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ABSTRACT
One of the primary drawbacks plaguing wider acceptance

of surrogate models is their low fidelity (in general), which
can be in a large part attributed to the lack of quantitative
guidelines regarding the suitability of different models for
diverse classes of problems. In this context, model selection
techniques are immensely helpful in ensuring the selection and
use of an optimal model for a particular design problem. A novel
model selection technique was recently developed to perform
optimal model search at three levels: (i) optimal model type
(e.g., RBF), (ii) optimal kernel type (e.g., multiquadric), and
(iii) optimal values of hyper-parameters (e.g., shape parameter)
that are conventionally kept constant. The maximum and
the median error measures to be minimized in this optimal
model selection process are given by the REES error metrics,
which have been shown to be significantly more accurate than
typical cross-validation-based error metrics. Motivated by the
promising results given by REES-based model selection, in this
paper we develop a framework called Collaborative Surrogate
Model Selection (COSMOS). The primary goal of COSMOS
is to allow the selection and usage of globally competitive
surrogate models. More specifically, this framework will offer
an open online platform where users from within and beyond
the Engineering Design (and MDO) community can submit
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training data to identify best surrogates for their problem, as
well as contribute new and advanced surrogate models to the
pool of models in this framework. This first-of-its-kind global
platform will facilitate sharing of ideas in the area of surrogate
modeling, benchmarking of existing surrogates, validation of
new surrogates, and identification of the right surrogate for the
right problem. In developing this framework, this paper makes
three important fundamental advancements to the original
REES-based model selection - (i) The optimization approach
is modified through binary coding to allow surrogates with
differing numbers of candidate kernels and kernels with differ-
ing numbers of hyper-parameters. (ii) A robustness criterion,
based on the variance of errors, is added to the existing criteria
for model selection. (iii) Users are allowed to perform model
selection for a specified region of the input space and not only
for the entire input domain, subject to empirical constraints that
are related to the relative sample strength of the region. The
effectiveness of the COSMOS framework is demonstrated using
a comprehensive pool of five major surrogate model-types (with
up to five constitutive kernel types), which are tested on two
standard test problems and an airfoil design problem.

Keywords: Error Estimation, Mixed-Integer Non-Linear Pro-
gramming (MINLP), Model Selection, Optimization, Response
Surface, Surrogate.

INTRODUCTION
Surrogate Model Selection

In the era of complex engineering systems, computational
models play a central role in systems design and analysis. A
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popular class of stochastic computational models are surrogate
models, which are also known asmetamodels [1] or response sur-
faces (depending on the research community). Surrogate models
are purely mathematical models (i.e., not derived from the sys-
tem physics) that are commonly used to provide a tractable and
inexpensive approximation of the actual system behavior, as an
alternative to expensive computational simulations (e.g., CFD)
or to the lack of a physical model in the case of experiment-
derived data (e.g., creation and testing of new metallic alloys).
Primary applications of surrogate models include application in
domain exploration, sensitivity analysis, uncertainty quantifica-
tion, and optimization. Owing to the typical low-fidelity of surro-
gate models, the selection of a suitable model for a given exper-
imental or simulation data set is critical to effective and reliable
usage of surrogates in any of the above applications. While a
suitable surrogate model can be selected intuitively (experience-
based selection) based on an understanding of the data character-
istics and/or the application constraints [2], the development of
general guidelines might not be practical due to the diversity of
system behavior among design applications. However, applica-
bility of intuitive model selection will remain limited to scenar-
ios where only a few candidate surrogates (which the user is well
acquainted with) are available, thereby failing to exploit the the
large fast-growing pool of surrogates models. Automated model
selection approaches could fill this crucial gap in the surrogate
modeling paradigm.

Existing automated model selection techniques generally
operate at one of the following levels:

1. Selecting a model type, e.g., Quadratic Response Surfaces
(QRS) [3], Kriging [4,5], Radial Basis Functions (RBF) [6],
Support Vector Regression(SVR) [7], Artificial Neural Net-
works [8], and Moving Least Square [9, 10].

2. selecting a kernel function or a basis function, e.g., Linear,
Gaussian, and Multiquadric functions.

3. optimizing the hyper-parameters (e.g., shape parameter in
RBF); these parameters are the ones that are conventionally
kept constant or prescribed by the user.

In the literature, error measures have been used to separately
select model type and kernel functions. Popular error measures
used for model type selection include [11]: (i) split sample, (ii)
cross-validation, (iii) bootstrapping, (iv) Schwarz’s Bayesian in-
formation criterion (BIC) [12], and (v) Akaike’s information cri-
terion (AIC) [13, 12]. In addition to the model type and basis
(or correlation) function selection, error measures can also be ap-
plied in hyper-parameter optimization to select the parameter that
minimizes surrogate errors. This hyper-parameter optimization
is highly sensitive to the basis functions and the data distribu-
tion [14]. Viana et al. [15] applied the cross-validation method to
select the best predictor function and weights for different surro-
gates to construct a hybrid weighted surrogate. Martin and Simp-
son [16] used maximum likelihood estimation (MLE) and cross-
validation methods to find the optimum hyper-parameter value
for the Gaussian correlation function in Kriging. The likelihood

function in that case defines probability of observing the training
data for a particular set of parameters. Gorissen et al. [17] pro-
vided the leave-one-out cross-validation and AIC error measures
in the SUrrogate MOdeling (SUMO) Toolbox to automatically
select the best model type for a given problem.

