

DR-NEGOTIATE – A System for Automated Agent Negotiation with Defeasible

Logic-Based Strategies

Thomas Skylogiannis1 Grigoris Antoniou2

1 Department of Computer Science,
University of Crete, Greece

dogjohn@csd.uoc.gr

2 Institute of Computer Science, FORTH,
Greece

antoniou@ics.forth.gr

Nick Bassiliades3 Guido Governatori4
3 Department of Informatics, Aristotle
University of Thessaloniki, Greece

nbassili@csd.auth.gr

4 School of ITEE, University of
Queensland, Australia

guido@itee.uq.edu.au

Abstract

 This paper reports on a system for automated agent
negotiation. It uses the JADE agent framework, and its
major distinctive feature is the use of declarative
negotiation strategies. The negotiation strategies are
expressed in a declarative rules language, defeasible
logic and are applied using the implemented defeasible
reasoning system DR-DEVICE. The choice of defeasible
logic is justified. The overall system architecture is
described, and a particular negotiation case is presented
in detail.

1. Introduction

In the last few years, there has been a great interest in
electronic commerce potential. As the number of
transactions carried out through the Internet increases, the
interest for partial or full automation of these transactions
increases as well [1]. This automation is achieved by the
use of software agents’ technology. One basic stage of e-
commerce procedure that can be automated is the
negotiation stage [2].

The focus of our work is on the automated negotiation
aspect of e-commerce. As stated in [18], automated
negotiation is the process by which two or more agents
communicate and try to come to a mutually acceptable
agreement on some matter. The basic dimensions of
automated negotiation are negotiation protocols and
negotiation strategies. Negotiation protocol is a set of

rules which govern the interaction and a negotiation
strategy is a decision making model, which participants
employ in order to achieve their goal in line with the
negotiation protocol.

As far as negotiation strategies are concerned, there
are three possible approaches to design then according to
[18]: Game theoretic, which models negotiation as a
game, heuristic which employ a set of tactics and some
rules for selecting a tactic, and argumentation-based
which introduces performatives such as threats, promises
etc. We take the heuristic approach and propose to use
defeasible logic, a declarative language based on rules
and priorities, as a formal framework to model protocols
and strategies for automated negotiation; this is the major
distinctive feature of our implemented system. Our work
builds upon the previous theoretic work of [8].

At this point we must justify the choice of defeasible
logic among various schemes for representing strategies
and protocols. Firstly it is formal, that is, its semantics
and syntax are properly defined. This means that both
humans and computers can interpret them the same way,
and explanations of the agent’s behavior can be provided.
Another characteristic of deafeasible logic is that it is
conceptual meaning that it offers a good level of
abstraction. So anyone can focus only on protocol or
strategy design, being indifferent to the implementation.
Defeasible logic is also comprehensible and expressive as
well. The latter is very important because enables us to
describe a wide range of protocols and strategies.

The paper is organised as follows. Section 2 provides
a short discussion of the use of defeasible logics. Section

3 presents the system architecture, while sections 4-6
illustrate the functionality and use of the system based on
a concrete case. Section 7 presents related work and
finally, planned future work is described in 8.

2. Choice of Formalism

2.1 On Defeasible Logics

Defeasible reasoning is a simple rule-based approach
to reasoning with incomplete and inconsistent
information. It can represent facts, rules, and priorities
among rules. This reasoning family comprises defeasible
logics [14, 16] and Courteous Logic Programs [15], and
has the following characteristics:

• They are rule-based, without disjunction
• Classical negation is used in the heads and

bodies of rules, but negation-as-failure is not
necessarily used in the object language (it can
easily be simulated, if necessary [17])

• Rules may support conflicting conclusions
• The logics are skeptical in the sense that

conflicting rules do not fire. Thus consistency is
preserved

• Priorities on rules may be used to resolve some
conflicts among rules

• The logics take a pragmatic view and have low
computational complexity

Generally speaking, defeasible logics have two kinds of
rules: strict rules which behave like standard, classical
rules (once their premises are satisfied they fire) and
defeasible rules, which may not fire even when their
premises are satisfied, because they are blocked by other
rules. More complex logics have a further kind of rules,
so-called defeaters.

