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Drag force, diffusion coefficient, and electric mobility of small particles.
I. Theory applicable to the free-molecule regime

Zhigang Li and Hai Wang
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, USA

~Received 25 July 2003; published 31 December 2003!

The transport of small particles in the free-molecule regime is investigated on the basis of gas kinetic theory.
Drag force formulations were derived in two limiting collision models—namely, specular and diffuse
scattering—by considering the potential force of interactions between the particle and fluid molecules. A
parametrized drag coefficient equation is proposed and accounts for the transition from specular to diffuse
scattering as particle size exceeds a critical value. The resulting formulations are shown to be consistent with
the Chapman-Enskog theory of molecular diffusion. In the limit of rigid-body interactions, these formulations
can be simplified also to Epstein’s solutions@P. S. Epstein, Phys. Rev.23, 710 ~1924!#.
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I. INTRODUCTION

Aerosols represent a class of materials of interest t
wide range of research disciplines, including atmosphe
science@1#, materials processing@2#, chemically reacting
flows, and combustion@3#. Particle transport properties, suc
as drag force, diffusion coefficient, and electric mobility@4#,
in low-density gases are critical to the measurement and
diction of the nucleation and dynamics of nanoparticles. P
ticle transport also plays an important role in the manipu
tion of nanomaterials and nanostructures in gas media.

There have been many attempts in obtaining a general
treatment for particle motion in a fluid. However, the theo
is far from complete. The situation is manifested by a sh
contrast between the ease with which the electric mobility
particles is measured@5# and difficulties in interpreting the
mobility-based particle size. Evidence shows that the mo
ity diameter differs from the diameter measured by electro
microscopy@6,7#, yet the relation between the two diamete
remains unclear. The lack of a satisfactory fundamen
theory of nanoparticle transport translates into added d
culties in explaining such phenomena as particle nuclea
and growth in flames, as recently discussed by Zhaoet al.
@8,9#.

In the present paper, we offer a review of the theory
particle transport with a focus on the motion of small, sphe
cal particles in low-density gases~Sec. II!. We consider here
the drag force due to the relative motion of the particle a
fluid, the diffusion, and the electric mobility of particle
although other particle transport mechanisms, including th
mophoresis and diffusiophoresis, may prove to be equ
important especially in reacting gases@3#. From a compari-
son of the various theories and considerations of the
kinetic theory and dynamics of molecular collisions, it w
become apparent that none of the theories developed
small-particle transport in low-density gases should be c
sidered as being complete. In Sec. III, we propose a ge
alized theory for drag force of particles in the free-molec
regime. In Sec. V, we demonstrate that this generali
theory unifies various particle transport theories. The ap
cation of this theory is discussed in a companion paper@10#,
hereafter referred to as paper II.
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II. REVIEW OF PARTICLE TRANSPORT THEORIES

In 1851, Stokes@11# solved the equations of motion of
rigid sphere in a fluid in the laminar regime. Stokes’ analy
yielded the much celebrated formula for the drag on a sph
of radiusR moving steadily in a fluid with velocityV. Under
the stick boundary condition, the drag formula takes the fo
of

F0526pmRV, ~1!

wherem is the viscosity of the fluid,R is the particle radius,
andV is the relative velocity vector between the particle a
the fluid ~the minus sign denotes the opposite orientations
F and V!. Later, Einstein@12# showed that the Brownian
diffusion coefficientD was related to its drag coefficientkd
by D5kT/kd . Recognizing that the drag coefficient is r
lated to the drag force askd52(F0 /V), the Stokes-Einstein
relation is obtained as

D05
kT

6pmR
. ~2!

In 1910, Cunningham@13# recognized that the stick
boundary condition in Stokes’ derivation is valid only for th
continuum regime where the Knudsen number Kn5l/R
!1. Here, l is the mean free path of the fluid,l
5(&psg

2N)21, sg is the collision diameter of the fluid
molecule, andN is the number density of the gas. An em
pirical correction factor, known as the Cunningham fact
was introduced as

C~Kn!511A8Kn, ~3!

whereA8 is a parameter. The resulting Stokes-Cunningh
equation takes the form of

F52
6pmRV

C
. ~4!