However, unified approaches to perform automated surro-
gate model selection simultaneously at all three levels (surrogate
type, kernel type, and hyper-parameter value) is rare in the liter-
ature. Mehmani et al. [18] recently presented a new automated
surrogate model selection technique called REES-based model
selection, which operates at all the three levels, i.e., selecting
model type, kernel type, and hyper-parameter value. This ap-
proach significantly mitigates the likelihood of sub-optimal se-
lection, being only limited by the accuracy of the optimization
algorithm (which is state of the art) and the underlying error
measure (which is reportedly among the most reliable). The fol-
lowing section provides brief description of this model selection
technique [18], and how this paper aims to advance both the fun-
damental and the practical scope of this technique.

REES-based Model Selection
The REES-based model selection uses the error measures

given by the Regional Error Estimation in Surrogates (RESS)
method, which has been shown to be up to two orders of mag-
nitude more accurate that standard leave-one-out cross valida-
tion [19]. The REES method is derived from the hypothesis that
the accuracy of approximation models is related to the amount of
data resources leveraged to train the model. In REES, interme-
diate surrogates are iteratively constructed over heuristic subsets
of training points (intermediate training points). The median and
maximum errors estimated over the unused sample points (inter-
mediate test points) at each iteration are used to fit distributions
of the median and maximum error, respectively. The estimated
statistical mode of the median and the maximum error are then
represented as functions of the density of intermediate training
points, with the aim to predict the median and maximum errors
in the final surrogate. The REES-based model selection operates
at all the three levels of selection as shown in Fig. 1 by using one
of following techniques:

(I) Cascaded Technique: In this technique, REES error mea-
sures are used to perform selection in a nested loop starting
with “hyper-parameter optimization” at the lowest level and
ending with “model-type selection” at the topmost level .
Although easy to implement, this approach could become
computationally expensive as the number of model-types
and kernel/basis functions considered increases.

(II) One-Step Technique: In this technique, a mixed integer non-
linear programming (MINLP) problem is formulated and
solved to minimize the surrogate error (derived from REES)
in order to simultaneously select the best surrogate, the best
constitutive kernel, and the optimal hyper-parameter value
for that kernel. This unique approach, although more com-
plex than the former, is expected to be significantly less ex-
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pensive (computationally).

In this 3-level model selection, the selection criteria could
depend on the class of applications. For example, in standard
surrogate-based analysis the lower median error could be treated
as the selection criteria, where as in structural optimization ap-
plications that demands conservative surrogates, the lower max-
imum error could be treated as the selection criteria. Depending
on the problem and the available data set, the median and max-
imum errors might be mutually conflicting or mutually promot-
ing, which would then respectively lead to a set of Pareto models
or a single optimum model. In the original REES-based model
selection [19], the predicted modal values of the median and
maximum error in the surrogate are simultaneously minimized,
using a multi-objective optimization algorithm (NSGA-II [20]).
Surrogate types and constitutive kernel types were treated as two
integer variables, and hyper-parameters were treated as continu-
ous variables. In the original implementation, kernels with the
same number of hyper-parameters and surrogates with the same
number of constitutive kernels were only considered, so as to
avoid candidate solutions with differing numbers of variables.

The vision behind the REES-based model selection was to
enable the identification of globally best surrogatemodels for any
given application− a technique that is neither limited to any par-
ticular class of models nor makes a limiting assumption regard-
ing the surrogate/kernel type and the value of hyper-parameters.
In doing so, this model selection technique is also expected to
create unique opportunities for benchmarking of existing surro-
gates, validation of new surrogates, and identification of the right
surrogate for the right problem. With this vision, this paper seeks
to develop an open framework called Collaborative Surrogate
Model Selection (COSMOS). This framework will offer an open
online platform where users from within and beyond the Engi-
neering Design (and MDO) community can submit training data
to identify best surrogates for their application, as well as con-
tribute new and advanced surrogate models to the pool of models
in COSMOS - thereby offering an opportunity to the design com-
munity to collaboratively advance the state of the art in surrogate
model development and usage.

The specific objectives of this paper are:

1. To make fundamental modifications to the original REES-
based model selection method to allow consideration of ad-
ditional selection criteria such as (i) the variance of the sur-
rogate error and (ii) the predicted error at a greater number
of sample points than yet available.

2. To modify the optimization approach in order to allow the
competition of surrogates with differing numbers of candi-
date kernels and kernels with differing numbers of hyper-
parameters, without having to implement a full cascaded ap-
proach (which could be prohibitively expensive).

3. To test the COSMOS framework with a sufficiently compre-
hensive set of surrogate types and constitutive kernel types
(a total of 16 surrogate-kernel combinations with 0 to 2
hyper-parameters).

The development of the COSMOS framework is further de-
scribed in the following section. In Section , numerical experi-
ments, including standard test problems and an engineering prob-
lem, are provided to illustrate the potential of COSMOS.

A corollary objective of this paper is to develop the open on-
line platform (with a visual interface) for COSMOS, which will
allow users to both use COSMOS for their own data set and/or
contribute new surrogates and kernels. The construction of this
online platform is however ongoing, and is expected to be com-
pleted within the next month (well ahead of the actual ASME
IDETC 2014 conference). Further details of the online platform
(although not a central component of this paper), will be included
in the final draft of this paper.