2.2 Why Defeasible Logics for Negotiation
Strategies

Applying a negotiation strategy in a particular
context is an intensive decision-making process. While
most aspects of negotiation strategies could be fully
captured in classical logic programming (which has a
formal semantics and has proven to be a powerful tool for
building decision-making systems), this would put a
burden on the developers of strategies, since logic
programming is a generic paradigm and offers nothing
specific to strategy specification (such as argumentation,
defeasibility, hypothetical reasoning, preferences, etc.).
Accordingly, we propose to use a logic programming
language based on non-monotonic reasoning. Among the
many members of the family of non-monotonic logics, we
choose defeasible logic [16] for the following reasons:

• A negotiation can be thought of as a dialogue
between parties concerning the resolution of a
dispute. This suggests that argumentation based
reasoning formalisms are suitable to characterise
it. In [19], it was shown that defeasible logic can
be characterised by an argumentation semantics,
thus the formal semantics of defeasible logic is
in line with the argumentative nature of
negotiations.

• Given the close connection between derivations
in Defeasible Logic and arguments, strategies
expressed in Defeasible Logic are explainable.

• Defeasible logic is a sceptical formalism,
meaning that it does not support contradictory
conclusions. Instead it seeks to resolve conflicts.
In cases where there is some support for
concluding A but also support for concluding
¬A, the logic does not conclude either of them
(thus the name “sceptical”). If the support for A
has priority over the support for ¬A then A
would be concluded. We believe that non-
sceptical reasoning is unappropriate for
modeling decision-making processes such as
negotiations, since it is quite useless to deduce
both that a decision should be taken, and that it
should not be taken.

• Defeasible logic integrates the concept of
priorities between rules, thereby supporting a
direct way of modeling preferences, without
having to attach a metric to them, as it is the case
of approaches based on utility functions [20].

• Regarding strategy specification, most of the
current systems adopt a quantitative approach
based on utility functions. Very often, it is not
easy to find the right utility functions for a given
set of negotiation issues, especially in situations
where one needs to express preferences without
attaching a metric to them. Moreover, utility
functions are mostly used to determine
preferences that can otherwise be expressed in a
more comprehensible and suitable way through
defeasible rules and priorities among these rules.
For this reason, we believe that defeasible logic
is more suitable than, or at least complementary
to, strategy specification approaches purely
based on utility functions.

• Defeasible logic has a linear complexity, and
existing implementations are able to deal with
non trivial theories consisting of over 100,000
rules [21], offering thus an executable and
scalable system.

3. Implemented Agent Architecture

The Agent Framework we used was JADE [6, 7].
JADE is an open-source middleware for the development
of distributed multi-agent applications based on the peer-
to-peer communication architecture. JADE is java-based
and compliant with the FIPA specification. It provides
libraries for agent communication and interaction, based
on FIPA standards. It also provides tools for agent
lifecycle management, inspection of exchanged messages
and debugging. JADE provided us with the Agent
Infrastructure we desired. In our case, there is no Agent
System Architecture as we only have implemented a
demonstrator and not a complete multi-agent negotiation
system.

The Agent Architecture we implemented was
primarily based on the architecture proposed by Dumas et
al. [8]. Software agents consists of four components: (a)
A memory which contains past decisions and interactions
(Knowledge Base), (b) A communication module which
handles incoming and outcoming messages (JADE
platform), (c) A reasoning module (DR-DEVICE
Inference Engine) (d) A control module for the
coordination of the above components (script in Java).

For the reasoning module of the agent we used DR-
DEVICE [12]. DR-DEVICE is a defeasible reasoning
system. Its user interface is compatible with RuleML, the
main standardization effort for rules on the semantic web
and is based on a CLIPS-based implementation of
deductive rules.