Later, Knudsen and Weber@14# realized that the paramete
A8 is a constant only for small values of Kn and propose
correction factor for all Kn. Equation~4! resulting from this
revision takes the form of
©2003 The American Physical Society06-1
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TABLE I. Published values of Cunningham slip correction parameters~adapted mostly from Allen and
Raabe@26#!.

Author
Mean free path

l ~mm! A B E A1B

Knudsen and Weber@14# 0.09417 0.772 0.40 1.63 1.172
Millikan @19# 0.09417 0.864 0.29 1.25 1.154
Langmuir @20# 0.133 0.62 0.22 2.20 0.84
Davies@21# 0.066 1.257 0.40 1.10 1.657
DeMarcus and Thomas@22# 0.0655 1.25 0.44 1.09 1.690
Reif @23# 0.0652 1.26 0.45 1.08 1.710
Fuchs@24# 0.0653 1.246 0.42 0.87 1.666
Dahneke@25# 0.066 1.234 0.414 0.87 1.648
Allen and Raabe@26# 0.0673 1.155 0.471 0.596 1.626
Buckley and Loyalka@27# — 1.099 0.518 0.425 1.617
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F52
6pmRV

11Kn@A1B exp~2E/Kn!#
, ~5!

where A, B, and E are constants. The above equation
known as the Stokes-Cunningham formula and has been
tensively used in modern instrumentation for particle s
and mobility measurements~e.g.,@15,16#!.

The determination of the parameter values in the C
ningham correction began with the classical work of Mil
kan @17–19#, who measured the mobility of a large numb
of oil droplets. Over the years, Millikan’s data remain t
core data used in fitting the values ofA, B, andE @20–27#.
Table I summarizes the results of these studies. It is seen
since the work of Davies@21#, theA1B value has converged
to a narrow range of 1.6–1.7. The significance of this va
will be discussed later.

Equation~5! simplifies to the original Stokes’ equation~1!
for the continuum region with Kn!1, where the drag force is
proportional toR. In the free-molecule region (Kn@1), the
equation becomes

F`52
6pmR2V

l~A1B!
, ~6!

where the subscript̀ denotes the large-Kn limit@and, like-
wise, the subscript 0 in Eqs.~1! and~2! denotes the small-Kn
limit #. In the large-Kn limit, the drag force assumes anR2

dependence. Figure 1 depicts schematically the variatio
kd /R (52F0 /RV) as a function of the particle radius~or
Knudsen number!. The transition from small- to large-Kn
limits may be viewed as the fall off ofkd /R as a function of
the Knudsen number, as given by the Cunningham correc
~dashed line!.

Using the gas-kinetic theory, Epstein@28# obtained that in
the free-molecule regime the force due to relative motion
a particle in gas is given by

F`52
8

3
dA2pmgkTNR2V, ~7!
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whered is a numerical factor that depends on the model
reflection of the molecules from the surface of the sphe
e.g.,d51 and~81p!/8 for the limiting cases of specular an
diffuse scattering, respectively, as shown in Fig. 1. In Eq.~7!,
mg is the mass of the gas molecule, andk is the Boltzmann
constant. The diffuse-scattering result was also reprodu
by Wang-Chang@29#. Millikan @19# noted that his data for
Kn@1 could be well explained with a linear combination
Epstein’s diffuse and specular scattering results, i.e.,

F`5wF`,diffuse1~12w!F`,specular

52
81pw

3
A2pmgkTNR2V, ~8!

and suggested thatw;0.9. Allen and Raabe@26# recom-
mended a similarw value, equal to 0.914. Following Ep
stein’s analysis, a number of attempts were made to solve
Boltzmann equation and its variations in the transition
gime @30–33#. These studies are, however, beyond the sc
of the present discussion.

