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ABSTRACT

GPS-enabled devices are now ubiquitous, from airplanes and cars

to smartphones and wearable technology. This has resulted in a

wealth of data about the movements of individuals and populations,

which can be analyzed for useful information to aid in city and traf-

fic planning, disaster preparedness and so on. However, the places

that people go can disclose extremely sensitive information about

them, and thus their use needs to be filtered through privacy pre-

serving mechanisms. This turns out to be a highly challenging task:

raw trajectories are highly detailed, and typically no pair is alike.

Previous attempts fail either to provide adequate privacy protection,

or to remain sufficiently faithful to the original behavior.

This paper presents DPT, a system to synthesize mobility data

based on raw GPS trajectories of individuals while ensuring strong

privacy protection in the form of ε-differential privacy. DPT makes

a number of novel modeling and algorithmic contributions includ-

ing (i) discretization of raw trajectories using hierarchical reference

systems (at multiple resolutions) to capture individual movements

at differing speeds, (ii) adaptive mechanisms to select a small set

of reference systems and construct prefix tree counts privately, and

(iii) use of direction-weighted sampling for improved utility. While

there have been prior attempts to solve the subproblems required to

generate synthetic trajectories, to the best of our knowledge, ours

is the first system that provides an end-to-end solution. We show

the efficacy of our synthetic trajectory generation system using an

extensive empirical evaluation.

1. INTRODUCTION
The ubiquity of sensor-enabled devices (like smartphones, wear-

able technology, etc.) has significantly advanced our capabilities

in real-time data collection. In particular, the popularity of loca-

tion sensing technology (like GPS) and the rising popularity of

location-based applications has resulted in a wealth of data about

the movements of individuals and populations. This in turn has

sparked renewed interest in studying large-scale human mobility
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patterns [3] with applications in city/traffic planning, epidemiology

and location-driven advertising.

Despite being valuable for research, organizations that collect

detailed trajectories are wary about publicly releasing them due to

concerns over the privacy of individuals therein. Home and work

locations can be easy to discern (based on the frequency with which

locations are visited). Additionally, these trajectories may also re-

veal the health status of individuals (specialities of, and frequency

of visits to, clinics), their habitual vices (visits to casinos, alco-

hol and tobacco shops), and their truthfulness (actual vs. claimed

locations). However, anonymizing such data is hard – merely re-

moving identifiers, or coarsening the data in space and time are not

enough. A recent study [10] of mobility data of 1.5 million indi-

viduals over a period of fifteen months showed that raw trajecto-

ries are highly identifiable – 4 spatio-temporal points are enough to

uniquely identify 95% of the individuals; further, the study showed

that the uniqueness of human mobility trajectories decays insignif-

icantly as their spatial and temporal resolution coarsens.

What is needed is a principled approach to generate a database

of synthetic trajectories, with the provable privacy guarantees of

differential privacy [11], while ensuring high utility in practice –

i.e., the synthetic trajectories have similar aggregate properties as

the original trajectories. In this paper, we present Differentially Pri-

vate Trajectories (DPT), our system for generating such synthetic

trajectories. As in prior work in this area (e.g., [6]), DPT considers

regular trajectories, or sequences of locations that are sampled at

uniform time intervals. However, in a significant departure from

prior work, DPT uses a novel hierarchical reference systems (HRS)

model, rather than the straightforward Markov model, to parsimo-

niously capture correlations between adjacent locations in regular

trajectories. While previous work [6] was shown to adequately deal

with uniform speed trajectories in small spatial domains, it can re-

sult in a considerable loss in utility on trajectories with varying

speeds over time even in moderately large spatial domains, such

as the movement of taxi cabs in a large metropolitan area [1]. In

contrast, the HRS model is designed to naturally deal with such

realistic trajectories using a set of hierarchically organized refer-

ence systems: movement at slow speeds can be summarized using

a fine granularity reference system, while movements at progres-

sively higher speeds are summarized using coarser granularity ref-

erence systems. To guarantee differential privacy, DPT applies the

standard Laplace mechanism to add noise to counts maintained in

each reference system.

Our Contributions. The novelty of DPT is in the model selec-

tion strategy used to build a useful differentially private genera-

tive model, and in a direction weighted sampling technique to pro-
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Figure 1: Comparing synthetic trajectories generation using

seq (at varying granularities) vs DPT

duce high utility synthetic trajectories from the differentially pri-

vate model. Consequently, we maintain that DPT is the first method

that can handle realistic trajectories of millions of individuals over

large spatial domains to generate useful trajectories with differen-

tial privacy guarantees.

Solution Overview. The input to our system is a database of regu-

lar trajectories, or sequences of (latitude, longitude) pairs sampled

at some uniform rate, corresponding to the movements of a set of

individuals. Synthetic trajectories are generated by first fitting a

probabilistic model on the data from which new trajectories can be

sampled. A popular choice of model for sequential data is the or-

der k Markov process that generates the next location of trajectory

based on the previous k locations [15]. The sufficient statistics of

this model are given by a prefix tree of height k+ 1, where nodes

at the ith level of the tree record the number of times sequences of

i consecutive locations corresponding to the path from the root of

the tree up to the node at level i appear in the database. Recent

work has proposed a differentially private approach to fit a Markov

model by carefully adding noise drawn from a Laplace distribution

to parts of the prefix tree [6]. This approach was shown to work

well when the domain of locations is small, and can be applied

to continuous spatial domains by discretizing locations (e.g., via a

uniform coarse grid).

However, the aforementioned approach fails to scale to realistic

trajectory databases that span even moderately large geographical

regions. Note that the size of the prefix tree is O(|Σ|k+1), where Σ

is the domain of possible locations. A sufficiently fine discretiza-

tion of the spatial domain that captures all the mobility patterns in

the data could result in very large domain sizes (of several tens of

thousands) making the model fitting procedure not only very slow,

but also overfitting the data. As the number of nodes in the tree

increases, the amount of noise added to ensure differential privacy

also grows. On the other hand, while a coarse discretization of the

space results in a small prefix tree, much of the spatial correlation

information in the original trajectories is lost.

This is quantified in Figure 1. We considered the movement of

taxi cabs in a large metropolitan area [1] spanning a geographical

region of roughly 34km × 40km. We discretized this space us-

ing uniform grids with varying resolutions of 200m, 400m, 800m,

1600m and 3200m. The number of cells in the discretized domain

under the 200m grid is 34000 while the size under the 3200m grid

is less than 150. We synthesized trajectories under each of these

discretizations using the method of Chen et al. [6] (which we call

seq), and measured the Jensen Shannon divergence (JSD) between

the distribution of the diameter, i.e., the distance traveled by tra-

jectories (see Metric I in Section 5.1), in the original database to

that of the trajectories in the synthetic database. In all cases, the di-

vergence is in the range [0.33, 0.59] (a high value considering that

Figure 2: DPT Framework Overview

the maximum possible JSD is ln(2) = 0.69). Further, for an input

of over 4 million trajectories, the time taken to compute the rele-

vant prefix trees and then reconstruct a synthetic trajectory database

with least error is over a day.

Our system Differentially Private Trajectories (DPT) is a scal-

able end-to-end system for synthesizing regular trajectories with

provable privacy properties. DPT can synthesize trajectories span-

ning large geographical areas with significantly more utility (JSD

error on the diameter of less than 0.05) than Chen et al.’s method

and is orders of magnitude faster (fitting the model and sampling

trajectories take on the order of 100 seconds for an input of over

4 million trajectories). Figure 2 gives a schematic overview of the

steps of DPT, which incorporates the following key novel ideas:

Hierarchical Reference Systems: DPT discretizes the spatial do-

main at multiple resolutions (see Step 1 in Figure 2) using a hierar-

chy of reference systems, maintaining one prefix tree for each res-

olution (Step 2). Different reference systems capture movements

at different speeds. Within each reference system individuals are

restricted to move from each point to only a small number of neigh-

boring points in one step. Thus, while there are a larger number of

prefix trees, each prefix tree has a much smaller branching factor

resulting in a big reduction in the number of counts maintained by

the model.

