
DRAG ON AN OSCILLATING AIRFOIL IN A 

FLUCTUATING FREE STREAM 

A THESIS 

Presented to 

The Faculty of the Division 

of Graduate Studies 

By 

Sesi Bhushan Rao Kottapalli 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

in the School of Aerospace Engineering 

Georgia Institute of Technology 

August, 1977 



DRAG ON AN OSCILLATING AIRFOIL IN A 

FLUCTUATING FREE STREAM 

Approved: 

G. Afvirt Pierce, Chairman 

LPMJS H. Bangert (J 

Robin B. Gray J 

Date approved by Chairman: y * / 0 ' 77 



11 

ACKNOWLEDGMENTS 

I wish to express my appreciation to Dr. G. Alvin Pierce, ray 

teacher and advisor, for his suggestion of the thesis topic and for 

providing most of the wisdom necessary for the completion of this study. 

His guidance and assistance throughout my graduate academic career have 

been invaluable and are sincerely appreciated. 

I would also like to thank Drs. Robin B. Gray and Louis H. Bangert, 

members of the Reading Committee, for their valuable advice and useful 

suggestions. 

Special thanks are extended to my parents for their constant 

encouragement and support. 

Finally, I wish to thank Ms. Pilar Girona for her expeditious 

typing of the thesis. 



Ill 

TABLE OF CONTENTS 

Page 
ACKNOWLEDGMENTS. ii 

LIST OF TABLES v 

LIST OF ILLUSTRATIONS vi 

NOMENCLATURE ix 

SUMMARY xv 

Chapter 

I. INTRODUCTION . 1 

II. POTENTIAL FLOW DEVELOPMENT 7 

Governing Relations 
Boundary Conditions 

Solution Procedure 
Oscillating Flat Plate 
Camber Line at Constant Angle of Attack 
Thickness Distribution at Zero Incidence 
Equations for a Symmetrical Airfoil 
Computational Details 

III. BOUNDARY LAYER ANALYSIS 38 

General Considerations 
Method of Solution 
Finite Difference Scheme 
Procedural Outline 

Detailed Considerations 
Stagnation Point Profiles 
Details-Laminar Region 
Determination of Transition Point 
Profile at First Turbulent Station 
Details-Turbulent Region 

IV. RESULTS AND DISCUSSION 56 

Potential Flow 
Comparison with Windsor's Results 
Extension of Present Approach to the case of 

Different Airfoil and Free Stream Frequencies 
Comparison with Greenberg's Analysis 



TABLE OF CONTENTS (Continued) 

iv 

Chapter Page 

Laminar Flow Results 
Comparison with Experimental Data 
Effects due to the Amplitude of Free Stream 

Fluctuations 
Reduced Frequency Effects 
Effects due to Phase Difference Between Stream 

Fluctuations and Airfoil Oscillations 
Superposition of Drag 
Reynolds Number Dependency 

Turbulent Flow Results 
Preliminary Discussion 
Reduced Frequency Effects 
Effects due to the Amplitude of Free Stream 

Fluctuations 
Effects due to Phase Difference Between Stram 

Fluctuations and Airfoil Oscillations 
Remarks about Drag Superposition 
Reynolds Number Dependency 

V. CONCLUSIONS AND RECOMMENDATIONS 126 

Conclusions 
Recommendations 

APPENDIX 

A. FINITE DIFFERENCE REPRESENTATIONS AND 
DIFFERENCE EQUATIONS 131 

Difference Representations 
Difference Equations 
Continuity Equation 

B. STAGNATION POINT FINITE DIFFERENCE 
EQUATIONS 136 

REFERENCES 138 

VITA 143 



V 

LIST OF TABLES 

Table Page 

1. Lift and Moment Comparisons 62 

2. Drag Dependency on Reynolds Number 125 



vi 

LIST OF ILLUSTRATIONS 

Figure Page 

1. Definition of Axes 9 

2. Comparison of Calculated and 
Measured Pressure Coefficient 58 

3. Skin Friction Comparison for 
NACA 0012 Airfoil 63 

4. Turbulent Skin Friction for a 
Flat Plate 64 

5. Turbulent Skin Friction Comparison-
Newman Airfoil 65 

6. Example of a Computed Drag Curve 71 

7. Comparison of Computed and Measured 
Drags-I 74 

8. Comparison of Computed and Measured 
Drags-II 75 

9. Comparison of Computed and Measured 
Drags-Ill 76 

10. Variation of Drag with Time, a = 2 , 
Effect of a 78 

11a. Variation of Drag with Time, 
a = 2° +2°Cos(cut), Effect of a 79 

lib. Variation of Drag with Time, 
a = 2° + 2°Cos(aat), k = 0.00, a==0.00 80 

12. Variation of Phase, cp, with a 81 

A\ 
13. Variation of Amplitude Ratio, (A"^)» 

with CT ; o / 82 
14. Variation of Drag with Time-Effect 

of Reduced Frequency, k 86 

15. Variation of Phase, cp, with Reduced 
Frequency, k. 87 



Vll 

LIST OF ILLUSTRATIONS (Continued) 

Figure Page 

16. Variation of Amplitude Ratio, (—J, with 
Reduced Frequency, k o 88 

17. Variation of Phase, cp, with Phase 
Difference, i|r, and Reduced Frequency, k 92 

fAc\ ' 
18. Variation of Amplitude Ratio, ( — 1, with 

Phase Difference, \jj, and ° 
Reduced Frequency, k. . . . ,. 93 

19. Variation of Phase, cp, with Phase 
Difference, ty, and a. . . . « 96 

/ A ^ 
20. Variation of Amplitude Ratio., (T~j, with 

Phase Difference, \);, and <j. « • ° 97 

21. Variation of Drag with Time, k = 0.00 102 

22. Variation of Drag with Time, k = 0.20 103 

23. Transition Point Variations-Upper 
Surface 104 

24. Transition Point Variations-Lower 
Surface 105 

25. Variation of Drag with Time, Effect 
of Reduced Frequency, k 107 

26. Variation of Phase, cp, with Reduced 
Frequency, k 108 

fAc\ 
27. Variation of Amplitude Ratio, ("7~)> with 

Reduced Frequency, k o 109 

28. Variation of Drag with Time, Effect 
o f o- 112 

29. Variation of Phase, cp> with o" l]o 

A\ 
30. Variation of Amplitude Ratio, ("7~"), 

with a o 114 

31. Variation of Phase, cp, with Phase 
Difference, \|f, and Reduced Frequency, k 118 



viii 

LIST OF ILLUSTRATIONS (Continued) 

Figure Page 

(Ac\ 
32. Variation of Amplitude Ratio, (——], with 

Phase Difference, \|r, and ° 
Reduced Frequency, k. . 119 

33. Variation of Phase, cp, with Phase 
Difference, \|r, and <j. . . ., 121 

/ Ac\ 
34. Variation of Amplitude Ratio, [T~')> with 

Phase Difference, \|r, and CT. . . o 122 



ix 

NOMENCLATURE 

Roman Symbols 

A a constant, see Equation (74) 

A mean drag coefficient as obtained by the least squares 
fit, see Equation (82) 

A.. ,A constants in the expression for y » s e e Equation (27) 
J. 2 W 

A amplitude of drag fluctuations, obtained by the least 
squares fit, see Equation (82) 

>v 
a x =ab is the point about which the airfoil rotates, a 

is non-dimensional 

it TV 

B(x ,z ,t) body surface function, see Equations (6) and (8) 

•Jc •>'<• 

B1(x ), B9(x ) downwash functions, defined by Equation (22b) 

* B (x ) downwash function , defined by Equation (44) 
c 

b airfoil semi-chord 

bn,b0,b.,b ,b0 constants required in the definition of the thickness 
i Z 4 p O - ^ . „ . /rr\\ 

function, Equation (60) 

C(k),C(2k) Theodorsen's function with arguments k and 2k, respect­
ively, see Equation (42) 

~k 

C (x ) camber function 

C, (x),CL(x) functions associated with bound vorticity, y , see 
Equations (26), (32) and (33) a 

C (x),C. (x) functions associated with bound vorticity, y , see 
c c Equations (46)-(48) 

2 
C, drag coefficient, D/pV b 
d o 

C, steady drag coefficient 
o 

C f skin friction coefficient, wall shear stress divided 
by h PV2 
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2 
C lift coefficient, j&/pV b 

I o 
C ,C ,C lift coefficients, defined by Equation (65a) 

i ' JL i0 o 1 z 

2 2 
C moment coefficient, m/2pV b 
m o 

C ,C ,C moment coefficients, defined by Equation (65b) 
m m, , m„ 
o 1 2. 

