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ABSTRACT

We investigate the flow of viscous interfaces carrying an insoluble surface active material, using numerical methods to shed light on the
complex interplay between Marangoni stresses, compressibility, and surface shear and dilatational viscosities. We find quantitative relations
between the drag on a particle and interfacial properties as they are required in microrheology, i.e., going beyond the asymptotic limits. To
this end, we move a spherical particle probe at constant tangential velocity, symmetrically immersed at either the incompressible or
compressible interface, in the presence and absence of surfactants, for a wide range of system parameters. A full three-dimensional finite ele-
ment calculation is used to reveal the intimate coupling between the bulk and interfacial flows and the subtle effects of the different physical
effects on the mixed-type velocity field that affects the drag coefficient, both in the bulk and at the interface. For an inviscid interface, the
directed motion of the particle leads to a gradient in the concentration of the surface active species, which in turn drives a Marangoni flow in
the opposite direction, giving rise to a force exerted on the particle. We show that the drag coefficient at incompressible interfaces is indepen-
dent of the origin of the incompressibility (dilatational viscosity, Marangoni effects or a combination of both) and that its higher value can
not only be related to the Marangoni effects, as suggested earlier. In confined flows, we show how the interface shear viscosity suppresses the
vortex at the interface, generates a uniform flow, and consequently increases the interface compressibility and the Marangoni force on the
particle. We mention available experimental data and provide analytical approximations for the drag coefficient that can be used to extract
surface viscosities.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0050936

I. INTRODUCTION

The rheology of complex fluid-fluid interfaces is a relevant and
rich physical problem.1,2 For example, the seminal theoretical work of
Saffman and Delbr€uck3 on the Brownian motion in biological mem-
branes revealed how the momentum diffusion at the interface and in
the bulk are strongly coupled and, for non-compressible interfaces, the
ratio between bulk and surface viscosities determines the range of the
hydrodynamic effects at the interface. However, when Brownian
motion is used to more generally deduce interfacial rheological

properties beyond lipid membranes, values obtained from microrheol-

ogy have been found to be very different from those with macroscopic

interfacial shear rheometers.4 Several factors have been identified to

contribute to the drag of particles close to and at an interface, and pos-

sible sources of discrepancies have been identified, with some being

related to dissipation modes of the surface or to electrokinetic effects5

and others focused on the non-correct analysis of the hydrodynamic

conditions of the measurements,6 although for direct shear rheological

techniques such hydrodynamic analysis has led to clear operating

Phys. Fluids 33, 062103 (2021); doi: 10.1063/5.0050936 33, 062103-1

VC Author(s) 2021

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0050936
https://doi.org/10.1063/5.0050936
https://doi.org/10.1063/5.0050936
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0050936
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0050936&domain=pdf&date_stamp=2021-06-01
https://orcid.org/0000-0001-6444-3431
https://orcid.org/0000-0003-1402-6714
https://orcid.org/0000-0002-0352-0656
https://orcid.org/0000-0001-9157-0858
https://orcid.org/0000-0002-9477-5047
mailto:meisam.pourali@mat.ethz.ch
mailto:mk@mat.ethz.ch
mailto:jan.vermant@mat.ethz.ch
mailto:p.d.anderson@tue.nl
mailto:n.o.jaensson@tue.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0050936
https://scitation.org/journal/phf


windows.7,8 One aspect which merits further investigation is the role
of interfacial compressibility and the possible influence of Marangoni
flows on the interfacial and bulk velocity fields. First, there is clear
experimental evidence from studying needles of different aspect ratios
that compression might be of relevance in interpreting microrheologi-
cal experiments.9 Second, the analysis of different types of interfacial
rheometers, which use mixed interfacial flow fields for measuring the
surface rheological properties in mixed shear-dilation/compression10

or shear-extension-dilation/compression,11 has already revealed a
complex and subtle interplay between the Marangoni stresses, bulk
flow effects, and the interfacial stresses stemming from the desired rhe-
ological material functions. In the present work, we investigate to what
extent this analysis holds true for the flow field caused by a particle
dragged through the interface (the disturbance velocity field), and
resolving the effects of the various coupled contributions to the forces
and concentration fields, as such a translating probe produces a
mixed-type flow field.12 In particular, we are going to investigate the
role of interfacial compressibility and the interplay between the differ-
ent interfacial deformation modes (shear and local dilatation/
compression).

The drag of an object at an interface has already received attention
previously, and typically, two effects have been studied, i.e., the effect of
coupling of the interfacial momentum diffusion to that in the bulk and
the effect of Marangoni contributions. The original work of Saffman
and Delbr€uck3 examined a cylindrical probe translating at a membrane
in the limit of large membrane viscosity and an incompressible interfa-
cial layer. In this limit, a dependence of drag on the particle size was
found to be essentially absent (only a weak logarithmic effect had been
predicted), and the range of the hydrodynamic forces was identified as
the Saffman–Delbr€uck length. Later, Hughes et al.13 obtained the exact
solution to the equations of motion for any combination of membrane
and adjacent liquid viscosities. In both these works, the domain of the
bulk flow was considered infinite. The influence of the bulk layer thick-
ness was studied by Evans and Sackmann.14 They imposed a propor-
tionality between the velocity and the shear stress exerted by the
subphase on the membrane. This work has been generalized by Stone
and Ajdari15 to any value of subphase depth using numerical calcula-
tions. Barentin et al.16,17 used the same geometry as Evans and
Sackmann14 and studied both cases of an incompressible Langmuir
(insoluble) monolayer and a Gibbs (soluble) monolayer. They exploited
the lubrication approximation for shallow films and obtained analytical
expressions for the shear stress and the drag force. In all studies men-
tioned so far, the particle was cylindrical and non-protruding.

For a protruding spherical particle trapped within a very thin,
Newtonian fluid-fluid interface, the drag has been calculated only
numerically. While Danov et al.18,19 considered a compressible inter-
face characterized by a Boussinesq–Scriven model with shear and dila-
tional viscosities, Fischer20 argued that due to the short time scales on
which a sustained gradient in surface tension gives rise to Marangoni
contributions to the forces, the monolayer can under certain condi-
tions be considered incompressible, as the presence of a surfactant
strongly suppresses any motion at the surface that compresses or
expands the interface. Manikantan and Squires21 provided an exhaus-
tive, excellent discussion of these phenomena. In the study of mono-
layers of fatty acids and phospholipids, the surface shear viscosity
calculated following Danov’s approach was shown to underestimate
the experimental value.22

Fischer et al.23 then solved the Stokes flow equations for a sphere
immersed in a viscous interface (monolayer) upon incorporating the
Marangoni effect into the treatment, by solving the equations for an
incompressible interface. Fischer showed that the Marangoni effect
contributes a significant part of the total drag at the limit of vanishing
surface compressibility. However, not all systems will adhere to the
conditions required for a vanishing surface compressibility, and how
this will come into play is ill-understood, in particular when surface
viscosities are significant as well. A recent approach by Elfring et al.12

to characterize the latter used the lubrication approximation for a very
shallow subphase and considered a non-protruding disk-shaped probe
at a viscous, compressible interface that generates Marangoni flows.
Elfring et al. assumed the presence of a soluble surfactant that equili-
brates on a finite timescale and did not consider transient effects.
While the lubrication approximation allows for analytical solution
through a perturbation expansion, using a shallow subphase is not
ideal for probing rheological properties of the interface, because in this
regime, bulk stresses dominate over surface stresses.12

The present work can be considered as an extension of the work
of Elfring et al. to a protruding particle and a deep subphase. We study
the transient Marangoni flow and the interface compressibility of a
Newtonian interface endowed with both shear and dilatational viscos-
ity. The interface is covered by an insoluble surface active component
(surfactant, protein, fatty acid, lipid, or polymeric substance) and a
large spherical particle, which is set to translate at the interface. The
interfacial contribution to the drag on the particle is a combination of
the Marangoni effect and the interfacial stresses arising from the inter-
facial strain fields and relevant interfacial viscosities. This interfacial
disturbance velocity field depends on both the balance between the
Marangoni flows and the shear and local dilational/compressional
components and how the momentum sink of the bulk influences this.
To the best of our knowledge, this is the first study on a protruding
three-dimensional particle at compressible interfaces with Marangoni
flows. Dimova et al.24 also considered concentration variations with a
spherical particle, but did not couple the interface to a bulk fluid and
did not determine the effects of Marangoni flow.