FIG. 1. Schematic illustration of the drag coefficient for a rig
body.
6-2
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In the limit of Kn@1, the limitation of the Cunningham
correction can be explained in the context of Epstein’s eq
tions. Putting the expression of viscosity@34,35#,

m5
5

16

ApmgkT

ps2V (2,2)* , ~9!

into Eq.~6!, we obtain the Stokes-Cunningham drag force

F`52
15p

8~A1B!V (2,2)*
A2pmgkTNR2V. ~10!

Here V (2,2)* is the reduced collision integral@35#. Taking
w50.9 @19#, a comparison of Eqs.~8! and ~10! gives

A1B5
1.632

V (2,2)* . ~11!

The dependence ofA1B on V (2,2)* is translated into depen
dences on temperature and the nature of the gas molec
SinceV (2,2)* roughly scales withT21/2, the empirical Cun-
ningham correction is expected to be predictive only un
the condition of Millikan’s experiments, i.e., particle motio
in air at room temperature, whereV (2,2)* happens to be
about unity. Under this conditionA1B'1.632, which vali-
dates the range ofA1B values given in Table I.

A further limitation of the empirical Cunningham slip co
rection may be noted here. The smallest oil droplets in M
likan’s experiments are of the size of;0.3 mm, which is far
too large to validate the accuracy of the slip correction
particles of a few nanometers in diameter. Millikan’s o
droplet data and its resulting slip correction are shown to
consistent with Epstein’s diffuse scattering model, yet a
particle approaches the size of a molecule, the scattering
cess becomes specular, as evidenced by the success
Chapman-Enskog theory of molecular diffusion. In the lim
of rigid-body collisions, the Stokes-Cunningham formu
tends to overpredict the drag force of small, nanosized
ticles, as depicted in Fig. 1. This claim is supported by rec
experimental evidence that the mobility diameter based
the Cunningham slip correction is about 20% larger than
value measured by transmission electronic microscopy@6,7#.

The limitation of the Epstein theory is also well unde
stood as the particle approaches the molecular size.
limitation arises from the rigid-body collision assumptio
Elastic scattering due to long-range intermolecular force
known to be prevalent for molecular diffusion@34#. The
long-range forces include the van der Waals interactions a
when the particle is charged, the ion-induced dipole inter
tions ~e.g.,@36#!.

According to the Chapman-Enskog theory@34#, the first
approximation of the drag coefficient is given bykd

5(8/3)A2pmrkTNs2V (1,1)* , and the corresponding dra
force is

F`52
8

3
A2pmrkTNs2V (1,1)* V, ~12!
06120
a-

s

les.

r

-

r

e
a
ro-
the

t

r-
nt
n
e

is

is

d,
c-

wheremr is the reduced mass of the gas molecule and p
ticle, mr5mgmp /(mg1mp), andmp is the mass of the par
ticle. Comparing Eq.~12! with Epstein’s equation~7!, we see
that Epstein’s specular-reflection result is a special case

the Chapman-Enskog theory, whereV (1,1)* 51 for rigid-
body collisions andmp@mg . For large particles, the rigid
body model is adequate, because of negligible influence
the particle-molecule forces, as evidenced by the close ag
ment between Millikan’s data and Epstein’s diffus
scattering formulation. As particle approaches the molecu
size, however, the potential forces will exert some influen
on the scattering process and, thus, the particle trans
properties.

The effects of the long-range potential forces have b
discussed in the context of ion mobility@37# and were rec-
ognized by the recent study of Tammet@38#. Furthermore,
Rudyak and Krasnolutski@39# treated the nanoparticle diffu
sion coefficient on the basis of the Chapman-Enskog the
Both studies offer evidence that Epstein’s equations are
accurate as particles approach the molecular size.

Last, we note that although the Chapman-Enskog form
lation is theoretically rigorous, it accounts for specular-ty
scattering and, therefore, is applicable to small particles o
The transition from specular-type scattering to diffuse sc
tering is expected to occur at a particle mass diameter
few nanometers@38#. A validated theoretical treatment fo
this transition is not available.

