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ABSTRACT

Summary: DNA copy number alterations (CNA) frequently underlie
gene expression changes by increasing or decreasing gene dosage.
However, only a subset of genes with altered dosage exhibit
concordant changes in gene expression. This subset is likely to be
enriched for oncogenes and tumor suppressor genes, and can be
identified by integrating these two layers of genome-scale data. We
introduce DNA/RNA-Integrator (DR-Integrator), a statistical software
tool to perform integrative analyses on paired DNA copy number and
gene expression data. DR-Integrator identifies genes with significant
correlations between DNA copy number and gene expression,
and implements a supervised analysis that captures genes with
significant alterations in both DNA copy number and gene expression
between two sample classes.
Availability: DR-Integrator is freely available for non-commercial use
from the Pollack Lab at http://pollacklab.stanford.edu/ and can be
downloaded as a plug-in application to Microsoft Excel and as a
package for the R statistical computing environment. The R package
is available under the name ‘DRI’ at http://cran.r-project.org/. An
example analysis using DR-Integrator is included as supplemental
material.
Contact: ksalari@stanford.edu; pollack1@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
DNA microarray technology has been leveraged to make genome-
scale measurements across multiple layers of cellular molecules,
e.g. gene expression (Schena et al., 1995), DNA copy number
(Pinkel et al., 1998; Pollack et al., 1999), protein expression (Haab
et al., 2001) and microRNA expression (Calin et al., 2004), among
others. While each data type alone provides a unique snapshot of a
cell’s state, an integrative analysis of two or more complementary
data types can reveal much more than the sum of its parts. DNA
copy number alterations (CNAs) represent one data layer extensively
measured among many tumor types using array-based comparative
genomic hybridization (array CGH). CNAs lead to the amplification
and deletion of oncogenes and tumor-suppressor genes (TSGs),
respectively, and thereby play a critical role in tumorigenesis. While
delineating CNAs across many samples facilitates the identification
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of oncogenes (in regions of recurrent amplification) and TSGs
(in regions of recurrent deletion), cumulatively such genetic
changes often span a substantial proportion of the genome, thereby
obfuscating the distinction between ‘driver’ cancer genes selected
for by a genetic event and nearby ‘passenger’ genes incidentally
co-amplified or deleted. Similarly, when comparing cancer cells to
normal cells, thousands of genes are often differentially expressed,
rendering discrimination of the most salient, primary changes from
correlated, downstream changes difficult.

One useful approach to aid cancer gene discovery is to integrate
DNA copy number and gene expression profiles (Adler et al., 2006;
Garraway et al., 2005; Hyman et al., 2002; Pollack et al., 2002).
Tumors often harbor CNAs altering the gene dosage of hundreds
or thousands of genes. However, due to tissue-specific expression
or feedback regulation, among other mechanisms, expression
levels of many of these genes may remain unaltered. Because the
effects of CNAs are mediated by changes in gene expression, the
subset of genes exhibiting concordant changes in both DNA copy
number and gene expression (e.g. amplified and over-expressed
genes) are likely to be enriched for candidate oncogenes and TSGs.

While several software tools and statistical methods have been
developed to analyze DNA copy number data (Beroukhim et al.,
2007; Olshen et al., 2004; Tibshirani and Wang, 2008) or gene
expression data (Reich et al., 2006; Subramanian et al., 2005; Tusher
et al., 2001) separately, few methods have been developed for their
integration (Berger et al., 2006; Carrasco et al., 2006; Hautaniemi
et al., 2004). In particular, to our knowledge there is no widely
available software tool that facilitates multiple integrative analyses
with a user-friendly interface. Here, we describe our development of
DR-Integrator, a broadly useful package of tools to integrate array
CGH and gene expression microarray data for the nomination of
candidate cancer genes.

