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Abstract

Background: The Northern snakehead (Channa argus), a member of the Channidae family of the Perciformes, is an
economically important freshwater fish native to East Asia. In North America, it has become notorious as an intentionally
released invasive species. Its ability to breathe air with gills and migrate short distances over land makes it a good model
for bimodal breath research. Therefore, recent research has focused on the identification of relevant candidate genes. Here,
we performed whole genome sequencing of C. argus to construct its draft genome, aiming to offer useful information for
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further functional studies and identification of target genes related to its unusual facultative air breathing. Findings: We
assembled the C. argus genome with a total of 140.3 Gb of raw reads, which were sequenced using the Illumina HiSeq2000
platform. The final draft genome assembly was approximately 615.3 Mb, with a contig N50 of 81.4 kb and scaffold N50 of 4.5
Mb. The identified repeat sequences account for 18.9% of the whole genome. The 19877 protein-coding genes were
predicted from the genome assembly, with an average of 10.5 exons per gene. Conclusion: We generated a high-quality
draft genome of C. argus, which will provide a valuable genetic resource for further biomedical investigations of this
economically important teleost fish.
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Data description
Introduction of C. argus

The Northern snakehead (Channa argus) is a special snakehead
fish cultivated mainly in Asia and Africa for food, especially in
China with an annual production of about 510 000 tons (worth
∼1.6 billion US dollars) (Fig. 1). Genetic degradation caused by in-
breeding of C. argus cultivation has led to higher susceptibility to
diseases. Furthermore, C. argus is considered a serious invasive
species in North America, due to its wide-range diet, parental
care, and rapid colonization and expansion [1]. C. argus has a
specialized aerial breathing organ, the suprabranchial chamber,
which facilitates its aquatic–aerial bimodal breathing. Because
of its aggressive status in ecosystem of rivers, lakes, and ponds,
and little consumption of the C. argus in America for food, this
leads to threats to the balance of ecosystems. For both economic
and ecological consideration, it is vital to develop genomic
resources for further genetic breeding studies or ecological re-
search. So far, the genome sequence of C. argus has not been
reported, and hence in our current study we performed genome
sequencing, assembly, and annotation of this teleost species.

C. argus genome sequencing on the Illumina platform

Genomic DNA was extracted from blood sample of a single fe-
male C. argus (Fishbase ID: 4799) using Qiagen GenomicTip100
(Qiagen). The fish was obtained from the Pearl River Fish-
eries Research Institute, Chinese Academy of Fishery Sciences,
Guangzhou, China. A whole-genome shotgun sequencing strat-
egy was applied, and short-insert libraries (180, 500, and 800
bp) and long-insert libraries (3 and 5 kb) were constructed us-
ing the standard protocol provided by Illumina (San Diego, CA,
USA). Paired-end sequencing with a 2 × 100-bp read length was

Figure: 1: the Northern snakehead fish, Channa argus.

performed on the short-insert and long-insert libraries using the
Illumina HiSeq2000 platform. In total, we generated about 140.3
Gb of raw reads, including 33.0, 36.9, 17.4, 26.5, and 26.5 Gb of
reads from the 180-, 500-, 800-, 3-, and 5-kb libraries. After re-
moval of low-quality and redundant reads, we obtained about
138.2 Gb of clean data for further de novo assembling of the C.
argus genome.

Estimation of C. argus genome size and sequencing
coverage

All the cleaned reads were subjected to 17-mer frequency dis-
tribution analysis [2]. As the total number of k-mers was about
5.90 × 1010 and the peak of k-mers at a depth of 88, the genome
size of C. arguswas calculated to be 670.4 Mb using the following
formula: genome size = k-mer number / peak depth. Therefore,
the sequencing coverage was found to be ∼124.5 × based on the
estimated genome size.