Model Selection: Materializing prefix trees with too large a height

or at resolutions that do not correspond to viable speeds can signif-

icantly hurt utility. The reference systems (corresponding to reso-

lutions at which the spatial domain is discretized) for which prefix

trees are materialized, and the heights of trees are hard to set with-

out looking at the database. Hence, DPT uses a novel model se-

lection algorithm (Step 3) to set these parameters in a differentially

private manner. As in prior work, noise drawn from the Laplace

distribution is added to the chosen prefix trees (Step 4), and these

noisy trees are pruned adaptively (Step 5) to further improve utility.

Direction Weighted Sampling: Most real world trajectories have

an inherent directionality. This is captured to some extent by the

Markov model, and trajectories sampled from the true model tend

to retain this property. However, this directionality could be lost

due to the noise added to the counts of the prefix trees in the private

model. In line with prior work on enforcing constraints in differ-

entially private query answering [13], we present a novel postpro-

cessing strategy to restore directionality while sampling synthetic

trajectories from the noisy model.
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Organization: We first discuss related work in Section 2 and present

our hierarchical reference systems in Section 3. Section 4 describes

our differentially private techniques for learning the model from the

data, including model selection and direction weighted sampling.

We present a thorough experimental evaluation in Section 5, using

real and model-generated data sets.

2. RELATED WORK
Studies on human mobility patterns [10, 23] have shown that in-

dividual trajectories are both highly unique and predictable. The

study by Montjoye et al. [10] shows that the uniqueness of human

mobility traces decays only slightly as their spatial and temporal

resolution coarsens. This high identifiability indicates the diffi-

culty of achieving properties such as k-anonymity, where at least

k individuals have the same trajectory, using generalization, bucke-

tization, and suppression techniques. Nevertheless, there have been

numerous attempts in this direction [2, 8, 14, 18, 25, 28]. At the

same time, individual patterns exhibit high predictability, as in the

study of Song et al. [23] who showed that each individual has more

than 90 percent potential predictability, largely independent of the

user’s typical radius. Hence, the release of an individual’s mobil-

ity data can make them susceptible to privacy attacks, such as user

identification, sensitive location and sequential tracking attacks dis-

cussed by Kopanaki et al. [16].

Because of these two properties, we aim to provide a differen-

tially private algorithm, first to give a more robust privacy guarantee

than k-anonymity and second to synthesize traces resembling the

repetitiveness of an individual’s trajectories. Several prior works

have offered approaches to this question [6, 7, 20, 22], but these

do not adapt well to general trajectory data. Shao et al. [22] de-

velop sampling and interpolation strategies to a variant (weaker)

form of differential privacy. A line of work achieves ε-differential

privacy by publishing synthetic traces with hierarchical structure

[6, 7] and frequency vectors [20]. The hierarchical framework cap-

tures the dependency of sequential data with a Markov assumption

and achieves scalability with a set of pruning strategies. Chen et al.

[7] build a tree by grouping trajectories with the same prefix, but

due to the high uniqueness of patterns, the counts for leaf nodes are

very sparse. In subsequent work [6], substrings are taken into ac-

count for building an exploration tree based on a Markov assump-

tion, so that leaf counts are higher and hence offer better utility.

This line of work gives good insight into synthesizing the mo-

bility patterns of individuals, but fails to address challenges faced

in building Markov models for real unconstrained trajectory data.

First, the large spatial and temporal domain size in trajectory data

usually results in a large number of transition possibilities even for

a 1st-order Markov model [20]. Pruning strategies proposed in [6,

7] help to scale, but their impact on accuracy is unknown. The do-

main studied in [6, 7] is short trajectories logged at subway stops,

which are both shorter and over a smaller domain than the cases we

wish to study. These works truncate trajectories to bound the sensi-

tivity of queries, but there is no discussion on the optimal methods

to extract the most useful information of the trajectories. Last, they

propose post-processing algorithms on the hierarchical counts, but

in an ad hoc way, with no connection to a desired utility metric.

Pratesi et al. [20] define adjacency for reference points, and remap

observations to step between adjacent points in order to reduce the

number of possible transitions. However, only one reference sys-

tem of homogeneous reference points is used, meaning that many

steps take place between the same reference point, and so are dis-

carded. In our work, we use a hierarchical reference system to

capture different types of movement, and so minimize the loss of

information during the mapping. Related work on adaptive spatial

D Trajectory database
PT Personal Trajectory table of an individual
t A single trajectory
Σ A set of latitude-longitude coordinates
σ Latitude-longitude coordinate of a location
Σ Reference system, a set of anchor points
a Anchor point in reference system Σ
⊤ Starting symbol
⊥ Ending symbol

Σk k-gram pattern

c(t,x) The number of occurrences of x ∈ Σk in t

c(PT,x) The number of occurrences of x ∈ Σk in PT

c(D,x) The number of occurrences of x ∈ Σk in D

Table 1: Notation Summary

partitioning [7, 9, 21] has explored the adaptive decomposition of

space under differential privacy, but this work looked primarily at

point distributions rather than trajectories. Chen et al. [7] build

a prefix tree with hybrid-granularity, where each level of the tree

has two sub-levels of generalized locations and non-generalized lo-

cations. This hybrid granularity helps prune out nodes associated

with zero-frequency patterns, but it is not clear how to generalize

nodes at each level. Qardaji et al. [21] present an adaptive grid by

laying a coarse-grained grid over the dataset, where each cell is then

refined according to its noisy counts to answer range queries over

the space. Cormode et al. [9] compute private medians for building

data-dependent trees. These methods are effective for spatial de-

composition when assuming no sequential dependency among lo-

cations. We extend the idea of adaptive decomposition of space to

hierarchical reference systems in order to capture trajectories with

different speeds and sampling rates.

Recent work [4, 6] on providing differential privacy for sequen-

tial data under Markov models represent the trajectories as strings

(of locations). Similar to Chen et al. [6], Bonomi et al. [4] con-

strain the amount of information contributed to the query output in

order to bound the sensitivity of queries, but the difference is that

Bonomi et al. has a stable transformation over each object in the

sequential data by selecting top patterns of each object instead of

taking the first few occurrence of sequential data. Taking only top

patterns for each object may miss the global information across all

individuals while the first few observations of sequential data may

capture some global information, but miss information at the end

of long trajectories.

3. HIERARCHICAL RS MODEL
We next describe a Markov model for mobility trajectories and

build up to our novel hierarchical reference systems (HRS) model.

3.1 Notation and Background
Given a spatial domain Σ, a regular trajectory t is a sequence

of locations (σi) observed and recorded at regular time intervals,

where σi ∈Σ for i = 1,2, · · · . The spatial domain is usually a set of

latitude-longitude coordinates. We consider a trajectory database

D consisting of |D| individuals. Each individual has a personal tra-

jectory table, denoted by PT with each tuple representing a regular

trajectory, t. It is possible for an individual to have multiple trajec-

tories, of varying lengths, where length is defined as the number of

points in the trajectory. We call any sequence x ∈Σk of k locations

as a k-gram. If x is a k-gram and y is an ℓ-gram, then we denote

by xy the (k+ ℓ)-gram obtained by appending the sequence y to se-

quence x. We denote by c(t,x) the number of occurrences of x in t,
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c(PT,x) the total number of occurrences of x in the trajectory table

PT , i.e. c(PT,x) = ∑t∈PT c(t,x), and c(D,x) the total number of

occurrences of x in the database D, i.e. c(D,x) = ∑PT∈D c(PT,x).
We summarize the notation of the paper in Table 1. Markov pro-

cesses [19] to model correlations between contiguous locations in

a regular mobility trajectory are defined as follows.

DEFINITION 3.1 (MARKOV PROCESS). A regular trajectory

(σ1σ2 · · ·σn) ∈ Σ
n is said to follow an order ℓ Markov process if

for every ℓ≤ i < n, σ ∈Σ

Pr[σi+1 = σ |σ1 · · ·σi] = Pr[σi+1 = σ |σi−ℓ+1 · · ·σi]. (1)

We refer to the probability Pr[σi+1 = σ |σi−ℓ+1 · · ·σi] as a transi-

tion probability of the Markov process. The collection of transition

probabilities for all x = σi−ℓ+1 · · ·σi ∈Σ
ℓ can be estimated using

the set of all ℓ- and ℓ+1-gram counts, i.e.

