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Drag force, diffusion coefficient, and electric mobility of small particles.
|. Theory applicable to the free-molecule regime
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The transport of small particles in the free-molecule regime is investigated on the basis of gas kinetic theory.
Drag force formulations were derived in two limiting collision models—namely, specular and diffuse
scattering—by considering the potential force of interactions between the particle and fluid molecules. A
parametrized drag coefficient equation is proposed and accounts for the transition from specular to diffuse
scattering as particle size exceeds a critical value. The resulting formulations are shown to be consistent with
the Chapman-Enskog theory of molecular diffusion. In the limit of rigid-body interactions, these formulations
can be simplified also to Epstein’s solutidis S. Epstein, Phys. Re23, 710(1924].
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I. INTRODUCTION Il. REVIEW OF PARTICLE TRANSPORT THEORIES

A | N | t materials of int - In 1851, Stoke$11] solved the equations of motion of a
€rosols represent a class of materials ot interest 1o ?igid sphere in a fluid in the laminar regime. Stokes’ analysis

wide range of research disciplines, including atmospherig;g|qeq the much celebrated formula for the drag on a sphere
science[1], materials processing2], chemically reacting of radiusR moving steadily in a fluid with velocity. Under

flows, and combustiof8]. Particle transport properties, such e stick boundary condition, the drag formula takes the form
as drag force, diffusion coefficient, and electric mobil[i#}, s

in low-density gases are critical to the measurement and pre-
diction of the nucleation and dynamics of nanopatrticles. Par- Fo=—6m7uRV, (1)
ticle transport also plays an important role in the manipula- . ] ) o . .
tion of nanomaterials and nanostructures in gas media. ~ Whereu is the viscosity of the fluidR is the particle radius,
There have been many attempts in obtaining a generalizetdV is the relative velocity vector between the particle and
treatment for particle motion in a fluid. However, the theory the fluid (the minus sign denotes the opposite orientations of
is far from complete. The situation is manifested by a shard:_ anq V). Latf-zr., Einstein[12] showeq that the Br_oyvnlan
contrast between the ease with which the electric mobility og'ﬁus?n coefficientD was related to its drag coefficieky
particles is measurefb] and difficulties in interpreting the Ia{ez ;Ok;/ek‘é'raRefgcr’gg';gg ih(e'l:t tR/e) dtrﬁg Sct(c)aif:;-lg?rtlsltse irne-
mobility-based particle size. Evidence shows that the mOb”'reIation is obtai%ed as 0r T/
ity diameter differs from the diameter measured by electronic
microscopy[6,7], yet the relation between the two diameters KT
remains unclear. The lack of a satisfactory fundamental DOIW.

theory of nanoparticle transport translates into added diffi-

culties in explaining such phenomena as particle nucleation |5 1910, Cunningham{13] recognized that the stick
and growth in flames, as recently discussed by ZéBal.  poundary condition in Stokes’ derivation is valid only for the
[8,9]. continuum regime where the Knudsen number=KuiR

In the present paper, we offer a review of the theory of<1. Here, N is the mean free path of the fluid)
particle transport with a focus on the motion of small, spheri—:(‘QmTéN)—{ g is the collision diameter of the fluid
cal particles in low-density gas¢Sec. 1). We consider here  gjecule, andN is the number density of the gas. An em-

the drag force due to the relative motion of the particle andyjrical correction factor, known as the Cunningham factor,
fluid, the diffusion, and the electric mobility of particles, \yas introduced as

although other particle transport mechanisms, including ther-

mophoresis and diffusiophoresis, may prove to be equally C(Kn)=1+A'Kn, 3)
important especially in reacting gasgs. From a compari-

son of the various theories and considerations of the gawhereA’ is a parameter. The resulting Stokes-Cunningham
kinetic theory and dynamics of molecular collisions, it will equation takes the form of

become apparent that none of the theories developed for

small-particle transport in low-density gases should be con- Fo_ 6muRV @
sidered as being complete. In Sec. lll, we propose a gener- N c

alized theory for drag force of particles in the free-molecule

regime. In Sec. V, we demonstrate that this generalizedlater, Knudsen and Web¢i4] realized that the parameter
theory unifies various particle transport theories. The appliA’ is a constant only for small values of Kn and proposed a
cation of this theory is discussed in a companion papé, correction factor for all Kn. Equatiof¥) resulting from this
hereafter referred to as paper II. revision takes the form of
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TABLE I. Published values of Cunningham slip correction paramegiapted mostly from Allen and