COLLABORATIVE SURROGATE MODEL SELECTION
(COSMOS)
The COSMOS Framework

The major components and the flow of information in the
COSMOS framework in illustrated in Fig. 2

COSMOS provides a framework for automated selection of
surrogate models from a candidate pool of surrogate models,
which involves simultaneous determination of (i) optimal surro-
gate type(s), (ii) optimal kernel type(s), and (ii) optimal hyper-
parameter value(s). The available pool of surrogates is the left-
most block in Fig. 2. Each type of surrogate model offers one
or more kernel/basis/correlation function choices, e.g., under the
RBF surrogate, linear, cubic, Gaussian, or multiquadric basis
functions could be selected. Some of these kernel or basis func-
tions include hyper-parameters which are conventionally kept
fixed at recommended values (e.g., the shape parameter in multi-
quadric RBF). In COSMOS, these hyper-parameters are however
determined through an optimization process, and hence the can-
didate pool provides a guideline range for each one these hyper-
parameters. The candidate pool used in the current version of
COSMOS is summarized in Table 1.

COSMOS offers five different criteria for selection of op-
timal surrogates, as represented by the leftmost block in Fig.
2. Any combination of these criteria can be chosen by an user.
In the current implementation, three of the most practically-
pertinent pairwise combinations (1-2, 1-3, and 1-5) are allowed
to be selected − using more than two criteria could prove to be
taxing on the complex optimal model selection process. Further
description of how the selection criteria are estimated using the
REES method (with certain modifications) is provided in the fol-
lowing section.

The central component of the COSMOS framework is the
“Optimal Model Selector”. This process accepts the user-
specified selection criteria and the training data (also given by the
user) to search for the optimal surrogate models from the avail-
able candidate pool. Owing to the differing numbers of hyper-
parameters in different kernels, optimal model selection is per-
formed through multiple parallel optimizations (different from
cascaded technique), which is further described in the following
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FIGURE 1. Elements of 3-level surrogate model selection

FIGURE 2. The COSMOS framework (ST: Surrogate Type; KT: Kernel Type; HP: Hyper-parameter; CHP∗: vector of HP values; α ∈ (0,1))

Section. The optimal model selector produces a set of Pareto
optimal surrogate models (with optimal surrogate-kernel types
and optimal hyper-parameter values), and also provides the error
distribution of the optimal surrogates.

REES-based Criteria Functions for Model Selection
As evident from the COSMOS framework in Fig. 2, a com-

prehensive set of five different selection criteria can be specified
(in any combination) to drive the surrogate model selection. The
first two criteria respectively represent the (predicted) most prob-
able values of the median error and the maximum error in the
surrogate − which stochastically accounts for the sensitivity of
the surrogate accuracy to choice (number and location) of train-

ing points. Advancements are made to REES in this paper to
formulate and use three new selection criteria. Criteria 3 and 4
in Fig. 2, which are two new selection criteria, respectively rep-
resent the variance in the median and the maximum error of the
surrogate model − these two measures reflect the robustness of
the surrogate. Together, criteria 1-4 provide an understanding of
the uncertainty in the surrogate. Another new selection criteria
formulated in this paper is the (expected) most probable value of
the median error on a hypothetically-larger sample set, assum-
ing both the actual and the hypothetically-larger sets of sample
points follow the same overall distribution.

The REES method previously developed by the same au-
thors [19] is applied to evaluate all the five selection criteria for
any given candidate surrogate. The inputs and outputs of the
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REES method can be expressed as:

[

Emomed , E
mo
max, Eσmed , E

σ
max, Emomed,α

]

= fREES (TS,TK ,CHP,X ,F)
(1)

where TS, TK , and CHP respectively represent the surrogate type,
the kernel type, and the vector of hyper-parameter values for that
surrogate-kernel combination; the vectors X and F represent the
sample data (input and output) used for training the surrogate.
In Eq. 1, the terms Emomed and Emomax respectively represent the
predicted modal values of the median and maximum errors in
the surrogate; the terms Eσmed and E

σ
max respectively represent the

standard deviation values of the median and maximum errors in
the surrogate; and the term Emomed,α represents the expected modal
value of the median error if the same surrogate (i.e., same TS, TK ,
and CHP) was constructed over α-times greater number of sam-
ple points (assuming the overall distribution is similar to that of
X). This error measure, Emomed,α , indicates the expected capabil-
ity of candidate surrogates if a larger set of sample data could
be made available, thereby helping users understand the cost-to-
benefit ratio of performing additional high-fidelity simulations or
experiments in this context.

The REES method predicts the surrogate error by model-
ing the variation of the error with increasing density of training
points, as described in the following pseudocode.

In this method, for a set of N sample points intermediate
surrogates are constructed at each iteration, t, usingMt heuristic
subsets of nt training points (intermediate training points). These
intermediate surrogates are then tested over the corresponding
remaining N− nt points (intermediate test points). The median
error is then estimated for each of theMt intermediate surrogates
at that iteration, and a parametric probability distribution is fit-
ted to yield the modal value (Emo,tmed ) and the standard deviation
(Eσ ,tmed) of the median error at that iteration. The smart use of
the modal value of median error promotes a monotonic varia-
tion of error with sample point density [19], unlike mean or root
mean squared error which are highly susceptible to outliers. This
approach gives REES an important advantage over conventional
cross-validation-based error measures as illustrated by Mehmani
et al. [19]. A similar approach is used to estimate the modal value
(Emo,tmax ) and the standard deviation (Eσ ,tmax) of the maximum error,
at any t th iteration. It is important to note that all error quantifi-
cations are done in terms of the relative absolute error which is
given by:

ERAE =

∣

∣

∣

∣

FA (Xi)−FS (Xi)
FA (Xi)

∣

∣

∣

∣

(2)

where FA and FS are respectively the actual function value at Xi
(given by high fidelity simulation of data) and the function value
estimated by the surrogate; in this definition, a denominator of 1
is used instead of FA, if FA = 0.