2 
C pressure coefficient, (p-pso)/(pV /2) 
p r o 

D skin friction drag 

d distance from leading edge 

d see Equation (83) 

g non-dimensional boundary layer velocity, see Equation 
(72a), u/U 

H shape factor, 6/6 

(2) 
H Hankel function of second kind, order v 

v 
h non-dimensional translatory displacement, h /b, also 

transformed boundary layer velocity, see Equation (72b) 

h amplitude function for h, h = he , Equation (56b) 

i< •>'<• i t 

h represents translatory motion of the airfoil, z = -h 
a 

• -k * 

h translation velocity, dh /dt 

l(t) integral occurring in solution for wake vorticity, 

Jv(T)dT 

1^1 ,1. ,1 I functions defined by Equations (62b) and (62c) 
1 L 4- o, o 

i index for the streamwise coordinate |, also /-l 

J Bessel function, first kind 
o ' 

j index for the vertical coordinate 7] 

k reduced frequency, (jub/V 

k constant appearing in solution for y > s e e Equation (24) 



XI 

I lift, positive upwards, also non-dimensional turbulent 
viscosity, 1 + e/v 

M number of data points in least square fit, M = 20 for 
laminar flow, M = 40 for turbulent flow 

m pitching moment about x = x ^ positive leading edge up, 
also index for T 

J. 
n exponent in power law profile, u/U = (y/6)n 

P.(x),P9(x) pressure functions, see Equations (41) and (63) 

P (x),p- (x) pressure functions, see Equations (50) and (64) 
o 1 
c c 

p (x),P1 (x) pressure functions, see Equations (54), (61) and (62) 
°t t 

p local pressure 

q,q velocity vector and magnitude respectively, see Equation 
(1) 

Re Reynolds number based on the semi-chord, V b/v 

R Reynolds number based on U and 9, 9U Re 
9 e e 

R Reynolds number based on U and §, Û Re 

r ratio of adjacent step sizes in T] direction, AT\. , 1 /AT]• 

S(x ) source strength distribution 

s distance from leading edge, non-dimensionalized by chord 

T time, space-fixed frame 

* 1 * 
T(x ),T (x ) thickness function and derivative, respectively 

t time, body-fixed frame 

U£ total streamwise potential flow velocity at surface, non-
dimensionalized by V , see Equation (66) 

u disturbance velocity, -2̂ -*, also non-dimensional stream-
wise velocity in boundary layer 
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perturbation velocity due to thickness function, see 
Equation (53) 

friction velocity, V ~ 

free stream velocity, see Equation (21) also 

constant part of V 

vertical velocity in the boundary layer, non-dimensiona-
lized by V 

o 

downwash veloctiy, ,. 
ozX 

streamwise coordinate, space-fixed frame 

x /b 

streamwise coordinate in body-fixed frame, origin at 
midchord, positive aft 

normal boundary layer coordinate, non-dimensionalized by 
semi-chord b 

vertical coordinate, space-fixed frame 

z'Vb 

vertical coordinate., body-fixed frame 

-* 
amplitude function for z , see Equation (20) 

9. 

in Chapter II varying part of total angle of attack, in 
Chapter IV total angle of attack, positive leading edge 
up 

amplitude for varying angle of attack, see Equation (56a) 

constant part ot total angle of attack, positve leading 
edge up 

£ *Ue longitudinal pressure gradient parameter, ~ — 
ue a§ 

k£ dUe unsteady pressure gradient parameter, ~x 
U *T 

e 



X1L1 

airfoil circulation, see Equation (17) 

bound vorticity 

wake vorticity 

boundary layer thickness, non-dimensionalized by the 
semi-chord b ^ 

ReUe\2 
transformed boundary layer thickness, ( — • J 5 

boundary layer displacement thickness, non-dimensiona­
lized by the semi-chord b 

eddy viscosity 

transformed vertical boundary layer coordinate, 

&Cn?> 
J J-l 

boundary layer momentum thickness, non-dimensionalized 
by the semi-chord b 

2 
Karman-Pohlhausen parameter, Re6 dU /dx 

e 

defined by Equations (40a) and (40b) 

kinematic viscosity 

in Chapter I I streamwise dummy v a r i a b l e , § / b , in 
Chapter I I I non-dimensional streamwise coord ina te (§ = 0 
i s the s t a g n a t i o n po in t ) 

^i+1 " h 

d e n s i t y 

amplitude of free stream fluctuations, V(t) = V (1 + 

crê " ) 

thickness ratio of airfoil, non-dimensionalized by chord, 
also dimensionless time, fJjt 

rm Tm-1 



XIV 

disturbance velocity potential in space-fixed frame, 
see Equations (1) and (2) 

in Chapter II disturbance velocity potential in body-
fixed frame, see Equation (4); in Chapter IV phase 
difference between drag and free stream, see Equation 
(82) 

phase difference between free stream, (V/VQ) = 1+a 
Cos (ojt), and airfoil oscillations, a = a + a Cos (̂ t+ijf) 

defined in Equation (28) 

CL = a CL 

defined in Equation (49) 

frequency 

refers to the airfoil 

upper surface 

lower surface 

refers to the wake 

refers to the far upstream conditions 
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SUMMARY 

An analytical study is presented regarding the unsteady skin 

friction drag of an oscillating airfoil exposed to a fluctuating free 

stream speed. One application of the results from such an investigation 

is in aeroelastic stability analyses of helicopter rotor blades under­

going pitching, flapping, and lead-lag (in-plane) types of oscillation. 

The flow, which of course is time-dependent, is considered to be incom­

pressible and two-dimensional. Both laminar and turbulent conditions 

are covered in the analysis. 

The unsteady potential flow pressure and velocity distributions 

required for the subsequent boundary layer analysis are obtained by an 

approximate development. In this potential flow analysis the airfoil 

oscillations and the free stream fluctuations are regarded to be simple 

harmonic in time and to have the same frequency. In addition, the dis­

turbances due to the airfoil motion and the amplitude of the free stream 

fluctuations are assumed to be small, Vortices are distributed along 

the airfoil chord and wake to account for the lifting effects while the 

nonlifting (thickness) effect is represented by sources, also distrib­

uted along the chord. A simplifying approximation for the wake, based 

on the assumption of small free stream fluctuations, leads to the final 

expressions for the unsteady surface pressure and velocity distributions. 

This pressure distribution is impressed on the time dependent 

boundary layer which is solved by the method of finite diffferences. 

The unsteady boundary layer analysis covers both laminar and turbulent 
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conditions, and, the turbulent region is represented by an appropriate 

existing eddy viscosity model. 

Various aspects of the flow problem are investigated by a system­

atic variation of several important parameters. The influences, on the 

unsteady drag, of the amplitude of free stream fluctuations, reduced 

frequency, and phase difference between stream fluctuations and airfoil 

oscillations are studied. Some of these effects are interpreted, in the 

laminar case, by a consideration of the movement of the zero wall shear 

location; for the turbulent condition it is the transition point move­

ments that are examined. The possibility of the superposition of drag 

is studied and finally, the dependency on the Reynolds number is con­

sidered . 

It was found that the introduction of fluctuations in the free 

stream alters the skin friction drag considerably by causing signifi­

cant fluctuations in the drag. There is a considerable difference be­

tween the drag behaviors of an airfoil at constant incidence and one 

undergoing oscillations about a mean angle of attack, both subjected to 

identical fluctuating free streams. The results also show that for an 

airfoil undergoing oscillations about a mean angle of attack in a 

fluctuating free stream, the phase (with respect to the free stream) 

and amplitude of the drag fluctuations are strongly dependent on the 

phase difference between the free stream fluctuations and airfoil os­

cillations. Depending on the values of the phase difference between 

free stream fluctuations and airfoil oscillations, reduced frequency, 

and amplitude of free stream fluctuations, the drag can either lead or 

lag the free stream. Whereas one particular type of drag superposition 
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was successful under laminar conditions, the same type of operation 

led to large errors in the laminar-turbulent case. 
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CHAPTER I 

INTRODUCTION 

Helicopter rotor blades have a much lower in-plane stiffness as 

compared to fixed wings of conventional aircraft. This difference 

forces the consideration of an additional degree of freedom in aeroelas-

tic analyses of rotor systems, namely, the lead-lag or in-plane type 

of motion. Such a motion may occur by itself or can be coupled with 

the flapping and/or torsional degrees of freedom. In addition to the 

blade properties and rotor operating conditions the degree of coupling 

depends on the particular type of rotor system in use. The majority 

of existing rotor systems may be classified into two categories: the 

articulated and hingeless rotors. In the first system, which is more 

widely used, flap and lead-lag hinges are employed to attach the blade 

to the hub. The improved control power and the relative simplicity 

of construction of the hingeless rotor have made it an attractive alter­

native to the articulated rotor, thus leading to it's general accep­

tance in recent years. In practice, for the hingeless rotor the flap, 

torsion, and lead-lag degrees of freedom are strongly coupled due to 

the constructional nature of the blade and hub assembly. It has gen­

erally been concluded that for a comprehensive modeling of the rotor 

system, it is necessary to include the flap, torsion, and lead-lag 

degrees of freedom, references [1~5]. 