Raabe 26]).
Mean free path
Author N\ (um) A B E A+B
Knudsen and Webgn 4] 0.09417 0.772 0.40 1.63 1.172
Millikan [19] 0.09417 0.864 0.29 1.25 1.154
Langmuir[20] 0.133 0.62 0.22 2.20 0.84
Davies[21] 0.066 1.257 0.40 1.10 1.657
DeMarcus and Thomd®2] 0.0655 1.25 0.44 1.09 1.690
Reif [23] 0.0652 1.26 0.45 1.08 1.710
Fuchs[24] 0.0653 1.246 0.42 0.87 1.666
Dahnek€ 25] 0.066 1.234 0.414 0.87 1.648
Allen and Raab¢26] 0.0673 1.155 0.471 0.596 1.626
Buckley and Loyalkd27] — 1.099 0.518 0.425 1.617
67 uRV where § is a numerical factor that depends on the model of
F= (5  reflection of the molecules from the surface of the sphere,

S 1+ + - ’
L+Kn[A+Bexp—E/Kn)] e.g.,6=1 and(8+m)/8 for the limiting cases of specular and

~_ diffuse scattering, respectively, as shown in Fig. 1. In&3.

where A, B, andE are constants. The above equation ISm, is the mass of the gas molecule, anis the Boltzmann
known as the Stokes-Cunningham formula and has been expnstant. The diffuse-scattering result was also reproduced
tensively used in modern instrumentation for particle sizepy Wang-Chand29]. Millikan [19] noted that his data for
and mobility measurements.g.,[15,16)). _ Kn>1 could be well explained with a linear combination of

The determination of the parameter values in the Cungpstein’s diffuse and specular scattering resuilts, i.e.,
ningham correction began with the classical work of Milli-
kan[17-19, who measured the mobility of a large number

of oil droplets. Over the years, Millikan’s data remain the Foo= @F= diftuse™ (1= @) Fe specular

core data used in fitting the values &f B, andE [20-27. g4

Table | summarizes the results of these studies. It is seen that - _2TT® S KTNRV 8
- - 3 g L

since the work of DavieR21], theA+ B value has converged

to a narrow range of 1.6—1.7. The significance of this value
will be discussed later.

) o - , . and suggested thap~0.9. Allen and Raab¢26] recom-
o e s o 5 MeNded a s valle, equa T 0914. Flling -

. ' . stein’s analysis, a number of attempts were made to solve the
propo_rtlonal 1oR. In the free-molecule region (knl), the Boltzmann equation and its variations in the transition re-
equation becomes gime[30-33. These studies are, however, beyond the scope

of the present discussion.
6muR2V
(6)

Fo=——F77m:
NA+B) Kn>>1 Kn=1 Kn<<1

. . . Stokes Law:
where the subscript denotes the large-Kn limjtand, like- kyR=67mu

wise, the subscript 0 in Eqél) and(2) denotes the small-Kn \
limit]. In the large-Kn limit, the drag force assumes Rh
dependence. Figure 1 depicts schematically the variation of Diffuse scattering
kq/R (=—Fy/RV) as a function of the particle radiusr
Knudsen number The transition from small- to large-Kn
limits may be viewed as the fall off &, /R as a function of
the Knudsen number, as given by the Cunningham correction
(dashed ling