Pr[σi+1 = σ |σi−ℓ+1 · · ·σi] =
c(D,xσ)
c(D,x)

. (2)

Typically, a starting symbol (⊤) and a stopping symbol (⊥) are

prepended and appended (respectively) to the original trajectories

so that the starting and stopping probabilities are captured in the

model (and are treated as special locations in Σ). A synthetic tra-

jectory is initialized with a starting symbol (⊤) and is continuously

sampled by picking the next location from the Markov process till

reaching the stopping symbol (⊥). Formally, let x = (⊤σ1 · · ·σi)
denote the prefix of a trajectory sampled so far and x′ the longest

suffix of x of length ℓ ≤ (k− 1), where (k− 1) is the maximum

order of Markov process considered. The next location is chosen

using the transition probability given x′ in the order ℓ model. Thus,

sampling synthetic trajectories requires us to maintain all ℓ-gram

counts for 1≤ ℓ≤ k. These counts can be stored in a prefix tree T

of height k — nodes in T are Σ1∪·· ·∪Σk, and edges connect each

ℓ-gram x to an (ℓ+1)-gram xσ , for all σ ∈ Σ.

3.2 Discretization and Reference Systems
A trajectory is usually recorded as a sequence of points in some

continuous domain Σ, e.g. latitude-longitude coordinates. One

common way to analyze trajectories on a continuous domain (and

to limit the size of the model) is via discretization of the space using

a reference system [24].

DEFINITION 3.2 (REFERENCE SYSTEM). A reference system

(RS) is a set of anchor points Σ ⊂ Σ, associated with a mapping

function f : Σ→ Σ.

In this work, we use a reference system constructed by imposing

a uniform grid over the space and choosing the centroids as anchor

points. We denote such a reference system by Σv, where v denotes

the resolution or the length of the side of each grid cell. Varying

the resolution v results in different reference systems; coarse grids

(large v) correspond to fewer anchor points, and fine grids (small v)

result in a larger number of anchor points. The function considered

here for the reference system Σv is represented by fv and maps a

point in Σ to its closest anchor point in Σv (if a point is equidistant

to more than one anchor point, ties are broken in a consistent way).

3.3 Hierarchical Reference Systems
Even with the use of a reference system Σ, the number of pa-

rameters (transition probabilities) to specify a Markov model can

be very large. The model requires ≈ |Σ|k+1 counts (for large |Σ|)
in a prefix tree T of height k (i.e., ℓ-gram counts for 1 ≤ ℓ ≤ k).

For instance, if Σ is a coarse 16×16 grid partitioning the space into

256 cells, then for k = 3, |Σ|k+1 ≈ 4 ·109. Yet, grids of much finer

resolution are needed to model all the transitions in the data.

Figure 3: Map trajectory with different granularity

Therefore, rather than building a Markov model using a single

reference system ([6, 7, 20, 24]), we adopt a novel approach in

DPT. First, given a reference system Σ, we choose to estimate tran-

sition probabilities of ℓ-grams, x ∈ Σℓ to only the anchor points that

are “close” to the last observed location in x. In the context of a

uniform grid based reference system Σv, we only consider transi-

tions from a grid cell a to either itself or to its 8 adjacent cells. We

call them the neighboring cells. All other transition probabilities

are forced to be 0. Under this constraint, we only need to maintain

|Σv| 1-gram counts, 9 · |Σv| 2-gram counts, 92 · |Σv| 3-gram counts

and so on, thus reducing the total number of counts in the prefix

tree T from |Σv|
k+1 to O(9k · |Σv|).

However, restricting transitions to only neighboring anchor points

cannot capture all the transitions in the original trajectories under

any single reference system. This is because, even within a single

trajectory, objects tend to move at different speed ranges. For in-

stance, a taxi may travel at greater speeds on a highway, but with

much slower speeds in downtown, and both types of driving can

occur in a single trip. Hence, we use a set of reference systems to

capture motion at different speed ranges, and transitions in each of

these reference systems occur between anchor points that are close.

DEFINITION 3.3 (HIERARCHICAL REFERENCE SYSTEMS).

Let Σv denote the set of centroids of cells in a uniform grid of reso-

lution v. The hierarchical reference systems HRS = {Σv1
, . . . ,ΣvM

}
is a set of reference systems that have a hierarchical relationship,

where v1 < · · · < vM . For any anchor point a ∈ Σvm
, we define (1)

its parent in Σvm′
, where m′ > m as the closest point to a in Σvm′

,

par(a,Σvm′
) = argmina′∈Σv

m′
d(a′,a)

and (2) its children in Σvm′
, where m′ < m as

children(a,Σvm′
) =

{

a′ ∈ Σvm′
|par(a′,Σvm

) = a
}

.

If multiple anchor points can be the parent of a single anchor point,

ties are broken in a consistent way. In this paper we consider a set

of reference systems with geometrically increasing resolutions, i.e.

{Σv1
, . . . ,ΣvM

}, where vm/vm−1 = 2, for all 1 < m ≤ M. Such an

HRS can capture motions at different speed ranges in the raw trajec-

tory t — long steps (pairs of consecutive points which are far away)

are mapped with coarser reference systems while shorter steps are

mapped with finer reference systems. We assume the longest step

in the whole database is less than vM .

Given an HRS, we want to replace each point on the raw tra-

jectory t by its closest anchor point in one of the reference sys-

tems. The goal is to choose the appropriate reference system for

each raw point, such that the resulting trajectory has the following

property: consecutive points on it are either neighbour anchors in
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Figure 4: Prefix tree T2 for Σv2

the same system, or have a parent-child relationship. (These prop-

erties ensure that we can model the trajectories by an HRS with

bounded fanout.) Algorithm 1 shows how to achieve this, but we

start by illustrating it via Example 3.1. The resulting trajectory trs

then becomes a sequence of segments, where a segment is defined

as contiguous anchor points from the same reference system. We

introduce a new start symbol ⊤vm
as a special location in each ref-

erence system Σvm
to indicate the start of a segment falling into that

reference system. Σv0
can represent the stopping symbol ⊥.

EXAMPLE 3.1. Figure 3 considers four grid-based reference

systems Σv1
,Σv2

,Σv3
,Σv4

, where v1 = v2/2 = v3/4 = v4/8. Each

point is represented in the form of (x,y)m, where m indicates that

the reference system is Σvm
, and x and y are the horizontal and ver-

tical indexes in Σvm
. The trajectories shown here refer to the same

trajectory. The first four points in t are mapped to anchor points

in Σv2
as (3,0)2(4,0)2(4,1)2(5,1)2 (neighboring cells in Σv2

), as

each step crosses more than one cell in Σv1
. Similarly, the next

step after (5,1)2 crosses more than one cell in Σv2
, and hence a

coarser reference system Σv3
is used for the mapping, resulting in

the anchor point (2,0)3. Though the next step after (2,0)3 could

be mapped to a finer reference system Σv2
as (7,1)2(8,1)2, this is

not preferable, since the trajectory is not slowing down. Greedily

changing the reference system to a finer resolution is not favored.

Hence, we adopt the rule that only when at least 3 consecutive

points are mapped to the same cell of the current reference system

do we change to a finer reference system. This gives more contigu-

ous points in Σv3
: (2,0)3(3,0)3(4,0)3(5,0)3(6,1)3(6,1)3(6,1)3.

As the last three points remain in the same cell of Σv3
, this im-

plies slowing down, and so the following points are mapped to a

finer reference system Σv2
as (13,3)2(13,4)2(13,5)2(14,6)2. This

results in three segments: (1)⊤(3,0)2(4,0)2(4,1)2(5,1)2(2,0)3;

(2)⊤v3
(2,0)3(3,0)3(4,0)3(5,0)3(6,1)3(6,1)3(6,1)3(13,3)2;

(3)⊤v2
(13,3)2(13,4)2(13,5)2(14,6)2⊥.

Algorithm 1 summarizes our proposed transformation process.

This process starts with adding start symbol ⊤ to indicate the be-

ginning of a trajectory in Line 1. m∗ represents the optimal refer-

ence system used for the current mapping when iterating through

the sequence of points in Line 3-10. Line 4 specifies that every

step (pair of consecutive points) in the raw trajectory is mapped to

neighboring cells (a1,a2) within the same reference system at the

most detailed resolution. This ensures that the finest resolution at

the same or coarser level is used (lines 5-6). However, this greedy

mapping may lead to many short segments. Hence, in Lines 7-9,

before updating the optimal reference system Σvm∗
to a finer refer-

ence system Σvm′
, we check if both current and previous steps are

sufficiently small (the three consecutive anchor points in the previ-

ous optimal reference system are the same). The intuition for this

Input: t = σ1σ2...σ|t|: regular trajectory,

HRS = {Σv1
, . . . ,ΣvM

}: M hierarchical reference systems.

