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 This paper presents two parameter foundation models for free vibration analysis of non-

homogeneous orthotropic rectangular plate resting on elastic foundation whose concept is 

extensively used in engineering practice. Following Lévy approach i.e. the two parallel edges 

are simply supported, the fourth order differential equation governing the motion of such plates 

of non-linear varying thickness in one direction has been solved by using an efficient and rapid 

convergent numerical approximation technique that is called differential quadrature method 

(DQM). Appropriate boundary conditions accompany the differential quadrature method to 

transform the resulting differential equation into an eigenvalue problem. The effects of 

thickness variation, foundation parameters and other plate parameters with boundary 

conditions on frequency are examined. The numerical results show that the method converges 

significantly irrespective of parameters involved. 
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1. Introduction 

 

     The analysis of vibration of a plate on elastic foundation is of considerable interest and widely used 

in engineering structures such as railroad, pipeline, aerospace, biomechanics, petrochemical, marine 

industry, civil and mechanical engineering applications. Many problems in the engineering related to 

soil-structure interaction can be modeled by means of a beam and plate on an elastic foundation. In this 

context, Hetenyi (1966), Vlasov and Leontev (1966) investigated the effect of elastic foundation on the 

dynamic behavior of beams and plates. Various models approximating the supporting medium (i.e. 

foundation) such as Vlasov by Bhattacharya (1977), Pasternak by Wang and Stephens (1977) and 

Winkler by Chonan (1980) were proposed in the literature. Winkler foundation model is extensively 

used by engineers and researchers because of its simplicity and are reported in references (Gupta & 

Lal, 1978; Selvadurai, 1979; Liew et al., 1996; Gupta et al., 2012; Samaei et al., 2015).  
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      The free vibration analysis of rectangular orthotropic non- homogeneous plate on elastic foundation 

has been investigated by many researchers for the past forty years. Most of the studies on the dynamic 

behavior of rectangular plates resting on elastic foundation are devoted to Winkler foundation (Lal et 

al., 2001; Gupta et al., 2012). In Winkler model the foundation is assumed to be replaced by a series of 

unconnected closely spaced vertical elastic springs, but the main disadvantage of the Winkler model is 

the displacement discontinuity. To overcome the deficiency of Winkler model, various models have 

been proposed in the literature by different researchers. Kerr (1964) gave an excellent discussion about 

these models. Of these, the most natural extension of the Winkler model is the Pasternak model (two 

parameter foundation) as it takes into account not only its transverse reaction but also the shear 

interaction between the spring elements.  

 

      Numerous studies have appeared in the literature to analyze the effect of two parameter foundation 

on the static and dynamic behavior of rectangular plates. The prominent references are: Xiang et al. 

(1994), Omurtag and Kadioglu (1998) and Gupta et al. (2014). The numerical methods to study the 

vibrational behavior of uniform/variable thickness plates resting on elastic foundation have been 

discussed in prominent references are: Frobenious method presented by Jain and Soni (1973), finite 

difference for rectangular plates of exponentially varying thickness by Sonzogni et al. (1990), 

Rayleigh-Ritz method for free  and  forced  vibration  analysis  of  moderately  thick isotropic 

rectangular plates resting on Pasternak foundation employing by Shen  et  al. (2001). Malekzadeh and 

Karami (2004) obtained a differential quadrature solution for free vibration analysis of isotropic 

non-uniform thick rectangular plates resting on Pasternak foundation. Civalek and Acar (2007) used 

discrete singular convolution method for the bending analysis of Mindlin plates on Pasternak 

foundation. Lal and Dhanpati (2007) applied Quintic spline technique to study the transverse vibration 

of non-homogeneous orthotropic rectangular plates of variable thickness. Furthermore, a global transfer 

matrix and Durbin’s numerical Laplace inversion algorithm were employed by Hasheminejad and 

Gheshlaghi (2012) to study the transient vibration of simply supported, functionally graded rectangular 

plates resting on a linear Winkler–Pasternak viscoelastic foundation. Differential quadrature method 

(DQM) requires less grid points for desired accuracy as compare to finite difference method, finite 

element method, quintic splines, and characteristic orthogonal polynomials and Frobenius method. 