There have been recent attempts to develop alterna
formulations@38,40–47#. A summary of the formulations rel
evant to the free molecule regime is given in Table II. T
most rigorous and sophisticated treatment to date is perh
that of Tammet@38#, who considered both the transition o
the scattering models from small to large particles and
influence of the potential force of interactions~see Table II!.
In other cases, the revised drag force formulas are either
cumbersome to be useful or do not fully address the pr
lems discussed above.

It is the objective of the current study to derive a gen
alized theory of particle transport in low-density gases in
Kn@1 regime. Our derivation is made on the basis of g
kinetic theory. We consider, for the first time, the influence
van der Waals and other interactions on the drag force.
derivation keeps the restriction of low Reynolds number a
as before, assumes the specular- and diffuse-scattering m
els as limiting cases. On the basis of these theoretical res
we discuss the model of transition from specular to diffu
scattering and propose a parametrized model for the d
coefficient that is simple and useful. The validation of th
theory will be presented in paper II@6#.

III. GENERALIZED THEORY FOR DRAG FORCE
IN THE Kn š1 REGIME

Consider a gas in local equilibrium with center-of-ma
velocity equal to 0. Let the velocity of the random motion
the gas molecules bev. A particle is introduced into the ga
with an instantaneous drift velocityV. Upon collision be-
tween the particle and a gas molecule, the velocities of
6-3
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TABLE II. Selected drag coefficient formulations in the Kn@1 regime.

Author Formulation (kd) Comments

Cunningham@13#
6pmR

11A8Kn
Empirical correction to Stokes’ law.

Knudsen and Weber@14#
6pmR

11Kn@A1Be2E/Kn#

Empirical correction to Stokes’ law. ParametersA, B, and E are
expected to depend on temperature and the nature of the fluid.

Epstein@28#
8

3
dA2pmgkTNR2

Based on the gas-kinetic theory and the rigid-body collision moded
is a numerical factor~d51 for specular-elastic scattering and~11p/
8!for diffuse scattering!.

Cercignani and
Pagani@40,41#

2

3
A2pmgkTNR2S 3Kn2statJ

p3/2V2 24D J is a variational functional for the drag exerted on a sphere b
rarefied gas.

Friedlander@42#
8

3 S11
pa

8 DA2pmgkTNR2
Here the parametera is the known as the momentum accommodati
coefficient. It accounts for the appropriate mixing of specular a
diffuse reflections.

Annis et al. @43#

8pmR

3KnV (1,1)* S 12
daL

5 D Simplified from a three parameter form for Kn@1. d is a numerical
factor that depends on the scattering model, andaL is the Lorentzian
thermal diffusion factor of the binary gas-particlemixture~d51 and
aL50.5 for specular-elastic scattering!.

Tammet@38#

16

9
A2pmrkTNd2V (1,1)

V (1,1) is the collision integral given bys(r m ,T)1V`24
(1,1)* 21,

s(r m ,T) is a switch function determined by the reflection law,r m is

the particle mass radius,V`24
(1,1)* is the reduced collision integral fo

elastic-specular interaction of à24 potential function, andd is the
collision distance.

Fernández de la Mora
et al. @46#

8

3 S11
pa

8 DA2pmgkTN~R1r g!2
An extension of Friedlander’s formula by considering the radius
the gas moleculer g in the collision cross section. The parametera is
the momentum accommodation factor.

This work

8

3
A2pmrkTNR2Vavg

(1,1)* ,

where

Vavg
(1,1)* 5wVd

(1,1)* 1(12w)Vs
(1,1)*

Based on the gas-kinetic theory and considering the intermolec
potential energy of interactions. The average reduced collis
integral is parametrized by the collision integral of specular a
diffuse scattering and the momentum accommodation functionw.
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particle and gas molecule are altered and denoted byV8 and
v8, respectively.