Output: trs: sequence of anchor points in HRS

1: Initialize trs = (⊤) // start symbol

2: Initialize optimal reference system index m∗ = 1

3: for i = 2 : |t| do

4: m′← finest reference system Σvm
s.t.

d( fvm
(σi−1), fvm

(σi))≤ vm

5: if vm′ ≥ vm∗ then

6: m∗← m′ // coarser or the same reference system

7: else if fvm∗
(σi) = fvm∗

(σi−1) = fvm∗
(σi−2) then

8: // stay in the same cell (assume σ0 = σ1)

9: m∗← m′ // finer reference system

10: Add fvm∗
(σi−1) to trs

11: Add fvm∗
(σ|t|) and ⊥ to trs // last point and stopping symbol

12: return trs

Algorithm 1: HRS-based Transformation

is that if the travelling speed is halved to the previous speed range

vm∗ , at least 2 consecutive steps may fall into the same cell in the

current reference system because of the geometrically increasing

setting of HRS, i.e. vm/vm−1 = 2.

3.4 Hierarchical RS Model
We now present a probabilistic generative model for trajecto-

ries based on hierarchical reference systems HRS = {Σv1
, . . . ,ΣvM

}.
Let x = (⊤a1 · · ·ai) denote the prefix of a trajectory that has been

mapped to HRS using Algorithm 1. Thus x may contain anchor

points from Σv1
∪ . . .∪ΣvM

. Given x, there are two ways to extend

x to the next anchor point ai+1 where (1) ai+1 is a neighboring cell

of ai in the same reference system; or (2) ai+1 is the parent or a

child of ai in a different reference system. The count for each ex-

tension is maintained in a set of prefix trees {T1, . . . ,TM}, where

each Tm has a height k, similar to the basic Markov process de-

scribed in Section 3.1, We name this set of prefix trees as a forest

F or forest counting query as defined in Definition 3.4. Nodes

in the prefix tree Tm correspond to ℓ-grams in Σvm
for 1 ≤ ℓ ≤ k,

as well as ℓ-grams appended with a move to a different reference

system m′ 6= m. Thus, every node in Tm has 9 children represent-

ing moves to neighboring cells in the same reference system (same

speed range), and M children representing moves to different ref-

erence systems including ⊥ as Σv0
(change speed range). In Exam-

ple 3.2, we give more details on F built from the trajectory shown

in Example 3.1. Then we will continue illustrating how to sample

trajectories from F in the next section (Section 3.5).

DEFINITION 3.4 (FOREST COUNTING QUERY F(·)). The term

‘Forest counting query’ refers to the set of counting queries on the

database D to build model F , denoted by

F(D) = {c(D,x)|x ∈ T ,T ∈ F} . (3)

EXAMPLE 3.2. Given the hierarchical reference systems in Ex-

ample 3.1, HRS = {Σv1
,Σv2

,Σv3
,Σv4
}, we build a forest consisting

of 4 prefix trees: F = {T1,T2,T3,T4}. In Figure 4, we material-

ize some of the nodes in T2 whose counts are contributed to by the

segments resulting from the transformation of trajectory t in Fig-

ure 3. The highest level of T2 consists of all the anchor points in

Σv2
, the starting symbol ⊤, and the start of a segment ⊤v2

. The

1-grams listed in Figure 3 add counts to their corresponding nodes

in T2. For instance, (4,1)2 increments the count of node (4,1).
All the nodes except ⊤ and ⊤v2

have two types of children: those

that remain with the same step size v2, and those with a different
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step size from their parent. For instance, the 2-gram (4,1)2(5,1)2

corresponds to the node (4,1)(5,1) which stays in the same ref-

erence system Σv2
; the 2-gram (14,6)2⊥ corresponds to the node

(14,6)Σv0
which changes from Σv2

to Σv0
(a stop) and the 3-gram

(4,1)2(5,1)2(2,0)3 corresponds to the node (4,1)(5,1)v3 which

changes from Σv2
to Σv3

. ⊤ indicates the start of a trajectory and

⊤v2
indicates the start of a segment (changing from another refer-

ence system). They could be followed by any anchor points in Σv2
.

The 2-gram⊤(3,0)2 and⊤v2
(13,3)2 increment the counts of nodes

⊤(3,0) and ⊤v2
(13,3) in T2 respectively.

The desiderata for anchor points constituting DPT’s hierarchical

model are that: (a) anchor points have a small (O(1)) number of

neighbors in each reference system, (b) a parent anchor point in

one reference system has a small number of children anchor points

in the next finer reference system, and (c) the average distance be-

tween neighboring anchor points increases by constant factors in

each reference systems. While we make use of grid-based systems,

these requirements could also be achieved by systems based on e.g.

clustering and pruning points of interest. The choice of reference

systems does not affect the privacy guarantee, but may impact util-

ity; to remain focused, we confine this study to using grids only.

3.5 Sampling Trajectories
Given a forest F = {T1, , ...,TM} of height k built upon HRS =

{Σv1
, ...,ΣvM

}, trajectories are sampled independently of each other.

We sample the starting reference system Σvm
using probabilities

proportional to the count of start symbol ⊤ in each Tm. Let x =
(⊤a1 · · ·ai) denote the prefix of the trajectory generated thus far,

and x′ denote the longest suffix of x (of length ℓ < k) from the same

reference system. Given x′, the next location is chosen in two steps:

(1) choose a reference system Σvm
from HRS or stopping symbol⊥

(represented by Σv0
), and then (2) transition to a neighboring cell of

ai in the chosen Σvm
. Both probabilities depend on the immediate

history (of ℓ ≤ k events) in the same reference system as ai. Thus,

the first probability can be estimated from F as:

Pr[Σvm
|x] =

c(D,(x′Σvm
))

c(D,x′)
, (4)

c(D,(x′Σvm
)) is the number of occurrences of x′ followed by a move

in reference system Σvm
, for m ≤ M, in the database D. Given x′,

we first sample the next reference system Σvm
based on the transi-

tion probability (4). For a neighboring cell a in the new reference

system Σvm
, the second probability can be estimated as:

Pr[a|x,Σvm
] =

c(D,(x′a))

c(D,x′)
. (5)

If a move to the same reference system is sampled, sampling con-

tinues using the first 9 children of x′; if a move to a coarser ref-

erence system is sampled, sampling continues using the ancestor

of the last location in x′; if a move to a finer reference system is

sampled, sampling continues using one of the children of the last

location in x′. For the last case, rather than uniformly sampling a

child of the last location ai, we sample ai+1 from the children of ai

in the new reference system Σvm
using probabilities proportional to

the count of ⊤vm
ai+1 in Tm. The trajectory generation is stopped

when a maximum length Lmax is reached, or if a stopping symbol

⊥ is sampled as the reference system Σv0
.

4. PRIVATE MODEL LEARNING
Two aspects of the HRS model need to be learned: (i) the struc-

ture of the model, i.e., the set of reference systems to be included in

the model, and the height of the prefix trees for the chosen reference

systems, and (ii) the transition probabilities, within and across the

chosen reference systems. Transition probabilities are learned from

the data by estimating counts in corresponding prefix trees. Dif-

ferentially private methods for prefix tree construction have been

studied in prior work [6, 7], and our prefix tree construction algo-

rithm (Section 4.3) follows the approach in prior work with a few

notable additions. We normalize the counts in the original trajec-

tory table of each individual to bound the sensitivity (see Defn. 4.2)

of the forest counting query. Adding noise to subtrees of the prefix

tree with low counts can lead to low signal to noise ratios. We pro-

pose an adaptive pruning strategy to eliminate such subtrees, which

outperforms prior prefix tree pruning strategies.

