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Introduction

It is found that the Stokes and the Oseen approximations
of the Naviear-Stokes equation are very useful for dealing
with the creeping flow around an object. Whenfluid is
unbounded in its extent, the ratio of the inertia to the
viscous term of this equation becomes larger as the
distance from the object increases.

For the case of a sphere, the ratio of the inertia to
the viscous term, i. e., the local Reynolds number, at a
point in a space is calculated3) as Voor/v. This shows

that the Stokes assumption is violated at the point where
Voor/v=0(1). However, if Re based on the diameter of

a sphere is very small compared with 1, one can obtain
the uniform approximation to the velocity distribution
using the Stokes approximation6).

On the other hand, for the two dimensional creeping
flow perpendicular to the axis of a cylinder infinite in
length, the Stokes approximation gives no solution which
satisfies both the boundary conditions at the cylinder
surface and at the infinity. The solution which satisfies
only the former and diverges least rapidly as r->°° is of
the order of lnr for the large value of rn, and the

velocity distribution obtained from the Stokes approxima-
tion contains one undeterminate coefficient. In general,

two dimensional creeping flow must be analyzed on the
base of the Oseen approximation even if Re^l. But
when one needs the velocity distribution only in the
region near the cylinder, for example, in order to calculate
the drag force on it, the solution obtained from the Stokes
approximation would be sufficient if one can determine
the undeterminate coefficient by an appropriate method.

The asymptotic formula of Lamb's solution3) of the
Oseen equation in the region near the cylinder is very
similar to that of the undeterminate solution obtained
from the Stokes approximation63. It is suggested as an
approximation to determine the undeterminate coefficient

by comparing these two formulas. The asymptotic solution
obtained by this method which is only applicable in the
region near the cylinder include the effect of the inertia
of fluid, though it is completely neglected in the original
Stokes approximation.

Bearing the foregoing in mind, the creeping flow of a
generalized Newtonian fluid around a circular cylinder
is analyzed approximately by the perturbation method.
As is for the case of a sphere8\ the initial term of the
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expansion reduces to the equation of motion of Newtonian
fluid. Strictly, this term must be solved on the base of
the Oseen equation. But it is very difficult to solve the

first order term of the perturbation parameter by using
this result. Since we are concerned only with the
asymptotic behavior in the region near the cylinder, the
Stokes approximation is adopted and the undeterminate
coefficient is determined by the previously mentioned
method. Furthermore, in solving the first order term of
the perturbation parameter, the boundary condition at
the infinity for the perturbed velocity is replaced by the
requirment that for the large value of r the solution of
the first term is lower order than that of the initial
term. The solution thus obtained is not the uniform
approximation to the velocity distribution, however it
maybe considered to be sufficient for the determination
of the drag force on a cylinder.

With an attempt to compare the calculated drag force
with the experimental data, a circular cylinder was allowed
to fall perpendicular to its axis through aqueous solutions
of C.M. C. (Carboxymethyl celullose) contained in the
rectangular cylinder, and the drag force was determined
from the terminal velocity of it.

Generally, for the two dimensional creeping flow, the
order of the controling term for the large value of r is
lnr, as a consequence, the wall effect is enormously
larger than that for three dimensional flow. Therefore
wecould not carry out the experiment at the condition

free from the wall effect. But the interesting result that
the drag force is determined only by the zero-shear

viscosity was verified experimentally.

I. Equation of Motion

Cylindrical coordinates (r, 6, Z) are chosen with the
origin at the axis of the cylinder, #=0 in the down-stream
direction, and Z in the direction of the cylinder axis.
Using the Stokes approximation, equations of motion for
the steady, incompressible creeping flow become

0=

0=
dr r dr r1 dP 1 a(2 .

r ad r dr

dd
i_
r dd

TdO

and equation of continuity is'idf .idv,

Boundary conditions are,

B.C.1. Vr=Ve=0 at r=a

(1)
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B.C.2. Vr=Vcocos0, V0= -Fcosin0
at r=°° (4)

Here, P is the pressure,, uj.d, j=r, 0) is the component
of the shear stress tensor, and Vt {i-r, 6) is the component
of the velocity vector.