We begin by recalling the hydrodynamic equations and formulate
the boundary and initial conditions for the problem at hand in Sec. II.
We then demonstrate how we calculate the drag on the particle and
introduce dimensionless quantities to come up with reduced equations
and a number of dimensionless numbers characterizing all parameters
of the particle, the interface, and the bulk phases. The numerical imple-
mentation is described in Sec. III. In Sec. IV, we present results for vari-
ous regimes, the surfactant dominated regime (Sec. IVA), a shear-free
interface without (Sec. IVB), and with Marangoni flow (Sec. IVC). In
Sec. IVD, we focus on the flow field of regime of finite shear viscosity,
as well as a reduced parameter space that captures the situation
encountered in real surfactant systems. The effects of interface visco-
sites on the drag coefficient are discussed in Sec. IVE. Conclusions are
provided in Sec. V, with a caveat regarding the use of these drag flows
for determining shear viscosities or rheological properties.

II. HYDRODYNAMIC EQUATIONS

Consider the rather general situation of a spherical particle sym-
metrically immersed at a planar interface, with its equator residing in
the interface plane, and translating with a constant velocity U ¼ Uex
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(Fig. 1). The two fluids in domains X1 and X2 are considered incom-
pressible and Newtonian, i.e., modeled by

pi ¼ �piI þ si; r 2 Xi; (1)

where r denotes position, pi is the stress tensor in domain i, p is the
pressure field, I is the unity tensor, si ¼ gi½$uþ ð$uÞT � is the viscous
stress tensor, u is the fluid velocity, and gi is the viscosity of fluid
i 2 f1; 2g. All fields appearing in our equations, such as u and si, are
functions of spatial coordinate r and time t, and we skip these argu-
ments for better readability. A similar decomposition can also be writ-
ten for the interface stress tensor1,25

p
s ¼ cIs þ s

s; r 2 SI ; (2)

where ss is the extra surface stress tensor, Is ¼ I � nn is the surface or
tangential projection tensor25,26 with surface normal n, and c is the
surface tension of the interface. For an isothermal system, the surface
tension is solely a function of the surfactant concentration C, i.e.,
c ¼ cðCÞ. Its functional form remains to be specified (Sec. IV). The
extra surface stress tensor is described by the Boussinesq–Scriven con-
stitutive law27,28

s
s ¼ ðjs � gsÞðIs : DsÞIs þ 2gsDs; r 2 SI ; (3)

where gs and js are the shear and dilatational viscosities of the inter-
face, respectively. The surface viscosities can be made functions of the
surface pressure PsðCÞ ¼ c0 � cðCÞ, where c0 is the surface tension
of a clean interface (C¼ 0). It introduces additional complexities, such
as irreversible particle motion.29 However, for simplicity in the current
analysis, they are here assumed to be system parameters, and an
explicit dependence on C is not included.28,30 In most practical cases,
one needs some surface active species at the interface to get significant
extra (viscous) stresses,31,32 but surface viscosities for clean interfaces
have also been reported.33 The surface rate of deformation tensor Ds is
defined as

Ds ¼
1

2
ð$susÞ � Is þ Is � ð$susÞ

T
h i

; r 2 SI ; (4)

where us is the velocity u evaluated at the interface, and $s ¼ Is � $ is
the surface gradient operator.26 Note that this is a pseudo-definition of
$s, as $ does not exist for a surface field. Given the small length scale
of the particle involved, the dynamics of the incompressible bulk fluids
can be modeled with the creeping-flow (or Stokes) equations, which
reduce the momentum balance to $ � pi ¼ 0. With the help of Eq. (1),
this becomes

�$pi þ gir
2u ¼ 0; $ � u ¼ 0; r 2 Xi ; (5)

where the vanishing divergence of u expresses the balance of mass
assuming a constant density within the domains. The velocity and
pressure fields thus receive their time-dependency through C. The
evolution of the surfactant concentration C is governed by the
unsteady surface convection-diffusion (SCD) equation26,34–36

@C

@t
þ $s � ðCusÞ ¼ Dsr

2
sC; r 2 SI ; (6)

where Ds is the surface diffusivity of the surfactant and where we
assumed a planar interface. Equations (5) and (6) are the governing
equations for u and C as a function of time and r. They require proper
boundary and initial conditions to be solved.

In this study, it is assumed that the interface remains planar,
which is a valid assumption for the typical particle sizes and interfacial
tensions used in experiments.37 Moreover, we solve the hydrodynamic
problem only for the translational motion of the spherical colloids
along the interface, i.e., under the assumption of contact line pinning,
which prevents the particle from rotating. It has been shown experi-
mentally that the presence of surface roughness leads to pinning of the
contact line.38 The pinned contact line is also used for modeling sin-
gle37 and pair39 particles at the interfaces. Due to pinning of the con-
tact line, an extremely small deformation of the interface is needed to
balance the torque acting on the particle, which justifies our approach
of a non-rotating particle at a planar interface.

A. Boundary and initial conditions

For the surfactant concentration C governed by Eq. (6), we use
the following initial and boundary conditions:

Cðr; t ¼ 0Þ ¼ C0; r 2 SI ;

Cðr; tÞ ¼ C0; r 2 @Sb;

np � Ds$sCðr; tÞ½ � ¼ 0; r 2 @Sp;

(7)

where SI is the fluid-fluid interface, @Sp is the circular particle-
interface boundary, @Sb is the square box boundary, and np is the unit
vector normal to the particle surface and tangential to the interface.
We thus assume an initially undisturbed, uniform C profile at the
fluid-fluid interface, which remains at the initial value at all times at
the box boundary. The third boundary condition means no surfactant
flux from the particle interface boundary.

The boundary conditions for the velocity field u are composed of
boundary conditions on the surface Sp of the particle, at the fluid-fluid
interface SI, and far away from the particle on the simulation box sur-
face Sb. In this study, we assume that there is no-slip at the particle-
fluid interface as well as at the interface between two Newtonian fluids,

FIG. 1. Schematic representation of the system under study. A spherical particle of
radius R translates with constant velocity U ¼ Uex at the flat interface (y¼ 0)
between two Newtonian fluids, in domains X1 and X2. The normal unit vectors at
the particle surface Sp and fluid-fluid interface are denoted by np and n ¼ ey ,
respectively. The fluid-fluid interface between the two domains X1 and X2 we
denote by SI, the circular intersection of the particle and the fluid–fluid interface is
@Sp. The interface boundary has contributions from @Sp and the square intersec-
tion @Sb (large square) between SI and the simulation box boundary enclosing X1

and X2. For an unbounded domain, the interfacial area is infinitely large, but for the
numerical investigation and to study the effect of subphase depth we consider a
large but finite, cubic box of size L ¼ Lx ¼ Ly ¼ Lz (a snapshot of the real system
will be provided in Sec. III). The particle is symmetrically placed at the fluid-fluid
interface and initially located at the box center (if not otherwise mentioned).
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while more generally, there can be relative motion between surfaces in
contact.25,40,41 However, the slip boundary condition at the interface is
usually only employed for macromolecular, non-Newtonian fluids,
and its necessity for Newtonian fluids remains unclear.40 We assume
that the particle translates with velocity U ¼ _rp, where rp is the loca-
tion of the center-point of the particle, and the particle does not
rotate.42 Applying no-slip on the particle surface Sp and vanishing
velocity on the simulation box surface Sb yields

u ¼ U ; r 2 Sp;
u ¼ 0; r 2 Sb:

(8)

Boundary conditions for u at the fluid-fluid interface are defined
by jump equations. In the absence of mass transfer (phase change)
across the interface, there are the mass jump balance25

u1 � n ¼ u2 � n ¼ us � n; r 2 SI ; (9)

and the momentum jump balance

n � ðs2 � s1Þ � ðp2 � p1Þn ¼ �$s � s
s � $scþ cð$s � nÞn; (10)

where n ¼ ey is interface surface normal pointing to region X2

(Fig. 1), ui and pi denote the velocity and pressure of fluid i at r 2 SI ,
and $s � n is the interface mean curvature. The subscripts 1 and 2 indi-
cate the value of quantity in the bulk phases extrapolated to the inter-
face. The momentum jump balance can be split into normal,

n � ðs2 � s1Þ � n� ðp2 � p1Þ ¼ �ð$s � s
sÞ � nþ cð$s � nÞ; (11)

and tangential components,

n � ðs2 � s1Þ � t ¼ �ð$s � s
sÞ � t � ð$scÞ � t; (12)

where t is a unit tangent vector residing in the x-z-plane (Fig. 1).
In our setup, the interface remains at y¼ 0, coinciding with the

y-coordinate of center of the sphere, the normal component of us
therefore vanishes, and the momentum jump balance in normal direc-
tion is replaced by us � n ¼ 0. For the tangential component of us, we
assume a no-slip boundary conditions at the interface, which implies
continuity of the tangential component of the velocity across the
interface,

u1 � t ¼ u2 � t; r 2 SI : (13)

Finally, we note that the tangential momentum jump balance can
be written in in terms of the surface pressure25

n � ðs2 � s1Þ � t ¼ �ð$s � s
sÞ � t þ $sP

s � t: (14)