The main privacy contributions of our work, however, are (a)

a novel differentially private model selection algorithm for learn-

ing the structure (Section 4.2), and (b) a direction weighted sam-

pling strategy that recovers the global directional properties from

the data that might be lost due to the noisy transition probability

learning phase (Section 4.4). Structure learning is crucial, since the

set of appropriate reference systems is not known apriori. A range

of candidate reference systems that capture most of the transitions

can be learned purely using domain knowledge (of typical speeds)

and without access to the data. However, as we show in our exper-

iments, even within this range, only a few of the reference systems

may have sufficient data support. Hence, structure learning based

on the data can significantly improve the signal to noise ratio, and

thus the utility of the learned model.

In this section, we summarize the model of differential privacy

and describe our novel model selection algorithm, followed by a

brief overview of our methods for estimating transition probabil-

ities privately. We then outline direction weighted sampling. We

conclude with an end-to-end privacy evaluation of the system.

4.1 Differential Privacy
We define ε-differential privacy [12] in the context of trajectory

databases. Let D1,D2 be two neighboring trajectory databases, i.e.

D1 and D2 differ in only one individual’s trajectory table PT , writ-

ten as ‖D1−D2‖ = 1. This paper consistently takes this to mean

that PT is present in only one of the two databases.

DEFINITION 4.1 (DIFFERENTIAL PRIVACY). Let D1, D2 be

two neighboring databases. Let M denote a randomized algorithm

over databases, and O be a possible output of M. Mechanism M is

said to be ε-differentially private, for ε > 0, if

Pr[M(D1) = O]≤ exp(ε)Pr[M(D2) = O]. (6)

In our setting, differential privacy guarantees that no individual’s

trajectory table can significantly affect the released information —

the output distribution generated by M is nearly the same, whether

or not the individual’s trajectory table is present in the database.

We make use of the concept of global sensitivity [12].

DEFINITION 4.2 (GLOBAL SENSITIVITY). The global sensi-

tivity of a function q : D → R
d , denoted by S(q) is defined as

the largest L1 difference ‖q(D1)− q(D2)‖1, where D1 and D2 are

neighboring databases that differ in one personal trajectory table.

More formally,

S(q) = max
D1,D2:‖D1−D2‖=1

‖q(D1)−q(D2)‖1. (7)

One common technique used to achieve differential privacy is

the Laplace mechanism proposed in [12]:

DEFINITION 4.3 (LAPLACE MECHANISM). The Laplace mech-

anism privately computes a function: q : D → R
d by computing
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q(D)+η , where η ∈ R
d is a vector of independent random vari-

ables, where ηi is drawn from the Laplace distribution with param-

eter S(q)/ε . That is, Pr[ηi = z] ∝ e−z·ε/S(q).

4.2 Private Model Selection
To ensure differential privacy, Laplace noise is added to the counts

of the prefix trees in F . The noisy count for each node x in the pre-

fix tree is denoted by c̃(D,x). Given a privacy budget ε to learn

the noisy counts in Tm ∈ F of height k (see Section 4.3), the total

amount of noise can be measured as:

Nm(ε,k) = E

[

∑
x∈Tm

(c(D,x)− c̃(D,x))2

]

= ∑
x∈Tm

Var(ε,k,x), (8)

where Var(ε,k,x) = 2
ε(x)2 and ε(x) is the privacy budget used to

compute the noisy count for x and is dependent on ε and k. The

total noise added to F corresponds to the variance of the model

F , which grows linearly in the number of trees and quadratically

in the tree height k. Thus, the variance introduced by the Laplace

mechanism can drown out the signal for large forests.

On the other hand, we would like our hierarchical reference sys-

tem set to be full; i.e., every move in the trajectory dataset D can

be captured as a move between neighboring cells in some reference

system. Based on domain knowledge one can construct a full ref-

erence system set {Σv1
, ...,ΣvM

} in a data independent fashion (for

instance, by picking vm’s as powers of 2 that capture the smallest

and largest step sizes). We denote the forest F built on the full

model by Ffull. Moreover, the trees in the forest are preferred to

have height k large enough to cover high order correlations.

Our approach to solve this problem is to drop some of the trees

(resulting in F+ ⊂Ffull) and/or choose a proper height k such that

the least bias is introduced into the model (since some of the tran-

sitions may no longer be accurately captured). We approximate

the bias which arises from dropping a tree by the squared counts

of moves from the corresponding reference system, since we are

effectively representing these counts by zeros. Let cm(D) be the

number of transitions in D that occur in reference system Σvm
(the

sum of 1-gram counts in Tm). Since cm(D)2 is an upper bound for

the squared counts of i-grams for i> 1, it can be used as an estimate

of the bias at level i in Tm. Thus, Tm of height k has a total bias of

k · cm(D)2. (9)

We use a small part of the privacy budget εs to compute the noisy

cm(D) to ensure the privacy guarantee of the model selection pro-

cess. Hence, the variance for the tree Tm ∈ F+ of height k is com-

puted as Nm(εr,k), where εr = ε− εs.

Summing up the variance and bias terms specified in Eqns. (8)

and (9) gives the total error of F+ of height k:

Error(F+,εr,k,D) = ∑
Tm∈F+

Nm(εr,k)+ ∑
Tm∈(Ffull−F+)

k · cm(D)2. (10)

Our goal is to find the optimal model F+∗ of height k which mini-

mize the overall error specified in Eqn. (10) w.r.t. F+ and k,

F
+∗(εr,D) = argmin

F+⊆Ffull,k≥2

Error(F+,εr,k,D). (11)

Eqn. (11) satisfies an interesting, and intuitive monotonicity prop-

erty of the optimal reference systems as a function of privacy bud-

get εr, and data size |D|: (1) given fixed data size |D|, a larger εr

allows either more reference systems to be chosen, or trees to have

larger heights; (2) given fixed privacy budget εr, a larger dataset

allows either more reference systems to be chosen, or trees to have

larger heights. We omit formal statement and proof of these claims

Input: D: database, Ffull: full model of size M, ε: total privacy

budget, εs: privacy budget for model selection, kmax: the max-

imum tree height

Output: (F+∗,k): a subset of Ffull of order k

1: Count moves in each reference system: (c1(D), ...,cM(D))
2: (c̃1(D), ..., c̃M(D))← (c1(D), ...,cM(D))+Lap(1/εs)

M

3: M∗← largest index m in {T1, . . . ,TM} s.t. c̃m(D)≥ 2
ε2

s

4: Initialize k = kmax, F+∗ = {T1, · · · ,TM∗}
5: εr = ε− εs

6: while k ≥ 2 do

7: Compute Nm(εr,k), C̃m(D,k) ∀Tm ∈ F+∗

8: F+∗(εr,D) = argminF+⊆F+∗ Error(F+,εr,k,D)

9: if F+∗(εr,D) = /0 then

10: return (F+∗∪{TM∗} ,k)
11: else

12: F+∗ = F+∗(εr,k,D)
13: k = k−1

14: return (F+∗∪{TM∗} ,k)

Algorithm 2: Private Model Selection

for brevity. This monotonicity property means that given fixed

dataset D and privacy budget εr,

argmin
F+⊆Ffull

Error(F+,εr,k+1,D)⊆ argmin
F+⊆Ffull

Error(F+,εr,k,D).

(12)

Hence, we propose Algorithm 2 to search for the optimal F+∗ and

also k by decrementing the value of k from its maximum possible

value. In this way, the search space of the optimal model at k is

not the subsets of Ffull any more, but the subsets of the optimal

model at k + 1 (as shown in Line 8). In Algorithm 2, Lines 1-

2 use a privacy budget of εs to compute the noisy bias for each

reference system if the corresponding system is dropped. Line 3

chooses the coarsest possible reference system ΣvM∗
, which has a

noisy root count square greater than the variance of the noise 2
ε2

s
.

Lines 4-5 initialize the full model’s maximum allowed tree height

k and remaining budget εr. Then the variance in F+∗ is estimated

based on the remaining budget εr . Lines 6-14 identify the best

model with the lowest Error(F+,εr,k,D) given the height k. The

coarsest reference system is included in final output (in Line 10 and

14) in order to record any large steps which the optimal model fails

to capture. This algorithm may not guarantee the optimal solution

for Eqn. (11), but reduces the searching space based on Eqn. (12)

and is shown to be effective in our evaluation (Section 5.4).