The architecture of the negotiating agent is depicted in
Fig.1. When the agent is notified of an external event,
such as an incoming message (step 1), the control module
initially retrieves a fact template from the local storage
unit (step 2) and consequently, the negotiation parameters
from the memory (step 3). The template is an empty
placeholder in line with DR-DEVICE system syntax.
When the template is filled with the negotiation
parameters, is then regarded as “the facts”. The control
module updates the knowledge base with the new facts
(step 4) and then activates DR-DEVICE (step 5). DR-
DEVICE in turn retrieves from the knowledge base the
facts, along with the strategy (step 6) and starts the
inferencing process. After the inferencing has been
completed, the knowledge base is updated with the results
(step 7). The control module queries the knowledge base
for the result (step 8) and after a short processing; an
appropriate message is posted to the communication
module.

4. The Negotiation Protocol: An Example

As we have already stressed, a basic condition for the
automation of the negotiation process among intelligent

agents, is the existence of a negotiation protocol, which
encodes the allowed sequences of actions, or in other
words the rules of the game. Our first thought was to use
a well-defined protocol for 1-1 automated negotiation.
Although FIPA provides a plethora of standardized
protocols, such as FIPA brokering, FIPA English auction,
FIPA Contract net etc., we found that there is no standard
interaction protocol, when it comes to 1-1 automated
negotiation. As a result, we implemented a negotiation
protocol proposed in [9].

Fig.1. Architecture of Defeasible Logic Based
Negotiating Agent

 This protocol is a finite state machine that must be

hard-coded to all agents, participating into the
negotiation. Bartolini et al. [10], say that most multi-
agents systems today use a single negotiation protocols,
which is usually a finite state machine, hard-coded to all
the agents, leading to an inflexible environment, which
can accept only agents designed for it. To overcome this
inflexibility they propose a generic interaction protocol
which can be parameterized with different negotiation
rules and give different negotiation mechanisms. The
rules can be exchanged among agents that are able to
inform their peers, which protocol they wish to use.
However, the focus of our work is not to protocol design
and we believe the protocol we use is a good solution for
our demonstrator.

As we have already said, our protocol is a finite state
machine with discrete states and transition. The protocol
is depicted in Fig. 2. S0 to S6 represent the states of a
negotiation and E is the final state in which there is an
agreement, or a failure of agreement between the
participants. Send and Recv predicates represent the
interactions which cause state transitions. To clarify the
function of the protocol we give an example. If the
sequence of transitions is the following: S0

S1 S2 S6 E, that means that the agent initially sends
a call for proposal message (CFP) to the other negotiating
agent (S0 S1), then he receives a propose message
(S1 S2) and after the evaluation he decides to send an
accept message (S2 S6). Lastly he receives an accept
message and the negotiation terminates successfully
(S6 E). We make the convention that the participant that
plays the role of the buyer starts the negotiation by
posting a CFP message. So, while the protocol can be
used as it is by a buyer, it needs a small modification for a
seller. Particularly instead of the transition S0 S1 there
should be a transition S0 S2 with label “Recv CFP”.

Fig.2. 1-1 Negotiation Protocol

5. The Negotiation Strategy: An Example

The strategy of a potential buyer or seller during a
negotiation scenario is very critical for the outcome of the
encounter. Every strategy is indeed designed in line with
a particular protocol. As we have already seen, there is a
plethora of strategies classified according to different
criteria. We based the strategies we used on the work of
Tsang et al. [11]. They define the simple constrained
bargaining game between one buyer and one seller. Some
of the most important assumptions are that the seller is
constraint by the cost and the number of days within
which he has to sell, while the buyer is constrained by his
utility and the number of days within which he has to buy.
In addition, neither the buyer nor the seller has
information about the constraints of the other. The players
make alternative bids with the seller to bid first and they
can bid only once per day. An agreement is reached when
both buyer and seller bid for the same price. Finally,
according to the assumptions, if a deal cannot be made
before a player runs out of time the negotiation
terminates. Tsang et al. propose a number of different
strategies both for buyer and sellers. For our buyer we
adopted the simple buyer strategy, whose characteristics

are described in Table 1. We have made the following
changes for the strategy of the buyer: Firstly, buyer and
seller are not obliged to make only one offer per day but
one offer per negotiation step. Negotiation step is handled
by the protocol and increases each time a player (buyer or
seller) has made an offer and subsequently has received a
counteroffer or another message. So, we speak about time
to buy (TTB) and time to sell (TTS), measured in
negotiation steps. Secondly, except for the offer-
acceptance criterion we have added a check during the
offer submission to avoid results which are against the
benefit of the player. Thirdly, we incorporated into the
strategy parameters relevant to the protocol like the state
of the negotiation and the step of the negotiation .Lastly,
an agreement is reached when both buyer and seller send
an “agree” message.