For a generalized Newtonian fluid, the relation between
the stress tensor and the rate-of-deformation tensor is
expressed in the following form,

UJ = 2Va(Jl*)DiJ (5)
For the low shear rate region, an apparent viscosity rja
is approximated by the following equation,

?.(n*) = ViV2

i + ;l2ii*1+ ;u2n*

1 . a
i+£iH " i+£2n

where
f. .-*å (å £å )å . n-foiir

II is the second invariant of the rate-of-deformation
tensor. That is, E*=2DijDJi> Dij=l/2(.Vij+Vj,i)

(summation convention is applied for the repeated suffix,
and "," denotes the covariant derivative). When an

apparent viscosity is approximated fey Eq. (6), generally,a<l, £i<^£2

and the value of the second term of the right-hand side
of this equation is very small compared with that of the
first one. It may be considered that ya is little affected
if the second term is approximated in terms of h(£, 0)

calculated from the Stokes solution in the following way,
Vi

Va = 1 4- eJI
Ll +ah($, d)l

= 1- (r'-r^'coe'tf-r'sin'tf
t- r (7)

where A is the undeterminate coefficient which must be
determined from the solution of the Oseen equation.
Introducing the following dimensionless quantities,

Vi =
Vco

«-r p=

p

it is assumed that vi and p can be expressed as a power
series in a and si as follows,

v= vo(£, 0) +-ovate, 0) +eivtte, 0) + 'à"à"

Substituting Eq. (8) into Eqs. (l), (5) and
equating like power of a and ei, one obtains
differential equation. To the first order in
these equations are expressed as follows.

(i) Initial term
dp, r, vro _ 2 dvdidp,

VrO
2 dveo

u e to+ V2^0-
^^0

+

here,

'à"Hi*®*
(ii) First order term in a

0=
dpa_ 9f

Vra

2 d2

2 dvea
+

dS 'LA(ft e)[
VVr»~ å VrDe- do

2 dvoa1S2 dd J
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(8)
(6), and

a set of
and £1.

(9)

+2(
dVrdh
+
så V0Q

V 3f /af
+ dd do

Vda
+2 dz;ra

62 ^

+ &(£, 0) V2voo
Vdo , 2 divo

+ (4(
Vdo +à"

dVrO

do
+ ~TVrOj

(iii) First order term in ei
8pe

0=-
de Vrt ~

Ho Wo-

' dVrO 9Eo

dh

dvdo
ds+2U dd
dh
dd

2 dvos

2 dveo

-fd$
Vrdå  6

+f 9?y»

f do
V0£ -

VOe
+
2 8Vre

dd

Hol V voo -pr +
Vdo +å 

2 3VrO

e dodVrO

do+
VrO

*-im+ (I

an_'/1dveo

1 dllo
dd

dvoo
dd

+

VrO

here

(10)

(ll)

,|~ d(Vdo\, 1dvroT

+Leds\f/ e ^-I
Equations of continuity are

y~-(|f0+y~=0, i=0,a,8l (12)

2. Approximate Solutions

Using the dimensionless stream functions <p, (p-WjaVm,
velocity components are expressed as

1 d(b dcp

From the assumption of Eq.(8), (p can be expanded as
follows,

<p- (po +a<pa+sicpt + à"à"à"
2.1 Solution of Eq,(9)
Eq.(9) expressed in terms of ^o is

Ldi2 $ds+edd2J^-°
3f2 f 9f ' f2

B.C.2. ^0~>fsin^, asf-BX.l. *-=4&..a,tf=1

Leaving Eq. (15) out of consideration, the solution for

Eq. (13), which satisfies only Eq. (14) and diverges most
slowly as f increases, is obtained as follows1},

cp, = a[$In£ - if + ^"'Jsin0 (16)
where A is an undeterminate coefficient. Then the
velocity components and pressure are given by

Vro = A[ln5 - y+yf~2Jcos^

^^o= -A[lnf+y-yf~2Jsin^

po - po> = -2A£~1cosd (17)
On the other hand, Lamb's solution3) for the Oseen



equation can be expressed asymptotically in the region
near the cylinder as follows6\

? « ^[flnf - yf + yf1]sin0 (18)
where B0=l/2-r+ln(8/Re), T is the Euler constant,

0.577-*-, and Re=2aVoo/v. Comparing Eq.(16) with Eq.
(18), one can determine A as follows,

