DRAG FORCE ON A CYLINDER EXERTED BY THE CREEPING
FLOW OF A GENERALIZED NEWTONIAN FLUID'

Introduction

It is found that the Stokes and the Oseen approximations
of the Naviear-Stokes equation are very useful for dealing
with the creeping flow around an object. When fluid is
unbounded in its extent, the ratio of the inertia to the
viscous term of this equation becomes larger as the
distance from the object increases.

For the case of a sphere, the ratio of the inertia to
the viscous term, i. e., the local Reynolds number, at a
point in a space is calculated®” as Vor/v. This shows
that the Stokes assumption is violated at the point where
Veor/v=0(1). However, if Re based on the diameter of
a sphere is very small compared with 1, one can obtain
the uniform approximation to the velocity distribution
using the Stokes approximation®.

On the other hand, for the two dimensional creeping
flow perpendicular to the axis of a cylinder infinite in
length, the Stokes approximation gives no solution which
satisfies both the boundary conditions at the cylinder
surface and at the infinity. The solution which satisfies
only the former and diverges least rapidly as r—o0 is of
the order of Inr for the large value of »", and the
velocity distribution obtained from the Stokes approxima-
tion contains one undeterminate coefficient. In general,
two dimensional creeping flow must be analyzed on the
base of the Oseen approximation even if Re<<l. But
when one needs the velocity distribution only in the
region near the cylinder, for example, in order to calculate
the drag force on it, the solution obtained from the Stokes
approximation would be sufficient if one can determine
the undeterminate coefficient by an appropriate method.

The asymptotic formula of Lamb’s solution® of the
Oseen equation in the region near the cylinder is very
similar to that of the undeterminate solution obtained
from the Stokes approximation®. It is suggested as an
approximation to determine the undeterminate coefficient
by comparing these two formulas. The asymptotic solution
obtained by this method which is only applicable in the
region near the cylinder include the effect of the inertia
of fluid, though it is completely neglected in the original
Stokes approximation.

Bearing the foregoing in mind, the creeping flow of a
generalized Newtonian fluid around a circular cylinder
is analyzed approximately by the perturbation method.
As is for the case of a sphere®, the initial term of the
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expansion reduces to the equation of motion of Newtonian
fluid.  Strictly, this term must be solved on the base of
the Oseen equation. But it is very difficult to solve the
first order term of the perturbation parameter by using
this result. Since we are concerned only with the
asymptotic behavior in the region near the cylinder, the
Stokes approximation is adopted and the undeterminate
coefficient is determined by the previously mentioned
method. Furthermore, in solving the first order term of
the perturbation parameter, the boundary condition at
the infinity for the perturbed velocity is replaced by the
requirment that for the large value of r the solution of
the first term is lower order than that of the initial
term. The solution thus obtained is not the uniform
approximation to the velocity distribution, however it
may be considered to be sufficient for the determination
of the drag force on a cylinder.

With an attempt to compare the calculated drag force
with the experimental data, a circular cylinder was allowed
to fall perpendicular to its axis through aqueous solutions
of C.M.C. (Carboxymethyl celullose) contained in the
rectangular cylinder, and the drag force was determined
from the terminal velocity of it.

Generally, for the two dimensional creeping flow, the
order of the controling term for the large value of r is
Inr, as a consequence, the wall effect is enormously
larger than that for three dimensional flow. Therefore
we could not carry out the experiment at the condition
free from the wall effect. But the interesting result that
the drag force is determined only by the zero-shear
viscosity was verified ‘experimentally.

1. Equation of Motion

Cylindrical coordinates (r, 8, Z) are chosen with the
origin at the axis of the cylinder, #=0 in the down-stream
direction, and Z in the direction of the cylinder axis.
Using the Stokes approximation, equations of motion for
the steady, incompressible creeping flow become

_ .or 1 9 1 Ot zon
0= or + r or (rerr) + r a0 7
_ _Yerp 1 4 ., 1 dvon
F 0 T T Ty ®
and equation of continuity is
1 9 1 9V, _
r or Vo) + r 00 =0 @
Boundary conditions are,
BC1l V.,=Vs=0 at r=a 3
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B.C.2. V,=Vscosf, Vo= — Vesinb

at r = o 4
Here, P is the pressure,, z:; (z, j=7, ) is the component
of the shear stress tensor, and V; (=r, ) is the component
of the velocity vector.