4.3 Learning Transitions

Noisy Forest Counts. The transition probabilities in the optimal

model (F+∗,k) can be learned by adding Laplace noise to the

counts of the prefix trees corresponding to F+∗. Each transition

maps to exactly one prefix tree in F+∗, and affects the counts of

exactly one node at each of the k levels of the tree. Thus, adding

or removing a user’s trajectory table with at most L transitions af-

fects at most L · k nodes. However, there is no apriori bound on L,

resulting in an unbounded sensitivity for the forest counting query.

Rather than resorting to truncating a user’s trajectories [6, 7] or

sampling a bounded number of transitions from a user’s trajectory

table [4, 27], we choose to normalize the counts such that the total

weight contributed by all transitions in a user’s trajectory table is 1.

That is, if PT has L transitions, then each transition will contribute

a weight of 1/L to the counts in the prefix tree. Thus, a user’s

trajectory table contributes at most weight 1 to level i of all prefix

trees, resulting in a sensitivity of k for the forest counting query.
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We follow Cormode et al.’s [9] strategy of splitting the privacy

budget εr geometrically across the different levels of the prefix

trees. The roots of the prefix trees are assigned a privacy bud-

get ε0. Level i nodes receive a budget of εi = ε0 · γ
i, where γ =

2
1
3 is a multiplicative factor that increases the budget (resulting

in smaller noise) as we move down the prefix tree (to account for

lower counts). ε0 is set such that ∑
k
i=0 εi = εr. For a node at level

i in a prefix tree, a noisy count c̃(D,x) = c(D,x)+η is released,

where η is drawn from Laplace(1/εi).

Adaptive Pruning. Model selection prunes away prefix trees T

with low support and chooses a height k. However, in each re-

maining tree T , a large fraction of the nodes may have a count of

0. Releasing noisy counts for nodes with zero counts increases the

size of the tree and dilutes the signal to noise ratio. Hence, as in

prior work [6], after adding Laplace noise to nodes in the prefix

tree, (including nodes with a count of 0), we determine some sub-

trees to remove. Our pruning strategy is different from prior work:

Nodes in tree T are traversed breadth-first. With each node x ∈ T ,

we associate a threshold θ̃(x) based on signal to noise ratio. If the

noisy count c̃(D,x) is greater than the threshold θ̃(x), we release

the noisy count and continue. Otherwise, we prune away all the de-

scendants of x. If the privacy budget (ε ′) that would have been used

for a descendant of x is greater than that for node x, then we recom-

pute the noisy count for x using ε ′. We could potentially combine

the two counts using techniques from [26] to improve the accuracy.

Choice of Threshold θ̃(x): There are many choices for setting the

thresholds θ̃(x). A simple data independent method, which we call

fixed pruning, is to apply a fixed threshold θ for all the nodes in the

tree. When θ̃ is too small, we would add noise to many nodes with

a true count of 0. If θ̃ is too large, we may prune away nodes with

large true counts. Both scenarios result in poor utility.

Hence, we propose an adaptive pruning strategy to select dif-

ferent thresholds for different nodes such that pruning results in a

reduction in total error with high probability. The intuition behind

adaptive pruning is the same as that for our model selection strat-

egy: if the count of a node x is much smaller than the number of

its descendants, then the bias introduced by pruning the subtree be-

low x is much smaller than the variance due to noisy counts (if the

subtree is not pruned). This is formalized in the following lemma:

LEMMA 4.1. Let T be an input tree of height k, and x a node at

level ℓ. Let desc(x, i) denote the number of descendants of x in level

i, εi the privacy budget allocated to nodes at level i by geometric

budgeting, and ε ′ = εr−∑x′ is a prefix of x ε(x′). Let T̃ be the noisy

tree from the Laplace mechanism (with geometric budgeting). Let

T̃pruned be the result of pruning the subtree under x whenever

c(D,x)< θ(x) =

√

√

√

√

2

k− ℓ+1

(

k

∑
i=ℓ+1

desc(x, i)

ε2
i

+
1

ε(x)2
−

1

ε ′2

)

.

(13)

Then, T̃pruned has lower error (in expectation) than T̃ .

Note that for regular trees (where all nodes have the same de-

gree), nodes in the same level are assigned the same threshold

θ(x). However, adaptive pruning works after noise has been added

to a node, and hence has no access to the true count. We use

θ̃(x) = θ(x)− ln(1/δ )/ε(x) to prune x’s descendants when the

noisy count c̃(D,x) < θ̃(D,x). This is because with probability

1−δ if the noisy count c̃(D,x) is smaller than θ̃(x) then true count

c(D,x) is smaller than the threshold θ(x) by Chernoff bounds. This

pruning choice seems effective on real datasets in our evaluation.

Stochastic Transition Probabilities. In order for a prefix tree to

represent stochastic transition probabilities, the counts in the tree

should be non-negative. Additionally, the counts should satisfy pre-

fix consistency i.e. the count at a node x must equal to the sum of

the counts at its children. Consistency is ensured via constrained

inference using least squares minimization [13]. We modify the

original algorithm and proofs to work for the non-regular trees that

result from pruning(we omit details for brevity). Non-negativity is

ensured by (a) setting negative counts to 0 (if a node is not a leaf, all

its descendants are set to 0); (b) normalizing the counts among chil-

dren of the same parent node to obtain transition probabilities from

the parent to the children; (c) computing the counts in a top-down

approach from the original root count (obtained by consistency),

given the stochastic transition probabilities from (b).

4.4 Direction Weighted Sampling
The order ℓ Markov process captures global properties of the

trajectories, including direction, since the next value depends on the

previous ℓ values. However, the noise added for ensuring privacy

can mask this behavior. We introduce a novel direction weighted

sampling scheme to recover the directionality in the data.

We encode the neighboring cells in a grid relative to the current

cell. For instance, in Figure 3, the cell (12,7)1 in reference sys-

tem Σv1
has eight neighboring cells, one in each compass direction:

(11,6)1 in the southwest direction, (12,6)1 in the south direction,

etc. In order to avoid sudden unrealistic changes of direction, we

modify our sampling procedure to remember the recent trend. Each

direction, dir, has an equal weight when we start sampling a new

trajectory, and the weight is updated along with the sampling pro-

cess. Given the prefix of the trajectory generated so far, denoted

by x, we set the weight of the direction dir to wdir(x) = αc(dir,x),

where α is a weighting factor greater than 1. We count the number

of times x has followed direction dir by c(dir,x). However, in order

to allow a long trajectory to turn locally, we use only the window

of the last ω moves of x, denoted by x[ω], to compute the weight

of direction dir, i.e. wdir(x) = αc(dir,x[ω]). Sampling with window

size ω = 0 corresponds to the basic sampling method without con-

sidering the direction of the prefix of the trajectory. We show in

our experiments that direction-weighted sampling with a reason-

able window size ω can improve the utility of synthetic trajectories.

4.5 End­to­End Privacy Analysis

THEOREM 4.2. The DPT system satisfies ε-differential privacy.

PROOF. As we maintain normalized counts in prefix trees, not

the number of transitions, adding or removing a user’s trajectory

table results in a total change of 1 in the ith level of all prefix trees

(for all i). This normalization does not require global knowledge

and can be performed by each user independently. Thus, it is a 1-

stable transformation [17], and does not violate differential privacy.

The private model selection procedure in Algorithm 2 uses the

noisy count at the root of all the prefix trees in Ffull, and thereafter

does not use the trajectory database. Since we normalize trajecto-

ries such that the sum of the weights associated with the transitions

of a single user sum to 1, adding or removing a user results in a total

change of 1 to the set of root counts. Hence, by adding Lap(1/εs)
to each root count Algorithm 2 satisfies εs-differential privacy.

Noisy prefix trees are constructed by adding Laplace noise with

sensitivity 1 to each of the prefix trees. The εr-budget is split geo-

metrically across the levels. This again ensures εr-differential pri-

vacy. Adaptive pruning does not alter the differential privacy guar-

antee, since pruning decisions are made after noise is added. After

pruning the subtree below x, the count of x maybe re-estimated

using unused privacy budget. By composition properties of differ-

ential privacy, DPT ensures εs + εr = ε-differential privacy.
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5. EMPIRICAL EVALUATION
In this section, we empirically evaluate DPT over two large tra-

jectory datasets. The evaluation results are presented in two parts:

• Synthetic trajectories released using DPT are more useful and

scalable compared to prior work in our end-to-end evaluations.