A=
2piV«

Re=Ba
y-r+ln^7

?i
2.2 Solution of Eq. (10)

Using Eq. (16), Eq. (10) can be rewritten as follows,
0--
dp*+

Vra ~Vrc_2_f2
dVda

+-^i(4r2 + 3r4 - 26<r6 + 48r8 - 24r10)cos#

+ (r4 - 6r6 +4r8)cos3^]

°" e. bo

+ -o4-[(4fJ - 3f"4 + 6r6 - 24rlo)sin^ZHq
+ (~3r4+6£~6+4r8)sin3^]

Elimination pa in Eq. (20) givesa 2 l d
+ de2 (pa

(20)

= ^-[(6r5 - 28r7
? --1

+24f"9+96rn)sin0+(6f~5-246"

- 8r9)sin 3^] (21)

B.C.I. -^L=^L=a. asf=l (22)

B.C.2. ^=o(^o), as£->oo (23)
As mentioned previously, B. C. 2. is an approximate

boundary condition. Assuming as a solution of Eq. (21) that
<pa = ZFt (g)8i (fi) (24)

then,
91=sin0, 62=sin30 (25)

and differential equations for Fi and F2 become respectively
[d4 2\_d* 3 J2^3 J_3L

-DO

rd> +2

- 28f7 + 24f"9 + 96rn)

de19 d1e d?

+

dS
+45
1}

B,
-ter5 -24r7 - sr9)

(26)

(27)

Solving these equations, <pa, vra, vea are obtained as

follows ,

<Pa = -^[Ao^"1In£ + E Aiar2t+3)sin0
-do L ,-=1

+

S &ar"+1)sin 30
1=1

Vra ~

Vfta -

BolA,T2lnf + EA»T!'t!)cos»1=1

+ 3GB*-1r4lnf + £oT~2ln<

+ SAT")
COS

Bol (CoT2In£ + S Ciar"+2)sin0*=1

+ (Da-^"4In$ + Aaf~2In£
+ E D^r2')sin3^1+ S D«*r2i)sin

(28)

(29)

(30)

Substituting these results into Eq. (20), pa is given by

Table I Coefficients of Eqs. (28), (29), (30), (3l) and (32)

£ -1 0 1 2 3 4 5

Aia -0.375 0.1584 -0.0584 -0.1458 0.02083 0.025
Bt" 0.25 0.125 -0.2 0.2125 -0.0125
da -0.375 -0.1584 0.3166 -0.4374 0.10415 0.175
Dia 0.75 0.125 -0.325 0.3875 -0.0625
Ef -2.0 -0.75 2.833 -3.5 1.20
Gt": 1.0 -1.183 1.5 -0.2

1

H Et°Fu+1cos0 + (Goaf3/w£i=l

+ LG,T"+1)cos30 (31)

Parameters in these equations are given in Table 1.
2.3 Solution of Eq. (ll)

(pt, Vre, and vee are obtained by multiplying 4/Bq2 to
Eqs.(28), (29) and (30).

4 [/>. =

=2

[cos6 + (G0£f"3Inf

+ |] G,T"+1)cos30i=l

Et* =Eia(i=2, 3, 4, 5)

d'=Gia(t=0, 1,2,3)

(32)

3. Drag Force on a Cylinder

The distributions of the pressure and the rate-of-shear
on a cylinder surface are given

P- Poo = - -l^-^M^cosfl + a(2.217cos#

- O.117cos30) + -^-.(O.217cos0-
-DO

- 0.117cos 3^)] (33)
9D - 1 V°°

2sin0 + (a + 4^T")(1.283sin6

- 0.35sin 3#J (34)

The total drag F per unit length of a cylinder is composed
of the pressure drag Fn and the friction drag Ft.

F,=

8n~

CPco - P)r=a COSOdO

2KVo*(l + a)Vi [1+8nl

0.108a + 0.433Gi/J5o2)
1+

Ft - a\ (- Trd)r=asinddOJ0

2;rVco(l + a)?i
Bo

The total drag is given by
F=Ft+Fn=

1 1

Ll-dtl 8t=dn

4;rVco(l + <*)?!

Bo
Re= 2 piVcoaBo

r + ln-J-
Re

Vi

(35)

(36)

(37)

This equation reduces to Lamb's equation" when a=£i-
0.