For convenience we shall attach the coordinate system
the particle with the originO, located at the mass center
the particle, as shown in Fig. 2. Then the velocity of the g
molecules is given byg5v2V before collision and
g85v82V8 after collision. Let thez axis of the coordinate
system be parallel tog and i, j , andk be unit vectors in the
x, y, andz directions, respectively. In the coordinate syste
defined above, the drag on the particle is the time deriva
of the momentum of gas molecules. Consider a gas mole
traveling in a cylindrical region with an impact factorb and
velocity g ~Fig. 2! and a small sector of this cylindrical she
of an area given bybdbd«. The number of molecules in thi
sector at timet is

n5 f gbdbd«dt, ~13!

where f is the velocity distribution function of gas mo
ecules,

f 5
N

~2pkT/mr !
3/2 expS 2

v2

2kT/mr
D . ~14!
06120
to

s

e
le

Here the use of the reduced mass in the velocity distribu
function is dictated by the reference frame. The total mom
tum p of the molecules in the sector is therefore

p5mrng. ~15!

The momentum of reflected molecules is essentially given
the angle of scattering, assuming that the particle drift vel
ity is sufficiently small. For specular scattering, the angle
incidence is equal to that of scattering, as shown in Fig
and the magnitudes ofg andg8 are assumed to be equal. F
diffuse scattering, the magnitude ofg8 is Maxwellian, and
the direction ofg8 is random above the element surface
impact @18#. In both cases, the dynamics of flyby scatteri
are identical.

A. Specular scattering

The angle of scatteringx ~Fig. 2! is a function ofb and
the magnitude ofg. Let the potential function of interaction
be F(r ), where r is the center-to-center distance betwe
the gas molecule and particle. The angle of scattering
given by @35#
6-4
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x~g,b!5p22bE
r m

` dr

r 2A12
b2

r 2 2
F~r !

mrg
2/2

, ~16!

where r m is the distance of the closest encounter. The m
mentum of the reflected molecules is

p85mrng~k cosx1 i sinx cos«1 j sinx sin«!. ~17!

Here we assume that the momentum magnitude of the s
tered molecules is equal to that of the incidence. Since
second and third terms on the right-hand side of Eq.~17!
vanish upon integration over« from 0 to 2p, we only need to
consider the first term inp8. In the sector given bybdbd«,
the differential drag force is

dF`,s5
p2p8

dt
5mrng~12cosx!. ~18!

Putting Eqs.~15! and ~17! into ~18! and integrating, we ob-
tain

F`,s5
mrN

~2pkT/mr !
3/2 E

v
ggexpS 2

v2

2kT/mr
DQs~g!dv,

~19!

whereQs(g) is the cross section, defined by

Qs~g!52pE
0

`

~12cosx!bdb. ~20!

FIG. 2. ~a! Collision model and the reference frame.~b! Rela-
tionship among various vectors.
06120
-

at-
e

It is reasonable to assume that the variation in the magnit
of the drift velocity V is much smaller than that of the ga
moleculesv. With this assumption, we havedv'dg. Let f
andu be the colatitude and azimuthal angles ofg in a refer-
ence frame in whichV is collinear with thez axis ~Fig. 2!;
Eq. ~19! can be written as

F`,s5
mrN

~2pkT/mr !
3/2

3E
g
ggexpS 2

g21V212gV cosf

2kT/mr
DQs~g!dg

5
2pmrNV

~2pkT/mr !
3/2V E

0

`

g4 expS 2
g21V212gV cosf

2kT/mr
D

3Qs~g!dgE
0

p

cosf sinfdf. ~21!

For g@V andmp@mg , we havekT;mgg2;mrg
2@mrgV

and thereforegV/(kT/mr)!1. Expanding the exponentia
term in Eq.~21! yields

expS 2
g21V212gV cosf

2kT/mr
D

'expS 2
g2

2kT/mr
D S 12

gV cosf

kT/mr
D . ~22!

Putting Eq.~22! into ~21! and integrating overf, we obtain

F`,s52
4pmr

2NV

3kT~2pkT/mr !
3/2

3E
0

`

g5 expS 2
g2

2kT/mr
DQs~g!dg. ~23!

