally, we use the

sub-sample accuracy method and the acceleration of the non-

convex solution, both recommended in [7]. The functional

is minimized following the primal-dual approach. For the

details see [9].

We also propose to discard areas that are estimated with

a large error. These areas mostly correspond to far areas

due to low parallax, textureless areas not reconstructed with

superpixels, and areas in the borders of the image. We detect

these uninformative areas using the map superpixels and

semidense points. We classify every superpixel as a high

informative area or a poor informative area. We differentiate

between large superpixels –low texture areas– and small

superpixels – high texture areas. We only classify large

superpixels as a high informative area if we have found a 3D

superpixel in the reference image or in the neighbors images.

For the rest of the superpixels, we will classify them as a

high-informative area if most of the contour of the superpixel

is already estimated by the accurate semidense approach.

The rest of the superpixels will be ignored and then will

not be reconstructed. Our results applying this technique are

denoted as Semidense mapping filtered in the experimental

section VI.



VI. EXPERIMENTS

We have used the public TUM dataset [2] to evaluate

the accuracy and computational cost of our algorithm. Also,

we tested our system online with a hand-held camera. An

illustrative video of such experiments can be found in the

video accompanying the paper 1.

A. Comparison against [3]

Seq. Keyfr. Error ratio,
[3]

ours
Compl. ratio, ours

[3]

fr
3

st
r

te
x

fa
r 1 6.24 1.75

2 1.17 1.16
3 0.42 6.78
4 0.78 1.76
5 1.61 1.01
6 0.55 1.23

fr
2

x
y

z

1 0.59 1.05
2 2.23 1.00
3 1.08 4.42
4 13.4 1.46
5 11.3 1.48
6 1.71 1.12
7 34.5 0.76

fr
3

n
st

r
te

x
n

ea
r

1 1.13 7.56
2 0.98 18.70
3 1.452 1.53
4 3.02 1.41
5 1.87 4.40
6 1.42 0.86
7 5.95 3.66
8 2.20 10.10
9 2.84 2.64

10 1.03 2.77
11 1.13 6.74
12 4.31 8.54
13 3.97 10.49
14 1.18 1.46
15 0.20 2.86
16 0.24 2.10
17 1.84 1.59

TABLE II: Error and completeness ratios between us and

[3]. Numbers higher than 1 means us outperforming.

Tables II shows a quantitative comparison of our approach

against the superpixel initialization of [3]. We report the

error ratio defined as the mean reconstruction error of [3]

over our mean reconstruction error; and the completeness

ratio defined as our percentage of reconstructed pixels (over

the total image pixels) over the percentage of reconstructed

pixels of [3]. These ratios are defined so that numbers higher

than 1 denote that we are outperforming [3]. For absolute

accuracy and completeness results, the reader is referred to

table III.

Notice that we are more accurate than [3] in most of the

keyframes. There are two main reasons for that. The first

one is the use of the semidense map for the initialization,

that filters out most of the superpixel segmentation noise. In

[3] we triangulated directly from the superpixel correspon-

dences. The second one is the three rejection tests defined

in section section V-A. We have observed that ratios greater

1The video is also available online at https://youtu.be/SY_

bBx7Ut-4.

than 3 correspond to estimation failures of our previous work

[3] that are now correctly rejected by our three tests.

Notice also how we are able to reconstruct more su-

perpixels than [3] (completeness ratio higher than one for

most of the keyframes in table II). Again, the use of the

semidense map makes our approach more resilient to the

low repeatability of superpixels.

B. Comparison of direct mapping alternatives

This section compares several alternatives for direct

monocular SLAM in real time in terms of depth accuracy,

cost and map completeness. The approaches considered are

semidense mapping, 3D superpixels mapping (3DS), dense

mapping, semidense mapping filtered (see section V-B for

the difference between dense mapping and dense mapping

filtered) and several combinations of them.

Table III shows the quantitative results of the comparison.

We report the mean and median errors over all the keyframes

of the sequence for every mapping alternative; and the

completeness of the map over the total number of image

pixels. Table IV shows their mean computational cost.

Error [cm]