In the original REES method, distribution functions to be
fitted over the median and maximum errors at each iteration

Algorithm 1 Regional Error Estimation of Surrogate (REES)
INPUT Number of sample points N, sample set (X ,F), and α
Set Number of iterations Nit ; indexed by t
Set Size of intermediate training points at each iteration, nt ,
where nt < nt+1
Set Number of heuristic subsets of training points at each
iteration equal toMt , whereMt ≤

(N
nt
)

; indexed by k

X=Experimental Design(N)
F | X = Evaluate System (X)
{X}= {(Xi,Fi)Ni=1}
for t = 1, ...,Nit do
for k = 1, ...,Mt do
Choose {β}⊂ {X}, where #{β}= nt
Define intermediate training points,{XTR}= {β}
Define intermediate test points,{XTE}= {X}− {β}
Construct intermediate surrogate Sk using {XTR}
Estimate median and maximum errors;
Ek,tmed= median(em)m=1,...,#{XTE}
Ek,tmax= max(em)m=1,...,#{XTE}

end for
Fit distributions of the median error over all Mt heuristic
subsets
Determine the mode of the median and maximum error dis-
tributions: Emo,tmed and E

mo,t
max

Determine the standard deviation of the median and maxi-
mum error distributions: Eσ ,tmed and E

σ ,t
max

end for
Construct the final surrogate using all N sample points
Use the estimated Emo,tmed , E

mo,t
max , Eσ ,tmed and E

σ ,t
max ∀t < Nit , to

quantify their variation with # training points (nt), using re-
gression functions.
return The modal values of the median and maximum errors
in the final surrogate: Emomed and Emomax
return The standard deviation of the median and maximum
errors in the final surrogate: Eσmed and E

σ
max

return The modal value of the median errors in the hypothet-
ical surrogate with (N+αN) sample points: Emomed,α

were selected using the chi-square goodness-of-fit criterion [21]
among the following candidates: lognormal, Gamma, Weibull,
logistic, log logistic, t location scale, inverse gaussian, and gen-
eralized extreme value distribution. However, in this paper, to
reduce the computational expense of REES (which is a function
evaluator in the MINLP process), we only use the lognormal dis-
tribution, which has been observed to be the most effective from
earlier numerical experiments. The pdf’s of the median and the
maximum errors, pmed and pmax, can thus be expressed as

pmed =
1

Emedσmed
√
2π
exp

(

−
(ln(Emed)− µmed)

2

2σ2med

)

(3)
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pmax =
1

Emaxσmax
√
2π
exp

(

−
(ln(Emax)− µmax)

2

2σ2max

)

(4)

In the above equations, Emed and Emax respectively represent the
median and the maximum errors estimated over a heuristic subset
of training points at any given iteration in REES. The parameters,
(µmed ,σmed) and (µmax,σmax) represent the generic parameters
of the lognormal distribution (which are respectively the mean
and the standard deviation of the corresponding variables’ natural
logarithm).

The modal values of the median and the maximum error at
any iteration can then be expressed as

Emomed = exp
(

µmed−σ2med
)

(5)

Emomax = exp
(

µmax−σ2max
)

(6)

The standard deviation of the median and the maximum error at
any iteration can be expressed as

Eσmed =
√

(

exp
(

σ2med
)

− 1
)

exp
(

2µmed+σ2med
)

(7)

Eσmax =
√

(exp(σ2max)− 1)exp(2µmax+σ2max) (8)

The above four equations represent the modal values and the
standard deviation of the median and maximum errors at any it-
eration t; the subscript, t, is however not included in these equa-
tions for ease of representation.

The variation of the modal values of the median and max-
imum errors (Eqs. 5 and 6) with sample density is modeled
using the multiplicative (E = a0na1 ) or the exponential (E =
a0ea1n) regression functions. Alternatively, if the type of me-
dian/maximum error distribution is fixed (e.g., lognormal distri-
bution with parameters µ and σ ), standard regression functions
could be used to model the variation of the parameters of the
distribution as functions of the number of training points. The
choice of these regression functions assume a smooth monotonic
decrease of the error values with the training point density. Since
the standard deviation in the errors could both increase or de-
crease with increasing number of sample points (for practical
sample sizes), other regression functions (e.g., linear and poly-
nomial functions) are allowed to be used to fit the variation of
Eσmed and E

σ
max. The root mean squared error metric is used to

select the best-fit regression model in each of these cases. These
regression functions are then used to predict the modal values
and the standard deviation of the median and maximum errors in
the final surrogate (that is trained using all N sample points).

Illustration of how the REES method works is provided in
Figs. to , which are generated by applying Kriging to the 2-
variable Branin Hoo function. The solid symbols in these figures
represent the estimated median and maximum errors at the sets
of intermediate training points (in each iteration), and the hollow
symbols at the 30th iteration represent the predicted error in the
final surrogate which uses all the available training points. These
predicted error values are used as criteria functions in COSMOS.
The REES error measures promote a monotonic decrease of the

(a) Variation of the mode of median errors with increasing sample points
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(b) Variation of the mode of maximum errors with increasing sample points

FIGURE 3. Application of REES using Kriging to model the Branin
Hoo function

median and maximum errors with sample density (as observed
in Figs. to ). Since the rate of error decrease (given by the
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regression functions) is likely different for different surrogates,
it is possible that the order of dominance among candidate sur-
rogates may change if a higher number of sample points were
made available − this scenario is uniquely accounted for by the
5th selection criteria in COSMOS. Since the modal value of the
median error at N+αN sample points (the 5th selection criteria)
is predicted by further extrapolation of the regression function,
the specified value of α should be small (lower than 0.3 or 30%).