Using the gas-kinetic theory, Epstdi?8] obtained that in
the free-molecule regime the force due to relative motion of
a particle in gas is given by

Eq. (38) in the limit of

Cunningham
rigid body collision

correction

log(k /R)

Fall-off curve bound by Eq. (38)
for Kn >> 1 and Stokes law for Kn << 1

Specular scattering

log(R)

F.=— §5WNR2V’ ) bc)dFyIG. 1. Schematic illustration of the drag coefficient for a rigid
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In the limit of Kn>1, the limitation of the Cunningham wherem, is the reduced mass of the gas molecule and par-
correction can be explained in the context of Epstein’s equaticle, m,=mgm,/(my+m;), andm, is the mass of the par-

tions. Putting the expression of viscosj4,35), ticle. Comparing Eq(12) with Epstein’s equatioki7), we see
that Epstein’s specular-reflection result is a special case of
Mzi—mngk'l'*, (99 the Chapman-Enskog theory, whefBEY =1 for rigid-
16 720 (22) body collisions andn,>m. For large particles, the rigid-

body model is adequate, because of negligible influence of
into Eq. (6), we obtain the Stokes-Cunningham drag force ashe particle-molecule forces, as evidenced by the close agree-
ment between Millikan's data and Epstein’s diffuse-
_ 157 J2rmKTNRV (10 scattering formulation. As particle approaches the molecular
8(A+B)Q 22" ™o ' size, however, the potential forces will exert some influence
on the scattering process and, thus, the particle transport
properties.

The effects of the long-range potential forces have been
discussed in the context of ion mobilif$7] and were rec-

1.632 ognized by the recent study of Tamni&8]. Furthermore,
= (11 Rudyak and KrasnolutskB9] treated the nanoparticle diffu-

sion coefficient on the basis of the Chapman-Enskog theory.
) Both studies offer evidence that Epstein’s equations are in-
The dependence &+ B on Q22" is translated into depen- accurate as particles approach the molecular size.
dences on temperature and the nature of the gas molecules. Last, we note that although the Chapman-Enskog formu-
Since (22" roughly scales withl ~*2, the empirical Cun- lation is theoretically rigorous, it accounts for specular-type
ningham correction is expected to be predictive only undesgcattering and, therefore, is applicable to small particles only.
the condition of Millikan’s experiments, i.e., particle motion The transition from specular-type scattering to diffuse scat-
in air at room temperature, wher@ (22 happens to be tering is expected to occur at a particle_mass diameter of a
about unity. Under this conditioA+B~1.632, which vali- €W nanometerg38]. A validated theoretical treatment for
dates the range ok + B values given in Table . this transition is not available. _

A further limitation of the empirical Cunningham slip cor- _ 1here have been recent attempts to develop alternative
rection may be noted here. The smallest oil droplets in Mil-formulations{38,40—-47. A summary of the formulations rel-
likan's experiments are of the size 6f0.3 um, which is far ~ €vant to the free molecule regime is given in Table II. The
too large to validate the accuracy of the slip correction foroSt rigorous and sophisticated treatment to date is perhaps
particles of a few nanometers in diameter. Millikan's oil that of Tamme{38], who considered both the transition of
droplet data and its resulting slip correction are shown to b&h€ scattering models from small to large particles and the
consistent with Epstein’s diffuse scattering model, yet as anfluence of the potential force of interactiofeee Table Il
particle approaches the size of a molecule, the scattering prJ)U other cases, the revised drag force formulas are either too
cess becomes specular, as evidenced by the success of bersome to be useful or do not fully address the prob-
Chapman-Enskog theory of molecular diffusion. In the limit '€MS discussed above. ,
of rigid-body collisions, the Stokes-Cunningham formula 't iS the objective of the current study to derive a gener-
tends to overpredict the drag force of small, nanosized parized theory of particle transport in low-density gases in the
ticles, as depicted in Fig. 1. This claim is supported by recenfn>1 regime. Our derivation is made on the basis of gas-
experimental evidence that the mobility diameter based offinetic theory. We conS|der, forth(_a first time, the influence of
the Cunningham slip correction is about 20% larger than th&an der Waals and other interactions on the drag force. Our