For a generalized Newtonian fluid, the relation between
the stress tensor and the rate-of-deformation tensor is
expressed in the following form,

Tij = 2%a (H*)Di]’ (5)
For the low shear rate region, an apparent viscosity 7.
is approximated by the following equation,

E . !
71 = T4 o T
_ 1 a }
B 7‘[ 1+all T T+el ©®

where

o= amn()e 1o ()

II* is the second invariant of the rate-of-deformation
tensor. That is, H*:ZDiiji, Dij:1/2<Vi,j+Vj‘i)
(summation convention is applied for the repeated suffix,

and “,” denotes the covariant derivative). When an
apparent viscosity is approximated by Eq.(6), generally,
a<l, a<er

and the value of the second term of the right-hand side
of this equation is very small compared with that of the
first one. Tt may be considered that 7. is little affected
if the second term is approximated in terms of A(&, 6)
calculated from the Stokes solution in the following way,

Vo = ﬁ[l + ah(€ 0)]

hE 6 =1~ (“%;)2(—21?)21[“01{133
=1- (" —¢&%cos"d — & sin" 9

-
&= = )

where A is the undeterminate coefficient which must be
determined from the solution of the Oseen equation.
Introducing the following dimensionless quantities,
Vi _r _ P
R (V=)
N\ —

a

'Z)i——v—:
o0

it is assumed that v; and p can be expressed as a power
series in « and e as follows,
v =03(§ 0) + ava(§, 0) + ew.(§ 60) + -
p=pol& O) + apa(&, 0) + e1pe(§, 6) + - ©))
Substituting Eq. (8) into Egs. (1), (5) and (6), and
equating like power of a and e, one obtains a set of
differential equation. To the first order in a and e,
these equations are expressed as follows.
(i) Initial term

0= — 2 v, - G - 5 T |
_ 1 9pe { 2 __ Veo 2 0o ]
0= T + | Viugo e + T 9

here,

(ii) First order term in @

_ _ 0pa [ 2 _ Yre __ _2_@!’;“,]
0= =% "LV g TE
- 2 0
+ h(g, 6>[V2vr0—%_? ;);OJ
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o) )
S
+ h(g, 0)[?/%00 —~ % + —5227 a;’;" ]
+lege () + 5 % 5 25
+ %‘Um) é aaf; (10)
(ili) First order term in &;
- 2
S VE a7 IS
- Ho|:V2'U00 - % + ’EZT 5;{;0 :I
B ASPARE Ba v
+ 2oy B (11)
here,
2 2
- - (% - %)
SEIESIEE
Equations of continuity are
5 65 - (Evs) + i%j;z =0, =0, a & (12)

2. Approximate Solutions

Using the dimensionless stream functions ¢, ¢=¥/aVe,
velocity components are expressed as
109 _ g
U T e w7 ae
From the assumption of Eq.(8), ¢ can be expanded as
follows,
O = o+ aga + ar¢gpe +
2.1 Solution of Eq.(9)
Eq.(9) expressed in terms of ¢ is

¢ 1.0 1 27 _
ettt Eae0 W
0o _ Opo _
B.C.1. S5 =7 =0 até=1 (14)
B.C.2. ¢o—>£sinf, as £—> (15)

Leaving Eq. (15) out of consideration, the solution for
Eq. (13), which satisfies only Eq. (14) and diverges most
slowly as £ increases, is obtained as follows",

1 1
do = A|:E Iné— 75 +‘7E_’]sin /) (16)
where A is an undeterminate coefficient. Then the
velocity components and pressure are given by
1 1
Vpo = A[ln §- 5 + ?Eﬂz]cos 7}
1 1 _.,7.
Voo = = AI:In &+ > —?5 2}sm0
Do — Po = —2AE  cos b a7

On the other hand, Lamb’s solution® for the Oseen



equation can be expressed asymptotically in the region
near the cylinder as follows®,
¢ = —;7[5 Iné— %5 + %sﬂ}sin o (18)
where By=1/2—7+1n(8/Re), 7 is the Euler constant,
0.577:+-, and Re=2aVw/v. Comparing Eq.(16) with Eq.
(18), one can determine A as follows,
A= 1 = v——f]‘-_——"’*9 Re =

B 1 8
g T tlngs

2prooa
1

19)