De novo genome assembly and quality assessment

For whole genome assembly, SOAPdenovo2 [3] was used with
optimized parameters (-K 75) to construct contigs and original
scaffolds by using the reads from short-insert libraries. All reads
were then mapped onto contigs for scaffold construction by uti-
lizing the paired-end information of long-insert libraries. Some
intra-scaffold gaps were filled by local software using read-pairs
in which one end uniquely mapped to a contig and the other
end was located within a gap. Finally, a draft C. argus genome of
615.3 Mb was assembled, with a contig N50 size of 81.4 kb and a
scaffold N50 size of 4.5 Mb (Table 1).

Subsequently, the Core Eukaryotic Genes Mapping Approach
software [4] (version 2.3) with 248 conserved Core Eukaryotic
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Table 1: summary of the Channa argus genome assembly and
annotation

Genome assembly

Contig N50 size (kb) 81
Contig number (>100 bp) 29 146
Scaffold N50 size (Mb) 4.5
Scaffold number (>100 bp) 5297
Total length (Mb) 615.3
Genome coverage (X) 224.6
The longest scaffold (bp) 18 736 006
Genome annotation
Protein-coding gene number 19 877
Mean transcript length (kb) 16.5
Mean exons per gene 10.5
Mean exon length (bp) 175.0
Mean intron length (bp) 1537.3

Genes was utilized to evaluate completeness of genes. Our
results demonstrated that the generated genome assembly
covered 242 of the 248 Core Eukaryotic Gene sequences, sug-
gesting a high level of completeness within the genome assem-
bly. Alongside this, we also used BUSCO (version 1.22) [5] (the
representative vertebrate gene set containing 3023 single-copy
genes that are highly conserved in vertebrates) software to as-
sess the quality of the generated genome assembly. The assess-
ment demonstrated that the BUSCO value is 82.9%, containing
C: 66% [D: 1.4%], F: 16%, M: 17%, n: 3023 (C: complete [D: dupli-
cated], F: fragmented, M: missed, n: genes), suggesting a high
quality of the generated assembly.

Repeat sequence within the C. argus genome assembly

To analyze the C. argus genome, we employed Tandem Repeats
Finder [6] (version 4.04) with core parameters set as “Match = 2,
Mismatch = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50, and
MaxPerid = 2000” to identify tandem repeats. Simultaneously,
RepeatModeler (version 1.04) and LTR FINDER [7] were utilized
to construct a de novo repeat library with default parameters.
Subsequently, we used RepeatMasker [8] (version 3.2.9) to map
our assembled sequences on the Repbase TE (version 14.04) [9]
and the de novo repeat libraries to search for known and novel
transposable elements (TEs). In addition, the TE-related proteins
were annotated by using RepeatProteinMask software [8] (ver-
sion 3.2.2). In summary, the total identified repeat sequences
accounted for 18.94% of the C. argus genome (Table 2). Among
them, long interspersed nuclear elements were the most abun-
dant type of repeat sequences and occupy 8.92% of the whole
genome.

Gene annotation

Gene annotation of the C. argus genome was conducted using
several approaches, including transcriptome-based prediction,
de novo prediction, and homology-based prediction. RNA-seq
datasets of pooled 13 tissues were obtained from our previous
work [10].Wemapped these RNA reads onto our genome assem-
bly using TopHat1.2 software [11], and then we employed Cuf-
flinks (version 2.2.1) [12] to predict the gene structures. Further-
more, we performed Augustus (version 2.5.5) [13], GlimmerHMM
(version 3.0.1) [14], and GenScan (version 1.0) [15] softwares for
de novo prediction on the repeat-masked C. argus genome assem-
bly. The protein sequences of zebrafish (Danio rerio) [16], Japanese
puffer (Fugu rubripes) [17], medaka (Oryzias latipes) [18], spotted
green pufferfish (Tetraodon nigroviridis) [19] (the above 5 species
were downloaded from Ensembl release 75), blue spotted mud-
skipper (Boleophthalmus boddarti) [20], and golden arowana (Scle-
ropages formosus) [21] were mapped on the C. argus genome us-
ing TblastN with e-value ≤ 1e-5. Subsequently, Genewise2.2.0
software [22] was employed to predict the potential gene struc-
tures on all alignments. Finally, the above three datasets were
integrated to yield a comprehensive and nonredundant gene set
using GLEAN (https://sourceforge.net/projects/glean-gene/) [23]
with several filter steps (removing partial sequences or genes
shorter than 150 bp or prematurely terminated/frame-shifted
genes). The final total gene set was composed of 19 877 genes,
with an average of 10.5 exons per gene (Table 1).