The Gibbs–Marangoni modulus Kp ¼ C@Ps=@C allows one to relate
the gradient in surface pressure to the gradient in concentration,21,26

$sP
s ¼ Kp$s lnC; (15)

and to then rewrite the tangent component of the stress jump equation
in the following final form:

n � ðs2 � s1Þ � t ¼ �ð$s � s
sÞ � t þ Kpð$s lnCÞ � t: (16)

B. Drag on the particle

The general relation between the drag on the particle F at the
interface translating with a constant velocity U is complex and

depends on the particle geometry, bulk and interface rheological prop-
erties, the interfacial equation of state, and the transport properties of
the surfactant. The drag coefficient on a spherical particle with radius
R in an unbounded Newtonian fluid translating with a constant veloc-
ity is the Stokes’ drag coefficient f ¼ jFj=jU j ¼ 6pgR.15 For a spheri-
cal particle symmetrically embedded in a clean, inviscid interface
between a Newtonian and an inviscid fluid, the drag is exactly half the
Stokes’ drag, i.e., f ¼ 3pgR.43

The drag force on the spherical particle embedded at the interface
is the sum of interface and bulk contributions,

F ¼

ð

Sp

np � pdSþ

ð

@Sp

np � psdl; (17)

where @Sp is the perimeter of the particle at the interface and np is the
unit normal vector to the surface of the particle (Fig. 1). The first inte-
gral on the right hand side of (17) is the bulk force Fb. The second
integral is the interface force Fi and can be decomposed into two con-
tributions, i.e.,

ð

@Sp

np � p
s dl ¼

ð

@Sp

cðCÞnp � Is dl þ

ð

@Sp

np � s
s dl: (18)

The first integral on the right hand side of Eq. (18) is the elastic or
Marangoni part of the drag force FM due to the non-uniform distribu-
tion of the surfactant in the contact line.24 The second integral is the
interface viscous force Fs due to the extra interface stress tensor.
Hence, the total drag force (17) on the particle is

F ¼ F
b þ F

M þ F
s: (19)

Because our particle is non-rotating, a torque will act on the particle,
which can be evaluated via suitable adapted integrals involving the rel-
ative position x ¼ r � rp, where rp denotes the position of the par-
ticle’s center. As explained earlier, it is assumed that this torque is
balanced by an extremely small deformation of the interface.

C. Dimensionless quantities and equations

For the problem at hand, we can use the constant velocity
U ¼ jU j, the radius R of the spherical particle, the viscosity g1 of fluid
1, and the initial surfactant concentration C0 to introduce reduced
units, and to come up with a number of dimensionless parameters.
Dimensionless variables, marked by asterisk (only here), are therefore
defined uniquely in terms of their dimensional counterparts, such as

t� ¼ tU=R; r� ¼ r=R;

u� ¼ u=U; C
� ¼ C=C0;

p
� ¼ pR=g1U ; p� ¼ pR=g1U;

P
s� ¼ P

s=g1U ; F� ¼ F=g1UR;

K�
p ¼ Kp=g1U ; f � ¼ f =g1R:

(20)

From now on, and for the rest of this work, variables are meant to be
dimensionless, and we omit the asterisk for brevity. Using them in the
above sections, Eq. (5) is replaced by

�$p1 þr2u ¼ 0; $ � u ¼ 0; r 2 X1;

�$p2 þ kr2u ¼ 0; $ � u ¼ 0; r 2 X2;
(21)
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where k ¼ g2=g1 is the ratio between the two viscosities. The normal
and tangential parts of the jump balance, Eqs. (11) and (16) remain
formally unaltered, i.e.,

n � ðs2 � s1Þ � n ¼ ðp2 � p1Þ � ð$s � s
sÞ � nþ cð$s � nÞ;

n � ðs2 � s1Þ � t ¼ �ð$s � s
sÞ � t þ Kpð$s lnCÞ � t;

(22)

with s1 ¼ 2D and s2 ¼ 2kD. To close the system of equations, and to
fully specify the dimensionless quantities, an interfacial equation of
state must be chosen, which will be done in Sec. IV. Because we are
going to assume (i) a linearized equation of state there, Kp will be
replaced by MaC, where Ma is a dimensionless Marangoni number,
(ii) a flat interface, the last term in the first line of Eq. (22) will disap-
pear, and (iii) an air–liquid interface, k¼ 0.

The dimensionless extra surface stress tensor (3)

s
s ¼ ðBq2 � Bq1ÞðIs : DsÞIs þ 2Bq1Ds; (23)

is written in terms of the Bousinessq number Bq1 ¼ gs=Rg1, the ratio
of surface shear viscosity to bulk viscosity, and the ratio Bq2 ¼ js=Rg1
between surface dilation viscosity to bulk viscosity. Equation (6)
becomes

@C

@t
þ $s � ðCusÞ ¼

1

Pes
r2

sC; (24)

introducing the surface P�eclet number Pes ¼ UR=Ds, a ratio of diffu-
sion time, R2=Ds, to the characteristic time for particle motion, R/U.
The force expression (17) remains unchanged, and the integral over Sp
is split into parts that arise from the hemispheres in the two fluids
with their corresponding p1 and p2. The constitutive Eq. (1) as well
as the mass jump balance (9) and boundary condition (13)
remains unchanged in their dimensionless form, while the initial and
boundary conditions (7) and (8) for the surfactant concentration and
velocity field become Cðr; t ¼ 0Þ ¼ 1 for r 2 SI ; Cðr; tÞ ¼ 1 for
r 2 @Sb; n � ½$sCðr; tÞ� ¼ 0 for r 2 @Sp; u ¼ ex for r 2 Sp, and
u ¼ 0 for r 2 Sb.

III. NUMERICAL METHOD

The problem is composed of two sub-problems: the Stokes equa-
tion in the fluid domain and the SCD equation at the interface. These
two sub-problems are coupled and must be solved together. We
employed the finite element method (FEM) in a domain of finite size.
To avoid tracking the moving particle, the equations are solved in a
frame that is moving with the particle, i.e., the particle is kept station-
ary at x ¼ ðx; y; zÞ ¼ 0, and the walls move with velocity �Uex . Note
that all our results are presented in a frame where the particle is mov-
ing and the walls are stationary. The Stokes equation (21) is thus
solved for with a vanishing velocity on the particle surface @Sp, the
dimensionless boundary condition u ¼ �ex on the outer surfaces of
the simulation box, together with the stress boundary condition (22)
at the fluid–fluid interface, using constitutive equation (23). The solu-
tion to the Stokes problem yields the velocity and pressure fields uiðxÞ
and piðxÞ, hence siðxÞ. To include the effect of the surfactant, in this
work two approaches are employed: an implicit approach and an
explicit approach. In the implicit approach, the SCD is solved together
with the Stokes equation in one system. The non-linearity in the SCD
is handled by a Picard iteration. In the explicit approach, the velocity
at the fluid–fluid interface is used to solve the SCD Eq. (24) with

boundary and initial conditions (7). After solving this equation, the
new C is used to update interface tension c using the interfacial equa-
tion of state, to be specified in Eq. (25). The explicit approach typically
works well for problems at low Ma, i.e., for low interfacial elasticity.
However, at larger values of Ma, the time step must be chosen
extremely small for stable simulations. For those cases, the implicit
approach is used, which is more expensive per time step, but which
allows for an arbitrarily large time step. Steady-state results are
obtained by running the simulation until the dimensionless time
t¼ 100, which was found to be sufficiently long (see supplementary
material Sec. S4).

We used an in-house FEM code to solve the full problem, i.e., the
complete set of equations. A validation and convergence study is pro-
vided in the supplementary material Secs. S1(ii) and S1(iii). We make
use of the open-source mesh generator Gmsh,44 which offers great
control over the local element size in the domain (Fig. 2). Due to sym-
metry in the xy-plane, only half of the domain is meshed, and appro-
priate symmetry conditions are employed. In order to diminish
boundary effects, a large simulation box is used: L¼ 3200 if not other-
wise mentioned, which was shown to be sufficiently large (see supple-
mentary material Sec. S2). The spherical particle is symmetrically
immersed at the interface and translates with a constant velocity in the
x-direction. The interface is located at y¼ 0, and it divides the simula-
tion box into two domains: domain X1 in y< 0 is filled by a viscous
liquid andX2 in y> 0 is filled by an inviscid fluid. The Stokes equation
is solved in X1. Details of the numerical implementation are discussed
by Dietrich et al.37 and Carrozza et al.45 We tested mesh convergence
and used our mesh M3 as a compromise between quality and effi-
ciency if not mentioned otherwise [supplementary material Sec.
S1(iii)]. To solve Eq. (24), second-order finite difference schemes are
used to approximate the time derivatives.