2.2 Solution of Eq. (10)
Using Eq. (16), Eq. (10) can be rewritten as follows,

= = Obe Tgn, Ve 2 37/0«1}
0 ag + [V Vra 82 52 aa

“““ [(45 + 367" — 2687° + 486" — 24€7) cos 0

+ (5“‘ — 6&7° + 46 % cos 36]
_ _ 1 0pa Ve , 2 QUra
0= —% % +[V2””“ e T g ]
+ 5 TUE™ — 367 + 66 — 246 ™)sin g
[
+ (= 3867 + 667 + 46 %sin 36 (20)
Elimination p. in Eq. (20) gives
P 1 3 1 &7 1 i, .
[ 5o e | 9o = L6~ 2me
+ 24£7° + 966 M)sin 6 + (6&7° — 24&77
— 8&7%)sin 36] 21
¢ _ 0fa _ -
B.C. 1. 2 w =0 wsé=1 (22)
B.C.2. ¢go=o0(¢go), as &> (23)

As mentioned previously, B.C. 2. is an approximate
boundary condition. Assuming as a solution of Eq.(21) that
o = LF:(£)6:(60) (24)

then,
©:=sinf, 6, =sin30 (25)

and differential equations for F: and F; become respectively

a2 d& 3 d& 3 d _37.°
[dy Tear e ae T 4 S‘:IF‘
= B%(GE'S — 28&77 4+ 24£7° + 96£71Y) (26)
d 2 19 & 19 d 45
[ds‘ tear T T e T E I
= %(65'5 — 2467 — 867 @7
1]

Solving these equations, ¢, Ure, Vs~ are obtained as
follows,

5
o = B%O[Ao“{-‘_l Iné+ 2_Z}lAﬂ‘”E_w’s)sin 0
+ (B2 P Iné+ Bt n g
3
+ z]lBi“E_”“)sin36‘} (28)

5
Vra = %[Aﬁf” Iné+ 2 A" ) cos
0 i=1
+3(B4E ™ In€+ Bt In g
3
+ _Z}lBi“E'“) cos 30] (29)
=

5
Voa = ili (C0a€~2 Iné+ 2 CiaE_”+2) sin @
By =1
+ (D%E* Iné+ D¢ In &
3
+ 2 D )sin 30] (30)
Substituting these results into Eq.(20), p. is given by

Table 1 Coefficients of Egs. (28), (29), (30), (31) and (32)
i -1 0 1 2 3 4 5

A —0.375 0.1584 —0.0584 —0.1458 0.02083 0.025
B 0.25 0.125 —0.2 0.2125 —0.0125

G —0.375 —0.1584 0.3166 —0.4374 0.10415 0.175
D 075 0.125 —0.325 0.3875 —0.0625

E” —2.0 —=0.75 2.833 —3.5 1.20
G~ 1.0 —1.183 1.5 —0.2

Pa = BO[ZE“E B loos @ + (G*E ¥ In g

+ Z}lGi“S_”“)cos 30] 3D

Parameters in these equations are given in Table 1.

2.3 Solution of Eq. (11) ,
¢e, Ure, and vpe are obtained by multiplying 4/B. to
Egs. (28), (29) and (30).

pe=gw [ ZEfSET cosf + (G In €
+ _EIGfE_””)cos 30] (32)
Ef=E*(@=238,4,5)
Gis = Gim(i = 0) 1y Zv 3)
3. Drag Force on a Cylinder

The distributions of the pressure and the rate-of-shear

" on a cylinder surface are given

P=Pu= — ;1 Veo [26050 + a(2.217cos 6
0
—0.117cos 36) + o3 46‘ (0.217cos 6
— 0.117cos 30)] (33)
1 Ve 4 .
2D = = 730———[25111 o + ( + B%)‘,) (1.283sin 6
— 0.35sin 30] (34)

The total drag F per unit length of a cylinder is composed
of the pressure drag F. and the friction drag F:.

27
Fo= aj (Pos — P)yes cos 030
- 27rVoo(l + @)

(1 + 8]
2
5. = O 108a + 0.433(e1/Bi") (35)
1+t a
2z
Ft = aJ (_ Trﬂ)?‘:asinado
_ 21V A+ a)m 11— 5 = on (36)
B,
The total drag is given by
F=F +F, = 47V (1 + a) 1
B
_1_ — 1 , Re — 2ptVood (37)
B 1 _ 7+ In-5- !
2 Re

This equation reduces to Lamb’s equation® when a=e& =
0.