The flap and torsion types of motion generate and, are primarily 

influenced by the lift and pitching moment, respectively. Similarly, 
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the lead-lag oscillations and the drag are strongly affected by each 

other. The time-dependent nature of the rotor environment requires 

that the forces and moments acting on the blade be considered as un­

steady. While there exist several analytical and experimental studies 

regarding the unsteady lift and moment of an oscillating airfoil, a 

comprehensive treatment of the unsteady drag is not available. 

This deficiency is reflected in the efforts of the helicopter 

industry as well as in research studies. Ormiston [6] has surveyed 

the methods used by six major helicopter companies and three other 

organizations to predict rotor dynamic loads. For drag, the approxi­

mations employed below stall were based on either steady state data or 

a constant friction drag coefficient. In the stall regime the methods 

used either the steady state drag or the approximation presented by 

Harris et al. [7]. Harris et al. attempted to incorporate, empirical­

ly, unsteady effects by introducing a "reference" angle of attack which 

was a function of the reduced frequency, Mach number, airfoil shape, 

and the azimuthal variation in blade angle of attack. This "reference" 

angle of attack was then used to calculate the drag from static drag 

curves. Regarding research efforts, most rotor analyses assume the 

drag coefficient to be a constant, for example, references [1], [8], 

and [9]. In addition to the approximation of Harris et al. [7] there 

have been a few other attempts to represent, empirically, the unsteady 

drag of the rotor blade, [10], [11], and [12]. Bellinger [12] pro­

ceeds on the interesting assumption that the unsteady lift and drag 

are related in a manner similar to the relationship between steady 

lift and drag. In this case and in other empirical approaches it is 
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not possible to ascertain the accuracy of the various representations 

for unsteady drag since there exists very little reliable experimental 

data for comparison. 

The few available experimental results for unsteady drag are 

limited in scope. Philippe and Sagner [13] have made drag measurements 

of an oscillating airfoil in a constant free stream but present a very 

limited amount of data. The effect of lead-lag oscillations on the 

drag of an airfoil at constant incidence has been the subject of two 

independent experimental studies, those of Valensi and Rebont [14] and 

Kunz [15]. Reference [14] employed in-plane oscillations of the model 

while the results of reference [15] were obtained for the case of a 

stationary model in a fluctuating free stream. 

It is well known that the introduction of unsteadiness in the 

flow can significantly alter the amplitude and phase characteristics of 

the lift and moment. Whether this is also true for airfoil drag is not 

known at present. As is evident from the preceding review of the 

existing literature a thorough investigation of the effects of unsteadi­

ness on airfoil drag is needed. The primary objective of the present 

effort is to provide, analytically, comprehensive and detailed results 

regarding the unsteady skin friction drag of an airfoil undergoing 

flapping, torsional an^ lead-lag types of oscillation. The unsteady 

potential flow pressure distribution induced by these oscillations will 

influence the skin friction distribution. In cases where the laminar 

boundary layer becomes turbulent, the time-dependent pressure distri­

bution will affect not only the skin friction distributions of both 

regimes but also the location of the transition point. The resulting 



4 

unsteady drag will thus be a function, basically, of the airfoil oscil­

lations. The manner in which the aforementioned objective is achieved 

is described below. 

Note that the unique feature of the present flow problem is the 

apparent speed fluctuations in the free stream that are associated with 

the lead-lag oscillations of the airfoil. 

The unsteady potential flow around an oscillating flat plate in 

a fluctuating free stream has been considered by several investigators 

in the past. Isaacs [16], [17] has employed a series expansion for 

the vorticity distribution and evaluates the unknown coefficients in 

the expansion by satisfying the flow tangency condition at the surface 

and the Kutta condition at the trailing edge. Greenberg [18] has ex­

tended the constant free stream analysis of Theodorsen [19] which it­

self is based on the conformal transformation technique. Randall's 

[20] analysis employs the acceleration potential instead of the veloc­

ity potential and is based on the development presented in reference 

[21]. In the above studies the emphasis has been on obtaining the 

unsteady lift and moment and consequently, the results consist of these 

quantities only. The analysis of the boundary layer requires, however, 

the streamwise pressure gradient distribution. 

In the present study the unsteady potential flow pressure distri­

bution for an oscillating airfoil in a fluctuating free stream is ob­

tained through an approximate analysis that is an extension of the 

Schwarz-Sohngen procedure [22]. The flow is considered to be incom­

pressible and two-dimensional. The airfoil oscillations and free 

stream fluctuations are assumed to be small, simple harmonic in time 



5 

and, to have the same frequency. The lifting effects are represented 

by a distribution of vortices along the chord and wake while the non-

lifting (thickness) effects are taken into account by a source distri­

bution also along the chord. The assumption of small free stream fluc­

tuations permits a simplifying approximation for the wake thus leading 

to the final expressions for the surface velocity and pressure distri­

butions . 

The unsteady boundary layer analysis is performed by the method 

of finite differences. The differencing scheme of Dwyer [23], [24] 

is used because it is simple and permits the rapid solution of the 

boundary layer equations. The scheme allows for variable step sizes. 

Backward differencing is employed for the streamwise and time deriva­

tives while the normal derivatives in the transformed coordinates are 

represented by central differences. For the laminar case the Crank-

Nicolson [25] method of differencing is used. The turbulent boundary, 

modeled by the Cebeci-Smith eddy viscosity formulation [26], is ana­

lyzed an implicit scheme. In both cases the resulting sets of simul­

taneous algebraic equations are in a tridiagonal matrix form. Itera<-

tions on the transport properties are required at each turbulent sta­

tion. The locations of the transition points are determined by Michel's 

method [27]. It is pertinent to note that there exist several studies 

of the response of special classes of boundary layers to fluctuations 

in the free stream velocity. Of these, the laminar studies of Light-

hill [28], Nickerson [29], and McCroskey and Philippe [30], and the 

measurements of Hill and Stenning [31] are of considerable interest 

to the present investigation. The turbulent computations of McCroskey 
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and Philippe [30] for a flat plate at zero incidence in a fluctuating 

free stream are also relevant to the present effort. The results from 

these four studies are discussed in detail in the chapter on results 

and discussion. 

In the results and discussion chapter several aspects of the 

flow problem are investigated. Some comments regarding the extension 

of the present potential flow development to the case of different air­

foil and free stream frequencies are made. After performing a detailed 

comparison of the present potential flow analysis with that of Green-

berg [18], the results for unsteady drag are considered. Comparisons 

of present results with the experimental drag data of Valensi and 

Rebont [14] and Kunz [15] are made. These are followed by consideration 

of the effects of several important parameters on the unsteady drag 

variations for both completely laminar and laminar-turbulent conditions. 

The influences of the amplitude of free stream fluctuations, reduced 

frequency, and phase difference between stream fluctuations and airfoil 

oscillations are investigated. Some of these effects are interpreted, 

in the laminar case, by a consideration of the movements of the zero 

wall shear locations; for the turbulent condition it is the transition 

point movements that are studied. The possibility of the superposi­

tion of drag is examined and finally, the dependency on the Reynolds 

number is considered. 
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CHAPTER II 

POTENTIAL FLOW DEVELOPMENT 

In this chapter the unsteady potential flow development for an 

oscillating airfoil in a fluctuating free stream is presented. The flow 

is considered to be incompressible, irrotational, and two-dimensional. 

The airfoil oscillations and the free stream fluctuations are assumed 

to be simple harmonic in time. In addition, the disturbances due to 

the airfoil motion and the amplitude of the free stream fluctuations 

are assumed to be small. Vortices are distributed along the airfoil 

chord and wake to account for the lifting effects while the nonlifting 

effect is represented by sources, also distributed along the chord. A 

simplifying approximation for the wake, based on the assumption of small 

free stream fluctuations, leads to the final expressions for the various 

flow quantities. 