The Optimal Model Selector

In the original REES-based model selection method, opti-
mal model selection was performed using two approaches, the
Cascaded technique and the One-step technique [18]. The Cas-
caded technique, although easy to implement, becomes compu-
tationally expensive when a large pool of surrogate candidates is
considered (which is indeed the objective of REES). The One-
step technique which performs selection by solving a MINLP
problem, is computationally more efficient and novel in imple-
mentation. However, the One-step technique cannot be readily
applied if the pool of candidate surrogate models include sur-
rogates with different number of available kernel choices, and
kernels comprising differing numbers of hyper-parameters. To
address these limitations and allow a flexible global selection of
surrogate models, a hybrid optimal model selection technique is
developed in COSMOS.

Since most surrogate kernel functions involve three or fewer
hyper-parameters (e.g., shape parameter in multiquadric RBF),
the global variation in the number of hyper-parameters can be as-
sumed to be small. Therefore, the global pool of surrogate-kernel
candidates is divided into multiple smaller pool of surrogate-
kernel candidates based on the number of hyper-parameters in
them. In other words, the candidate pool-I, represented by
HP− I, comprises all those surrogate-kernel combinationswhich
include I hyper-parameters (that can be tuned). Subsequently,
optimal model selection is performed separately (in parallel) for
each candidate pool, HP− I. Surrogate-kernel combinations
with 0-2 hyper-parameters are considered in this paper. Each
surrogate-kernel combination/candidate (associated with a par-
ticular HP− I) is then assigned a single integer code, as opposed
to two separate integer codes given in the original REES-based
model selection. The candidate surrogate-kernels considered in
this paper are listed in Table 1, where the integer code assigned
to each candidate is shown under their respective HP− I class.

For the HP − 0 class of surrogate-kernel combinations,
REES is applied to all the candidates, followed by the application
of a Pareto filer to determine the set of non-dominated/optimal
surrogate-kernel combinations. For all other HP− I classes of
surrogate-kernel combinations (with i> 0), a mixed integer non-
linear programming (MINLP) problem is formulated to simulta-
neously perform model selection at all three levels. This MINLP

for the Ith pool can be expressed as:

Min f (TSK ,CHP) =
[

Emomed , E
mo
max, Eσmed , E

σ
max, Emomed,α

]

where

TSK =
[

1,2, . . . ,NI
SK
]

0≤CHP ≤ 1,CHP ∈ RI

(9)

In Eq. 9, TSK is the integer variable that denotes the combined
surrogate-kernel type; CHP is the vector of continuous variables
that represent the hyper-parameter values; and NI

SK represents
the total number of candidate surrogates-kernel types available
under the class HP− I. It should be noted that a range of (0,1) is
used for each hyper-parameter variable in the optimization pro-
cess to avoid disparity. In order to conform to this uniform range
across all hyper-parameters, each hyper-parameter is scaled us-
ing a user-specified upper and lower bound (listed in Table 2).

Although, all five criteria functions (to be minimized) are
simultaneously included in this optimization problem definition,
in practice it is recommended to pursue bi-objective optimization
− i.e., at a time considering any two objectives/criteria of inter-
est. Depending on the data set, the considered criteria functions
could be mutually promoting or conflicting. The former yields
a single optimum surrogate model and the latter yields a set of
Pareto optimal surrogate models. Once the optimum surrogate
models for each HP− I have been obtained, a Pareto filter is
applied to determine the globally optimal set of surrogate mod-
els. The criteria functions in this MINLP problem could often be
multimodal, since the integer codes of the surrogate-kernel types
do not necessarily follow the order of error in these candidate
types. Hence, heuristic multi-objective optimization algorithms
that are capable of dealing with mixed-integer variables are con-
sidered to be the most appropriate for solving theseMINLP prob-
lems. In this paper, the binary Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [20] is used to solve the multi-objective
MINLP problems.

NUMERICAL EXPERIMENTS WITH COSMOS
Pool of Surrogate Candidates

In this paper, we have considered the participation of
five major types of surrogate models: (i) Quadratic Response
Surface (QRS), (ii) Radial Basis Functions (RBF), (iii) Krig-
ing, (iv) Support Vector Regression (SVR), and (iii) Extended-
Radial Basis Functions (E-RBF). The different forms of the ker-
nel/basis/correlation functions currently considered in COSMOS
are given in Table 4 in Appendix B . It could be said that COS-
MOS is one of the comprehensive model selection framework
(in the literature) both in methodology and implementation (i.e.,
the pool of candidate surrogate-kernels considered). Once the
open online interface is created for COSMOS, it is expected to
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TABLE 1. Candidate surrogate-kernel combinations and their integer-codes

Surrogate Kernel HP− 0 HP− 1 HP− 2 Hyper-parameter

Quadratic Response Surface - 1 - - -

Radial Basis Functions

Linear 2 - - -

Cubic 3 - - -

TPS 4 - - -

Gaussian - 1 - shape parameter, σ

Multiquadric - 2 - shape parameter

Kriging

Linear - 3 - correlation parameter, θ

Exponential - 4 - correlation parameter, θ

Gaussian - 5 - correlation parameter, θ

Cubic - 6 - correlation parameter, θ

Spherical - 7 - correlation parameter, θ

Support Vector Regression

Linear - X - -

RBF - 8 - parameter γ

Polynomial - - X -

Sigmoid - - 1 parameters γ and r

Extended-RBF Multiquadric - - 2 parameters λ and σ

TABLE 2. Range of hyper-parameters

Surrogate candidate Hyper-parameter Lower bound Upper bound

RBF shape parameter, σ 0.1 3

Kriging correlation parameter, θ 0.1 20

SVR kernel parameter, γ 0.1 8

SVR (Sigmoid) kernel parameter, r X X

E-RBF non-radial parameter, λ X X

provide a first-of-its-kind one-stop platform for surrogate model
construction, selection, and benchmarking. The candidate surro-
gate models in COSMOS are briefly described below.