Let g5g/A2kT/mr , Eq. ~23! simplifies to

F`,s52
8

3p
A2pmrkTNVE

0

`

g5 exp~2g2!Qs~g!dg.

~24!

We now define a collision integral as

Vs
(1,1)5E

0

`

exp~2g2!g5Qs~g!dg. ~25!

The corresponding drag-force equation is

F`,s52
8

3p
A2pmrkTNVs

(1,1)V. ~26!

In Eq. ~26!, the particle size information is intrinsically im
bedded in the collision integral. The particle size is me
sured, in fact, by the potential energy of interactions betw
the particle and gas molecule. For convenience and follo
6-5
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Z. LI AND H. WANG PHYSICAL REVIEW E 68, 061206 ~2003!
ing the approach of Chapman-Enskog theory@35#, we intro-
duce here a reduced collision integral, defined as

Vs
(1,1)* 5

Vs
(1,1)

pR2 , ~27!

and the drag-force equation becomes

F`,s52
8

3
A2pmrkTNR2Vs

(1,1)* V. ~28!

Here we choosepR2 to represent the collision cross sectio
An alternative choice could be made by usingpsg2p

2 ,
wheresg2p5R1sg/2, andsg is the collision diameter of
the gas molecule, but from the standpoint of applications,
resulting drag equation is more cumbersome to use. We
ther note that when particles approach the molecular size
definition of the radius requires some special considerat
While this issue will be specifically discussed in paper
here the drag force and reduced collision integral equat
are rigorous as long as a particle radius exists.

The drag-force equation~28! is identical to the first-order
approximation of the Chapman-Enskog theory, i.e., Eq.~12!.
For large particles, the influence of van der Waals for
between the gas molecule and particle is expected to pl
minor role, and the collision can be well described by t
rigid body assumption. It can be shown that Eq.~27! is re-

duced toVs
(1,1)* 51 if the rigid-body assumption is made

Consequently, Eq.~28! simplifies to the Epstein equation~7!
with d51.

B. Diffuse scattering

For diffuse scattering the velocity distribution of scatter
molecules is Maxwellian and given by

f 85cg f expS 2
g82

2kT/mr
D , ~29!

wherec is a constant to be determined andg f is the incident
flux. Again the temperature of the scattered molecules is
sumed to be equal to that of the incidence. By mass con
vation, we obtaing f5*g8g8 f 8dg8 andc5(mr /kT)2/(2p).
The analysis is simplified by recognizing that the effect
angle of diffuse scattering is normal to the surface of impa
because the net momentum transfer is zero in the direc
parallel to the surface. Define the polar angles betweeng8
ande3 asj andc, wheree3 is a unit vector as shown in Fig
2. The momentum of the reflected molecules can be wri
as

p85bdbd«dtE
g8

mrg8g8 cosj f 8dg8

5
mrne3

~kT/mr !
2 E

0

`

g84 expS 2
g82

2kT/mr
Ddg8

3E
0

p/2

cos2 j sinjdj. ~30!
06120
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Integrating the above equation, we obtain

p85
A2pmrkT

2
ne35

A2pmrkT

2
g f bdbd«dte3 . ~31!

Decomposing the unit vectore3 on the principal axes of the
coordinate system, we obtain the momentum of the reflec
molecule as

p85
A2mrpkT

2
@gcosz1 ig sinz cos«1 jg sinz sin«#

3 f bdbd«dt, ~32!

wherez5~x1p!/2. Putting Eqs.~32! and ~15! into Eq. ~18!
and integrating, we obtain the drag-force equation in the
fuse scattering limit as

F`,d5mrE
v
ggf dvE

0

`

2pS 11
1

g
ApkT

2mr
sin

x

2D bdb.

~33!