Governing Relations 

Consider an irrotational flow around a two-dimensional body. The 

velocity vector, q, can be expressed as 

q(X,Z,T) = V$ (1) 

where X,Z are space-fixed rectangular Cartesian coordinates, T is time 

and $(X,Z,T) is the velocity potential. Since the flow is assumed to 

be incompressible, the continuity equation simplifies to Laplace's 

equation 



V
2$ = 0 (2) 

For a flow that is incompressible the momentum equation can be integra­

ted, giving the unsteady Bernouilli's equation as 

2 
P~P°° = 3 M m 
p 2 ST ^ 

where 

p(X,Z,T) = local pressure 

p = pressure at infinity where the presence of the body 
00 

is not felt by the fluid 

p = fluid density 

—• 
q = magnitude of q 

Note that Equation (3) is expressed in an inertial reference frame. 

Now consider an airfoil of infinite span translating in the nega-

tive X direction with speed V(t). Let x and z be rectangular Carte­

sian coordinates fixed to the airfoil (Figure 1); t denotes time in 

•k -k 

the body-fixed system. Also, let cp(x ,z ,t) be the velocity potential 

in the body-fixed system. Equation (2), in terms of cp, becomes 

v2cp = o (4) 

The airfoil thickness, oscillations and fluctuations in the free stream 

are assumed to be sufficiently small such that 

** , ** « v 
if ' Vc 

dx dz 
2 2 

/l $P \ /l ?£P \ /i gp 
allowing f— i(j , (̂  i(J to be neglected in comparison with f— ^^ 

?̂x Bz Bx 
Then, Equation (3), expressed in body-fixed coordinates gives 



V(t) 

Figure 1. Definition of Axes 
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2 ^ . . 3E. . v(t) 3R - (5) 

" 8t <** 

The velocities in the x and z directions are given, respectively, by 

V(t) + \ = V(t) + u(x*,z*,t) 
ox 

^ = w(x*,z*,t) 

Boundary Conditions 

At infinity, the. presence of the airfoil is not felt by the fluid 

and free stream conditions prevail, hence, u and w must vanish. 

The second boundary condition is specified at the airfoil surface 

If the equation of the surface is given by 

B(x'\zX,t) = 0 (6) 

this condition requires that for all points on the surface, at every 

instant of time, 

5 + (V-Ki) a \ + w ^ = 0 (7) 
6 ox hz 

(The velocity component normal to the surface must be zero; for further 

details see Lamb [32].) 

It has previously been assumed that the airfoil creates small 

disturbances in the free stream, hence, in Equation (7) u may be neg­

lected in comparison with V. Further, following thin airfoil theory, 

it is assumed that the surface boundary condition (7) can be applied in 

the vicinity of the plane z = 0 . If the airfoil motion is prescribed 

by 
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it it it it it 

B(x , z , t ) = z - z (x , t ) = 0 (8) 
3. 

t h a n E q u a t i o n (7) may be l i n e a r i z e d as 

dz Bz" 
a , TT /. N a w ( x , o , t ) = ~zf + V ( t ) — J (9) 

O * 

A third condition (Kutta condition) applicable to airfoils with 

sharp trailing edges requires that there be zero pressure discontinuity 

between the upper and lower surfaces at the trailing edge and in the 

wake; further details can be found in Bisplinghoff et al. [22]. 

To summarize, the unknowns at the surface, velocity u and pres­

sure p, have to be determined from Equations (4), (5) and (9), the 

Kutta condition, and the condition at infinity. 

Solution Procedure 

Since the governing equations are linear the problem of an os­

cillating airfoil in a fluctuating free stream can be split up into 

three parts: 

i) an oscillating flat plate 

ii) a camber line at constant angle of attack 

iii) a thickness (symmetrical) form at zero angle of attack 

All three contributions are subjected to the same fluctuating free 

stream. 

Oscillating Flat Plate 

Consider a flat plate airfoil, that is pitching and translating 

vertically. It can be shown, [22], that Laplace's equation (4) and the 

condition at infinity can be satisfied by a distribution of elementary 



12 

two-dimensional vortices along the x -axis. Then the potential cp is 

given as 

* * 1 • a * -1 / z \ * 

cp(x ,z ,t) = - -± J Y(§ ,t) tan (^-^Jdz (10) 
x -£ 

* 
where y(£ 'fc) ̂  tne circulation per unit distance, positive clockwise. 

The unsteady character of the flow necessitates the distribution 

of vortices not only along the chord but also in the wake, which ex­

tends from the trailing edge to infinity. The wake vortices are also 

assumed to lie along the x -axis. Let the circulation per unit distance 

on the airfoil be y (bound vorticity) and in the wake, y (wake vorti-

city). Also, let the origin of the x ,z axes be located at the mid-

chord of the airfoil so that x = -b and x = b refer to the leading 

and trailing edges respectively. Then the downwash at z = 0 , derived 

from the above equation is, [22] 

1 rb Ya(|*.t) * ! » Yw(5*.t) * 

-b x - § b x - ^ 

where <£ is the Cauchy principal value. 

Next, the Kutta condition, which specifies zero pressure discon­

tinuity at the trailing edge and in the wake, is considered. Stated 

mathematically the condition is 

Pt - pu = 0 (x* >_ b) (12) 

where the subscripts Z and u refer to the lower and upper surfaces res­

pectively. Using (5) the above equation is expressed as 

dt (*u " V + v(t) (-T " *) - ° <x * b> <13) 
ax $x 
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From the definitions of y and y it can be shown that 
'a Tw 

(-b £ x <; b) (14) 
a ^ Sx 

and, for the wake region 

Sep 

Yw " * 
9x 

-5l 
Bx 

(x ;> b) (15) 

Using the above two relations and the fact that there are no velocity 

discontinuities upstream of the leading edge, Equation (13) is expressed 

as 

i f + £ f Yw(?*.t)d5* + V(t) Yw(x*,t) = 0 (16) 
b 

where r (t) is the total bound circulation defined by 
a 

b 
r a ( t ) = J" Ya (^ 't)d^ (1?) 

-b a 

From Equation (16) the following can be derived 

dY BY 
- f + V(t) - f = 0 (18a) 
St * 

dx 

Vb ' c ) - " ? ( o 7 f (18b) 

Equation (18a) is obtained by differentiating (16) with respect to x ; 

setting x = b in (16) gives y at the trailing edge, (18b). In addi­

tion to Equation (14), the following can also be derived from the defi­

nition of y 

'a 
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^ u 1 
Uu = 7 ^ = 2Ya dx 

(19) 

*A I 
U = 7 = " 7 V 

* a«" 2 a 

It is not possible at this stage to completely determine y from 

Equation (18a). However, the following form, obtained from the theory 

of first order partial differential equations [35], satisfies Equation 

(18a) 

Yw~ fCV I ( t ) " X*)] 

where k is a constant, f is an unknown function and 
n 

I(t) = f V(T)dT 

Note that to this point in the analysis the downwash, w, at the 

surface and the free stream velocity, V(t), have not been specified, 

thus, the preceding relations are quite general. The time dependency 

of the airfoil oscillations and free stream fluctuations will be pres­

cribed to be simple harmonic. 

z (x ,t) = z (x )e<u (20) 
a a 

V(t) = VQ(1 + ae
lCUt) (21) 

where 

- •>'{• - k 

z (x ) = amplitude function for the oscillations 
a 

w = frequency 

V = constant mean free stream 
o 

a = amplitude of free stream fluctuations 
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It has been assumed in Equations (20) and (21) that the free stream is 

fluctuating with the same frequency as the airfoil oscillations. Sub­

stituting these functions into Equations (9) and (11) yields 

_ e * icut t * i2u>t 
B 1 ( x ) e + a B 2 ( x ) e 

1 r
b V ^ O * 1 r°° Yw(^,t) , * 

-b x - § b x - £ 

where 

B- (x ) = iojz + V — 7 
l v ' a o * 

dx 

* d z 

B2(x ) " V„ - * 
dx 

(22b) 

S i m i l a r l y , (18a) and (18b) become 

dy A 4. dv 
[w , „ , , iUJtN [w n / O Q N 

"BT o *• CTe * —* = ^ ^ 

V " ^ -" „ n ) u,t, 7T (23b) 

V (1 + ere ) 
o 

Note that the (2ojt) term is a direct consequence of the fact that the 

free stream is fluctuating (<j ̂  0) . 