IV. RESULTS AND DISCUSSION

In all the results presented in this work, we assume a linear inter-
facial equation of state: c ¼ c0 � CkBT (dimensional form) where c0
is the surface tension of a clean interface, and thus Ps ¼ Kp ¼ CkBT
(dimensional form). Making the equation of state dimensionless using
Eq. (20), we obtain

cðCÞ ¼
1

Ca
�MaC; (25)

FIG. 2. Finite element mesh used in the simulation. The blue surface shows the
air–liquid interface.
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giving rise to the dimensionless capillary number Ca ¼ g1U=c0 (ratio
between bulk stress and interface tension force) and Marangoni num-
ber Ma ¼ C0kBT=g1U ,46 the ratio between the force tending to
deform the interface and surface elasticity, which tends to restore the
original shape of the film. Note that from this we obtain P

s ¼ Kp

¼ MaC in our dimensionless form, which shows that the Marangoni
contribution to the force is proportional to Ma. Assuming a linear
interfacial equation of state is a strong assumption, employed in most
of previous works, and to be discussed later below.

The presented equations and methods capture the case of curved
fluid-fluid interfaces. However, for this study, phase 2 is considered
inviscid, therefore g2 ¼ 0; s2 ¼ 0, and the dimensionless number k
vanishes. Moreover, the interface is assumed to remain straight, i.e.,
the capillary number Ca � 1 and the mean curvature vanishes, which
is a valid assumption for the typical particle sizes used in experi-
ments.37 As the last term in Eq. (22) vanishes for a flat interface, results
do not depend on the choice of Ca. Due to this assumed linear rela-
tionship between c and C, we are left with dimensionless parameters
Bq1; Bq2, Ma, and Pes, which completely describe the problem.

We begin by investigating the situation in the absence of any
extra surface stresses, Bq1 ¼ Bq2 ¼ 0, in Sec. IVA. Since one of our
main objectives is to distinguish between the Marangoni and dilata-
tional (Bq2) effects on the interface compressibility, we are going to
introduce them separately here in Sec. IVB and to then study the
interface when both mechanisms are present (Sec. IVC). It is worth
noting at the outset that the case of vanishing Bq2 ¼ 0 is an artificial
case that has no analogue in the world of real interfaces. It is however
important to delineate the contributions from shear and dilation to
the measurable quantities and to allow for a comparison with previous
results by Elfring et al.12 The ratio

H ¼
Bq2
Bq1

¼
js

gs
; (26)

which describes the viscous resistance to dilation, has been used9,11

instead of Bq2 to present and discuss results, as this ratio controls
which deformation mode is “cheaper,” i.e., shear or dilation/compres-
sion. An analogy can be made to linear elastic materials, where the
Poisson ratio can be expressed in terms of the shear and bulk (com-
pression) modulus. Whenever we fix Bq1 and vary Bq2 or vice versa,
our graphs describe the effect of H as well. The interface will be con-
sidered to exhibit a non-vanishing shear viscosity in Sec. IVD, while
in Sec. IVE we focus on the influences of both interface viscosities on
the drag coefficient. To guide a reader, the structure of the manuscript
is further visualized in Table I.

A. Surfactant dominant regime

While the drag coefficient on the particle had been studied before
by Avramov et al.47 in the absence of extra surface stresses, we here
present the most relevant results (including interface compressibility
aspects) for this special case, as they serve as a benchmark for the
results in Secs. IV B–IV E, and to validate our implementation.

When a particle translates at the interface covered with a surfac-
tant, it pushes the surfactant, resulting in an accumulation of surfac-
tant in the front of the particle, and a depletion at its rear. The
surfactant concentration around a translating particle, for Pes ¼ 1, is
shown in Fig. 3(a). This difference in the surfactant concentration
causes a Marangoni flow; a flow from high to low concentration.48

Surfactant concentration profiles in the x-direction along a line at
z¼ 0, passing through the center of the spherical particle at different
Ma are shown in Fig. 3(b). To quantify the surfactant variation, we

TABLE I. The various regimes studied in this work, corresponding sections, and figures in both the main text and Supplementary Information. A checkmark signals that the
parameter is nonzero, or that the quantity (drag coefficient f or flow field us) had been plotted. A checkmark in parentheses, (✓), means that the Marangoni effects are sup-
pressed at the monolayer. Simulations performed in Sec. III are used to validate the numerical algorithms and settings, and the corresponding figures can all be found in the sup-
plementary material.

Section Bq1 Bq2 Ma Pes f us Figures Supplementary material figures

III � � � � � � � � � � � � � � � ✓ � � � S2–S4

� � � � � � � � � � � � ✓ � � � � � � S5(a)

� � � ✓ � � � � � � ✓ � � � � � � S5(b), S6

� � � � � � ✓ ✓ � � � � � � � � � S9

IV A � � � � � � � � � � � � ✓ ✓ � � � S7,S8

� � � � � � ✓ ✓ ✓ ✓ 3–6 S11,S12

IV B � � � ✓ � � � � � � ✓ ✓ 7–8 � � �

IV C � � � ✓ ✓ ✓ ✓ ✓ 9–11(b) � � �

IV D ✓ � � � � � � � � � � � � ✓ 12–14 � � �

✓ � � � ✓ ✓ � � � ✓ 12 � � �

✓ ✓ � � � � � � � � � ✓ 15 � � �

✓ ✓ ✓ ✓ � � � ✓ 16 � � �

✓ ✓ ✓ ✓ � � � � � � 17 � � �

✓ ✓ ✓ ✓ � � � ✓ 18 S13

IV E ✓ ✓ ✓ ✓ ✓ � � � 19 � � �

✓ ✓ � � � � � � ✓ � � � 20 � � �

✓ ✓ (✓) (✓) ✓ � � � 21 S10
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calculate the difference in the maximum and minimum concentra-
tions, DC. The inset in Fig. 3(b) shows DC at different Ma indicating
that the relative surfactant variation is high for low Ma and decreases
with increasing Ma.

The Marangoni flow is also highly affected by the Pes (supple-
mentary material Fig. S11). At very small Pes � 1, the time required
for recovering homogeneity of the surfactant concentration due to fast
diffusion of the surfactants relative to the particle motion is very short;
therefore, uniformity is obtained instantaneously, t � 1. At
Pes < 0:02, there are negligible surfactant variations at the interface
and at Pes ¼ 0:001 the surfactant concentration remains uniform.
Beyond Pes > 1, the variation does not change much upon further
increasing Pes.

The variation in surfactant concentration, in turn, creates a gradi-
ent in $c or $Ps, which acts against the surface compression in front
of, and dilation at the rear of the particle.49,50 Analogous to the bulk
compressibility, the compressibility of monolayers can be defined as
C ¼ �CdA=dPsjT , where A � C

�1 is the area per surfactant mole-
cule at SI.

The interface symmetrically compresses at the front of the parti-
cle and dilates at the rear. The maximum dilation at the rear of the
interface, denoted as ð$s � usÞmax, serves as an indicator for the maxi-
mum interface compressibility. Barentin et al.16 argued that the mono-
layer can be considered incompressible if j$s � usj � 1, as one can
write the incompressibility condition in the bulk close to a planar
interface as $ � u ¼ $s � us þ @uy=@y ¼ 0. Provided that
@uy=@y ¼ 0, the compression $s � u near the interface vanishes.

To further demonstrate the effect of coupling to the subphase on
the compressibility of the clean interface, we varied the depth of the
subphase. For a very shallow subphase there is a “layered” structure in
the subphase (supplementary material Fig. S7), the normal velocity
basically vanishes, and the interface becomes less compressible [sup-
plementary material Fig. S8(a)]. Moreover, as the subphase depth is
decreased, the bulk stresses, and thus the drag coefficient, diverge [sup-
plementary material Fig. S8(b)]. These effects can be logically attrib-
uted to an increased importance of the subphase for decreasing
subphase depth, inherently limiting the sensitivity of the probe to
properties of the interface, as also concluded by Elfring et al.12 For a
deep subphase, two different mechanisms can make an interface effec-
tively incompressible: Marangoni effects and a viscous resistance to
compressional flow.