DQM was introduced by Bellman et al. (1972) and generalized and simplified subsequently by Quan 

and Chang (1989).  

 

      In the present study, differential quadrature method (DQM) is applied for computation of the free 

vibration analysis of rectangular orthotropic non-homogeneous plate of non-linear thickness variation 

embedded in two parameter foundation. The choice of Lévy approach reduces the complexity of 

governing fourth order differential equation with variable coefficients to one dimension. The effect of 

various plate parameters for a Huber type orthotropic plate material ‘ORTHO1’ (Biancolini et al., 2005) 

has been studied on the natural frequencies for the first three modes of vibration for different boundary 

conditions. Convergence studies have also been made to achieve four decimal place exactitude in 

frequencies. Frequencies and mode shapes for the first three modes of vibration are computed for 

specified plates. A close agreement of our results with those available in the literature shows the 

versatility of the DQM. 

 

2. Mathematical Formulation 
 

      Following Gupta et al. (2014), the differential equation describing the motion of a non-

homogeneous orthotropic rectangular plate of linear variation in thickness resting on two parameter 

foundation is given as follows: 
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where 
22222 /bap   and primes denote differentiation with respect to X. 

      For non-linear (parabolic) variation in thickness i.e. 
_

h= 0h (1+ α X 2) and following references (Jain 

& Soni; 1973; Malekzadeh & Karami, 2004; Gupta et al., 2014) for non-homogeneity of the plate 

material in X direction as follows: 
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  ,   is the non-homogeneity parameter,   is the taper parameter,   is 

the density parameter and E1, E2 are Young’s moduli in proper directions at X=0. 

Eq. (1) now reduces to 
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      The solution of Eq. (3) in conjunction with boundary conditions at the edges 0X and 1X  

yields a two-point boundary value problem with variable coefficients whose close form solution is not 

possible. An approximate solution is obtained by employing Differential Quadrature Method. 

 

3. Method of Solution: Dirrerential Quadrature Method 

 

      Let X1, X2, …. , Xm be the m grid points in the applicability range [0, 1] of the plate. According to 

the DQM, the nth order derivative of W(X) w.r.t. X can be expressed discretely at the point Xi as 
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where 
)(n

ijc  are the weighting coefficients associated with the nth order derivative of W(X) with respect 

to X at discrete point Xi. Following Shu (2000), the weighting coefficients in Eq. (4) are given by 
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       Discretizing Eq. (3) at grid points Xi,  i = 3, 4,…, m-2, it reduces to, 
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       Substituting for W(X) and its derivatives at the ith grid point in the Eq. (9) and using Eq. (4) to Eq. 

(8), the Eq. (9) becomes 
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        The satisfaction of Eq. (10) at (m-4) nodal points Xi, i = 3, 4 …... (m-2) provides a set of (m-4) 

equations in terms of unknowns ,,,2,1,))(( mjXWW jj   which can be written in the matrix form 

as 

[B][W*]=[0], (11) 

 

where B and W* are matrices of order (m-4) × m and (m × 1) respectively. 

 

      Here, the (m-2) internal grid points chosen for collocation, are the zeros of shifted Chebyshev 

polynomial of order (m-2) with orthogonality range [0, 1] given by 
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4. Boundary Conditions and Frequency Equations 

 

      The two different combinations of boundary conditions namely, C-C, C-S have been considered 

here, where C, S stand for clamped and simply supported respectively and first symbol denotes the 

condition at the edge X=0 and second symbol at the edge X=1.By satisfying the relations. 
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for clamped and simply supported  conditions, respectively, a set of four homogeneous equations in 

terms of unknown Wj are obtained. These equations together with field Eq. (11) give a complete set of 

m homogeneous equations in m unknowns. For C-C plate this set of equations can be written as 

 

 * 0 ,
CC

B
W

B

 
     

 
 (13) 

where BCC is a matrix of order 4m. 