The determination of v will now be considered. First, it should 
'w 

be noted that in (22a) y appears on the right hand side and, in each 
w 

of the terms on the left hand side the spatial and temporal dependencies 

are separated. Secondly, for the constant free stream (<j = 0) case the 

solution of (23a) is given by [22], 
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kil \- *• [Kt) - x ] 
w Y„ ~ e V 0 

where I(t) in this case is 

Kt) = V 

These observations suggest that the unknown function, f, in the expres­

sion for Y given earlier is an exponential function. For the fluctua­

ting free stream case then 

kJKt) - x*] 
Y ~ e Tw 

where k i s a cons tan t and 
n 

I ( t ) = f V(T)dT = V t + - - 2 e ^ t 

«J O l<u 

Note that (23a) is satisfied exactly by the above expression for y . 

The general solution being 

k [Kt) - x*] 

'w***'̂  =I V X 
n 

where n is the summation index and the A 's are constants. If, for 
n 

I kn0"vo I each term in the series, the quantity —:—"• is sufficiently small 

t hen 

k I ( t ) k_V_t n /k_o-V_v , 
e m e / n o j-x + ^_n_^y-0J 

g i v i n g ^ 
k (V t - x ) _ ,k CTV X . 

Yw c*.t>«Ivn ° ' t1 + ("VX*'] ™ 
n 

In order to recover the a = 0 case (i.e. only the (io)t) term would be 
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present in (22a)) from the above solution 

k = ill Kl V o 

and a l l A ' s e x c e p t An s h o u l d be z e r o . A n o n - z e r o a i n t r o d u c e s t h e 
n 1 

( i2aj t ) t e r m i n ( 2 2 a ) , a n d , by a n a l o g y 

k = ^ K2 V 
o 

g i v i n g 

and 

k lC T Vo 
k,V t = iojt ; . = a 

1 O 10) 

k 9 C T V 0 

k0V t = i2ajt ; ~ = 2CT 

2 o ioo 

C o n s i d e r (22a) where t h e f u n c t i o n a l form of t h e bound v o r t i c i t y , 

Y , i s s t i l l unknown. I f y i s assumed t o be 
a a 

* * 1/nt * i2 rn t 
y a ( x , t ) = CL(x ) e ^ t + C 2 (x ) e L Z c o C 

where C. (x ) and CL (x ) are unknown functions, and if k- , k are taken 

as the values given earlier, then, only the first two terms of (24) are 

required for a term by term matching of the (iyjt) and (i2yjt) terms on 

both the sides of (22a). Taking only the first two terms in (24) and 

substituting for k1, k_ 

<n»t - ****-) 
Y 'w 

( x * , t ) = £ Ane Vo [ l + n c r e 1 ^ ] (25) 

n = l 

The above i s v a l i d o n l y f o r s u f f i c i e n t l y s m a l l v a l u e s of 
k CTV n o 

i<u 
which, 

for k = (TT^M n = 1,2, reduces to n<j. Hence, y can be approximated 
o 

by (25) only for those values of <j that are small compared to unity. 
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a = 0 A must be zero (which h^s yet: to be shown). This implies A ~u 

Note however, that for n = 2 in (25) there is present a (i3ujt) 

term with coefficient (<jk). This term has to be neglected, for consis 

tency, since there is no (i3out) term in (22a). As noted earlier, for 

h h^s yet: to be shown). This implies A . 

1+e 1+s 
where e > 0, giving <jA9 ~ a ' thus making the neglected term ~ a 

2 

Actually, as will be seen later e = 1 making <jA9 ~ <j . If after neg­

lecting the (i3ojt) term in (25) the expression for y *-s substituted in 
w 

2 
(23a) i t can be shown t h a t the e r r o r ( r e s idue ) ~ a . 

The f i n a l express ions for v and v are then 
'a 'w 

y a ( x , t ) = C 1 ( x ) e 1 ^ t + C 2 ( x ) e i 2 c u t (26) 

, . N A -ikx iojt 
Y w ( x» t > =

 \
e e 

- (aA e " l k x + ^ e " 1 2 k x ) e 1 2 B t (27) 

where 
* 

x 
x = T 

k = ̂ - (reduced frequency) 
o 

Also, let 

and define 

s b 

1 1 
Ql = I ci<§>d5 ; 0 2 = J C2(£)dS (28) 

The constants A1 and A. are now found from the condition at the 

trailing edge, (23b). Using (26) the total bound circulation T (t), 
a 

(17), is 
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r (t) -bfl^e1"' + bei2<utn 
a 1 2 

giving 

fa(t) - ̂  - i ^ e ^ + 2^) 

Using the above equation and (27) with x =: 1, the Kutta condition of 

Equation (23b) is expressed as 

. -ik i^t / . -ik . -i2k\ i2a,t 
Aĵ e e + ((jAje + A2e Je 

-ikf^e1^ i2kQ2e
i2<ut: 

(l-kre^1) (l-kye1^) 

A1 is determined by multiplying both sides of the above equation by 

e and integrating with respect to (cut) from 0 to 2rr; the same pro-

. . , -i2o)t . . _ ~iujt . , r . . 
cedure with e instead of e is used for A , giving 

ik i2k 
A1=-ikQ1e ; A£ = - i2k(-0fi1 + Q^e 

Substituting these values into Equation (27) yields 

/ _\ -,^ -ik(x-l) icut Y (x,t) = -lkCLe ye 'w 1 

-ik 
^ -ik(x-l) , n, ^ _ N -i2k(x-l) ] i2out •or.s crf̂ e y+ 2(-oQ1 + Q^e M e *" (29) 

The next step is to determine the functions C„(x) and CL (x) which appear 

in (26). Equations (26) and (29) are used in the surface boundary con­

dition (22a) and, the coefficients of the e " terms on both sides of 

(22a) are equated. This gives a singular integral equation for C. (x). 

The same procedure for the e terms yields a second singular integral 

equation, for CL (x). After rearranging, the two equations are 



20 

•L. "I ro "ik5 1 l C1 (V 

-Bl(x) + ̂  e l\ ̂  t _ dj . -L £ _i_ d 5 (30) 

., r ., oo -ik§ .?, oo -i2k§ 
-aB2(x) + ̂  { < * % J S _ d | + ^ . ^ + ̂ ^ k j . e _ ^ 

1 / C2 <«> 
2- f ~ d5 (3D 

Equation (30) is nothing but the bound vorticity equation for the con­

stant free stream case [22]; whereas (31) contains the effect of free 

stream fluctuations. The Schwarz-So*hngen procedure for obtaining C, (x) 

from (30) is described in [22]; the same method will be used here to 

obtain C (x) from (31). Schwarz established that (30) could be inverted 

using Sohngen's inversion relations if one temporarily regards Q as a 

known constant. C. (x) and the entire left hand side are assumed to be 

piecewise continuous and/or to have only a finite number of integrable 

singularities. Further, a unique solution is given for the case when 

C. (1) is bounded. It is assumed here that C_(x) also satisfies all the 

conditions imposed on CL (x). 

Inverting (30) and (31) by using the above mentioned procedure 

and simplifying one of the integrals by interchanging orders of inte­

gration gives 

V x ) TT Vl+x lf^ 1-? (x-|) "5 + T 6 "l J^X-1 x-X \l ( ' 

c (x) . 2 ^ | / fflg Z V £ ikT ik .-ra e ^ 

+ 2* V o O ^ ^ T ^ — < u ] } (33) 
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Using the definitions of (28) and integrating (32) and (33) between the 

limits (-1,1) yields CL and Q as 

4 .T^ B i ( S ) d 5 -1 - -g 
Qi = Ik m (2) ( 3 4 a ) 

1 n i k e 1 ^ CO + i H Q
U ; ( k ) ] 

I±S 
yjrfv^  

* ^ n i ( 2 k ) e l 2 k [ H 1
( 2 ) ( 2 k ) + i H ( 2 ) ( 2 k ) l 
i o 

+ fy 
1 A ( 2 )

( k ) + i H 0
( 2 ) ( k ) 

• ~ 2 e i k V 2 ) ( 2 k ) + i H ( 2 > ( 2 k ) ^ ( " (2k) + i lT ' ( 2 k ) 

Let Q. be such t h a t 0 , = ofl , , then (-oQ, + Q„) = cK-C^ + f k ) . From (34) 

2J^£V5> " V ^ d 5 

('Ql + ^ = „ i k e i 2 k [ H 1
( 2 ) ( 2 k ) + i H ( 2 > ( 2 k ) ] 0 5 ) 

•- 1 o 

(2) 
H is the Hankel function of second kind and order v« 
v 

The use of (34a) in (32), and (35) in (33) completes the determi­

nation of C. (x) and CL (x). The perturbation velocities, (19), can then 

be found by the use of (26). The total velocities at the upper and 
Y Y 
a 3. 

lower surfaces are given by (V(t) + -r~) and (V(t) - ~ ) respectively. 
Before proceeding further the comment made earlier regarding the 

(i3ojt) term in Equation (25) for y is considered. As can be seen from 
w 

(34b) CL ~ a and since 

i2k 
A2 = -i2k(-^1 + Q^e 
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2 
this implies A_ ~ a, thus making <jA~ ~ a . It may also be noted here 

that CL (x) = 0 when a = 0, see Equations (33) and (34b). 