value measured by transmission electronic micros¢6gs). derivation keeps the restriction of low Reynolds number and,
The limitation of the Epstein theory is also well under- & before, assumes the specular- and diffuse-scattering mod-

stood as the particle approaches the molecular size. ThRls as limiting cases. On the basis of these theoretical results,
limitation arises from the rigid-body collision assumption. W& discuss the model of transition from specular to diffuse
Elastic scattering due to long-range intermolecular forces iSCatt€ring and propose a parametrized model for the drag
known to be prevalent for molecular diffusidi34]. The coefﬂment that is S|mple'and useful. The validation of this
long-range forces include the van der Waals interactions and€0ry Will be presented in paper [6].

when the particle is charged, the ion-induced dipole interac-

tions (e.g.,[36]).

Here Q22" is the reduced collision integrdB5]. Taking
¢=0.9[19], a comparison of Eqg8) and (10) gives

A+B—W.

According to the Chapman-Enskog thedB4], the first lll. GENERALIZED THEORY FOR DRAG FORCE
approximation of the drag coefficient is given by, IN ' THE Kn >1 REGIME
=(8/3{)v277mrkTN029(1’1) , and the corresponding drag  Consider a gas in local equilibrium with center-of-mass
force is velocity equal to 0. Let the velocity of the random motion of

8 the gas molecules be A particle is introduced into the gas
2 B A KT N20 (L with an instantaneous drift velocity. Upon collision be-
Fa 3 2 kTNo™(2 v, (12 tween the particle and a gas molecule, the velocities of the
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TABLE Il. Selected drag coefficient formulations in the 3t regime.

Author Formulation kq) Comments
. 6muR . . ,
Cunninghanm 13] — Empirical correction to Stokes’ law.
1+A’Kn
67muR iri i ’
Knudsen and Webdi.] ' Empirical correction to Stokes’ law. Parameteks B, and E are
1+Kn[A+Be E/n] expected to depend on temperature and the nature of the fluid.

8 Based on the gas-kinetic theory and the rigid-body collision maglel.
Epstein[28] 3 S\2mmgk TNR is a numerical factof8=1 for specular-elastic scattering afith-m/
8)for diffuse scattering

Cercignani and 2 3Kn?stat] J is a variational functional for the drag exerted on a sphere by a
Pagani[40,41] 3 VZngkTNRZ( gz 4 rarefied gas.
8 T Here the parameter is the known as the momentum accommodation
Friedlandef42] 3|15 V2mmgk TNR coefficient. It accounts for the appropriate mixing of specular and
diffuse reflections.
8muR ( 5%) Simplified from a three parameter form for K. §is a numerical
. Ao |t T factor that depends on the scattering model, ands the Lorentzian
(1,1) 5
Annis et al. [43] 3KnQ thermal diffusion factor of the binary gas-particlemixt@=1 and
a =0.5 for specular-elastic scattering
(L1 isi i i (LY* _
EWN#Q(W O is the c_oII|S|on !ntegral given bys(rm,T)+(_2°c,4 1
9 r s(ry,,T) is a switch function determined by the reflection lay, is
Tammet[38] the particle mass radiu)(*Y" is the reduced collision integral for
elastic-specular interaction ofea—4 potential function, and is the
collision distance.
Ferrmdez de la Mora 8 o ) An extension of Friedlander’s formula by considering the radius of
et al. [46] 3|1t 5 V2mmgkTN(R+ 1) the gas molecule, in the collision cross section. The parameteis
' the momentum accommodation factor.
§\/WNRZQ(“)* Based on the gas-kinetic theory and considering the intermolecular
This work 3 ’ avg potential energy of interactions. The average reduced collision
where integral is parametrized by the collision integral of specular and
Qg},é.)* :qDle,l)* +(1- @)le’l)* diffuse scattering and the momentum accommodation funegion