Figure 4(a) shows the effects of Pes on the interface compressibil-
ity at Ma ¼ 10. Maximum interface dilation ð$s � usÞmax for Ma ¼ 10
and Ma ¼ 20 as a function of Pes are shown in Fig. 4(b). These results
show that at the limits of small and high Pes, interface compression is
independent of Ma. At Pes � Oð1Þ, an increase in Ma from 10 to 20
reduces the interface compressibility. These results show that when
there is an increase in Ma in order to keep the interface compression
constant, we should decrease Pes. Following the reasoning of
Chisholm et al., we can use the following simple argument to justify
these results.51 Exploiting the interfacial equation of state, we can
rewrite the SCD in the following form:

C$s � uþMa�1ðu � $sÞP
s ¼ ðMaPesÞ

�1r2
sP

s; (27)

where the steady state is considered for simplicity. This equation
shows that at high Ma the convection term is less important. The dif-
fusion term at the right hand side also vanishes when
ðMaPesÞ

�1 � 1, which shows when there is an increase in Ma, in
order to recover the interface compression Pes should decrease. An
increase in Ma also increases the Marangoni contribution to the force
on the particle (in the regime where the linear equation of state holds),
which consequently increases the drag coefficient, see Figs. 4(c) and
4(d). This is a known result first observed by Plateau,52 by comparing
the damping of a magnetic needle immersed in a liquid with one
placed at the liquid surface. He found that the resistance against defor-
mation was higher at the surface than in the bulk and attributed this to
a non-vanishing extra surface shear viscosity. Marangoni realized that
trace contaminations are almost always present at liquid interfaces and
that a non-uniform distribution of surface-active material, together
with an interfacial equation of state, is responsible for Plateau’s obser-
vation.53 Interestingly, 100 years after the works of Plateau and

FIG. 3. (a) Surfactant concentration C at the interfacial x–z-plane. (b) C profiles in
the particle velocity x-direction at z¼ 0 at different Ma (Pe ¼ 1; Bq1 ¼ Bq2 ¼ 0).
The difference DC between the maximum concentration at the front of the particle,
and minimum C at the rear of the particle is shown in the inset. All simulation
results are presented for dimensionless quantities defined in Sec. II C.

FIG. 4. The effects of Pes on the interface compressibility, the Marangoni contribution F
M to the force, and the drag coefficient. (a) Interface compression in the x-direction for

Ma ¼ 10, (b) maximum interface compression ð$s � usÞmax, (c) F
M, and (d) f vs Pes at Ma ¼ 10 and Ma ¼ 20 (Bq1 ¼ Bq2 ¼ 0).
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Marangoni the role of such impurities and Marangoni contribution in
coalescence is still being resolved.54 It should be pointed out that such
effects will be less strong when the surfactant concentration is higher,
and the interfacial equation of state is no longer linear, but a weaker
dependency of the surface tension with increasing concentration is
typically observed.

To investigate the effects of Ma, we study the interface at different
Ma at constant Pes ¼ 1. The interface compression and ð$s � usÞmax

are shown in supplementary material Fig. S12. Results show that the
interface compressibility decreases significantly by adding a small
amount of surfactant to the interface. If Ma > 50, its dependency on
the concentration decreases, and there is a very slight change in the
interface compression. As we have already pointed out, the Marangoni
flow imposes a force on the particle and we expect the drag coefficient
f to increase. Drag coefficients change from a diffusion dominant
regime at Pes ¼ 0:05 to a convection dominant regime at Pes ¼ 5
[Fig. 5(a)]. The Marangoni contribution FM to the force amplitude as a
function of Ma at different Pes is shown in Fig. 5(b). The FM increases
with Ma, and it is higher at high Pes. Moreover, Fig. 5(a) shows how
the value of the drag coefficient converges to 11.5 for large Pes and
Ma. This value is consistent with that for an incompressible interface,
as will be shown in Sec. IVB.

To explicitly show that surface dilation depends on both Pes and
Ma, we show the maximum interface dilation, normalized by the
value for a clean, inviscid interface, as a function of both Pes and Ma
in Fig. 6. In this plot, the values on the axes are similar to the results
for a clean, inviscid interface [supplementary material Sec. S1(ii)],
since at small Ma the effect of Marangoni stresses becomes negligible,
and at small Pes diffusion dominates over the convection in the surface
convection-diffusion (SCD) equation. Hence, in the latter case, the dif-
fusion timescale for recovering a uniform distribution of the surfactant
at the interface is much shorter than the convection timescale. In the
limit of Pes ! 0, the surfactant concentration remains uniform, and
regaining the uniform distribution is instantaneous. For values of Ma
and Pes that are both non-zero, the contourlines in this plot can be
described well by a function of the form MaPes ¼ constant, clearly
showing that is the product between Pes and Ma that plays a crucial
role in surface dilation.

B. Purely dilatational interfaces

For a purely expanding or compressing interface or for an inter-
face with Bq2 	 Bq1, the interface stress tensor (2) simplifies to

p
s ¼ cIs þ jsð$s � usÞIs: (28)

Using the above relation in the tangential momentum jump at
the interface, Eq. (22), we have

n � s1 � t ¼ $s � Isðcþ js$s � usÞ½ � � t; (29)

revealing the dilatational properties of the surface to be the surface ten-
sion c and the surface dilatational viscosity Bq2. The expression in the
parenthesis on the right hand side is also known as dynamic surface
tension and can be expressed as

cd ¼
1

2
Is : p

s ¼ cþ js$s � us; (30)

and is thus composed of both thermodynamic and viscous parts.
Identifying the reversible and irreversible contributions to the dynamic
surface tension is a difficult task, although it can be achieved by realiz-
ing that the thermodynamic part will be influenced by mass transport
considerations (and hence geometry) and the viscous part only
depends on the local strain rate.

For the limiting case of Pes ! 0, the surfactant remains uniform,
the interface tension is constant, and the related term in Eq. (29) does
not play any role for the dynamics at the interface. If we assume that
the left hand side is a finite constant value, when js is getting larger,
the interface compression $s � us is getting smaller. Figure 7 shows our
simulation results for the interface compression in the presence of the
spherical particle that moves at constant speed in x-direction. The
maximum dilation ð$s � usÞmax is shown in the inset. We find that
increasing Bq2 helps to make the interface more incompressible, while
for Bq2 > 1000 the interface dilation does not change anymore signifi-
cantly. The drag coefficient increases (by about one third) with
increasing Bq2 (Fig. 8) and is expected to reach a constant value at
Bq2 ! 1, when the interface is in an incompressible state, as shown
in Fig. 8, f levels off at 11.5. As can be seen in Fig. 7, at this stage
the interface is incompressible. These findings are consistent with the
results for large Pes and Ma, as shown in the previous section, but the

FIG. 5. Effects of Pes on the (a) drag coefficient and (b) Marangoni contribution F
M

to the force as a function of the Marangoni number Ma (Bq1 ¼ Bq2 ¼ 0).

FIG. 6. Maximum interface dilation ð$s � usÞmax vs Ma and Pes normalized by its
unique numerical value �0:19 on both axes Ma ¼ 0 and Pes ¼ 0 (the reference
value for a simple interface is 3=16 ¼ 0:1875 from supplementary Eq. (s8), c.f.,
supplementary material Fig. S3). The first white contourline in the top right corner is
at 0.10, and subsequent contourlines are spaced by 0.05. The red line, overlapping
with the contourline at 0.2, is Pes ¼ 15=Ma. It captures the qualitative behavior
Ma Pes � constant of all contourlines. This plot was created by performing around
800 simulations, and interpolating the value of the maximum interface dilation in
between those data points.
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origin of the surface incompressibility is different in both cases: here,
rheological surface stresses cause a resistance against surface compres-
sion, whereas in Sec. IV A surface incompressiblity arises due to
Marangoni stresses, which are thermodynamic in nature.

C. Marangoni effects at dilatational interfaces

When Pes � Oð1Þ or higher, both Marangoni flow and dilational
viscosity can be responsible for the interface incompressibility. As we
have shown in Eq. (29), it is not easy to distinguish these two phenom-
ena. The relative importance of these two depends on Bq2 and Ma.
Figure 9 shows the surfactant concentration profiles and DC at differ-
ent Bq2. At high Bq2, the Marangoni flow diminishes due to the sup-
pression of the surfactant gradient. These results indicate that the
Marangoni flow is important at low Bq2 when the interface is still
compressible. Maximum dilations ð$s � usÞmax and DC at different
Bq2 ¼ 0; 1; 10; 100 as a function of surfactant concentration are
shown in Fig. 10(a). At low surfactant concentration, the effect of Bq2
in both quantities is significant. Calculating the magnitude of the
Marangoni contribution to the force also shows that FM decreases
with increasing Bq2 [Fig. 11(a)].

At high Bq2 ¼ 100, interface dilation only changes marginally
upon addition of the surfactant to the interface. The result [Fig. 11(a)]

FIG. 8. Drag coefficient f vs Bq2 on a particle in an interface with dilatational viscos-
ity and Bq1 ¼ 0 at the limit of Pes ! 0.

FIG. 9. Surfactant concentration C profile and DC (inset) at (a) Bq2 ¼ 5 and (b)
Bq2 ¼ 1000 for the case of purely dilatational viscosity. In all these simulations,
Pes ¼ 1 (Bq1 ¼ 0).