The pressure distribution can be determined using Equation (19) 

for the potential derivatives in the pressure-potential relation (5) 

for points on the airfoil surface as 

Pu./X't)'pc° ? i p M Y ( , . t ) + f Aj" (e.t)dS] (36) 
o o -1 

where the subscript u and the minus sign are for the upper surface and 

the subscript & and plus sign refer to the lower surface. Using 

Equations (21) and (26) the first term on the right hand side of the 

above equation is expressed as 

^ va(x,t) = C1(x)e
ia3t: + [aCx(x) + O, (x) ]e

i2ujt (37) 
o 

2 
where the (i3_)t) term (~ a ) has been neglected. Equation (26) can be 

used to evaluate the second term of (36) as 

J2_.iL x icut, _ P _ ,„v ,_ i2_it 
t t [ VS't)d5 - i kU V- ) d* *" + 2j C2(§)d§ e (38) 

The procedure for expressing the first integral on the right hand side 

of (38) in terms of known quantities is given in reference [22]; the 

same series of steps is applied to the second integral. 

x 1 Q ik co oA9 -ik\ 

J 1
Cl«> dS--„I 1Al^O

Bl«> d5-lT J 55* *X (39a) 

J2_.iL
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J C2C5)dS - a {- ^ J A1Cx,S)B2(S)dg - - i - J 

ik 
^ e co SA2e~ikX 

BX 
dX 

1 i?k 
( -n i +0 , ) e co dA0 ~i2kX 

- ' 2 - X.-ir d*i n 
(39b) 

where, Q_ (defined previously) is given by 

Q2 = cU2 

and 

t , B, i fl r i-xg + vi-g2vi-x2 ~i 
l -x£ - VI -§ Vl-x 

(40a) 

A2(x,X) = 2 tan 
-1 j i -x )q±i i i . 

LV (i+x)(x-i)j n (40b) 

BA 
2 

dX 
i-x r i 
l-hx L/TZ 

X - 1 
X-l (x-X) J 

(40c) 

S u b s t i t u t i n g these r e s u l t s in Equation (36) g ives the f i n a l express ion 

( a f t e r c e r t a i n c a n c e l l a t i o n s ) for p ressu re as 

P„ , ( x , t ) - pco 

-̂ S— = + 2 -LV X ) ' 
pV L 

icot , _ , N i2cut ~j 
+ aP 2 (x )e (41a) 

where 

P, (x) = " , 
1 TT L 

1 " C(k) 
-1 

lis, r / i ts-± 
l+x J . V 1-

*AV 

I v 
d§ 

M§) + ̂ 1 W^^A- i k v^)j^d ? 
(41b) 
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[B2(§) " \(V\ 

."•ii'-viMim**^* 

2 A n^ Ha - i •'B? ( | ) 

•Hw&vts^ - - v ^ > j ^ 

+ 
2 rrE* / / /nr i V^ ,. 
n V U x U j V 1-5 (x"5> Vo

 d ^ 

^-^/g^f^ (4ic) 

and C(k) is the Theodorsen function [19] defined by 

H^ O c ) 
C ( k ) = (2) (2) ( 4 2 ) 

H ^ V ) + iHo
U;(k) 

Camber Line at Constant Angle of Attack 

* 
Consider a camber line C(x ) at a constant angle of attack a 

subjected to a free stream V(t). The downwash w from (9) is given by 

/ * _N ,7/i iwt. / dC w(x ,o,t) = V (1 + <je ) f — ^ - a 
° X dx C 

where V(t) has been assumed to be given by (21). The above can be 

expressed in the form 

w(x*,o,t) = Bc(x*) + a B ^ x ^ e
1 ^ (43) 

where 

V*̂  = Vo ( f* - %) (44> 
ax 
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The procedure for determining y , v and the surface pressure is 
w a 

the same as that for the oscillating flat plate. Vortices are distri­

buted along the chord and in the wake. Equations (10)-(19) are valid 

for this case with the downwash given by (43). The assumption of small 

a allows the solution of (18a) to be approximated by a single (iuut) 

term. The steady term in (43) does not contribute to y , since all the 

wake vorticity associated with this term is assumed to have propagated 
far downstream to infinity. The steady term, however, does give rise 

2 
to a constant y . As before, terms that have (a ) dependency are neg-

ci 

lected. Since the intermediate steps are the same as for the oscilla­

ting flat plate, only the final equations are presented. 

, ^N , , ~ - i k ( x - l ) iout / / C N 

Y ( x , t ) ~ ikQ1 e ' e (45) 
w 1 

c 

Y a ( x , t ) = CQ (x) + CL ( x ) e l a , t (46) 
c c 

where 

_ 2 / i 3 - / na v ? ) 

c V^-nVi^Vi^ fed5 (47) 

2 nzzr / n+r °'Bc(5) 

TT V 1+X I 1 , 
C - 1 »i«- ;v t sU.7H -^r^ 

., ik <» mr ~ik\ . 

c 1 

4;7W*v^ 
Q i = """^k a) "Tzl ( 4 9 ) 

c nike K[H£ ; ( k ) +iH^ ; ( k ) ] 
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The pressure relation (36) becomes 

P u < A ( x , t ) - pc-

PV, 

= + 2 L P o (X) + CTP1
 ( x ) e J (50a) 

where 

p o ( x ) = „ 7 is 17 w r? ^r^ d5 

c - 1 a o 

(50b) 

P, (x) = -
1 TT 

C 

l - C ( k ) 

- 1 

1-x r / l + § _c 

1-hcJ, \l 1-

B ( | ) 

•5 v d§ 

2 p r« / i MS) 

;U27i57rf ^-i^cK.oj-v-s ooe) 
** * o 

wh ere A_(x,^) and C(k) are defined by (40a) and (42) respectively. 

Thickness Distribution at Zero Incidence 

Consider a symmetrical thickness distribution + T (x ) at zero 

angle of attack subjected to a free stream V(t). The plus and minus 

signs refer to the upper and lower surfaces, respectively. The down-

wash w from Equation (9) becomes 

where 

w(x
>f,o±,t) = + V(t) T1(x*) 

i V ) S f 

(51) 

dx 

A distribution along the x axis of two-dimensional steady sources can 

be made to satisfy (51) when V(t) = V . The extension to the variable 

free stream case can be achieved by taking the perturbation velocity 
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p o t e n t i a l as 

cp(x ,z , t ) = ^ cpQ(x ,z ) (52) 

whe 
i \ 7f 

re cp (x ,z ) i s the s teady two-dimensional p e r t u r b a t i o n v e l o c i t y po-

t e n t i a l corresponding to the cons tan t f ree s t ream V , and i s given by 

b
 1 

0
(x * z > = 'h Is(? U n L ( x " ^ > + z J d? * * 2 *2 2 

S (x ) being the source strength distribution. 

•k 

The procedure to determine S(x ) and the surface perturbation 

* / &P \ velocity u (x ,t) = ( "̂ jr) V is identical to the one used for the 
dx z -»o 

steady case, found in any standard text [36] on elementary aerodynamics 

uat Equation (52) is differentiated with respect to z and the limits 

are taken after which using (51) leads to 
dz z -• o — 

S(x*) = 2V T1(x*) 
o 

Vc * 

which determines w(x ,z ,t) completely. The surface perturbation ve­

locity is then 

V (l+IJe
Uit) b 1, *• 

dx z -»o -b x - § 

where it has been assumed that V(t) is given by (21). Further, at the 

surface 

.. imV a b , , , . 
^ = ̂  J" T (SHn|*-5 |dS e-

C 

-b 

Using the preceding two relations in the pressure equation, (5), and 

2 
neglecting the term of order a gives the pressure at the surface as 
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p ( x , t ) - pco 

pv2, 2 L ° t
 lt J 

where 

> ( x ) = 1 , • T_I^1. 

° t n -1 X _ l 
(54b) 

P, (x) = — f T^DXnlx-gldg + - f V f 1 d? ( 54c ) 

Equations for a Symmetrical Airfoil. 