2 FEATURES
The DR-Integrator software package contains two analysis tools:
DR-Correlate and DR-SAM.

2.1 Correlation analysis
DR-Correlate aims to identify genes with expression changes
explained by underlying CNAs. To that end, this tool performs an
analysis to identify all genes with statistically significant correlations
between their DNA copy number and gene expression levels. Three
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options for the statistic to measure correlation are implemented: (i)
Pearson’s correlation; (ii) Spearman’s rank correlation; and (iii) an
‘extremes’ t-test. For Pearson’s and Spearman’s correlations, the
respective correlation coefficient is computed for each gene. For
the extremes t-test, a modified Student’s t-test (Tusher et al., 2001)
is computed for each gene, comparing gene expression levels of
samples comprising the lowest and the highest quantiles with respect
to DNA copy number. In other words, for each gene the samples are
rank-ordered by DNA copy number and samples below the lowest
quantile and above the highest quantile form two groups whose gene
expression is compared with a modified t-test. The percentile cutoff
defining the two quantile groups is user-adjustable.

2.2 Two-class supervised learning analysis
DNA/RNA-Significance Analysis of Microarrays (DR-SAM)
performs a supervised analysis to identify genes with statistically
significant differences in both DNA copy number and gene
expression between different classes (e.g. tumor subtype-A versus
tumor subtype-B). The goal of this analysis is to identify genetic
differences (CNAs) that mediate gene expression differences
between two groups of interest. DR-SAM implements a modified
Student’s t-test to generate for each gene two t-scores assessing
differences in DNA copy number (tDNA) and differences in gene
expression (tRNA). A final score (S) is computed by first summing
the copy number t-score and gene expression t-score, and then
weighting the sum by the ratio of the two t-scores (0≤ w ≤ 1). The
weight is applied to favor genes with strong differences in both DNA
copy number and gene expression between the two classes. That is, a
gene with statistically equal differences in copy number and in gene
expression (i.e. tDNA = tRNA) will have a weight of 1, while genes
with unbalanced contributions from copy number and expression
will have a weight less than 1, resulting in a lower score:

S =w∗(tDNA+tRNA)

w=min

{
tDNA

tRNA
,

tRNA

tDNA

}
(1)

2.3 False discovery rate estimation
To account for multiple hypothesis testing, both DR-Correlate and
DR-SAM calculate a measure of statistical significance called the
q-value, which is based on the false discovery rate (FDR). This
is achieved by randomly permuting the sample labels a large
number of times (user-defined; default: 1000 times) to disrupt
the correlations between the paired DNA copy number and gene
expression measurements. For each random permutation of the data,
a test score is computed for every gene. To calculate a gene-specific
q-value, each observed score is compared to the distribution of
random scores and the FDR is estimated as previously described
(Storey and Tibshirani, 2003).

2.4 Additional features
DR-Integrator performs several preprocessing steps including
smoothing of copy number data, calling significant copy number
alterations with the Fused Lasso method (Tibshirani and Wang,
2008), and merging DNA/RNA datasets from different platforms
to allow for integrative analyses. DR-Integrator also allows the user
to specify the FDR cutoff for an analysis and generate DNA/RNA
‘heatmaps’ for genes achieving statistical significance. Automatic

imputation of missing expression data, using the nearest neighbor
algorithm, is also performed. Finally, we note that DR-Integrator is
not limited to the analysis of DNA copy number and gene expression
data, but can be used to integrate any paired data types where a 1-to-1
mapping between measured elements can be made. An example
analysis is shown on a dataset of DNA copy number and gene
expression profiles of 50 breast cancer cell lines (Supplementary
Figure S1).

3 IMPLEMENTATION
DR-Integrator has been developed in R and Microsoft Visual
Basic v6.5, and runs as a plug-in to Microsoft Excel under
the Windows operating system (2000/XP/Vista). With the use of
Windows emulators, DR-Integrator can also be run on Mac OS X,
Linux and Unix-based operating systems. The statistical methods
can also be applied natively in the R interpreter on any of the above
platforms.
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