We show that the synthetic trajectories mirror the original tra-

jectories on three utility metrics – distribution of diameter (i.e.,

distance traveled), conditional distributions of destinations given

starting regions, and frequent patterns.

• The individual algorithms powering DPT (namely differentially

private model selection, adaptive pruning and direction weighted

sampling) outperform alternate solutions derived from prior work.

We first describe our datasets and utility metrics in Section 5.1, then

list the design choices for DPT in Section 5.2. Next, we present em-

pirical end-to-end scalability and utility results in Section 5.3 fol-

lowed by utility evaluation on components of DPT in Section 5.4.

5.1 Datasets and Utility Metrics
Table 2 summarizes the two large trajectory datasets used in our

experiments. Given Σv1
, a full set of hierarchical reference sys-

tems of size 6 are considered for both datasets, i.e. Σv1
,Σv2

, . . . ,Σv6
,

where vm = vm+1/2. We will define Σv1
for each dataset below.

Taxi dataset: A set of GPS trajectories was recorded by 8602

taxi cabs in Beijing, China, during May 2009 [1]. The trajecto-

ries cover the region of Beijing within the bounding box (39.788N,

116.148W) and (40.093N, 116.612W) – approximately 34 km×
40 km. The finest resolution v1 considered is 100 m×100 m. The

raw sampling rate of these trajectories ranges from 30 seconds to

5 minutes. The dataset consists of approximately 4.3 million trips

with passengers. Each trip is linearly interpolated into a sequence

of location points at 30-second sampling intervals.

Network dataset: A set of trajectories was synthesized by Thomas

Brinkhoff’s network-based generator [5] for moving objects. The

data consists of 300 files of 50,000 individuals’ trajectories of length

up to 1,000 time units, sampled at equal time intervals. This data

covers the region of Oldenburg, a city in Germany, within a bound-

ing box of approximately 9 km× 10 km. The finest resolution v1

considered is about 50 m×50 m.

We developed three utility metrics Qd ,Qt ,Q
m
p to evaluate whether

synthetic trajectories Dsyn preserve aggregate properties of the orig-

inal trajectories Draw. We sampled 5 sets of 50,000 trajectories

from the DPT model for Dsyn and evaluated against 5 sets from

Draw each of which consists of 50000 randomly selected raw tra-

jectories. We then reported the relevant mean error or accuracy

with its standard deviation. The three metrics are described below.

Metric I: Qd - Diameter Distribution.

The diameter for a trajectory t = σ1 · · ·σn is the maximum dis-

tance between any pair of locations in t, i.e. maxi, j d(σi,σ j) ∀i, j =
1, . . . ,n. Let Qd(D) denote the empirical distribution of the diam-

eter on trajectory database D, where the diameter is quantized into

25 equal width buckets {[0,x), [x,2x), . . . , [24x,25x)}. x is set to

800m for Taxi dataset, and 400m for Network dataset (both corre-

spond to the resolution Σv4
). The error in Qd is measured by:

Ediameter = JSD(Qd(Dsyn),Qd(Draw)), (14)

where JSD(·, ·) is the Jensen Shannon divergence with range [0, ln2].

Metric II: Qt - Trip Distribution.

Given a coarse grid Σv, a starting region as is a square consisting

of 3× 3 cells from Σv. Let Das→a be the set of trajectories in D

which starts from the region as and ends at the cell a ∈ Σv. Trip

Dataset |D| Lmax Lmean Σraw (km2) v1 (m) |Σv1
|

Taxi 4,268,780 1919 20.03 34×40 100 306×463

Network 1.5×107 977 75.12 9×10 50 177×201

Table 2: Datasets Summary

settings default alt parameters

HRS opt full; Σv5
maximum tree height: kmax = 8

pruning adapt fixed; ngram; np privacy budget ε: 2.0,1.0,0.5,0.3,0.1;

model selection budget: εs = 0.1ε;

pruning parameter δ : 0.1
sampling dir nodir factor α: 1.2; window size ω: 0,4, . . . ,32

Table 3: Design choices

distribution Qt measures the distribution of the ending point a in

Das→a given as, i.e. Pr[·|as,D]. A set of 1000 starting regions S are

randomly chosen. v is set to 4km for Taxi and 1km for Network

dataset. Based on JSD(·, ·), the error in Qt is measured as

Etrip =
1

|S| ∑
as∈S

JSD(Pr[·|as,Dsyn],Pr[·|as,Draw]). (15)

Metric III: Qm
p - Frequent Patterns.

We first project the path taken by each trajectory in D on a grid Σvm
,

where the path is formed by connecting consecutive points with a

straight line. We obtain the sequence of cells the trajectory passes

through, and represent this sequence of cells with their correspond-

ing anchor points in Σvm
, for m ∈ {2, . . . ,6}. The query Qm

P takes in

D and outputs the top p patterns from Σk
vm

with the highest count,

for k = 2, . . . ,6. We consider p to be 1000 and 10000 in our evalu-

ations. The utility in Qm
p of Draw w.r.t. Dsyn is measured as

Apattern = F1(Q
m
p (Draw),Q

m
p (Dsyn)), (16)

where F1(·, ·) is the F1 score with range [0,1] (i.e., harmonic mean

of precision and recall) – a similarity measure between item sets.

5.2 Design Choices
We consider alternative implementations of DPT by varying the

structure of the HRS model (namely the reference systems used),

the pruning strategy and the sampling method as shown in Table 3.

In the default setting [opt, adapt, dir], opt refers to the model out-

put by private model selection, adapt refers to adaptive pruning,

and dir refers to direction weighted sampling. Two alternate mod-

els are presented to opt: full and Σv5
, where full refers to the full

model consisting of all the reference systems from Σv1
to Σv5

. Σv6
is

not in full as we do not expect to see transitions in Σv6
since transi-

tions in Σv6
corresponds to movements at the speed of greater than

240 miles per hour. The maximum tree height kmax in private model

selection is set to 8, but it can be set arbitrarily large and will not

affect the output of model selection. The alternate models use the

same height as the optimal model in the evaluation. Alternatives

to the pruning strategy are fixed which uses a fixed threshold of 0

(described in Section 4.3), and ngram, the pruning strategy used

in [6]. np refers to the non-private model without noise. Lastly,

direction-weighted sampling is studied by varying the window size

ω . nodir refers to the case when ω = 0.

5.3 End­to­End Evaluation
In the end-to-end evaluation, we compare DPT with the most

relevant prior work [6] denoted by seq. This prior work computes

a noisy prefix tree on the entire domain by adding Laplace noise

followed by pruning (sanitization phase), and then uses the noisy

prefix tree to reconstruct a database of sequences (reconstruction

phase). For seq, we transform the first lmax sampled points of
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each trajectory with a single reference system Σvm
, for m = 1, . . . ,6,

where lmax is the truncation length used in seq to bound sensitivity

as the input. Then this input is processed by the original code of

seq provided by [6], resulting in a differentially private synthetic

trajectory database. For end-to-end evaluations, we use the default

setting of DPT– [opt, adapt, dir].

Scalability. We ran experiments on a single machine with 2.40GHz

30MB Cache (256GB RAM - 48 hyperthreaded cores) 5 times,

and report the average time for sanitization and reconstruction of

50,000 trajectory samples. In Figure 1 on page 2, we show the run-

time of seq with increasing resolution from v6 to v2 (a 4× increase

in domain size each time) for lmax = 20 and k-grams for k≤ 4 when

ε = 1.0. The time for sanitization increases exponentially with the

domain size, i.e. O(|Σ|k), since seq considers the transitions be-

tween all pairs of points in the domain. In comparison, DPT uses

the optimal model {Σv4
,Σv5
} with a fanout of constant size, which

takes orders of magnitude less time to complete the sanitization

process. In addition, seq aims to reconstruct a database of all pos-

sible trajectories by joining shorter trajectories to form longer ones.

When a database has a large size, this approach takes a very long

time. When resolution is Σv2
, the reconstruction takes more than

5 hours to complete. We observe that the reconstruction time de-

creases from v2 to v3 and then increases again from v3 to v6. This

is because many consecutive points are mapped to the same cell

indices in the coarse reference system. This allows the reconstruc-

tion process to form longer trajectories from shorter trajectories of

repeated points. For instance, the maximum length of trajectories

reconstructed in Σv6
reaches 20, while the maximum length in Σv2

is only 5. Therefore, a sampling approach is preferred as it can

quickly produce a set of good representative trajectories with vari-

ous lengths and can be parallelized easily. Results for seq at res-

olution v1 are not reported as the program does not terminate even

after a day.