Quadratic Response Surfaces: QRS is one of the oldest
and most popular type of surrogate model. The generic expres-
sion for a n-variable QRS is given by:

f (x) = c0+
n

∑
i
cixi+

n

∑
i
ciix2i + ∑

∀i̸= j
ci jxix j (10)

where c0, ci, cii, and ci j are arbitrary coefficients that can be de-
termined by the least squares approach.

Radial Basis Functions: The idea of using Radial Basis
Functions (RBF) as interpolating functions was introduced by
Hardy [6]. The RBF approximation is a linear combination of
basis functions (Ψ) across all sample points, given by

f̃ (x) =WTΨ=
np

∑
i=1

wiψ
(

∥x− xi∥
)

(11)

where np denotes the number of selected sample points; wi are
the weights evaluated using the pseudo inverse method on sample
points’ responses; ψ is basis function expressed in terms of the
Euclidean distance, r = ∥x− xi∥, of a point x from a given sam-
ple point, xi. The 5 different types of basis functions for RBF
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considered in the paper are listed in Table 1, where σ represents
the shape parameter of the basis function. The shape parameter,
σ = 0, corresponds to a constant basis function [22].

Kriging: Kriging [23, 24, 25] is a stochastic modeling ap-
proach to approximate irregular data. To implement Kriging in
COSMOS, the DACE (design and analysis of computer experi-
ments) package developed by Lophaven et al. [26] is used with
a modification (related to the estimation of the correlation func-
tion parameter). The Kriging approximation function consists of
two components: (i) a global trend function, and (ii) a deviation
function representing the departure from the trend function. The
trend function is generally a polynomial (e.g., constant, linear, or
quadratic). The general form of the kriging surrogate model is
given by [27]:

f̃ (x) =!(x,ϕ)+Z(x)
where != f (x)Tϕ (12)

and where f̃ (x) is the unknown function of interest; Z(x) is the
realization of a stochastic process with the mean equal to zero
and a nonzero covariance; ! is the known approximation (usu-
ally polynomial) function; and ϕ is the regression parameter ma-
trix. The (i, j)th element of the covariance matrix of Z(x) is ex-
pressed as

COV [Z(xi),Z(x j)] = σ2z Ri j (13)

where Ri j is the correlation function between the ith and the jth
data points, and σ2z is the process variance, which scales the spa-
tial correlation function. The popular forms of the correlation
functions are listed in Table 1. The correlation function controls
the smoothness of the Kriging predicted values based on the in-
fluence of other nearby points on a test point.

In Kriging, the regression function coefficients, the pro-
cess variance, and the correlation function parameters (ϕ ,σ2z ,θ )
could be predefined or estimated using parameter estimation
methods. The parameter, θ , in the correlation function is how-
ever treated as a hyper-parameter in COSMOS, and estimated
through the solution of the MINLP problem (9). The regres-
sion function coefficients (ϕ) and the process variance (σ2z )
are still estimated using MLE. In the current implementation,
only the zeroth-order regression function is considered (for ease
of computation); however first-order (linear) and second-order
(quadratic) regression functions could be readily enabled with-
out requiring any change in the formulation − it will basically
increase the total number of candidates (for the MINLP) under
the Kriging surrogate model.

Support Vector Regression: SVR is a relatively newer type
of surrogate model. For a given training set of instance-label
pairs (xi, yi), i= 1, ...,np, where xi ∈ Rn and y ∈ 1,−1m, a linear
SVR is defined by f (x) = < w,x > +b, where b is a bias. To
train the SVR, the error, |ξ |= |y− f (x)|, is minimized by solving

the following convex optimization problem:

min
1
2
∥w∥2+CΣnpi=1ξi+ ξ̃i

s.t. (wT xi+ b)− yi≤ ε+ ξi (14)
yi− (wtxi+ b)≤ ε+ ξ̃i
ξi, ξ̃i ≥ 0, i= 1,2, ...,np

In Eq.14, ε ≥ 0 represents the difference between the ac-
tual and the predicted values; ξi and ξ̃i are the slack variables;
C represents the flatness of the function; np represents number
of training points. By applying kernel functions, K(α,β ) =<
φ(α),φ(β ) >, under KKT conditions, the original problem is
mapped into higher dimension space. The dual form of SVR on
nonlinear regression could be represented as

max
np

∑
i=1

αiyi− ε
np

∑
i=1

|α|−
1
2

np

∑
i, j=1

αi.α j < φ(xi),φ(x j)>

s.t.
np

∑
i=1

αi = 0, −C≤ αi ≤C for i= 1, ...,np (15)

The standard Kernel functions used in SVR are listed in Table
4. The performance of SVR depends on its penalty parameterC
and kernel parameters γ , r, and d. Using hyper parameter op-
timization, correlation parameters can be estimated such that it
minimizes the model error. To implement SVR in this paper,
the LIBSVM (A Library for Support Vector Machines) package
developed [28] is used.