In Eqgs. (35) and (36), 8. and 8, are parameters to
represent the degree of deviation from the resistance law
for Newtonian fluid due to the non-Newtonian viscosity.
As is shown from these equations, they are the same in
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Table 2 Parameters of Eq. (6)

No. Conc. Temp. g AFX10* 4PX10° 72
. g/em  [g/cm
[wt%] [°C] [g/cm®] [sec?] [§ecz] -sec]  -sec]
1 2.16 30 1.006 2.19 50.0 4.50 0.856
2 2.48 25 1.009 2.69 25.9 8.71 2.66
3 2.87 35 1.005 1.62 85.3 8.19 3.50
4 2.93 35 1.007 1.27 3.55 4.02 0.944
5 3.19 35 1.009 7.77 116 13.4 2.24

magnitude and opposite in direction. As a consequence,
the total drag exerted by a generalized Newtonian fluid
is independent of the shear rate and determined only by
the zero-shear viscosity. Of course, this result is applica
ble only when the flow is very slow so that the condition
of this analysis is satisfied.

— — —
(e N N

2o [9/cm-sec]

joe)

Capillary viscometer data compared with
Eq.(6)

Fig. 1

Fig. 2 Terminal velocities of cylinders as functions

of their length, No.5 solution, O; experimental points
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V' [om/sec)

For the case of a sphere®, the friction drag is dominant
over the pressure drag and consequently the total drag
decreases. Taking the foregoing into consideration, it
may be expected that the total drag increases when the
pressure drag is dominant over the friction drag such as
for the case of a disk.

4, Experiment

Small cylinders made of enameled copper were allowed
to fall through aqueous solutions of C. M. C (Caboxyme-
thyl celullose) contained in the tank of the dimension of
12x20x65cm. Concentrations of C.M.C were 2.16,
2.48, 2.87, 2.93 and 3.19 weight percent. The cylinders
used were 0.0473, 0.0630, 0.0733, 0.0837, 0.0940, 0.106
and 0.127 cm in diameter and 2, 3, 4, 5, 6 and 7 cm in
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1% o2 5. Results and Discussions
White showed that, on the contrary to the case where
- fluid is unbounded in extent, the wall effect is enormo-
[8]
g2 © usly large for the two dimensional flow so that the iner-
g o tia effect may be neglected under usual experimental
> conditions.  White’s empirical formula” for the drag
8 coefficient Cp is expressed by
g No.1® 12.8
- o No.2 © Cr = 4—”***'?' (38)
4 No.3® Relog <7>
No.4 @ Where H . is the width between the walls. Also, Faxen’s
No.50 analytical result® is expressed as follows,
0
0 4 8 12 16 Cy = 11{0.92 (39)
%1%, [9/cm-sec] Re 1og<7> —0.398
;ig;!._: Comparison of 7ac with zero-shear viscosity, The higher order terms of H/d are neglected in Eq.
1 2

ength for each diameter. The density of the cylinder
was approximately 8.00. A stopwatch was used for tim-
ing. Non-Newtonian viscosities were measured by the
Maron, Krieger and Sisko capillary viscometer”. These
data are shown in Fig.1, where circles and solid
lines represent measured and calculated values from Eq.
(6) respectively. Parameters of Eq. (6), experimental
temperature, and density of solutions are summarized in
Table 2.

Since we are concerned with the two dimensional flow
around a cylinder infinite in length, it is necessary to
evaluate the possible end effects due to a finite-length
cylinder. In order to eliminate these end effects, termi-
nal velocities were measured on the cylinders of the same
diameter but of the different length. If a cylinder is
long enough so that end effects may be neglected, both
the body force and the drag force on a cylinder increase
in proportion to the length. Consequently, the terminal
velocity should approach to a certain value. As an exam-
ple, this is shown in Fig. 2. Since there is no reliable
data of Newtonian fluid on the drag force on a cylinder
at low Reynolds number at present, as a reference the
same experiments were carried out for liquid jelly of
various viscosities.

(39).
On the other hand, our experimental data for liquid
jelly were correlated within 5% error by
Cp= ?_:144
Relog( 1) ~ 0.660
The experimental range of H/d in Eq. (40) is from 94.3
to 254. In this range of H/d, the difference between
Eq. (39) and Eq. (40) is within 3.6%. The prediction of
Eq. (38) is relatively lower than that of Eq. (39).

Since in our experiment, geometrical parameters are
the same for both solutions of C. M. C and liquid jelly,
the data of C. M. C were analyzed on the base of Eq.
(40). Taking the result of §3 into consideration, we
define an apparent viscosity %.. by the falling cylinder
method as follows,

Co 10g<~H—> — 0.660
d
9.44

7qc is plotted against the representative velocity gradient
Veo/d in Fig. 8. This shows that it may be concluded
that 7. is independent of Vw/d in agreement with the
result of §3. Fig. 4 is a plot of % vs. (7:+72). This
shows that Eq. (41) predicts the zero-shear viscosity with
good accuracy for H/d ranging from 94.3 to 254.