particle and gas molecule are altered and denoted’bgnd  Here the use of the reduced mass in the velocity distribution
V', respectively. function is dictated by the reference frame. The total momen-
For convenience we shall attach the coordinate system ttum p of the molecules in the sector is therefore
the particle with the origirO, located at the mass center of
the particle, as shown in Fig. 2. Then the velocity of the gas
molecules is given byg=v—V before collision and
g'=v’'—V’ after collision. Let thez axis of the coordinate
system be parallel tg andi, j, andk be unit vectors in the The momentum of reflected molecules is essentially given by
X, y, andz directions, respectively. In the coordinate systemthe angle of scattering, assuming that the particle drift veloc-
defined above, the drag on the particle is the time derivativéty is sufficiently small. For specular scattering, the angle of
of the momentum of gas molecules. Consider a gas moleculacidence is equal to that of scattering, as shown in Fig. 2,
traveling in a cylindrical region with an impact factorand  and the magnitudes @fandg’ are assumed to be equal. For
velocity g (Fig. 2 and a small sector of this cylindrical shell diffuse scattering, the magnitude gf is Maxwellian, and
of an area given bppdbds. The number of molecules in this the direction ofg’ is random above the element surface of
sector at timd is impact[18]. In both cases, the dynamics of flyby scattering
are identical.

p=mng. (15

n=fgbdbddt, (13)

. . S . A. Specular scattering
where f is the velocity distribution function of gas mol-

ecules, The angle of scattering (Fig. 2 is a function ofb and

the magnitude of). Let the potential function of interaction

N F{ 2 ) be ®(r), wherer is the center-to-center distance between

f= ZakTim )32ex (14 the gas molecule and particle. The angle of scattering is
r

1%
~ 2kT/m, given by[35]

061206-4



DRAG FORCE, DIFFUSION COEFFICIENT.. . I. ... PHYSICAL REVIEW E 68, 061206 (2003

It is reasonable to assume that the variation in the magnitude
of the drift velocityV is much smaller than that of the gas
moleculesv. With this assumption, we hawdv~dg. Let ¢

and ¢ be the colatitude and azimuthal anglesgdh a refer-
ence frame in whiclV is collinear with thez axis (Fig. 2);

Eg. (19) can be written as

o m, N
=S (27kT/m,)3?

9%+ V?+2gVcosep
X fggg ex;{ - )Qs(g)dg

2KT/m,

~ 2mmNV = 9%+ V2+2gVcos¢p
= 2akTim)v J, 9 X 2KT/m,

sz(g)dgfoﬂ cos¢h sinbdb. 21)

For g>V andm,>m,, we havekT~myg*~m,g°>m,gV
and thereforegV/(kT/m,)<<1. Expanding the exponential
term in Eq.(21) yields

Diffuse Reflection

FIG. 2. (a) Collision model and the reference frani{e) Rela-

;{ gZ+V2+Zchos¢>
exp —
tionship among various vectors.

2KT/m;,

g® gV cos¢
- dr ”eXp( N 2kT/mr> ( Y ) @2
X(g,b)=77—2bJ' o , (16)
r"‘rz \ /1_ - (r) Putting Eq.(22) into (21) and integrating ove, we obtain
r2 mg32
Am2NV
wherer , is the distance of the closest encounter. The mo- Fos=— 3KT(27kT/m,) 32
mentum of the reflected molecules is '
% 92
, .. .. . 5 _
p’=m,ng(k cosy+isiny cose+j sinysine). (17) Xfo g exr{ 2kT/mr)QS(g)dg' (23)