Construction of gene families and phylogenetic tree

We downloaded the protein sequences of zebrafish [17],
Japanese puffer [18], stickleback (Gasterosteus aculeatus) [24],
spotted green pufferfish [20], andmedaka [19] from the Ensembl
Core database (release 75), and we also obtained the protein se-
quences of Asian seabass (Lates calcarifer) [25], blue spottedmud-
skipper [21], and golden arowana [22] from their correspond-
ing ftp websites, respectively. The consensus proteome set of
the above eight species and snakehead fish was filtered to re-
move those protein sequences <50 amino acids and resulted
in a dataset of 190 566 protein sequences, which was used as
the input file for OrthoMCL [26] to construct gene families. A to-
tal of 17 954 OrthoMCL families were built utilizing an effective
database size of 190 566 sequences for all-to-all BLASTP strategy
with an E-value of 1e-5 and a Markov Chain Clustering default
inflation parameter. We further identified 24 gene families that
were specific in the snakehead fish (Fig. 2a).

Subsequently, we selected 1918 single-copy (only one gene
from each species) orthogroups from the above-mentioned 9
teleost species.We usedMUSCLE (version 3.8.31) [27] to align the

Table 2: the detailed classification of repeat sequences of Channa argus

Repbase TEs TE protiens De novo Combined TEs
Type Length (bp) % in genome Length (bp) % in genome Length (bp) % in genome Length (bp) % in genome

DNA 17984 515 2.92 6 784 728 1.10 25 663 752 4.17 35 435 946 5.76
LINE 16799 343 2.73 17 563 763 2.85 54 890 557 8.92 60 651 866 9.86
SINE 4512 385 0.73 0 0 6 672 552 1.08 9 026 285 1.47
LTR 4421 728 0.72 3 031 607 0.49 24 144 657 3.92 26 983 318 4.39
Other 8125 0.001 0 0 0 0 8125 0.001
Unknown 0 0 0 0 9413 375 1.53 9 413 375 1.53
Total 41 585 442 6.76 27 363 267 4.45 103 162 115 16.77 116 545 270 18.94
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Figure: 2: genome evolution. (a) Orthologous gene families across five fish genomes (Snakehead fish, Zebrafish, Asian seabass, Mudskipper, and Arowana). (b) Phylogeny
of ray-finned fishes (the arowana as the outgroup species).

protein sequences from the 1918 orthogroups, respectively. We
also converted protein alignments to their corresponding cod-
ing DNA sequence alignments using an in-house perl script. All
the translated coding DNA sequence sequences were then com-
bined into one “supergene” for each species. Nondegenerated
sites (4D) extracted from the supergenes were then joined into
new sequence of each species to construct a phylogenetic tree
(Fig. 2b) using MrBayes [28] (Version 3.2, with the GTR+gamma
model).

Conclusion

We report the first whole genome sequencing, assembly, and
annotation of the Northern snakehead (Channa argus). The fi-
nal draft genome assembly is approximately 615.3 Mb, account-
ing for 91.8% of the estimated genome size (670.4 Mb). We

also predicted 19 877 protein-coding genes from the generated
assembly.

The draft genome assembly will be valuable resource for
genetic breeding, environmental DNA detection of invasive
species, and biological studies on this economically important
teleost fish. Based on these genomic data, researchers will be
able to develop genetic markers for further quantitative trait
locus and genome-wide association studies on growth traits.
These markers will also be very useful for DNA barcoding in
screening invasive C. argus for ecological protection.

Availability of supporting data

The raw sequencing reads of all libraries have been deposited at
NCBI (SRP078899). Further supporting data are available in the
GigaScience database, GigaDB [29].

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/6/4/gix011/3059652 by guest on 16 August 2022



Draft genome of the Northern snakehead 5

Abbreviation

TE: transposable element.
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