For Newtonian fluid, the prediction of Lamb’s equation
is considerably lower than that of Faxen’s equation at low

(40)

Nae = oVed 41)
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Reynolds number and the latter rather than the former
explains experimental data under usual experimental con-
ditions. By the same reason, the drag force itself does
not agree with Eq. (37) quantitatively. However, the
interesting result that the drag force (i. e., 7..) is inde-
pendent of Vo/d and it can be determined only by the
zero-shear viscosity is verified with good agreement. This
result as well as that for a sphere® may be considered
as an evidence for that it is useful for the creeping flow
to assume a generalized Newtonian model. For the large
value of H/d where wall effects may be neglected, Eq.
(37) is expected to predict the drag force quantitatively.
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Nomenclature

= undeterminate coefficient [—
radius of cylinder lem
Eq. (18)

A

a

By

Co = drag coefficient

D;; = rate-of-deformation tensor [sec™
d = diameter of cylinder [em]
F = total drag per unit length of cylinder [g-cm/sec?]
Fn = pressure drag per unit length of cylinder [g-cm/sec?]
F; = {riction drag per unit length of cylinder [g-cm/sec?]
H = width between walls [em]
h = Eq. (7 [—1]
P = pressure [g/cm-sec?]
Y = pressure, dimensionless -1

STIMULUS AND RESPONSE OF
IN BUBBLING FLUIDIZED BEDS

1. Introduction

From the viewpoint of chemical reactors, it is important
to investigate the characteristics of longitudinal gas disper-
sion. It is, however, generally difficult to predict the
distribution of gas residence time in fluidized bed, because
of the poor contact between gas and solids resulting from
the formation of gas bubbles.

Kunii and Levenspiel” have proposed an idealized model
of bubble behavior in the fluidized bed. This paper is
concerned with the experimental and theoretical investi-
gations on the stimulus response of the bubbling fluidized
bed, based on the relations derived from the idealized
model. In the present experiments, two kinds of gases,
i.e., helium and Freon gas, were used as the tracer
gas.

*  Received on July 19, 1967
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r = radial distance {em]

Re = Reynolds number —1
Ve = uniformly approaching velocity [eml]
Vi = velocity vector [em]
vs = velocity vector, dimensionless [—1
« = Eq. (6) [—]
3n, 8; = Eqgs. (35) and (36) [—1
& = Eq. (6), i=1,2 [—]
Ve, = apparent viscosity [g/cm-sec]
Tee == apparent viscosity by falling cylinder method,

Eq. (41) [g/cm-sec]
71, P2 = parameters of Eq. (6) [g/cm-sec]
v = kinematic viscosity [cm?/sec]
& = radial distance, dimensionless [—]
t;; = stress tensor [g/cm-sec?]
v = stream function [em?/sec]
& = stream function, dimensionless [—1
o* = second invariant of rate-of-deformation tensor [sec™®]
I = second invariant of rate-of-deformation tensor,

dimensionless [—]

Literature cited

1) Bretherton, F.P.: J. Fluid Mech., 28. 791 (1962)

2) Faxen, H.: Proc. Roy. Swedish Inst. Engs. Res.(Stockholm),
No. 187 (1964)

3) Lamb, H.: “Hydrodynamics”’, Cambridge Univ. Press(1932)

4) Maron, S.H., Krieger, I. M. and Sisko, A.W.: J. Appl.
Phys., 25, 8 (1954)

5) Oseen, C.W.: “Hydrodynamik’, Akad. Verlag, Leipzig
(1927)

6) Proudman, I. and Pearson, J.R. A.: J. Fluid Mech., 2, 237
(1957)

7) White, L.M.: Proc. Roy. Soc. (London), A 186, 472(1946)

8) Yoshioka, N. and Nakamura, R.: Kagaku Kogaku, 29, 791
(1965)

GAS CONCENTRATION

KUNIO YOSHIDA AND DAIZO KUNII
Dept. of Chem. Eng., University of Tokyo, Tokyo

2. Basic Equations

21 Idealized model of bubbling bed

According to the idealized model of bubbling bed by
Kunii and Levenspiel, the rising velocity of the bubble
diameter are given respectively by the following equa-
tions.

ws = us — tmy + 0.711(gds) " @
dy = *1'75'(uo - l-’m/) (2)

Assuming the steady state operation, where the amount
of solids transported upwards by the rising bubbles should
be compensated by the amount of descending solids, the
material balance of solids gives

1 —8— adus = adus (3

and from the gas balance,