Table1. Buyer’s Strategy Characteristics

For the buyer, participating into the negotiation, we

used the modified strategy of Tsang et al. and we
expressed it in defeasible logic. For the seller we used a
strategy hard-coded in java to demonstrate that agents
with diferrent architecture can interact without any
problems. Seller’s strategy is quite similar with that of
buyer, except for the general bidding strategy. Seller
decreases his offer by a fixed amount while buyer
increases his offer in a linear fashion .

We express the buyer’s strategy in defeasible logic
(see Fig.3). The predicates we use are the following:

• Step(s): The step of the negotiation. When a
buyer or seller sends a message and then
receives another one the step is increased by one

• Counteroffer(c): The offer which a buyer or
seller receives from the opponent

• Min_profit(mp): The minimum profit the buyer
seeks after buying the product

• Utility(u): The utility of the buyer if he buys the
product

• Ttb(ttb): The time (negotiation steps) the buyer
has at his disposal in order to buy the product

• State(st): The current state of the negotiation
according to the protocol. The possible states
are:

Strategy
Name

First Bid
Algorith
m

Offer-
Acceptance
Criterion

Last Day
BiDDING

General
Bid
Algorith
m

Simple
Buyer

Utility/D
TB

Counteroffer
+Minimum

Profit< Utility

As usual Bid half
way

between
previous
bid price

and utility

1(S1) The buyer has already sent a CFP or a
PROPOSE message
2(S2) The buyer has already received a
PROPOSE message
3(S3) The buyer has already received a
REJECT message
…

• First_bid(fb): The initial bid of the buyer
• Previous_bid(prb): The previous bid of the buyer

 R1:State(st), Counteroffer(c), Min_profit(mp),Utility(u),
st=2, c+mp ≤ u/2 ⇒ ACCEPT_PROPOSAL
 R2:State(st), Counteroffer(c), Min_profit(mp),Utility(u),
st=2, c+mp > u ⇒ ~ACCEPT_PROPOSAL
 R3: State(st), st=5 ⇒ ACCEPT_PROPOSAL
 R4: Step(s), Counteroffer(c), Min_profit(mp),Utility(u),
First_Bid(fb), State(st), s=0 ,st=2,
 u/2 < c+mp ≤ u, bid=fb ⇒PROPOSE(bid)
 R5:Step(s), Ttb(ttb), State(st), Counteroffer(c),
Min_profit(mp),tility(u),First_Bid(fb),
Previous_bid(prb), 0<s≤ttb-1, st=2, u/2 < c+mp ≤ u,
prb=0, bid=fb ⇒PROPOSE(bid)
 R6:Step(s), Ttb(ttb), State(st), Counteroffer(c),
Min_profit(mp),Utility(u), Previous_bid(prb),
 0<s<ttb-1,st=2, u/2 < c+mp ≤ u, prb!=0, bid=(u-
prb)/2+prb ⇒PRELIM_PROPOSE(bid)
 R7:Step(s), Ttb(ttb), State(st), Previous_bid(prb),
Utility(u), 0<s<ttb, st=3,
 bid=(u-prb)/2+prb⇒PRELIM_PROPOSE(bid)
 R8:Min_profit(mp),Utility(u), PRELIM_PROPOSE(bid)
⇒ PROPOSE(bid)
 R9:Min_profit(mp),Utility(u),PRELIM_PROPOSE(bid),
bid>u-mp ⇒ ~PROPOSE(bid)
R10:Min_profit(mp),Utility(u),PRELIM_PROPOSE(bid)
,bid>u-mp,new_bid=utility-min_profit⇒
PROPOSE(new_bid)

 R9>R8

Fig. 3. Buyer’s Strategy in Defeasible Logic

Rules R1, R2, and R3 define the conditions for the
acceptance or rejection of a proposal. More specific Rule
R1 states that if the current state of the negotiation is S2
(agent has received a “propose” message) and if
opponent’s offer plus the minimum profit is less or equal
to half the utility, the counteroffer is accepted in all cases.