Here we assume that the momentum magnitude of the scat- o
tered molecules is equal to that of the incidence. Since th®t Y=9/V2kT/m;, Eq.(23) simplifies to

second and third terms on the right-hand side of &)

vanish upon integration overfrom 0 to 2, we only need to __ i I y—— J’”’ 5 )
consider the first term ip’. In the sector given bpdbde, Feis 37 2mmkTNV 0 77 exp = 7)) Qs(g)dy.
the differential drag force is (24)
p—p’ We now define a collision integral as
dFm,s=T=mrng(1—cosX). (18)

ay_ [ 2.5
Putting Egs.(15) and (17) into (18) and integrating, we ob- s fo exp(—y) 7’ Qs(g)dy. (25

tain
The corresponding drag-force equation is

- m;N v?
Fos= (2kTIm )2 vgg exp{ - m) Qs(g)dyv,

8
(19 Fos=—3- V2aem kTNQ DY, (26)
whereQq(g) is the cross section, defined by In Eq. (26), the particle size information is intrinsically im-
. bedded in the collision integral. The particle size is mea-
Q (g)=27rf (1—cosy)bdb. (20) sured, in fact, by the potential energy of interactions between
s 0 the particle and gas molecule. For convenience and follow-
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ing the approach of Chapman-Enskog thel@¥], we intro-  Integrating the above equation, we obtain
duce here a reduced collision integral, defined as

V2mm KT V2mm KT

. 0@ p=—rp L hey= 5 T gfbdbckdte;. (31)

ot =—7, (27)
7R
) Decomposing the unit vect@s on the principal axes of the
and the drag-force equation becomes coordinate system, we obtain the momentum of the reflected
g molecule as
F.. o= — = V27mKTNRQMY v, 28
<7 g AT 2 makT .
p'= T[g cos{+igsing cose +jgsing sing]

Here we chooserR? to represent the collision cross section.
An alternative choice could be made by usimgré,p, X fbdbdedt, (32
where oy, =R+ 04/2, andoy is the collision diameter of
the gas molecule, but from the standpoint of applications, thevhere {=(x+m)/2. Putting Eqs(32) and (15) into Eq. (18)
resulting drag equation is more cumbersome to use. We fuand integrating, we obtain the drag-force equation in the dif-
ther note that when particles approach the molecular size, thfeise scattering limit as
definition of the radius requires some special consideration.
1 [akT x)
1+§ om, smE bdb.
(33

While this issue will be specifically discussed in paper II, o

here the drag force and reduced collision integral equations Foc,d:mrf ggfdvj 2m

are rigorous as long as a particle radius exists. Y 0
The drag-force equatiof28) is identical to the first-order

approximation of the Chapman-Enskog theory, i.e., &). It may be noted that the integrff; sin(x/2)bdb is diver-

For large particles, the influence O.f van der Waals force ent. Physically, the divergence is caused by the assumption
be_tween the gas molecql_e and particle is expec_ted to play at the scattering is diffuse even if the gas molecule and
minor role, and the_ collision can be well descrlbgd by theparticle do not physically collide as the impact paraméter
rigid body ass:lmptlon. It can be shown that E27) is re- exceeds a critical value. This is, of course, unreasonable. We
duced toQ{""" =1 if the rigid-body assumption is made. therefore have to consider three types of molecular scattering
Consequently, Eq28) simplifies to the Epstein equatidi@)  upon interactions with the particle, as shown in Fig33].
with 6=1. Obviously, diffuse scattering is relevant to contact collision,
i.e., type(a), only. Orbiting scatterinftype (b)] is possible if
B. Diffuse scattering b=by, and scattering must be of tyde), known as the
OIgrazing collision, ifb>bg, whereb, is the critical impact
factor. The cross section of typ€és) and(c) is deterministic
and may be calculated from E@0) with the lower integra-