In Eqs. (35) and (36), dn and 8t are parameters to

represent the degree of deviation from the resistance law
for Newtonianfluid due to the non-Newtonianviscosity.
As is shown from these equations, they are the same in

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



Table 2 Parameters of Eq. (6)

No. Cone. Temp. pt h2x104 h2x103 )?i i?2
[g/cm [g/cm

[wt%] [°C] [g/cm3] [sec2] [sec2] -sec] -sec]

1 2.16 30 1.006 2.19 50.0 4.50 0.856
2 2.48 25 1.009 2.69 25.9 8.71 2.66
3 2.87 35 1.005 1.62 85.3 8.19 3.50
4 2.93 35 1.007 1.27 3.55 4.02 0.944
5 3.19 35 1.009 7.77 116 13.4 2.24

magnitude and opposite in direction. As a consequence,

the total drag exerted by a generalized Newtonian fluid
is independent of the shear rate and determined only by
the zero-shear viscosity. Of course, this result is applica
ble only when the flow is very slow so that the condition
of this analysis is satisfied.

For the case of a sphere8\ the friction drag is dominant
over the pressure drag and consequently the total drag
decreases. Taking the foregoing into consideration, it
may be expected that the total drag increases when the
pressure drag is dominant over the friction drag such as
for the case of a disk.

4. Experiment

Small cylinders madeof enameled copper were allowed
to fall through aqueous solutions of C. M. C (Caboxyme-
thyl celullose) contained in the tank of the dimension of
12X20X65cm. Concentrations of C.M.C were 2.16,

2.48, 2.87, 2.93 and 3.19 weight percent. The cylinders
used were 0.0473, 0.0630, 0.0733, 0.0837, 0.0940, 0.106
and 0.127cm in diameter and 2, 3, 4, 5, 6 and 7 cm in

Fig. I Capillary viscometer data compared with
Eq.(6)

Fig. 2 Terminal velocities of cylinders as functions
of their length, No.5 solution, O; experimental points

VOL.1
NO.1

1968

9



Fig. 3 Dependence of 7]ac on representaive
velocity gradient

Fig. 4 Comparison of 7]ac with zero-shear viscosity,
271+572

ength for each diameter. The density of the cylinder

was approximately 8.00. A stopwatch was used for tim-
ing. Non-Newtonian viscosities were measured by the
Maron, Krieger and Sisko capillary viscometer4). These
data are shown in Fig.1, where circles and solid

lines represent measured and calculated values from Eq.
(6) respectively. Parameters of Eq. (6), experimental
temperature, and density of solutions are summarized in
Table 2.

Since we are concerned with the two dimensional flow
around a cylinder infinite in length, it is necessary to
evaluate the possible end effects due to a finite-length
cylinder. In order to eliminate these end effects, termi-
nal velocities were measured on the cylinders of the same
diameter but of the different length. If a cylinder is

long enough so that end effects may be neglected, both
the body force and the drag force on a cylinder increase
in proportion to the length. Consequently, the terminal
velocity should approach to a certain value. As an exam-
ple, this is shown in Fig. 2. Since there is no reliable

data of Newtonian fluid on the drag force on a cylinder
at low Reynolds numberat present, as a reference the
same experiments were carried out for liquid jelly of
various viscosities.

10

5. Results and Discussions

White showed that, on the contrary to the case where
fluid is unbounded in extent, the wall effect is enormo-
usly large for the two dimensional flow so that the iner-
tia effect may be neglected under usual experimental
conditions. White's empirical formula7) for the drag
coefficient Cd is expressed by

Cr,= ^fjFT (38)

RMf)

Where H is the width between the walls. Also, Faxen's
analytical result2} is expressed as follows,

CD = ^ (39)
Relog(-4=-) - 0.398

\ a /

The higher order terms of Hid are neglected in Eq.
(39).

On the other hand, our experimental data for liquid

jelly were correlated within ±5%error by
CD = °^ (40)

iklog(^) - 0.660\ a /

The experimental range of Hid in Eq. (40) is from 94.3
to 254. In this range of Hid, the difference between

Eq. (39) and Eq. (40) is within 3.6%. The prediction of
Eq. (38) is relatively lower than that of Eq. (39).