For a non-trivial solution of Eq. (13), the frequency determinant must vanish and hence, 

 

0
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B
.  

(14) 

Similarly for C-S plate, the frequency determinants can be written as 
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5. Numerical Results and Discussion                                     

 

      The frequency Eqs. (14-15) have been solved to obtain the values of the frequency parameter  for 

C-C and C-S plates vibrating in first three modes of vibration. The effect of non-homogeneity together 

with foundation, orthotropy, thickness variation and aspect ratio on the frequency parameter  for p = 

1 has been investigated. The values of various plate parameters are taken as follows: Winkler stiffness 

parameter K = 0.0 (0.01) 0.1, shear stiffness parameter G = 0.0 (0.001) 0.01, non-homogeneity 

parameter  = -0.5 (0.1) 1.0, density parameter   = -0.5 (0.1) 1.0, taper parameter  = -0.5 (0.1) 1.0 

and aspect ratio a/b = 0.5 (0.5) 2.0. The elastic constants for the plate material ‘ORTHO1’ are taken as 

,101 10

1 MPaE   1.0,2.0,105 9

2  yxMPaE  . The thickness 0h  at the edge X = 0 has been 

taken as 0.1. To choose the appropriate number of collocation points m, convergence studies have been 

carried out for different sets of parameters. For a specified plate, graphs are shown in figures 1(a, b) for 

 = 0.5,  = 0.5,  = -0.5, K = 0.02, G = 0.001 and a/b = 1 for C-C and C-S plates, respectively. For 

this data, maximum deviations were observed. In all the computations we have fixed m = 18 because 

further increase in m does not improve the results even in the fourth place of decimal in the third mode 

of vibration for all the plates. 
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    (a) m (number of nodes) →                              (b)  m (number of nodes) → 

   

      Fig. 2(a) shows the effect of non-homogeneity parameter   on the frequency parameter  for taper 

parameter  = 0.5, aspect ratio a/b =1, density parameter β = -0.5, 0.5, Winkler stiffness parameter K = 

0.0, 0.02 and shear stiffness parameter G = 0.0, 0.002 for C-C and C-S plates vibrating in fundamental 

mode. The frequency parameter  is found to increase with the increasing values of non-homogeneity 

parameter  . The rate of increase of  with  is smaller for a C-S plate than that for a C-C plate. This 

rate decreases with the increase in the value of density parameter  and foundation parameters K as well 

as G.  A similar behavior is observed for the plate vibrating in second and third modes of vibration 

(Figs. 2(b, c)). The rate of increase of  with  gets pronounced with the increasing number of modes. 

 

           

       
  Fig. 2. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and 

              (c) third mode for  α = 0.5, a/b = 1. , C-C; ----------, C-S. , , β = -0.5, K=0.0 ; ♦,◊,  
              β = 0.5, K=0.0; , , β = -0.5, K=0.02; ,, β = 0.5, K=0.02. , ♦, ,, G=0.0; ,◊, ,, G = 0.002. 

 

      Figs. 3(a, b, c) show the variation of frequency parameter  with density parameter  for µ = 0.5, 

a/b =1, α = -0.5, 0.5, K= 0.0, 0.02 and G = 0.00, 0.002 for C-C and C-S plates vibrating in the 

fundamental, second and third modes, respectively. It is observed that frequency parameters () 

decreases with the increasing values of density parameter   irrespective of the values of other plate 

parameters. The rate of decrease of frequency parameter  with  increases with the increase in the 

values of α, K as well as G. This rate of decrease is greater for a C-C plate than that for a C-S plate. 

Also, the rate of decrease in frequency parameter  increases with the increase in the number of modes. 