It may be noted that the integral*0
` sin(x/2)bdb is diver-

gent. Physically, the divergence is caused by the assump
that the scattering is diffuse even if the gas molecule a
particle do not physically collide as the impact parameteb
exceeds a critical value. This is, of course, unreasonable.
therefore have to consider three types of molecular scatte
upon interactions with the particle, as shown in Fig. 3@35#.
Obviously, diffuse scattering is relevant to contact collisio
i.e., type~a!, only. Orbiting scattering@type ~b!# is possible if
b5b0 , and scattering must be of type~c!, known as the
grazing collision, ifb.b0 , whereb0 is the critical impact
factor. The cross section of types~b! and~c! is deterministic
and may be calculated from Eq.~20! with the lower integra-
tion bound set forb0 .

Equation~33! is revised accordingly as

F`,d52pmrE
v
ggf dvF E

0

b0S 11
1

g
ApkT

2mr
sin

x

2D bdb

1E
b0

`

~12cosx!bdbG . ~34!

We shall define the diffuse-scattering cross section as

Qd~g!52pF E
0

b0S 11
1

g
ApkT

2mr
sin

x

2D bdb

1E
b0

`

~12cosx!bdbG . ~35!

Combining Eqs.~34! and~35! and integrating, we again ob
tain the drag-force equation as

F`,d52
8

3
A2pmrkTNR2Vd

(1,1)* V, ~36!
6-6



e-

ca
n
e

th

l-

of

oi
ca

int

las-

of

i-

n

al

tial

x-

the
he
hat

n
o

the
own
t re-
-
tly,

a-
ar-

e
error

e

DRAG FORCE, DIFFUSION COEFFICIENT, . . . . I. . . . PHYSICAL REVIEW E 68, 061206 ~2003!
whereVd
(1,1)* is the reduced diffuse-scattering collision int

gral,

Vd
(1,1)* 5

*0
` exp~2g2!g5Qd~g!dg

pR2 . ~37!

Comparing the results of specular-type and diffuse s
tering model, we see that formulations for the drag force a
reduced collision integral are identical. The difference b
tween the two scattering models is manifested only in
formulation of the collision cross section; cf. Eqs.~20! and
~35!. It can be shown that for rigid-body collisions, the co

lision integral of Eq.~37! is simplified toVd
(1,1)* 511p/8.

Then, Eq.~36! turns out to be the exact Epstein form
diffuse scattering, as expected for large particles.

C. Parametrization

The derivations described in the preceding sections p
to the fact that a generalized particle transport equation
be expressed in terms of an average reduced collision

gral, Vavg
(1,1)* . For the drag coefficient, we have

kd5
8

3
A2pmrkTNR2Vavg

(1,1)* . ~38!

FIG. 3. Scattering type:~a! for b,b0 , particles collide with the
scattering angle2`,x<p, ~b! for b5b0 , orbiting scattering oc-
curs andx→2`, and~c! for b.b0 , grazing scattering takes plac
andx,0.
06120
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It is possible to carry out anab initio calculation forVavg
(1,1)*

using the rigorous approach of molecular dynamics or c
sical trajectory calculations@37#. In practice, this is not al-
ways feasible. For this reason, a parametrized form

Vavg
(1,1)* is introduced here. Following the approach of Mill

kan @19#, we propose thatVavg
(1,1)* be parametrized as

Vavg
(1,1)* 5wVd

(1,1)* 1~12w!Vs
(1,1)* , ~39!

wherew ~0<w<1! is a switch function. The parametrizatio
accounts for the limiting case of diffuse scattering withw51
and of specular scattering withw50. The collision integrals

Vd
(1,1)* andVs

(1,1)* can be readily calculated if the potenti
function is known. In a companion paper@10#, the collisional
integral values are calculated for representative poten
functions. The form of the switch functionw will also be
developed on the basis of available experimental data.

IV. DIFFUSION COEFFICIENT AND ELECTRIC
MOBILITY

We note that Eq.~38! is equally applicable to diffusion
coefficient and electric mobility@4#. Thus, the particle diffu-
sion coefficientD can be determined through Einstein’s e
pression@12# as

D5
3

8
A kT

2pmr

1

NR2Vavg
(1,1)* . ~40!

Clearly the above equation is entirely consistent with
Chapman-Enskog treatment of molecular diffusion, with t
exception that the reduced collision integral is no longer t
of specular scattering.