R2 describes the case in which opponent’s offer plus
the minimum profit is greater than his utility and the
counteroffer is rejected. Finally R3 defines that if the
current state of the negotiation is S5 (agent has received
an “accept” message) he also sends an “accept” message.

There are two levels for the bidding policy. Bidding of
first step and general bidding policy.

 R4 states that if the negotiation is at state S2 and at
the first step, the utility divided by the ttb is offered.
According to R5 if the current state of the negotiation is
S2 (Agent has received a “propose” message) but it has
not made one, it offers the utility divided by the ttb.

 R6 defines that if the current state of the negotiation
is S2 (agent has received a “propose” message) and it has
made an offer in the previous step, it increases linearly its
offer, which derives from the type:

_
_

2

utility previous bid
bid previous bid

−
= +

R7 describes that if the current state of the negotiation
is S3 (agent has received a “reject” message) it also offers
the above bid.

R8 defines that if R7 or R6 is true then the computed
amount for the bid is to be offered. However, R9 checks
if the bid to be offered is lower than the utility minus the
minimum profit and if it is not, R10 is fired. Rule R9 is an
additional check that ensures that the offered amount of
money for the product, is not against the benefit of the
buyer.

6. Negotiation Trace

At this section we demonstrate the operation of the
system and we examine a negotiation trace between a
buyer agent and a seller agent. JADE platform provides a
special-purpose agent which is called sniffer. Sniffer can
monitor the exchanged messages of two or more agents in
the agent platform. The specific parameters of the
negotiation are given in the next table. We examine the
trace from the point of view of the buyer. The parameters
of the negotiation are summarized in Table 2.

BUYER SELLER
Ttb=5 Tts=10
Minimum Profit = 100 Minimum Profit =

100
Utility = 1000 Maximum Profit =

800
 Bid decrement =

40
 Cost = 200

Table 2. Negotiation Trace Parameters

As we can see in Fig. 4 , buyer initially issues a “call

for proposal message” (CFP) and seller responds with a
“propose”. The amount proposed by the seller is 1000.
According to the condition of R2 of buyer’s strategy, as

long as the relation c+mp > u is true, the buyer keeps
rejecting the offer.

Fig.4. 1-1 Negotiation Trace a

As buyer has rejected seller’s offer, at the next step of the
negotiation, seller decreases its offered amount by 40 (bid
decrement) and waits for the response of the buyer . As
buyer regards (according to his strategy) that the amount
of 960 is too high, continues to reject the offer, without
issuing a counteroffer. At this point we must say that
although the protocol allows both for a counteroffer or a
rejection of a proposal, the decision lies to the agent and
is expressed through the strategy. Seller decreases his
offer by another 40, offering 920. Buyer still rejects
seller’s offer and the latter subsequently offers 880
(Fig.5).

Fig.5. 1-1 Negotiation Trace b

As the relation 880+100>1000 (c+mp>u) is now false, R5
fires and buyer buyer offers his initial offer which is the
amount 1000/5 (u/TTb). This is depicted in Fig.6.

Fig.6. 1-1 Negotiation Trace c

At he next step, seller offers 840 and waits the buyer for
its response (Fig. 7). R6 now fires and buyer offers the
amount 600 (Fig. 8). Seller in turn issues an accept
message and the negotiation terminates. At this point we
must notice that if seller’s last message was not “accept-
proposal”, buyer’s control module would issue a “cancel”
as the ttb would exceed 5.

Fig.7. 1-1 Negotiation Trace d

Fig.8. 1-1 Negotiation Trace e

Now lets analyze the structure of exhangesd

messages. FIPA ACL messages [4] are built up of three
layers of languages [13]. a) Elements of the world are
defined in an ontology. b) An agent’s intention to
describe or alter the world is expressed by a
communicative act or speech-act such as INFORM and c)
statements about the world are expressed by means of a
Content Language. In order for agents to be able to
reason about the effects of their communication ,ACL
messages should be inserted into proper Agent Interaction
Protocol [5] which describe allowed sequences of actions
among agents.