The effect of taper parameter  on the frequency parameter  for C-C and C-S plates has been shown 

in Figs. 4(a-c) for a/b = 1, β = -0.5, µ = -0.5, 0.5, K = 0.0, 0.02 and G =0.0, 0.002 for fundamental, 

second and third modes of vibration, respectively. It is observed that the frequency parameter  

increases with the increasing values of taper parameter  for C-C and C-S plates for all the three modes 

except in case of C-S plate vibrating in fundamental mode for µ = 0.5, K = 0.02 and G = 0.00. In this 

case the frequency parameter   first decreases and then  increases  with  the  increasing values of   

with a  local  minima in  the  vicinity  of  = 0.1. The rate of increase of frequency parameter  increases 

with the increasing values of µ, K as well as G.  This rate of increase of  is more prominent in case of 
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C-C plate as compared to C-S plate in all the modes of vibrations. Also, this rate of increase of  with 

α increases with the increasing number of modes. 

 

        
    Fig. 3. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  

              (c) third mode, for μ = 0.5, a/b = 1. , C-C; ------------, C-S; , ,  = -0.5, K=0.0 ; ♦,◊,  
               = 0.5, K=0.0; , , = -0.5, K=0.02; ,, = 0.5, K=0.02. , ♦, ,, G=0.0; ,◊, ,, G=0.002. 

 
    

Fig. 4. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  

           (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S; , , µ = -0.5, K=0.0; ♦,◊, µ = 

0.5, K=0.0; , , µ= -0.5, K=0.02; ,, µ= 0.5, K=0.02. , ♦, ,, G=0.0;  ,◊, ,, G = 0.002. 
 

       Figs. 5(a-c) show the behavior of frequency parameter  with aspect ratio a/b for  = -0.5, 0.5, K 

=0.0, 0.02, G =0.0, 0.002, µ = 0.5 and α = -0.5 for C-C and C-S plates vibrating in fundamental, second 

and third mode of vibration, respectively. It is observed that the frequency parameter  increases with 

the increasing values of aspect ratio a/b whatever are other plate parameters. The rate of increase of  

with a/b is much pronounced for a/b >1 than that for a/b < 1. This rate of increase decreases with the 
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increasing values of  , K as well as G. Also, The rate of increase of  with a/b is greater in case of C-

C plate as compared to C-S plate. The rate of increase decreases for higher and higher modes. 

                
 

        

Fig. 5. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  

     (c) third mode for   = -0.5, µ = 0.5.  , C-C; ----------, C-S. , ,  = -0.5, K=0.0 ; ♦,◊,  
       = 0.5, K=0.0; , ,  = -0.5, K=0.02; ,,  = 0.5, K=0.02. , ♦, ,, G = 0.0; ,◊, ,, G = 

0.002. 

 
 

        

Fig. 6. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and 

           (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S;  , , α = -0.5, µ = -0.5 ; ♦,◊,  
           α = -0.5, µ = 0.5; , , α = 0.5, µ = -0.5; ,, α = 0.5, µ = 0.5. , ♦, ,, G=0.0; ,◊, ,, G = 

0.002. 

 

       Figs. 6(a-c) show the plots of the frequency parameter  versus Winkler foundation stiffness K for α 

= -0.5, 0.5, µ = -0.5, 0.5, G =0.00, 0.002, β =0.5 and a/b=1 for C-C and C-S plates vibrating in 
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fundamental, second and third mode, respectively. It is seen that the frequency parameter  increases with 

the increasing values of K. The rate of increase of frequency parameter  with K is smaller for a C-S plate 

than that for a C-C plate. The rate of increase of  with K decreases with the increasing number of modes.  

Figure 7(a) depicts the variation of frequency parameter  with shear stiffness parameter G for α = -0.5, 

0.5,  = -0.5, 0.5, K=0.0, 0.02,  = 0.5 and a/b=1 for C-C and C-S plates vibrating in fundamental mode. 

The frequency parameter  increases with the increasing values of shear stiffness parameter G. The rate 

of increase of frequency parameter  with G is higher for a C-C plate than that for a C-S plate. A similar 

inference can be drawn from Figs. 7(b, c), when the plate is vibrating in second and third mode of 

vibration, respectively, with the exception that the rate of increase in  with shear stiffness parameter G 

increases with the increasing number of modes. 