For diffuse scattering the velocity distribution of scattere
molecules is Maxwellian and given by

g'? tion bound set foibg.
f’:cgfexp< - 2kT/mr)' (29 Equation(33) is revised accordingly as
wherec is a constant to be determined agflis the incident E —omm J'ggfdv J'bo 14 1 /WkTsinK) bdb
flux. Again the temperature of the scattered molecules is as- =.d "Iy 0 g Vvam, 2
sumed to be equal to that of the incidence. By mass conser-
vation, we obtaingf=[4g'f’'dg’ andc=(m,/kT)?/(2). o
The analysis is simplified by recognizing that the effective * bo(l cosx)bdb). (34

angle of diffuse scattering is normal to the surface of impact,

parallel to the surface. Define the polar angles betwgen

ande; asé and ), wheree; is a unit vector as shown in Fig. by 1 [7kT
2. The momentum of the reflected molecules can be written Qu(g)=27 f 1+ =1/ sin% |bdb
as 0 g V2m, 2
p'=bdbd8dtf mrgrgr COS§f’dg' + fbo(l_COSX)bdb . (35)
gl
_ mne; (= _ 2 da’ Combining Eqs(34) and(35) and integrating, we again ob-
B (kT/mr)2 0 g & 2kT/m, 9 tain the drag-force equation as

/2 ) 8 *
X fo cog &sin&dé. (30) Frg=— §\/277mr|<TN ROy, (36)
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It is possible to carry out aab initio calculation forQ{2"

using the rigorous approach of molecular dynamics or clas-
sical trajectory calculationg37]. In practice, this is not al-
_ —— A — —- ways feasible. For this reason, a parametrized form of

___________ _@___I_-bf_ bo QY is introduced here. Following the approach of Mili-
(a) kan[19], we propose tha 2" be parametrized as
04y =0V +(1- )0, (39

whereg (0=<¢=<1) is a switch function. The parametrization
accounts for the limiting case of diffuse scattering wjth 1
and of specular scattering witb=0. The collision integrals

Q&Y and QY can be readily calculated if the potential
function is known. In a companion pagddi0], the collisional
integral values are calculated for representative potential
functions. The form of the switch functiop will also be
developed on the basis of available experimental data.

IV. DIFFUSION COEFFICIENT AND ELECTRIC
MOBILITY

We note that Eq(38) is equally applicable to diffusion
coefficient and electric mobility4]. Thus, the particle diffu-
sion coefficientD can be determined through Einstein’s ex-
pression12] as

FIG. 3. Scattering typeia) for b<bg, particles collide with the D= § </ kT 1 _ (40)
scattering angle-co<y=<mr, (b) for b=b,, orbiting scattering oc- 8 V2mm, NrR2QLD*
. . avg
curs andy——ox, and(c) for b>b,, grazing scattering takes place
and x<0. Clearly the above equation is entirely consistent with the

Chapman-Enskog treatment of molecular diffusion, with the
exception that the reduced collision integral is no longer that
of specular scattering.

The electric mobilityZ in the limit of zero field is simi-
larly obtained as

Wherlejl'l)* is the reduced diffuse-scattering collision inte-
gral,

a0 &A= Y) 7" Qu(g)dy
d 7TR2 :

(37

3
z-3 T (41
V2mm kTNRQG
Comparing the results of specular-type and diffuse scat- , , . . )

tering model, we see that formulations for the drag force andvhereq is the charge in the particle. It will be shown in
reduced collision integral are identical. The difference befaper Il that Eq(41) is indeed valid when it is compared to
tween the two scattering models is manifested only in thélvailable experimental data.
formulation of the collision cross section; cf. E420) and