Consider an airfoil that is simultaneously pitching and translating 

vertically, subjected to a fluctuating free stream speed given by 

V (1 + ere ). Let the constant part of the angle of attack be a , the 

varying part be Ck'(t) and, assume that the airfoil is pitching about 

the point x = ab. The vertical translation is assumed to be given by 

z = -h (t). The camber and thickness functions are assumed to be given 

ft ft 
by C(x ) and T (x ) respectively. Then for small displacements the air1-

foil surface equation is 

z*(x*,t) = [(ab - x*)a(t) - h*(t)] + [C(x*) + (ab-x*)(v ]+T(x*) (55) 

where the plus and minus signs refer to the upper and lower surfaces 

respectively. 

Only the camber and thickness functions depend on the geometric 

shape of the airfoil, the rest of the terms can be associated with an 

equivalent flat plate. The oscillating flat plate contribution is given 

by the terms in the first square bracket on the right hand side; the 

second bracket contains the terms that correspond to the camber line 
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at constant angle of attack. 

Let 

a(t) = a eU>t (56a) 

h(t) = h eUit (h s ~ ) (56b) 
b 

The oscillating flat plate downwash functions, (22b), are then given by 

—- (x) = - a - ikor(x-a) - ikh (5 7a) 
o 

B2 
~ (x) = - a (57b) 
o 

For a symmetrical airfoil (zero camber), the fixed angle of attack 

downwash function, (44), is 

f (x) = - aQ (58) 
o 

The thickness distribution T(x) is taken to be the same as that 

for the NACA OOXX airfoils. The function that is actually required is 

T (x), obtained by differentiating T(x). Let 

x = 1 + x (59) 
P 

then 

T1(X) = O j r + b 2 + V p + 4 b 6 X p + 2 XJ] <60> 
H 

where T is the thickness ratio, based on the chord. The constants b , 

b_, b y, b, , bQ define the profile and have the values f33 "1 
2 4 o o u J 
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b x = 1.48450 ; t>2 = -0.63000 ; b 4 = -1.75800 ; 

b r = 1.42150 ; b 0 = -0.50750 

D o 

For the T (x) specified by Equation (60) Van Dyke [33] has evaluated the 

Cauchy principal value 

?! x"? 

and his result is employed in the present work (see Equations (53), 

(54b) and (54c)) to yield 

1 T 1 ^ n 1 Xn ^ b1 / Z2" + ^ D 
J, x-§ * LT '1-X1 /X \ /X 

- O ^ K ^ S M ^ ^ K - V P 1 (61) 

Equation (54c) contains a second integral which, when evaluated for the 

T (x) of (60) becomes 

1 1 / b1 \ 
I T (§)in|x-g|dg = T( T \ + b2I2 + 2b4I4 + 3b6I6 + 4b8I8j (62a) 

where 

fi - /x~ 
L (x) = -4 + 2jfcn|x-l| - fix i n [ - ^ + _ L J (62b) 

P 

and for m = 0 , 1 , 2 , 3 
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I (x) 
2(m+l) 

x v m+1 

-ofo{H*-ii*(f) b^-lHr)} 
m+1 

r=l 

(x ± - 1 , i.e. x ^ 0) 
P 

m+T (in2 - m+l) 
(x == - 1 , i.e. x = 0 ) (62c) 

P 

The downwash functions B.(x) and B (x) from Equations (57) are 

substituted into the pressure relations, (41), for the oscillating flat 

plate. Similarly, B (x) from (58) is used in the constant incidence 
c 

relations, (50). The various Cauchy principal values and improper inte­

grals are evaluated and the results are given below. The surface pres­

sures were expressed as 

V/*'^ poo 

pv 
• ^ 

icut i2cut 
P 1 ( x ) e ^

L +o-P2(x)e —
L J (41a) 

and 

P u < A(x,t) - P-

Pv! = ~2 
Po (x) + aPx e ^ ] (50a) 

where 

Px(x) 
1-x Vf- -A / j£• I ( a + i k o U - a ) + ikh )C(k) + ikcy(T + x 

• • > 

"/I 

+ 2 i k / l - x 2 
a + i k c / r - a) + ikh (63a) 

P2(x) = 2 J ^ ["( ik^(f " a) + ikh)c(2k) + l(lt + i k i ( | - a 
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+ ikh)c(k) + iki (j + xVl + 4ik^V 1-x2 (63b) 

P (x) = 2 a / "TTT (64a) 
o o \ 1+x c 

P, (x) = 2a C(k) T? + 2ika [7 2 (64b) 
1 o \ 1+x o VI-x 
c 

The contribution to the surface pressure from the thickness distribution 

is obtained from Equations (54). Since the determination of P (x) and 

P (x) involves only straightforward substitutions of Equation (61) in-

t 
to (54b) and (54c), and (62a) into (54c), the final expressions for 

P (x) and P, (x) will not be presented here. 
°t lt 

Expressions for the lift and moment are given next. The thick­

ness function produces neither lift nor moment due to its symmetrical, 

loading. In the following equations the contributions from the oscilla­

ting flat plate and the straight camber line at fixed incidence have 

been grouped together. 
Define 

c = _JL_ . c = S 
i 2 m _ 2 2 

pVQb 2pVQb 

where I is the lift and m is the pitching moment about the point x = x . 
m 

positive leading edge up. 

The coefficients C. and C are expressed as 
I m 

C. - C, t C . e ^ + C , e i 2 w t (65a) 
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C = C + C e 1 ^ + C e i 2 a j t 

m m m, m0 

o 1 2 

(65b) 

where 

C = 2TTC* 

K 

: = 2TT[(« + i k i (2 " a ) + i k ^ ) c ( k ) 

+ Y ( a " ik<*a + ikh j + CTao(l + C(k) + y j j 

C = a2n 
™9 

- ( i k a (^" ' a ) + ikh)c (2k) 

+ 2 fa + i ka ( j - a J + ikh )c (k ) + i k i 

C = TT(V ( X + ~ 

m o\ m 2 
o 

_ n = 2 L 2 \ m + 2J Va + i k c* V2 " a)'+ i k h ) c ( k ) - ik 01 \2 ' Xm 

kx 
+ ^ {\ + Xma) - A x

m J + ™o[( X m + 2X 1 + C C k )) + T " j 

Cm " OT |(Xm+ 2jL'(ik^ (2 ' a ) + l k f i ) C ( 2 k ) 

+ l{lt + iki Q- - aj+ikh)c(k) - ika (7 - x 
\4 m 

Let U (x,t) be the total non-dimensional velocity at the surface 

The perturbation velocities for the lifting contributions are related 
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to the bound vorticity, y , through Equation (19). The bound vortici-
3. 

ties are given by (26), (32), (33) and (46), (47), (48). The downwash 

functions B.. (x) and B (x) from (57) are substituted into (32) and (33); 

similarly B (x) from (58) is placed into (47) and (48). The perturba-
L. 

tion velocity, u (x,t), due to the thickness distribution is determined 
s 

from (53). Since the integral occurring in (53) is given by (61), final 

expressions for u will not be presented here. The total velocity at 

the surface is then 

„ t M n + ^ * v ° i ( x ) *•<= +
 c 2 ( x ) ^ t +

 c° c < x ) 

Ue(x,t) - 11 +<je ± 2 \ ~ — * + ~ e + _ V 
o o o 

1 . fcN u ( x , t ) 

V e J + V 
o o 

(66) 

where the plus and minus signs refer to the upper and lower surfaces 

respectively and the functions C (x), C. (x), C. (x) and (L(x), obtained 
°c lc ' l ' 2 

from Equations (47), (48), (32) and (33) respectively, are given by 

C Q ( x ) 

= 2a V 77*" (67a) 
V o v 1+x 

VlL = ̂ JTUr, 2_ n r r r ^ -, 
° 1+X L n[H[2>(k) + i H f >(k) ] \ ^ X-l K-X d \ j 

(67b) 

ci (x) rr^rr - -
~V~ = 2 ^ Hx" i ( a + ika (^x"a) + ikc* + i k h ) 
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a + ik<i(x * a ) + ikh ) to / , „ - l k \ 
2 r "*"\2 -V ""V ,~ / A±l e 

" [H<2)(k> + i H f ) ( k ) ] J l 
X, Vt^^=3T^> (68a) 

i l l _ „ /w"/5 + 2 W ? - • ) + " * ) r» n±r £ i ^ 
Vo " <*V 1 * 1« TT (2) + 1 H ( 2 ) J V X-l x-X 

-12kX 
dX 

[H' y(2k) + 1BT ' ( 2 k ) ] 

2 Q + i k ^ - a ) + i k h ) . n j T £ ^ i 

•"[e>+f f l>]UH x^ X} ( 8 ) 

Computational Details 

a) The preceding relations for the pressure and velocity contain 

the well known square root singularity at the leading edge, x = -1. 