Applications
Benchmark Problems: The effectiveness of COSMOS

framework is illustrated by performing model selection for
the following two analytical test functions: (i) the 2-variable
Branin Hoo function, and (ii) the 6-variable Hartmann function.
These two test functions are described in Appendix A. Due to
time constraints, only the results of these two test functions
are provided in the draft paper. The full paper and subsequent
presentation will likely include a more comprehensive set of test
functions, e.g., the Dixon and Price function, the Shubert func-
tion, Goldstein and Price function, and theMichalewicz function.

Airfoil Design Problem: In this problem, the lift-to-drag
ratio (CL/CD) of a Wortmann FX60.126 series airfoil is maxi-
mized [29]. The design variables include the angle of incidence
(ranging from 0 to 10) and three shape variables (each ranging
from -0.01 to 0.01). The three shape variables represent the dis-
tances between the middle of suction side and horizontal axis,
between the middle of pressure side and horizontal axis, and be-
tween the trailing edge and horizontal axis. These three shape
variables allow a modification of the un-deformed airfoil profile.

9 Copyright c⃝ 2014 by ASME



With respect to the initial airfoil design, two splines (e.g., cubic
spline interpolation) are added to the suction and pressure sides.
Each of these splines is characterized by 3 points defined on the
leading edge, the middle span, and the trailing edge. To develop
the high fidelity aerodynamics model of this airfoil, the commer-
cial Finite Volume Method tool, FLUENT, is used, which solves
the Reynolds-averaged Navier-Stokes (RANS) equations. The
chord length of the airfoil is specified to be 1.0m, and incoming
wind velocity is specified to be 25.0m/s. The structured CFD
mesh is constructed using 9,838 quadrangular cells and 10,322
node points.

Results and Discussion
Three different model selections tests are performed using

COSMOS, each involving a unique pair of selection criteria, as
listed below:

Test 1 Apply COSMOS to (i) minimize the modal value of the
median error Emomed , and (ii) minimize the modal value of the
maximum error Emomax;

Test 2 Apply COSMOS to (i) minimize the modal value of the
median error Emomed , and (ii) minimize the standard deviation
of the median error Eσmax

Test 3 Apply COSMOS to (i) minimize the modal value of the
median error Emomed , and (ii) minimize the expected modal
value of the median error at (α = 0.2)more number of sam-
ple points (Emomed,α )

In each one of these tests, a population of 20 candidate solutions
is used for the Brannin Hoo and airfoil design problems, and a
population of 40 candidates is used for the relatively higher di-
mensional Hartman problem. For the HP−1 and HP−2 classes
of surrogates, the optimal model selection process (using NSGA-
II) is allowed to run for a maximum number of 50 generations.
The test results are discussed below.

The surrogate models in the Pareto Optimal set for each test
are listed in Table 3. The criteria functions for the Pareto solu-
tions as well as the solutions in the final population (in HP− 1
andHP−2 classes) for the three problems are shown in Figs. 4 to
6. Each figure shows the results from a particular test for a partic-
ular problem. In each of these figures the blue ’O’, the green ’X’,
and the black ’+’ symbols respectively represent the final results
of model selection under HP− 0, HP− 1, and HP− 2 classes
(which represent the number of hyper-parameters involved). The
Pareto solutions in these figures are encircled by red square sym-
bols.

The test-2 for Branin Hoo function crashed, and hence has
not been included in the draft paper (will be duely included in the
final paper). For this problem, E-RBF Multiquadric (under class
HP− 2) was selected as the best surrogate model by COSMOS
in both Tests 1 and 3 (Table 3 and Fig. 4). The set of Pareto
models for Test 1 in this case corresponded to different values of
the hyper-parameters (HP) (λ and σ ) in the E-RBF Multiquadric
model (Fig. ). Test 3 in this case yielded a single optimal E-RBF
Multiquadric model, with λ = 0.0232 and σ0 = .0066 (Fig. ).
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FIGURE 4. Branin Hoo function: Pareto models (red sq.) and final
population of models from all HP classes

With respect to the median error criteria, in this case surrogate-
kernels with no HPs performed the worst and those with two HPs
performed the best (Figs. and ).

For the Hartmann function, SVR-RBF (with different HP
values) constituted the set of Pareto models in both Tests 1 and
3 (Table 3, Figs. and ); and Kriging-Spherical, SVR-RBF, and
SVR-Sigmoid constituted the set of Pareto models in Test 2 (Ta-
ble 3 and Fig. ). In this test problem, surrogate-kernels with one
one HP performed the best and those with no HP performed the
worst.

For the airfoil design problem, RBF-TPS and ERBFMulti-
quadric constituted the set of Pareto models in Test 1 (Table 3
and Fig. ); RBF-Cubic, RBF-TPS, and ERBF-Multiquadric con-
stituted the set of Pareto models in Test 2 (Table 3 and Fig. ); and
E-RBF Multiquadric was selected as the single optimum surro-
gate model in Test 3 (Table 3 and Fig. ). The relative accuracy
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TABLE 3. The set of Pareto Surrogate Models given by COSMOS

Problem Test 1, min[Emomed , Emomax] Test 2, min[Emomed , Eσmed ] Test 3, min[Emomed , Emomed,α ]

Branin Hoo ERBF-Multiquadric - ERBF-Multiquadric

Hartmann-6 SVR-RBF Kriging-Spherical, SVR-RBF,
SVR-Sigmoid

SVR-RBF

Airfoil Design RBF-TPS,
ERBF-Multiquadric

RBF-Cubic, RBF-TPS,
ERBF-Multiquadric

ERBF-Multiquadric

of the optimal surrogates models in the airfoil design problem is
observed to be significantly higher than that in the other to ana-
lytical test problems.