Each of the steps in DPT (as shown in Figure 2) is efficient to im-

plement. There are three main steps: preprocessing (HRS mapping

and prefix construction), sanitizing (model selection, noise infu-

sion, adaptive pruning) and sampling. The runtime complexity of

the three steps are linear respectively in input data size, domain size

and output size. On an input of over 4 million trajectories with do-

main size over 2000, preprocessing takes around 10 minutes while

sanitizing takes around 35 seconds (adaptive pruning contributes to

the fast speed of this process). Around 50 seconds are required to

generate 50,000 samples. Due to space constraints, we omit de-

tailed evaluation for each component.

Utility. In Figure 5, we show the JSD error for diameter distribu-

tion Qd , and trip distribution Qt , and F1 score for frequent patterns

Qm
p respectively when ε = 1.0. For both error metrics, as the reso-

lution gets finer (from v6 to v2), the error gets worse. DPT improves

upon seq by > 80% on Qd error and > 60% on Qt error. For Qm
p ,

given the resolution at which seq is processed, we report the accu-

racy score of the top 1,000 frequent patterns at the same resolution:

both trajectories generated by seq and DPT are projected on Σvm

for the evaluation of frequent patterns. The comparison shows that

DPT obtains better F1 score at resolutions v6 to v3, with 30% to

200% improvements, even though DPT is not necessarily gener-

ated at Σvm
. At v2, DPT performs poorly because its optimal model

selected is {Σv4
,Σv5
}, and hence it is unlikely to capture informa-

tion at fine resolution. Experiments at smaller ε also show that DPT

outperforms seq. We omit the figures due to space constraints.

5.4 Component Utility Evaluation
In this section, we report the evaluation on three components:

1) private model selection, 2) adaptive pruning and 3) direction-
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Figure 5: Utility of DPT v.s seq for Taxi, at ε = 1.0

ε 2 1 0.5 0.3 0.1

k=2 v2,v3,v4,v5 v3,v4,v5 v3,v4,v5 v3,v4,v5 v4,v5

k=3 v3,v4,v5 v3,v4,v5 v3,v4,v5 v4,v5 v4,v5

k=4 v3,v4,v5 v4,v5 v4,v5 v4,v5 v5

k=5 v4,v5 v4,v5 v5 v5 v5

k=8 v5 v5 v5 v5 v5

Table 4: Monotonicity of Taxi dataset in Section 4.2

weighted sampling on both Taxi (T) and Network (N) datasets. For

each component, we will consider alternate choices defined in Sec-

tion 5.2. The setting [full, np, dir] is chosen as the benchmark for

the optimal non-private (np) model, because full is unbiased and

close to optimal among all non-private models. All three utility

metrics are measured and frequent patterns Qm
p are reported at Σv4

for p = 1,000 and at Σv5
for p = 10,000 patterns.

Component I: Model Selection. Table 4 shows the optimal model

selected by private model selection (Algorithm 2) on Taxi dataset.

As k increases and ε decreases, the signal to noise ratio gets weaker,

and only a smaller subset of reference systems can be supported.

This validates the monotonicity property from Section 4.2. We ob-

serve similar trends for Network dataset.

We also find that the optimal model performs considerably better

than its alternatives. In Figure 6, we present two obvious alternate

models: the private full model [full, adapt, dir] and the private

coarsest reference system [v5, adapt, dir]. The optimal model opt
approached the high accuracy of the non-private full model [full,
np, dir] as ε increases. At ε = 0.1 opt achieves accuracy/error

within 85% of [full, np, dir] for Taxi dataset.

Though the non-private full model preserves good utility, the op-

timal model consistently beats the private version of the full model

[full, adapt, dir] as the private full model incurs too much noise.

Moreover, opt outperforms Σv5
at most settings. When ε is large

opt significantly outperforms Σv5
. For instance, for the Network

dataset, the optimal model for ε = 1 is {Σv2
,Σv3

,Σv5
}, and thus

captures more fine detail than Σv5
, resulting in low error. On the

other hand, at small ε , Σv5
may be the optimal model (but opt picks

a different model due to noise). In those cases, Σv5
can outperform

opt. Furthermore, the good performance of Σv5
for Q5

p and Qt can

be explained by the fact that Q5
p and Qt are measured at the same

resolution as Σv5
or at a coarser resolution.

Component II: Adaptive pruning. We substitute the default

setting of the second component (sanitizing method) — geomet-

ric noise with adaptive pruning methods (adapt), by its alterna-

tives — geometric noise with fixed threshold pruning at thresh-

old 0 (fixed), and n-gram methods (ngram) [6]. In Figure 7, we

present the evaluation results on synthetic trajectories generated
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Figure 6: Differentially private model selection v.s. other models
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Figure 7: Differentially private pruning methods

from these three settings [opt, adapt, dir], [opt, fixed, dir], [opt,
ngram, dir]. We observe that adapt performs just as well as ngram
for Q5

p,Q
4
p on Taxi dataset, but gives better accuracy than ngram

for other metrics. We conjecture two reasons for the poor perfor-

mance of ngram: First, ngram can effectively estimate the right

subtree height at each interval node and prune away subtrees with

low support when the given tree height is large. However, our pri-

vate model selection has considered the optimal tree height in opt
and hence, the height estimation in ngram is no longer useful for

opt. Second, the privacy budget is split equally amongst nodes on

the root-to-leaf path which survive after ngram pruning. Uniform

budget splits have been shown to be less accurate than geometric

noise in [9]. Furthermore, fixed seems to perform as well as adapt.
We further studied the noisy prefix trees output by the three pruning

strategies. We find that fixed adds the most number of false nodes

(nodes with true count 0) to the noisy trees leading to zigzag tra-

jectories when sampled without dir. Direction-weighted sampling,

however, lifts the accuracy of fixed.

Component III: Direction-weighted Sampling. The intuition be-

hind direction-weighted sampling is to minimize unnecessary local

turns in the synthetic trajectories. In this evaluation, we vary the

direction setting (dir) in the default setting of DPT [opt,adapt,dir],
by changing the window size ω from 0 to 32. ω = 0 refers to no-

direction weighted sampling (nodir). Default window sizes are set

to 25% of the average length of raw trajectory dataset (6 and 16

for Taxi and Network respectively). As direction-weighted sam-

pling has a larger impact on longer trajectories, we filter out Taxi

synthetic trajectories consisting of more than 15 sampled points

for evaluation, where 15 is the median number of location points

in the ground truth. For Network dataset has an average length

greater than the maximum window size evaluated, we use all syn-

thetic trajectories for evaluation. As shown in Figure 8, direction-

weighted sampling re-enforces the directionality by smoothing the

local turns, and hence results in lower errors and higher F1 scores.

For non-private model (np), the improvement by this direction con-

straint is not as significant as in the private models. For ε = 0.5,0.1,

the utility of private models improves as window size increases and

stabilizes at a window size slightly greater than 4 (the order of the

Markov process). The JSD errors for Qd and Qt are reduced up to

20% and the F1 scores are improved up to 30%.
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Figure 8: Direction-weighted sampling

6. CONCLUSIONS
The problem of releasing realistic but private trajectory data takes

on new importance as more mobility data is produced, and more

pressures arise to share versions of the data. With DPT, we intro-

duce the first system devoted to doing so for natural, speed-varying

trajectories under differential privacy. Our analysis and empirical

study demonstrate that this is an effective way to reveal informa-

tion, while provably protecting privacy.

There is much opportunity for extending this line of work. While

effective in practice, we have yet to show strong analytic guaran-

tees for the utility of data released via DPT. We have focused on

reference systems based on multi-resolution grids, but other sys-

tems could lead to better results for certain trajectories where paths

are more constrained. We believe that adapting existing interpo-

lation techniques [24] or HRS based on sampling rates instead of

speeds can allow DPT to work with irregular trajectories. Last, as

airborne sensors and drones become more prevalent, we may ex-

tend our current focus on trajectories within the (2D) plane to three

dimensional trajectories, where the data density further decreases.
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