The traces were taken with the help of sniffer agent,
provided by JADE platform. At the left-hand side one can
see all the interactions among the buyer and the seller
agent, We analyze the interaction which is indicated by
the arrow 12 directed from the seller to buyer. The ACL
which corresponds to interaction 12 of Fig.9, is indicated
by arrow no.1. The communicative act (or speech-act) of
this ACL message is “accept-proposal”. The ontology,
which both buyer and seller share is called “Negotiation”
and the used interaction protocol is called “Simple-
Bargaining”. The used content language was FIPA SL0
and the the content of the message is indicated by arow
no.2. The negotiation is about a black NOKIA 1100
mobile phone, which finally seller accepts to sell to buyer
for 600 money units.

 7. Related Work
Many efforts in the area of automated negotiation

have focused on applying game theory techniques, to
design an optimal strategy for a given protocol [22].

Fig.9. 1-1 Negotiation Trace f and Message Content

in FIPA SL

Although this approach yields interesting results under
simplifying assumptions (e.g. known valuations, risk-
neutral attitudes, computationally unbounded agents), it is
difficult or impossible to apply them in some realistic
situations.

Reeves et al. [23] use Courteous Logic Programming
(CLP) to express knowledge about user preferences,
constraints, and negotiation structures. The authors do not
address the issue of specifying bidding strategies, but
rather that of determining the set of auctions and other
negotiations that need to be undertaken in order to
transform a contract template into an executable contract.
Interestingly, Defeasible Logic (DL) is more expressive

 ((action
 (agent-identifier
 :name SELLER@anemos:1099/JADE
 :addresses
 (sequence
IOR:000000000000001149444C3A464950412F4
D54533A312E…))
 (SUGGEST
 :SUGGEST_qty (QUANTITY
 :QUANTITY_value "1")
 :SUGGEST_prc (PRICE
 :PRICE_value "600")
 :SUGGEST_item
 (ITEM

:ITEM name "Nokia 1100"

1

2

than CLP, in the sense that it fully supports stratified
theories [17].

 More recently, another auction management server
called eAuctionHouse has been released [24]. It supports
combinatorial auctions and mobile agents that can issue
bids on behalf of a user. However, the user is not allowed
to specify his own bidding strategy: he has to choose
between a set of predefined ones. The same problem has
the project Kasbah [25] which is an “older system”.

8. Conclusions and Future Work

In this paper we described the design and
implementation of a system for automated agent
negotiation, based on declarative strategies. Such
negotiations can be expected to play a key role on the
semantic web. Planned future work includes: a)
Designing graphical user interfaces, b) Comparing our
approach of executing the declarative negotiation
strategies to the alternative of translating the strategies
into Java (in which case the declarative strategies are used
in the specification/analysis phase, but not in the
execution phase) and finally c) Applying our system in
electronic marketplaces and in legal negotiation
platforms.

References

[1]. Pattie Maes, Robert H.Guttman and Alexandros G. Moukas
(1999). “Agents That Buy and Sell”. Communications of the
ACM Vol. 4 March 1999.
[2]. Minghua He, Nicholas R. Jennings, and Ho-Fung Leung
(2003). “On Agent-Mediated Electronic Commerce”. IEEE
transactions on knowledge and data engineering Vol. 15, No 4
July/August 2003.
[3]. Agent Construction Tools.
http://www.agentbuilder.com/AgentTools/index.html
[4]. Yannis Labrou, Tim Finin, Yun Peng (1999). “Agent
Communication Languages: The current Landscape”. IEEE
Intelligent Systems March/April 1999.
[5]. FIPA Interaction Protocols Specification.
http://www.fipa.org/repository/ips.php3
[6]. JADE Project. http://jade.cselt.it/
[7]. F.Bellifemine, G Caire, A.Poggi, G. Rimassa (2003). “
JADE A White Paper” Telecom Italia EXP magazine Vol 3, No
3 September 2003
[8]. Marlon Dumas, Guido Governatori, Arthur H.M ter
Hofstede, Phillipa Oaks (2002). “A Formal Approach to
Negotiating Agents Development”. Elsevier Science –
Electronic Commerce Research and Applications Vol.
1,Issue 2 Summer 2002 pp. 193-207
[9]. Stanley Y. W. Su, Chunbo Huang and Joachim Hammer
(2000). “A Replicable Web-based Negotiation Server for E-
Commerce”. In proceedings of the 33rd Hawaii International
Conference on System Sciences.
[10]. Claudio Bartolini, Chris Preist and Nicholas R. Jennings
(2002). “A Generic Software Framework for Automated