Ideally, for any given problem, the mode of median error
estimated for a particular HP− 0 class surrogate should remain
the same across the three tests, since they do have HPs that can be
optimized. However, minor variations in their mode of median
error are observed among different tests in all three problems
(Figs. 4 to 6). This deviation can be attributed to the sensitivity of
the REES error measures themselves to the surrogate robustness,
unlike leave-one-out cross validation which is deterministic for
a given set of sample points. This is because each time REES is
applied, different heuristic subsets of intermediate training points
could be chosen given the same surrogate and the same overall
set of sample points. Future research in surrogate error measures
should pursue the mitigation of this undesirable sensitivity.

Overall, the COSMOS output, as illustrated in Table 3 and
Figs. 4 to 6 not only yields sets of best trade-off surrogate mod-
els, but also provides important insights into the performance of
the surrogate. For example, Fig. shows that the (modal value
of the) median error in some of the best surrogate models could
be reduced by approximately 50% if 20% more sample points
are made available. It is also interesting to observe that the same
surrogate-kernel combination (e.g., SVR-RBF in Fig. ) could
provide a wide spread of best trade-offs between median and
maximum errors, depending on the hyper-parameter values.

CONCLUSION
This paper advanced the surrogate model selection frame-

work that is based on the error measure given by the Regional Er-
ror Estimation of Surrogates (REES) method. This framework is
called the Collaborative Surrogate Model Selection (COSMOS)
framework, and is aimed to allow the selection of globally-
optimal surrogates, where the pool of candidate surrogatemodels
can be expanded through further collaboration and contribution
from the design engineering research community. To this end,
COSMOS performs surrogate model selection simultaneously at
all three levels: (i) selecting optimal surrogate type, (ii) select-
ing optimal kernel/basis function type, and (iii) finding optimum
values of the hyper-parameters in the kernel. The two primary
components of the COSMOS framework are (i) the error esti-

mation method (REES) which provides the criteria functions to
guide surrogate model selection, and (ii) the optimal model se-
lector that searches for the Pareto optimal set of surrogate mod-
els. The REES method provides a model-independent approach
to quantify the modal values of the median and maximum errors
in a surrogate, and has been shown to be significantly more ac-
curate than typical leave-one-out cross validation. In this paper
we advance the REES method to also yield the variance (or the
standard deviation) of the median and maximum errors (indicat-
ing the surrogate robustness), which are estimated by modeling
their relationship with increasing number of sample points. In
addition, we also estimate the expected median error if the sur-
rogate was constructed on a hypothetically larger set of sample
points (with similar distribution).

The optimal model selector solves a small set of parallel
optimizations, each corresponding to candidate surrogate-kernel
combinations involving a particular number of hyper-parameters.
Each optimization solves a multi-objective MINLP problem;
subsequently a Pareto filter is applied to determine the final
Pareto set of surrogate models. In this paper, COSMOS was
applied to two analytical test functions and an airfoil design
problem. The comprehensive candidate pool included five
major surrogate model types, with up to five different kernel
types available per surrogate model. Widely different sets of
surrogates models were selected (as the optimum set) in the three
problems. In some cases, the same surrogate-kernel combination
was observed to yield a noticeable spread of best trade-offs
(between median and maximum error), accomplished through
different hyper-parameter values. These numerical experiments
showed that in addition to model selection, COSMOS can
provide uniquely important insights into the relative capability
of different surrogate models, e.g., their capacity for accuracy
improvement if a larger set of samples is made available. With
further advancement, we believe that COSMOS would lay
the foundation for not only selection of globally-competitive
surrogates for any given application, but also for benchmarking
of existing and new surrogate models.
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FIGURE 5. Hartmann function: Pareto models (red sq.) and final
population of models from all HP classes
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Appendix A: Analytical Test Functions
Branin-Hoo function (2 variables):

f (x) =
(

x2−
5.1x21
4π2

+
5x1
π

− 6
)2

+ 10
(

1− 1
8π

)

cos(x1)+ 10

(16)
where x1 ∈ [−5 10], x2 ∈ [0 15]

Hartmann function (6 variables):

f (x) =−
4

∑
i=1

ci exp

{

−
n

∑
j=1

Ai j (x j−Pi j)2
}

(17)

where x= (x1 x2 . . . xn) xi ∈ [0 1]

In Hartmann-6, n = 6, and the constants c, A, and P, are a 1× 4
vector, a 4× 6 matrix, and a 4× 6 matrix, respectively [30].

Appendix B: Expressions for Candidate Surrogates-
Kernels in COSMOS
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TABLE 4. Basis or Kernel functions and their hyper-parameters in the candidate surrogate models

Type of model Type of basis/correlation/kernel function Hyper parameter

RBF Linear: r

shape parameter, σ

Cubic: r3

Thin plate spline: r2ln(r)

Gaussian: e(−r2/2σ)

Multiquadric: (r2+σ2)1/2

Kriging Linear: max(1−θ r,1)

correlation function parameter, θ

Exponential: e(−θ r)

Gaussian: e(−θ r)2

Cubic: 1−0.5ξ +0.5ξ 2; ξ = max(1−θ r,1)

Spherical: 1−3ξ 2+2ξ 3; ξ = max(1−θ r,1)

SVR Linear: (xTi x j)

kernel parameters; γ , r, and d
Polynomial: (γ xTi x j+ r)d , γ > 0

Radial Basis Function: e− γ∥xi−x j∥2 , γ > 0

Sigmoid: tanh(γ xTi x j + r)
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