Since in our experiment, geometrical parameters are

the same for both solutions of C. M. C and liquid jelly,
the data of C.M.C were analyzed on the base of Eq.
(40). Taking the result of §3 into consideration, we

define an apparent viscosity Vac by the falling cylinder

method as follows,
CDlog(^f) - 0.660

Vac = ^-f^ Pl VaJ (41)

Vac is plotted against the representative velocity gradient
Voo/d in Fig. 3. This shows that it may be concluded
that Vac is independent of Voo/d in agreement with the
result of §3. Fig.4 is a plot of Vac vs. (91+92). This

shows that Eq. (41) predicts the zero-shear viscosity with
good accuracy for Hid ranging from 94.3 to 254.
For Newtonian fluid, the prediction of Lamb's equation
is considerably lower than that of Faxen's equation at low
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Reynolds number and the latter rather than the former

explains experimental data under usual experimental con-
ditions. By the same reason, the drag force itself does
not agree with Eq. (37) quantitatively. However, the
interesting result that the drag force (i. e., Vac) is inde-
pendent of Vm/d and it can be determined only by the

zero-shear viscosity is verified with good agreement. This
result as well as that for a sphere8} may be considered
as an evidence for that it is useful for the creeping flow

to assume a generalized Newtonian model. For the large
value of H/d where wall effects may be neglected, Eq.
(37) is expected to predict the drag force quantitatively.
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Nomenclature
A

a

B,
CD
DtJ
d
F
Fn
Ft
H
h
P

undeterminate coefficient
radius of cylinder
Eq. (18)
drag coefficient
rate-of-deformation tensor
diameter of cylinder

[-]
[cm]
[-]
[-]

[sec"1]
[cm]

total drag per unit length of cylinder [g-cm/sec2]
pressure drag per unit length of cylinder [g-cm/sec2]
friction drag per unit length of cylinder [g-cm/sec21

= width between walls
= Eq. (7)

= pressure
= pressure, dimensionless

[cm]
[-]

[g/cm- sec2]
[-]

= radial distance
- Reynoldsnumber
= uniformly approaching velocity
= velocity vector

= velocity vector, dimensionless
= Eq. (6)

= Eqs. (35) and (36)
=Eq. (6), 2=1,2

= apparent viscosity

[cm]
[-1

[cm]
[cm]
[-]
[-]
[-]
[-]

[g/cm- sec]

Vac - apparent viscosity by falling cylinder nlethod,Eq. (41)

= parameters of Eq. (6)
= kinematic viscosity
= radial distance, dimensionless

= stress tensor
= stream function

= stream function.* dimensionless

[g/cm- sec]
[g/cm- sec]

[cm2/sec]
[-]

[g/cm- sec2]
[cm2/sec]

["]

n* = second invariant of rate-of-deformation tensor [sec 2]
II = second invariant of rate-of-deformation tensor,

dimensionless [-]
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STIMULUS AND RESPONSE OF GAS CONCENTRATION
IN BUBBLING FLUIDIZED BEDS"

KUNIO YOSHIDA AND DAIZO KUNII

Dept. of Chem. Eng., University of Tokyo, Tokyo

I. Introduction

From the viewpoint of chemical reactors, it is important

to investigate the characteristics of longitudinal gas disper-
sion. It is, however, generally difficult to predict the

distribution of gas residence time in fluidized bed, because
of the poor contact between gas and solids resulting from
the formation of gas bubbles.

Kunii and Levenspieln have proposed an idealized model
of bubble behavior in the fluidized bed* This paper is

concerned with the experimental and theoretical investi-
gations on the stimulus response of the bubbling fluidized
bed, based on the relations derived from the idealized
model. In the present experiments, two kinds of gases,
i.e., helium and Freon gas, were used as the tracer
gas.
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2. Basic Equations

2 1 Idealized model of bubbling bed
According to the idealized model of bubbling bed by

Kunii and Levenspiel, the rising velocity of the bubble
diameter are given respectively by the following equa-

tions.

m = uo - umf + 0.711(gdb)U2 (l)

db- ! (uo-Umf) (2)
n

Assumingthe steady state operation, where the amount
of solids transported upwards by the rising bubbles should
be compensated by the amount of descending solids, the
material balance of solids gives

(l "~3-ad)Us- adm
and from the gas balance,

(3)

ll