Seq. Mapping approach Mean Median Compl.
fr

3
st

r
te

x
fa

r

Semidense 5.49 3.93 0.37
3DS [3] 6.17 4.65 0.17
3DS (ours) 4.14 3.61 0.25
Semidense + 3DS (ours) 4.20 3.43 0.45
Dense 25.12 6.18 1.00
Dense + 3DS (ours) 23.96 4.98 1.00
Semidense filtered 6.78 4.57 0.62
Semidense filtered + 3DS (ours) 5.52 3.71 0.62

fr
2

x
y

z

Semidense 6.35 2.50 0.16
3DS [3] 14.87 3.19 0.11
3DS (ours) 1.94 1.86 0.12
Semidense + 3DS (ours) 3.13 2.01 0.23
Dense 31.86 9.26 1.00
Dense + 3DS (ours) 29.30 6.57 1.00
Semidense filtered 12.03 5.38 0.29
Semidense filtered + 3DS (ours) 6.76 2.74 0.29

fr
3

n
st

r
te

x
n

ea
r

Semidense 3.03 2.46 0.25
3DS [3] 2.97 2.70 0.45
3DS (ours) 2.78 1.96 0.41
Semidense + 3DS (ours) 2.84 2.49 0.50
Dense 27.16 11.22 1.00
Dense + 3DS (ours) 23.18 6.31 1.00
Semidense filtered 8.48 4.41 0.55
Semidense filtered + 3DS (ours) 3.04 2.32 0.55

TABLE III: Mean and median depth errors and map

completeness for several mapping alternatives in 3

sequences of the TUM dataset.

Observe how the 3D superpixels improve the accuracy

of semidense and dense maps by comparing Semidense vs.

Semidense + 3DS (ours) and Dense vs. Dense + 3DS (ours)

in the three sequences. If the piecewise planar assumption

holds in the current scene, which is usually the case in

man-made ones, this will always be the case. Notice that

the superpixel initialization proposed in this paper 3DS

(ours) always outperform the baseline initialization 3DS [3].

Notice also how, in the semidense case, the addition of

3D superpixels increases the density of the map (in table

https://youtu.be/SY_bBx7Ut-4
https://youtu.be/SY_bBx7Ut-4


III, Semidense + 3DS (ours) has higher completeness than

Semidense).

Table III shows that the accuracy of dense mapping is

still limited. In our results, the dense mapping errors are 5

times bigger than the semidense mapping ones. Although

3DS improves the accuracy of dense maps, it is still much

lower than the semidense one. Notice that the mean of the

dense mapping error is always much larger than its median,

suggesting that the depth error distribution has a long tail.

Our approach Semidense filtered is able to eliminate such

large depth errors by filtering out uninformative pixels (see

section V-B for details). But the map completeness is reduced

to values similar to Semidense + 3DS approaches, with

similar accuracy and at a higher cost caused by regularizing

the dense reconstruction (see the costs at table IV). Semi-

dense filtered does not offer then a significant improvement

over Semidense + 3DS, confirming that 3DS can have an

important role in dense monocular mapping indoors.

Figures 3 shows the 3D reconstruction of our proposal in

two of the sequences of the TUM dataset. The 3D superpixels

are in red. Notice the completeness and accuracy of the

maps, and how the 3D superpixels (in red in the figure)

play a key role in achieving a high completeness. Figure

4 shows a visual comparison between a semidense, dense

and semidense + 3DS map.

(a) Keyframe (b) Semidense + 3DS (red)

(c) Keyframe (d) Semidense + 3DS (red)

Fig. 3: Mapping results of our proposal (Semidense + 3DS

(ours)). (a) and (c) are selected keyframes of two

sequences, (b) and (d) are the estimated maps.

Table IV shows the computational cost results for the

mapping alternatives of this section, measured in a 3.5 GHz

Intel Core i7-3770K processor with 8.0 GB of RAM memory.

Notice first here that our approach has a computational cost 5

times lower than the baseline. Also observe that the low cost

of semidense mapping and 3DS makes their combination an

interesting alternative to dense variational mapping.

(a) Keyframe (b) Semidense map

(c) Dense map (d) Semidense +3DS (red)

Fig. 4: Mapping Results. (a) is a selected keyframe. (b) is

the semidense map. (c) is the dense map. (d) is the

semidense map using our approach (Semidense + 3DS

(ours)).

Mapping approach Computational cost [ms]

Semidense ∼350

3DS [3] ∼555

3DS (ours) ∼115

Semidense + 3D Sup(ours) ∼465

Dense ∼1800

Dense + 3DS (ours) ∼1965

Semidense filtered ∼1800

Semidense filtered + 3DS (ours) ∼1965

TABLE IV: Average computational cost for the direct

monocular mapping alternatives.

VII. CONCLUSIONS

We have presented in this paper a direct SLAM algorithm

for dense tracking and mapping using a monocular camera.

Our approach leverages the piecewise planar assumption in

indoor scenes to estimate accurate maps in real-time in a

CPU. We think this is an interesting alternative to dense

monocular SLAM, producing denser maps than standard

semidense approaches with a small overload.

The specific contribution of this paper is a novel ap-

proach to estimate planar 3D superpixels based on the image

segmentation and also on the estimated semidense map of

high-gradient points. We have validated this approach in

standard datasets and performed live experiments with a

hand-held camera. Our algorithm has shown to outperform

the baseline for superpixel initialization, both in accuracy

and computational cost. The full pipeline runs in real-time

in a standard CPU.
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