The electric mobilityZ in the limit of zero field is simi-
larly obtained as

Z5
3

8

q

A2pmrkTNR2Vavg
(1,1)* , ~41!

where q is the charge in the particle. It will be shown i
paper II that Eq.~41! is indeed valid when it is compared t
available experimental data.

V. DISCUSSION

We shall remark on the parametrized drag force on
basis of the current theoretical treatment. It has been sh
that Epstein’s equations are special cases of the presen
sults in the limit of rigid-body collisions. Moreover, the re
sults obtained for specular-type scattering or, equivalen
Eq. ~38! with w50 in Eq.~39! are entirely consistent with the
Chapman-Enskog’s first approximation. Higher approxim
tions are necessary only for the diffusion of small molecul
weight species~e.g., H2 and He! at very low temperatures
@48#. Tammet @38# clearly demonstrated that for particl
transport higher-order terms are unnecessary, and the
resulting from neglecting these terms amounts to,0.1% for
mp.5mg .
6-7
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The formulas of Friedlander@42# and Ferna´ndez de la
Mora et al. @46# ~see Table II! are rigid-body limits of Eq.
~38!. Here we note that the momentum accommodation
efficient in the Friedlander formula is in fact similar to th
switch functionw proposed here. The value of this coef
cient has been quoted as equal to 0.91@19,26,42,46#, essen-
tially reflecting on the diffuse scattering characteristic of t
collision process. As the particle approaches the size o
molecule, we expect thatw→0. Since there is no reason t
expect the momentum accommodation coefficient orw to be
a constant over the entire range of particle sizes, we s
hereafter term the functionw as the momentum accommod
tion function.

Our derivations also validate the formulation of Tamm
@38# ~Table II!, which was extended from the Chapma
Enskog theory. Tammet considered the switch functions to
be the reduced collision integral of a rigid sphere. Witho
charge-induced dipole polarization, the formulation redu
to that of the rigid-body limit. With charge-induced dipo

polarization,s is corrected byV`24
(1,1)* 21, whereV`24

(1,1)* is
the reduced collision integral for a~`24! potential function.

Last, let us discuss the nature of the momentum acc
modation function. In general,w must be dependent on th
particle size. Diffuse reflection may be primarily caused
surface ‘‘roughness’’ and/or by multiple collisions of a g
molecule on the surface of the particle. Larger particles t
to better facilitate multiple collisions because of the larg
surface and the greater propensity toward absorbing
translational energy of the gas molecule upon initial impa
The surface roughness, on the other hand, may be effect
reduced due to an increase speed of rotation for small
ticles.

The expression of the momentum accommodation fu
f

ng

fi-

g

.
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tion will be developed in paper II. Here we note thatw is ;0
in the small-particle-size limit and;0.9 in the large-size
limit. In the rigid-body limit, this transition causes thekd /R
curve to switch from the specular scattering curve to
diffuse scattering line, as shown in Fig. 1 by the thick so
line. Therefore for small particles the Cunningham correct
tends to overpredictkd /R in the rigid-body limit. The more
realistic drag coefficient would be the one that is bound
Eq. ~38! for Kn@1 and the Stokes’ law for Kn!1, as de-
picted by the dash-dotted-dashed line shown in Fig. 1.

VI. SUMMARY

We investigated the transport of particles in the Kn@1
regime. Two general formulas were developed for the spe
lar and diffuse scattering on the basis of the gas-kine
theory. Our derivation considered the influence of poten
energy of interactions between the gas molecule and part
This influence was expressed in terms of the reduced c
sion integral. On the basis of the theoretical results obtai
for the two limiting collision models, the drag coefficient
cast into a parametrized form. A momentum accommoda
function was proposed to account for the transition fro
specular reflections to diffuse scattering due to the incre
in particle size. We demonstrated that Epstein’s theoret
results can be viewed as the rigid-body limits of the curr
theoretical formulations. Furthermore, our specular-ela
formulation is completely consistent with Chapma
Enskog’s first approximation of molecular diffusion.
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