(35). It can be shown that for rigid-body collisions, the col- V. DISCUSSION
lision integral of Eq.(37) is simplified to Q" =1+m/8. We shall remark on the parametrized drag force on the
Then, Eq.(36) turns out to be the exact Epstein form of pagis of the current theoretical treatment. It has been shown
diffuse scattering, as expected for large particles. that Epstein’s equations are special cases of the present re-
sults in the limit of rigid-body collisions. Moreover, the re-
C. Parametrization sults obtained for specular-type scattering or, equivalently,

o . ) . ] _ Eq.(38) with ¢=0 in Eq.(39) are entirely consistent with the
The derivations described in the preceding sections POINEhapman-Enskog’s first approximation. Higher approxima-
to the fact that a generalized particle transport equation caggns are necessary only for the diffusion of small molecular-
be expressed in terms of an average reduced collision i”t%veight speciede.g., b and He at very low temperatures

graI,Qg};;)*. For the drag coefficient, we have [48]. Tammet[38] clearly demonstrated that for particle
g transport higher-order terms are unnecessary, and the error
. X . 0
kd=§ WNRnglvé) _ (39) :ﬁsilgrrlr? from neglecting these terms amounts@1% for
p g-
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The formulas of Friedlandef42] and Fernadez de la tion will be developed in paper Il. Here we note tiais ~0
Mora et al. [46] (see Table Il are rigid-body limits of Eq. in the small-particle-size limit and-0.9 in the large-size
(38). Here we note that the momentum accommodation colimit. In the rigid-body limit, this transition causes tlkg/R
efficient in the Friedlander formula is in fact similar to the curve to switch from the specular scattering curve to the
switch functione proposed here. The value of this coeffi- diffuse scattering line, as shown in Fig. 1 by the thick solid
cient has been quoted as equal to (1.99,26,42,4§ essen- line. Therefore for small particles the Cunningham correction
tially reflecting on the diffuse scattering characteristic of thetends to overpredidty/R in the rigid-body limit. The more
collision process. As the particle approaches the size of eealistic drag coefficient would be the one that is bound by
molecule, we expect that—0. Since there is no reason to Eg. (38) for Kn>1 and the Stokes’ law for k&1, as de-
expect the momentum accommodation coefficienp®0 be  picted by the dash-dotted-dashed line shown in Fig. 1.

a constant over the entire range of particle sizes, we shall
hereafter term the functioa as the momentum accommoda- VI. SUMMARY
tion function. ) i i i

Our derivations also validate the formulation of Tammet e investigated the transport of particles in the>Kin
[38] (Table 1), which was extended from the Chapman- regime. Tv_vo general for_mulas were dev_eloped for the specu-
Enskog theory. Tammet considered the switch functao " and diffuse scattering on the basis of the gas-kinetic
be the reduced collision integral of a rigid sphere. Withouttheory- Ogr denvguon considered the influence of potenpal
charge-induced dipole polarization, the formulation reduce§N€rgy of interactions between the gas molecule and particle.
to that of the rigid-body limit. With charge-induced dipole T_h|s _mfluence was expre_ssed in terms qf the reduced c_olll-

o . L 11y sion integral. On the basis of the theoretical results obtained
polarization,s is corrected byQ;; —1, whereQ; ") is

he reduced collision i it 4 il f . for the two limiting collision models, the drag coefficient is
the reduced collision integral for(ee—4) potential function. o« into a parametrized form. A momentum accommodation
Last, let us discuss the nature of the momentum acco

dation f . ! be d 4 h unction was proposed to account for the transition from
modation function. In generalp must be dependent on the specular reflections to diffuse scattering due to the increase
particle size. Diffuse reflection may be primarily caused by

¢ . h » and/or b ltiol llisi ‘ in particle size. We demonstrated that Epstein’s theoretical
surface “roughness” and/or by multiple collisions of & gas oqjts can be viewed as the rigid-body limits of the current

molecule on the surface of the particle. Larger particles tenghe g retical formulations. Furthermore, our specular-elastic

to better facilitate multiple collisions because of the Iargerformulation is completely consistent with Chapman-
surface_ and the greater propensity toward ;_ap;orplng thEnskog’s first approximation of molecular diffusion.
translational energy of the gas molecule upon initial impact.

The surface roughness, on the other hand, may be effectively

reduced due to an increase speed of rotation for small par-

ticles. This work was supported by the National Science Foun-
The expression of the momentum accommodation funceation under Grant No. CHE-0089136.
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