FIG. 10. (a) Maximum interface dilation ð$s � usÞmax and (b) difference DC

between front and back of the particle as a function of Ma, for different Bq2. The
P�eclet number is Pes ¼ 1 (Bq1 ¼ 0).

FIG. 11. (a) Magnitude FM of the Marangoni contribution and (b) drag coefficient as
a function of Ma at different Bq2 for a monolayer with Bq1 ¼ 0 and Pes ¼ 1.

FIG. 7. Interface dilation vs x for an interface with reduced dilatational viscosity Bq2
at the limit of Pes ! 0 (Bq1 ¼ 0).
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indicates that the Marangoni effects are still present. We can consider
the interface with Bq2 ¼ 100 as being “almost incompressible,” and
adding the surfactant makes the interface incompressible.

Comparison [Fig. 11(b)] of the drag coefficient at the interface
with Bq2 ¼ 0 and Bq2 ¼ 1 shows negligible changes at different Ma.
The sensitivity of f on Ma diminishes at high Bq2, where the interface
is incompressible, andMarangoni effects absent [Fig. 11(b)].

D. Interplay between surface viscosities, Marangoni

flow, and (in)compressibility of the interface

So far, we have assumed that the interface has a vanishing shear
viscosity. However, the presence of an interfacial shear viscosity will
also lead to an energy dissipation when shear deformations occur. The
detailed nature of the interface flow field hence depends on the relative
contributions of other parameters such as interface compressibility
and Marangoni flow at the interface. Yet, in microrheological experi-
ments often only the shear viscosity is calculated from the observed
drag forces or diffusivities and assumptions about incompressibility
are typically made. It is thus worthwhile to investigate the interplay
between these effects and the interfacial shear viscosity.

A compressible interface exhibits the possibility for the occur-
rence of Marangoni flow at the limit of Bq2 ¼ 0. For an interface with
Pes ! 0, the result shows that at Bq1 < 10, interface dilation increases
with increasing Bq1 which means shear deformations cost more and
more energy, the interface appears even more compressible, see Fig.
12. At Bq1 > 10, a further increase in surface shear viscosity slightly
decreases the interface compressibility, most likely as, due to even a
small shear deformations at these higher viscosities, the dissipation of
momentum now is more localized close to the particle. In general, the
interface shear viscosity does not have strong effects on the interface
compressibility, as the effects are mainly indirect.

For a monolayer with a finite P�eclet number Pes ¼ 0:5 (and
Ma ¼ 10), for which now Marangoni effects are present, the interface
dilation is also shown in Fig. 12. The behavior is similar to the case of
Pes ! 0, where the surfactant remains uniform. Results show that
with increasing the interface shear viscosity, the interface compressibil-
ity increases.

An illustration of an increase in the interface compressibility with
Bq1 is suppression of the backflow in a confined flow. When a particle

moves at the compressible interface, due to the confinement, it gener-
ates a backflow, where a part of the fluid in front of the particle moves
in the opposite direction to compensate the motion of the particle.
Figure 13 shows the interface velocity fields for low Bq1 ¼ 0:1 and
high Bq1 ¼ 100 at Pes ! 0 and Bq2 ¼ 0. The simulation domain
length is L¼ 100. At low interface shear viscosity, there is a vortex at
the interface. We can see that increasing the interface shear viscosity
suppresses the vortex and causes the interface to move more uni-
formly. The center of the vortex, located at ð0; 0;ZbÞ, can be an indica-
tor of the interface compressibility. With decreasing compressibility,
the backflow increases and Zb is getting closer to the particle surface
and vice versa.

Profiles of the x-component of the surface velocity along the
z-direction, from the particle surface, at different Bq1 are shown in

FIG. 12. Maximum interface dilation ð$s � usÞmax at various Bq1 for a monolayer
with Bq2 ¼ 0 and Ma ¼ 10 at two different P�eclet numbers Pes ! 0 and
Pes ¼ 0:5.

FIG. 13. Interface velocity usðx; 0; zÞ at a smaller box with L¼ 100 under the con-
ditions of (a) low Bq1 ¼ 0:1 and (b) high Bq1 ¼ 100 while Bq2 ¼ 0 and Pes ! 0.
In this limit, the surfactant concentration plays no role, since the important factor is
MaPes; the surfactant remains uniform and the surface tension is constant.

FIG. 14. Profiles of uxð0; 0; zÞ in z-direction from particle surface at different Bq1
(Bq2 ¼ 0 and Pes ! 0). The point where ux changes sign is shown in the inset.
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Fig. 14, with the corresponding Zb vs Bq1 in the inset. These results
demonstrate that upon increasing the interface shear viscosity, Zb
moves further away from the particle, which indicates an increase in
the interface compressibility with increasing z.

The uniform motion of the interface at high Bq1 can also be
observed in an unbounded flow when walls are at infinity. Figure 15
shows velocity field, interface dilatation, and shear component of sur-
face stress tensor for an interface with finite compressbility,

FIG. 15. Characteristics of the flow field for an interface with the finite compressibility (Bq2 ¼ 0:1) and Pes ! 0. Shown is from left to right: (i) velocity field and its streamlines,
the background color encodes jusj, (ii) interface compression $ � us, and (iii) shear component ð@us;x=@z þ @us;z=@xÞ=2 of the symmetrized flow gradient. In (a) Bq1 ¼ 0:1,
(b) Bq1 ¼ 1, and (c) Bq1 ¼ 5. The particle moves in positive x-direction. The color levels are identical in all panels (a)-(c) to allow for a quantitative comparison.
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Bq2 ¼ 0:1, at three different interface shear viscosity Bq1 2 f0:1; 1; 5g
and limit of Pes ! 0. The shear component of the surface velocity gra-
dient is necessary to fully characterize the velocity gradient. The veloc-
ity fields show clearly the uniform motion at high Bq1. This uniform
motion minimizes surface shear and increases the cost for dissipation
of energy. This effect can be seen from the third column in Fig. 15. At
low Bq1, the shear effect is very important at close distance from the

surface of the particle, where there is a large gradient in shear compo-
nent of the stress tensor. At high shear viscosity, the gradient decreases
and shear effects happen at far distance from the particle.

Suppression of the vortex and uniform motion also affects the
Marangoni flow. Figure 16 shows the velocity field us and the surfac-
tant concentration at Ma ¼ 10 and finite Pes ¼ 0:1. The interface has
the same shear and dilatational viscosity as Fig. 15. To highlight the

FIG. 16. Characteristics of the flow field
for a monolayer with Ma ¼ 10 at the finite
Peclet number, Pes ¼ 0:1. In all simula-
tions, Bq2 ¼ 0:1. In (a) Bq1 ¼ 0:1, (b)
Bq1 ¼ 1, and (c) Bq1 ¼ 5. Shown is from
left to right: (i) velocity field and its stream-
lines, the background color encodes jusj,
(ii) Marangoni flow, the background color
encodes jDusj, (iii) the surfactant concen-
tration C. The Marangoni contribution is
obtained as the difference between us

with and without surfactants, where the
latter is shown in Fig. 15. The particle
moves in positive x-direction. The color
levels are identical in all panels (a)–(c) to
allow for a quantitative comparison.
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qualitative role of the Marangoni flow, its contribution to the surface
velocity field, Dus ¼ us � u0s is also shown in Fig. 16, where u0s
denotes the velocity field of the interface with uniform surfactant, at
Pes ! 0. At low Bq1, the Marangoni flow occurs near the particle sur-
face. Suppression of the vortex at higher shear viscosity enforces the
surfactant to find another path to flow. Therefore, the flow is less
focused and occurs even at far distance from the particle (see the sec-
ond column). The results also show that the maximum flow is getting
further from the particle with increasing Bq1. This is likely due to
moving the vortex by increasing the interface compressibility. This dif-
ficulty for the surfactant to flow creates a higher gradient in front and
back of the particle (third column), which consequently increases the
Marangoni force acting on the particle.

The Marangoni contribution FM to the force and the interface
viscous drag Fs amplitudes are compared in Fig. 17. At low Bq1, F

M

increases significantly with Bq1, and it reaches a constant value with
increasing Bq1. At high Bq1, the F

M does not make a significant contri-
bution to the total drag on the particle. An increase in FM with increas-
ing surface shear viscosity was also reported by Elfring et al.12 for the
motion of a disk at the interface. This can again be attributed to the
enhancement of dilatation/compressional deformations as shear defor-
mations become more costly.

When considering shear and dilational viscosities, a wide range
of values has been reported (Table II), but for simple surface active
components, such as small molecular weight surfactants, the ratio of
shear and dilatational surface viscosities has been suggested to be of
comparable magnitude, H ¼ Bq2=Bq1 ¼ Oð1Þ.16,18 Depending on

the chemical characteristics of the system at hand and the mobility of
the surfactants (small molecular weight vs polymeric), the P�eclet num-
ber might either be small or large compared to unity, we are going to
discuss both types upon choosing Pes 2 f0:1; 2:0g. All qualitative
effects are captured by a finite Bq1 ¼ 1 and moderate Ma ¼ 10, which
is the choice we are making for the present purpose.