Negotiation”. In proceedings of the first International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS) Bologna Italy 2002
[11]. Edward Tsang and Tim Gosling (2002). “Simple
Constrained Bargaining Game”. In proceedings of the
Distributed Constrained Satisfaction Workshop-First
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS) Bologna Italy 2002
[12]. Nick Bassiliades, Grigoris Antoniou, Ioannis Vlahavas
(2004). “A Defeasible Logic Reasoner for the Semantic Web” .
Workshop on Rules and Rule Markup Languages for the
Semantic Web (RuleML 2004), G. Antoniou, H. Boley (Ed.),
Springer-Verlag, Hiroshima, Japan, 8 Nov. 2004
[13]. Chris van Aart, Ruurd Pels, Giovanni Caire, Federico
Bergenti (2002). “Creating and Using Ontologies in Agent
Communication”. Telecom Italia EXP magazine Vol 2, No 3
September 2002.
[14]. D. Nute (1994). Defeasible logic. In Handbook of logic in
artificial intelligence and logic programming (vol. 3):
nonmonotonic reasoning and uncertain reasoning. Oxford
University Press
[15]. B. N. Grosof (1997). “Prioritized conflict handing for logic
programs”. In Proc. of the 1997 International Symposium on
Logic Programming, 197-211
[16]. G. Antoniou, D. Billington, G. Governatori and M.J.
Maher (2001). “Representation results for defeasible logic”.
ACM Transactions on Computational Logic 2, 2 (2001): 255 -
287
[17]. G. Antoniou, M. J. Maher and D. Billington (2000).
Defeasible Logic versus Logic Programming without Negation
as Failure. Journal of Logic Programming 41,1
[18]. N.R.Jennings, S.Parsons, C.Sierra, P.Faratin (2000).
“Automated Negotiation “. In proceedings of 5th Int. Conf. on
the Practical Application of Intelligent Agents and Multi- Agent
Systems (PAAM-2000)
[19]. G. Governatori and M.J. Maher (2000).”An
argumentation-theoretic characterization of defeasible logic”. In
Proc. 14th European Conference on Artificial Intelligence
[20]. H. Raiffa (1982). “The Art and Science of Negotiation”.
Harvard University Press
[21]. M.J. Maher, A. Rock, G. Antoniou, D. Billington and T.
Miller (2001). “Efficient defeasible reasoning systems”.
International Journal of Tools with Artificial Intelligence 10(4),
483-501
[22]. J.S. Rosenschein and Gilad Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation Among
Computers. MIT Press, Readings MA, USA, 1994.
 [23]. Daniel M. Reeves, Michael P. Wellman, Benjamin
N.Grosof, and Hoi Y. Chan (2000). “Automated negotiation
from declarative contract descriptions”. In proceedings of 17th
National Conference on Artificial Intelligence, Workshop on
Knowledge-Based Electronic Markets(KBEM), Austin, Texas,
July 30–31 2000.
[24]. Tuomas SandHolm (2002). eMediator: “A Next
Generation Electronic Commerce Server”. Journal of
Computational Intelligence Vol.18, No. 4 2002
[25]. A. Chavez, D. Dreilinger, R. Guttman, and P. Maes
(1997). “A real-life experiment in creating an agent
marketplace”. In Proc. of the 2nd Int. Conference on The
Practical Applications of Agents and Multi-Agent Technology
(PAAM), London, UK, 1997.