 

 
 

        

Fig. 7. Frequency parameter for C-C and C-S plates vibrating in (a) first mode (b) second mode and  

            (c) third mode for β = 0.5, a/b = 1. , C-C; ----------, C-S; , , α = -0.5, K=0.02;  

            ,, α = 0.5, K=0.02. ,, µ = -0.5; ,, µ = 0.5. 

 

 
(a)                                                                    (b) 

  Fig. 8. Normalized displacements for the first three modes of vibration for (a) C-C and  (b) C-S plates, 

            for a/b=1.0, α =0.5, K = 0.02,G =0.001.                  , first mode; ………, second mode;  
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            ----------, third mode. , μ = -0.5; ○, μ = 0.5; , ●, β = -0.5; ,○, β = 0. 

 

       Mode shapes for a square plate i.e. a/b=1 have been computed for β = 0.5, K = 0.02, G=0.001,  = 

-0.5, 0.5 and α = -0.5, 0.5. Normalized displacements for first three modes of vibration are shown in 

Figs. 8 (a, b) for C-C and C-S plates, respectively. It is observed that the nodal lines shift towards the 

edge X = 0, as α increases from -0.5 to 0.5. Also, the radii of nodal circle decrease as  increases from 

-0.5 to 0.5. A comparison of results for isotropic (E2/E1=1), homogeneous ( = = 0), uniform thickness 

( = 0.0) plates with Chebyshev collocation technique (Lal et al. 2001), quintic splines technique (Lal 

& Dhanpati, 2007), finite element method, Frobenius method (Jain & Soni, 1973) and exact solutions 

by (Leissa, 1969) for two values of aspect ratio a/b=0.5 and 1.0,  = 0.3 and p = 1 has been presented 

in Table 1. A close argument between the results is found, which shows the versatility of DQM.  
 

Table 1.  Comparison of frequency parameter Ω for isotropic (E2/E1=1), homogeneous  

                ( = = 0), C-C and C-S plates for υ= 0.3.  

Boundary Mode                 K= 0.0                K= 0.01      

Condition   a/b = 0.5   a/b = 1.0  a/b = 0.5   a/b = 1.0 

   23.8156   28.9509   26.2142    30.9540  

 I  23.820a  28.950a 26.219a    30.953a

   23.816b  28.951b 26.214b    30.954b

      28.946c         

C-C   23.816d  28.951d         

 II  63.5345   69.3270   64.4720    70.1872  

   63.603a  69.380a 64.539a    70.239a

   63.635b  69.327b 64.472b    70.187b

      69.320c         

   63.535d   69.327d         

 I  17.3318   23.6363   20.5034    26.0605  

   17.335a  23.647a 20.506a    26.061a

   17.332b  23.646b 20.503b    26.060b

      23.646c         

C-S   17.332d   23.646d         

 II  52.0979   58.6464   53.2372    59.6607  

   52.150a  58.688a 53.288a    59.702a

   52.098b  58.646b 53.237b    59.661b

      58.641c         

   52.097d   58.646d         
(a).Values from Spline technique ( b).Values by Chebyshev collocation technique (c). Exact values from Liessa (1969) (d). Frobenius method (e). Values 

from finite element method.  

 

6. Conclusion  

      The present work emphases on the application of differential quadrature method. For this purpose, 

the effects of plate parameters on natural frequencies of rectangular orthotropic plates of non-linearly 

varying thickness resting on two parameter foundation (Pasternak foundation) have been studied on the 

basis of classical plate theory. It is observed that frequency parameter   increases with the increase 

in non-homogeneity parameter   and aspect ratio a/b keeping other plate parameters fixed. Further Ω 

is found to decrease with the increasing value of density parameter β keeping all other plate parameters 

fixed for all the three boundary conditions. However, its behavior with taper parameter α is not 

monotonous. It is appeared that the parameter K and G of the Winkler and Pastenak foundation has 

been found to have a significant influence on the displacements of the plates. In fact, similar results 



U.S. Gupta  / Engineering Solid Mechanics 4 (2016) 
 

43

were previously found. Consequently, by comparing the computed results with those available in 

published works, the present analysis by the DQM is examined and a very good agreement is observed. 
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