The surface flow field and its characteristics, as well as the
surfactant concentration profiles, are shown for three different
H 2 f0:1; 1; 10g and Pes ¼ 0:1 in Fig. 18 (corresponding data for
Pes ¼ 2:0 are available in supplementary material Fig. S13). The dif-
ferent components of the velocity field in Fig. 18 again reveal the inter-
play between the shear and dilational/compression. This figure
demonstrates how the relative contributions of compression/dilation
and the shear deformations depend on the relative values ofH and the
magnitudes of the Marangoni and bulk to interfacial stresses, congru-
ent with work on macroscopic rheometers, which employ mixed flows,
such as the double wall sinusoidal ring10 and the interfacial Cambridge
extensional rheometer.11,57

E. Influences of the surface viscosities on the drag

coefficient of a spherical particle

Although recent available techniques make the experimental real-
ization of surface microreology relatively straightforward, especially in
the particle tracking techniques, one has to rely on a hydrodynamic
model of the monolayer to obtain interface quantities such as the
interface shear viscosity. Particle tracking techniques are a branch of,
so-called, microrheological techniques, which have advantages over
macrorheology including smaller sample sizes, access to higher fre-
quency ranges, the ability to measure small-scale material heterogene-
ities, and greater sensitivity.9 In particle tracking, the position of a
Brownian probe is recorded as a function of time, and the diffusivityD
of the probe is calculated from a mean squared displacement (MSD)
which in two dimensions is related to diffusivity by

MSD ¼ hDr2ðsÞi ¼ 8Ds; (31)

where r is the distance between a pair of particles, s is the lag time, and
and hi denotes an ensemble average. In general, D is related to the par-
ticle’s drag coefficient f by the Einstein-Sutherland relation58,59

D ¼
kBT

f
; (32)

FIG. 17. Marangoni contribution FM (black) to the force and interface viscous drag
force Fs (blue) amplitudes as a function of Bq1 (Ma ¼ 10; Pes ¼ 0:5; Bq2 ¼ 0:1).
For finite Bq2 the curves remain qualitatively unchanged, inline with the expecta-
tions from results presented in Fig. 11(a).

TABLE II. Selected experimental values for the quantities appearing in the dimensional equations, along with the corresponding dimensionless numbers, for surfactants at the
air-water interface at room temperature (T¼ 300 K). The first line is for dipalmitoylphosphatidylcholine (DPPC),7,9 followed by pluronics F-108 (EO132PO50EO132)

55 and P-123
(EO20PO70EO20)

55 assuming a spherical particle of radius R¼ 1 lm translating with a speed of U¼ 1 lm/s. The last row is created using simulation results (in reduced
Lennard-Jones units, LJu) of a coarse-grained model for pluronics.56 Using g1 ¼ 2:3 LJu, T¼ 300 K, and a surfactant concentration of 6 mg/m2, the units for energy �, length
r, and time s are � ¼ 5:7
 10�21 J, r ¼ 0:346 nm, and s ¼ 2:8 ps. Using these values, the measured js ¼ 192:5 �s=r2. As the numbers suggest, there is quite a range of
values, while the ratio H was considered to be Oð1Þ.16,18 A extended version of this table is available in supplementary material Sec. S6.

Surfactant
g1 R C0 U Ds gs js Bq1 Bq2 Ma Pes

(m Pa s) (lm) (106/lm2) (lm/s) (lm2/s) (Ns/m) (Ns/m)

DPPC 0.89 170 0.98 500 70 10�5 1 66 6.6 
106 9200 1200

F-108 0.89 1 0.17 1 30 0 1.36 0 1.53 
109 8 
105 0.04

P-123 0.89 1 0.25 1 20 0 0.17 0 1.96 
108 1.2 
106 0.03

H21T8H21 0.89 1 0.32 1 170 2:5
 10�11 2:6
 10�11 38 83.7 1:2
 10�2 250
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where kB is Boltzmann’s constant and T is the absolute temperature.
To calculate the surface shear viscosity using (32), it is necessary to
investigate the proposed model for the drag coefficient as a function of
the available monolayer parameters.

The drag coefficient vs H ¼ Bq2=Bq1 for both Pes (in Figs. 18
and S13) is shown in Fig. 19. For the larger Pes, both the drag coeffi-
cient and the flow fields are basically unaffected by H over the experi-
mentally relevant range. The surface flow field is only weakly
compressed and dilated, while the surfactant concentration is distorted
by about 10%. At the smaller Pes the situation is reversed (Fig. 18).
While the surfactants remain homogeneously spread at the interface,
the surface velocity field exhibits larger shear gradients and weaker
compression/dilation effects with increasingH.

According to these results, the effect of Pes may be best detected
from the C variation, while H affects the z-component of the surface
velocity field, evaluated along the x¼ z–diagonal. The above discus-
sion pertains to small molecule surfactants;12,60 for other types of
structure interfaces, the Boussinesq–Scriven model is probably not
adequate and strong viscoelastic effects are present, and dilatational

elasticity becomes important.9 However overall the trends and ideas
observed in the simulations can be used to assess under which condi-
tions the drag force is going to be determined by shear viscosities.

While Fig. 19 represents the drag coefficient for an interface in
general cases when all dimentionless parameters are present, models

FIG. 18. Same quantities as Fig. 15, supplemented by the x- and z-components of the surface velocity us field (second and third columns, respectively) and surfactant concen-
tration field C (last column), for Pes ¼ 0:1 (Bq1 ¼ 1; Ma ¼ 10). H 2 f0:1; 1; 10g increases from (a) to (c).

FIG. 19. Drag coefficient for the regime of practical relevance with H 2 ½0:1; 10�
and for two different Pes (Bq1 ¼ 1; Ma ¼ 10).
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for the drag coefficient of protruding particle as a function of interface
shear viscosity have been reported for the limiting cases of compress-
ible and incompressible interfaces. Danov et al.18 solved numerically
the problem of a translating particle at a compressible Newtonian
interface with constant surface tension. They reported the particle dif-
fusion coefficient / 1=f at different contact angles as a function of
Bq1 and Bq2. We simulated the interface under similar conditions.
The drag coefficient f and magnitude of bulk Fb and interface viscous
Fs drags are shown in Fig. 20. Comparing our results with Danov’s
study for a particle with contact angle 90

�
shows that these two results

are in a very good agreement [Fig. 20(b)], given that the numerical
methods differ and that we are operating in a differently bounded
domain. Bonales et al.61 have used Danov’s theory to calculate the
shear viscosity of two polymer Langmuir films. They compared the
results with the data obtained by canal viscosimetry. Maestro et al.4

used this theory at the glass transition and compared the results with
particle tracking techniques. Sickert et al.22 used Danov’s theory in the
study of monolayers of fatty acids and phospholipids. They have
shown that the surface shear viscosity calculated from Danov’s theory
was lower than experimental data. A critical assessment of these find-
ings can be found in Samaniuk and Vermant.9

The incompressibility of interfaces is a widely accepted assump-
tion and has been used in many pioneering works in the problem of
particle motion at the interfaces and membranes in both non-
protruding particles3,13,15 and protruding particle.23,62 Fischer et al.23

solved the problem of translation of a particle with radius R in an
incompressible viscous monolayer with the surface shear viscosity gs,
between two viscous phases with viscosities g1 and g2. They solved the
incompressible surface Stokes equations

0 ¼ $s � us;

0 ¼ Fs � $sP
s þ gsr2

sus þ g
@u

@y

�

�

�

�

s

; (33)

where Fs is an external surface force parallel to the monolayer and Cjs
represents the jump in C across interface. They present solutions to
their model for drag coefficients on spherical particles at interfaces for
the limiting cases where Bq1 � 1 or Bq1 	 1. They have obtained
the following result for the translational drag coefficient f as a series
expansion of Boussinesq number Bq ¼ gs=ðg1 þ g2ÞR for
0 < Bq � 1. For our setup Bq ¼ Bq1 and thus

f ¼ f0 þ f1ðBq1Þ þ O ðBq1Þ
2

h i

: (34)

Fitted expressions for f from numerical results give the following
formulas for f0 and f1:

23

f0 � 6p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh a0ð2þ d=RÞ=ð9p2Þ½ �
p

; (35)

f1 �

�4 ln
2

p
arctan

2

3

� �� �

R3=2

ðd þ 3RÞ3=2

" #

; d > 0;

�4 ln
2

p
arctan

d þ 2R

3R

� �� �

; d < 0;

8

>

>

>

>

<

>

>

>

>

:

(36)

where d is the signed distance from the apex of the sphere to the plane
of the interface, which defines the contact angle. Equation (35) had been
published by Fischer et al. with a0 ¼ 32. This value is however incom-
patible with the values for f0 mentioned in both their text and data.
Upon adjusting a0 in (35) to exactly recover their published fit function,
we obtain the corrected value a0 ¼ 36:3 that should be used when mak-
ing use of Eq. (35) (details in supplementary material Sec. S5, a more
stringent test of the whole fitting formula would require studying ellip-
soidal or spheroidal particles instead of spheres). Notice that when
d ! 1, the expression inside the radical goes to 1 and f0 ¼ 6p and
f1 ¼ 0, which is the correct theoretical value for a sphere in the bulk
(Stokes law). The two expressions for f1 do not converge for d ! 0 since
the series expansion in Bq of Oseen’s tensor no longer converges for
Bq ! 0.23 For a translational drag on a half immersed sphere in a non
viscous monolayer, they find f � f0 � 11:7, which is higher than at a
free surface (f ¼ 3p). This is due to surface incompressibility, which
they attribute to Marangoni effects. The value of f0 � 11:7 obtained by
Fischer et al. (the above fit formula with unrevised a0 ¼ 32 instead gives
f0 ¼ 11:08) for an incompressible and inviscid interface is slightly higher
than the value of f � 11:5 we found for an incompressible interface due
to Marangoni flow in Sec. IVA or dilational viscosity in Sec. IVB or
combinations of both effects in Sec. IVC.

These results are important and show that the drag coefficient of
a particle at incompressible interfaces is independent of the origin of
the incompressibility (dilatational viscosity, Marangoni effects or a
combination of both) and that its higher value can not only be related
to the Marangoni effects, as suggested by Fischer et al. The conditions
required for surface incompressibility were not investigated in detail
by Fischer et al.23 Figure 11(a) shows that at Bq2 ¼ 100 the
Marangoni effects are still present but they do not have significant
effects on the drag coefficient [Fig. 11(b)]. These results do not support
their claim that the Marangoni effects become very noticeable in the
limit of vanishing surface compressibility.23

We compared our results with Fischer’s study for Bq1 � 1 for
an incompressible interface with Bq2 ¼ 106 using a linear fit to the
data. At Bq1 ! 0, the drag coefficient f ¼ f0 � 11:52 is smaller than
the value reported by Fischer et al.,23 and for the slope f1 we obtain
f1 � 6:85. Drag coefficients of the particle for intermediate Bq1
(1 � Bq1 � 10) and high values (10 < Bq1 � 104) at an incompress-
ible interface (with Bq2 ¼ 106) are shown in Fig. 21. Our data can be
fitted with linear equations,

f ¼ 14:830þ 3:677 Bq1; 1 � Bq1 � 10;

ln ðf Þ ¼ 1:572þ 0:889 ln ðBq1Þ; 10 < Bq1 � 104;
(37)

as shown in the figure. The drag coefficients for the intermediate Bq1
were not reported by Fischer et al., since there is no solution for that

FIG. 20. Magnitude of (a) bulk (blue) and the interface viscous (black) drag forces
on the particle and (b) particle mobility relative to mobility at a surfactant-free inter-
face, 3p=f , vs Bq1 ¼ Bq2, i.e., at H¼ 1 (solid line). For comparison, we include
results presented by Danov et al. 18 for the case of 90

�

contact angle (dashed line).
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regime. A comparison between the drag coefficient at small and inter-
mediate Bq1 clearly shows a noticeable difference between these possi-
bly experimentally relevant two regimes (Table II).

A similar analysis for a compressible interface (Bq2 ¼ 0:1;
Pes ! 0) is captured by the analytical expressions f ¼ 11:234
þ 1:931Bq1 and ln f ¼ 1:07þ 0:857 ln ðBq1Þ for the intermediate
and high Bq1, respectively, in the same range of Bq1 used for the
incompressible fluid in Fig. 21.

Fischer’s model has been used for the regime of Bq1 � 1 to calcu-
late the interface shear viscosity from D, with R, g1 and T at
hand.4,9,22,30,63,64 However, if one utilizes it within the 0:1 < Bq1 < 10
regime, there is at least an order-of-magnitude agreement with estimates
of gs calculated from an extrapolation of the two limiting solutions of the
Fischer model.9 The model presented in this work for drag coefficient at
1 � Bq1 � 10—in dimensional form f ¼ g1Rð14:830þ 3:677 Bq1Þ—
can be used for such an intermediate regime.

V. CONCLUSIONS

This work offers a comprehensive study of the effects of interfa-
cial properties on the drag of a spherical probe partially immersed into
a viscous bulk fluid. We calculated the force on a spherical probe parti-
cle translating at constant velocity and centered at the flat interface,
while the interface was initially covered uniformly by a surface active
component. The translating particle compresses the interface at its
front and dilates at its rear. We demonstrated how the quantitative
occurrence of this phenomenon is affected by the properties of the sur-
face active component, namely the concentration, the interfacial equa-
tion of state and the P�eclet number, and the interface shear and
dilatational viscosities. The presence of a surface active material was
shown to reduce the interface compressibility and this effect strongly
depends on the surface P�eclet number. We quantified how a non-
vanishing interface dilatational viscosity helps to reduce the local inter-
face compressibility, while shear viscosity has only a smaller, opposite,
and obviously indirect effect. A low value for the shear viscosity is
found to provide an easy way to deform locally and reduces the diver-
gence of the surface velocity field.

For the special case of inviscid interfaces carrying surfactants, the
product between Ma and Pes plays a crucial role in determining the
dilation of the interface, and we show that for MaPes > 15, the inter-
face dilation is only 20% as compared to a clean, inviscid interface.
Increasing the product between MaPes further can thus make the
interface effectively incompressible.

When interfacial viscosities are included as well, the Marangoni
contribution FM to the forces experienced by the particle is found to be
affected by the magnitude of both interfacial shear and dilatational vis-
cosities. The particle induces a flow field that compresses/dilates the
interface, which leads to surfactant concentration variations, and thus
to variations in the interfacial tension along the interface. The flow
field depends on the rheological properties of the interface, here to be
taken purely viscous, and the interface P�eclet number. A non-uniform
distribution of surfactants leads to Marangoni flows, but these flows
are coupled to the surface viscosities of the interface, resulting in a
complex interplay of effects. Markedly, our simulation results showed
that interface viscosities have an opposite effect on the Marangoni
force FM acting on the particle; dilatational viscosity decreases but
shear viscosity slightly increases FM.

The present work demonstrated that an interface can be incom-
pressible by dilatational viscosity, Marangoni effects, or combinations
of both. The drag coefficient of the particle at incompressible interfaces
for these three cases, within the limit of vanishing interface shear vis-
cosity, exhibited the same value of 11.5. We also calculated the par-
ticle’s drag coefficient over a wide range of dimensionless interface
shear viscosities (Bq1) for compressible and incompressible interfaces
and provided approximate analytical expressions for them.

The results presented in this work validate conclusions from the
literature that were limited to a narrow asymptotic regime and only
valid for non-protruding particles in shallow subphases.12 The results
of the present study should therefore help interpreting shear and dila-
tational rheological, as well as particle tracking experiments, where
particles are generally protruding and the subphase should be deep in
order to effectively probe the interface. Moreover, our numerical
method allowed us to explore the parameter space far from the asymp-
totic regimes.

Here, we focused on a spherical probe symmetrically immersed
at the interface, with a contact angle equal to 90

�
. An extension to

non-spherical probes to study the effects of the particle aspect ratio,
orientation, and contact angle is straightforward and subject of a sub-
sequent study. We here assumed that the surface tension decreases lin-
early with increasing surfactant concentration. This assumption is
limited to dilute condutions21,65 and should be released within the oth-
erwise unchanged framework if one aims for a quantitative compari-
son with experimental data, provided the nonlinear features of the
surface tension have been fully resolved beforehand, which would
extend the linearized equation used here. Nonequilibrium molecular
dynamics and Monte Carlo simulations along the lines indicated in
recent works56,66–68 for complex interfaces may help to provide a route
to calculate the missing ingredients, the material functions c, and sur-
face viscosities as a function of Ma for atomistically detailed or coarse-
grained models of amphiphilic surfactants.

SUPPLEMENTARY MATERIAL

See the supplementary material for the validation of the FEM
program, mesh convergence, effects of subphase depths, transient
behavior, the coefficient a0, and additional data, table, and figures
referred to within the manuscript.
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FIG. 21. Drag coefficient at (a) intermediate Bq1 (1 � Bq1 � 10), (b) high Bq1
(10 < Bq1 � 104). The interface is incompressible (Bq2 ¼ 106, where Marangoni
effects are suppressed). Linear fitted data are indicated by red solid lines.
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