Both Lighthill's [34] and Riegel's [33] rules are applicable to the 

present case. Van Dyke [33] compares the two rules and shows for a 

NACA 0012 airfoil that the results from Riegel's rule are in better 

agreement with the exact theory as far as the surface velocity is con­

cerned. Hence, Riegel's rule is used in the present work to handle the 

leading edge singularity. Briefly, the empirical correction is applied 

by multiplying the velocity by the factor Cos 6 where tan 9 is the 

slope of the surface. This would correct the pressure formulas also 

since the singularity appears in these equations through the y term 
Q. 

of Equation (36) . 

b) The second remark is concerned with the numerical evaluation 

of the wake integrals that appear in Equations (67) and (68). These 

improper integrals are of the type 
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i r* [m 
TT Jt V \-l 

- dx (-1 <; x < 1) 
x-X 

The square root singularity at the lower limit is removed by the trans­

formation 

X = Coshl] 

giving 

I p (CoshT| + 1) - ikCoshTl ,_ 
TT J (x - Coshl]) e dI1 

The above form is still inconvenient: for purposes of numerical integra­

tion since for large values of T| the integrand tends to oscillate with­

out any decrease in the amplitude. To overcome this difficulty the 

integral 

OD 

1. r. ' -ikCoshT] dT] 
- 5 
TT

 J 

e 

is added to and subtracted from the original transformed integral 

giving 

, . . , N co -ikCoshTl T oo . , „ , - , 
. I l i 3 L i r ^ - dT, - ^ r e ' l k C o s h ^ dH 

TT J CoshTi-x ' TT J ' 

The i n t e g r a l on t h e r i g h t has been shown by Theodor sen [ 1 9 ] t o have t h e 

v a l u e 

- 2 l Y o ( k ) + 1 Jo ( k )j 

Thus 

i °° / , . i ~ i k \ / i_^ \ °° -ikCoshTl 1 r -, 

^./S^r-^-^J ^r<^ + i[vk>+iVk>] 
i o ' 

n 

where J and Y are Bessel functions of the first and second kind res-
o o 
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pectively. The integral on the right can now be evaluated numerically 

without any difficulty. The actual integration is carried out by em­

ploying the Gauss -Legendre quadrature [37]. 
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CHAPTER III 

BOUNDARY LAYER ANALYSIS 

The pressure distribution from the previous chapter is assumed to 

be impressed on the unsteady boundary layer, the solution of which yields 

the skin friction and hence, the drag acting on the airfoil. This chap­

ter gives the details about the following: the implicit finite differ­

ence scheme used to solve the unsteady boundary layer equations; the 

flow in the vicinity of the stagnation point; the analysis of the lami­

nar flow region; the determination of the transition point; the profile 

at the first turbulent station; and, the analysis of the turbulent flow 

region. 

General Considerations 

Method of Solution 

The boundary layer can be analyzed by either a numerical tech­

nique (such as a finite difference scheme) or by the solution of a set 

of moment-of-momentum integral equations. For the general solution of 

non-steady boundary layers the integral method has been employed, for 

the laminar case, by Schuh [38], Rozin [39] and Presz and Heiser [40], 

and for the turbulent flow situation by McDonald and Shamroth [41]. 

Unlike finite difference techniques, integral methods involve the 

assumption of a suitable velocity profile family. Secondly, in contrast 

to the steady flow situation for which several integral techniques have 

been explored thoroughly, the number of applications to the unsteady 
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case remain very few, thus making it: difficult to ascertain their 

reliability in predicting the behavior of non-steady boundary layers. 

Because of these two reasons the present work uses an appropriate finite 

difference scheme. It must be pointed out that in general, compared to 

integral techniques finite difference methods consume more time and may 

also require larger amounts of computer memory. 

Finite difference calculations of time-dependent boundary layers 

around oscillating airfoils have been performed by Crimi and Reeves 

[42], Scruggs et al. [43] and McCroskey and Philippe [30]. In referen­

ces [42] and [43] the primary objective is the analysis of airfoil dyna­

mic stall whereas in [30] the emphasis is on the investigation of vis­

cous flow around both stalled and unstalled airfoils. The numerical 

method of [30] (based on the implicit finite difference scheme of Dwyer 

[23], [24]) will be used in the present study because it is simple, is 

more directly applicable to the present situation and, most importantly, 

permits the rapid solution of the boundary layer equations. 

Let ^ and y be the dimensionless streamwise and normal boundary 

layer coordinates respectively, where £ = 0 is the location of the 

stagnation point. Both § and y are non-dimensionalized by the semi-

chord b. The dimensionless time is given by T = cut and U is the poten­

tial flow velocity at the outer edge of the boundary layer, obtained 

from Equation (66). The Reynolds number based on the semi-chord and 

velocity V is denoted by Re. The dimensionless streamwise and verti­

cal velocities in the boundary layer are denoted by u and v respectively, 

where the non-dimensionalizing factor is V . 
o 

Applying the transformation [30] 



40 

U * 

T| = -he ( ̂ f ) 2 7 (69> 

to the unsteady boundary layer equations the continuity and momentum 

equations can be written as 

a& + m _ i 
B§ aii 2 

Pt - (Px + Dg I = 0 (70) 

^tr^f.^f^h^+^-V-ltA^)--0 W 

where 

8(?,T1.T) = ff" (72a) 
e 

h = VRe (^-)2 v + ̂  [pt + Ox-l)gj (72b) 
e 

Px U o§ ' Pt 2 BT ( 7 2 C ) 

e U 
e 

£ = 1 + ~ (72d) 
v 

e and v being the eddy and kinematic viscosities respectively (I = 1 for 

laminar flow). Except for a slight change in notation the above equa­

tions are precisely the same as those in reference [30], The advantages 

of working with the transformed equations are [44]: 1) stagnation 

point conditions can be obtained by taking the limit | -• 0; and, 2) the 

laminar boundary layer thickness is very nearly constant in the trans­

formed coordinates. For the turbulent case the time-dependent untrans-

formed equations corresponding to Equations (70) and (71) have been 

derived and discussed in reference [41]. 
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Finite Difference Scheme 

As mentioned earlier, the basic numerical scheme used is that of 

Dwyer [23], [24]. While only a brief description of the scheme is 

given here the actual difference representations and the final diffe­

rence equations corresponding to Equations (70) and (71) are presented 

in Appendix A. References [23], [24] and [30] should be consulted for 

further details. 

The scheme allows for variable step sizes in all the three direc­

tions -£, 7] and T. Whereas the variability in the £ and T directions 

is arbitrary, the step sizes for adjacent points in the T| direction 

are related by 

A Vi 

Alf- " * (73> 
where AT|. = T]. - T]. , , j is the index for the T] grid location and r is 

a constant which is equal to or slightly greater than unity. Backward 

differences are used for the £ and T derivatives while the T) derivatives 

are represented by central differences. The nonlinear terms are linea­

rized by the use of previous § values. For the laminar case, I = 1, 

the Crank-Nicolson [25] method is used. A fully implicit scheme is 

used for the turbulent case where % is variable and iterations on the 

transport properties are required at: each 5 station. In both cases the 

final set of simultaneous difference equations to be solved have a tri-

diagonal matrix form and are solved rapidly by a standard algorithm 

[37]. 
Note that U , B , 8 are obtained from the potential flow re-

e Kx Kt 

suits. The longitudinal pressure gradient parameter, 3 , is obtained 
X 
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by a simple backward difference formula applied to U . Differentiation 

of U with respect to time gives the unsteady pressure gradient para­

meter, (3 . 

Procedural Outline 

At any particular time the overall procedure for computing the 

flow quantities is as follows. The stagnation point is located by 

noting at what value of § the potential velocity changes sign. Next, 

the velocity profile in the vicinity of the stagnation point is found 

by taking the limit g -» 0 in Equations (70) and (71). The finite dif­

ference technique allows the flow quantities at a particular £ station 

to be computed from the conditions at the previous £ station; this 

involves the solution of the tridiagonal matrix in the 7] direction. 

At each £ station a check is made, using an appropriate transition 

criteria, whether or not the flow has become turbulent. If the flow is 

still laminar the same procedure is carried out for the next £ station. 

However, if the transition criteria indicates that the flow should no 

longer be laminar an initial turbulent velocity profile is constructed. 

Using this profile the flow quantities at the next turbulent station 

are then computed; this involves several iterations on the transport 

properties, which means that, whereas, in the laminar case the tridia­

gonal system was solved only once, now the system has to be solved as 

many times as the number of iterations. The computations are termina­

ted at a small distance away from the trailing edge. 

The skin friction at each § station is found by employing a para­

bolic fit through the computed velocity values near the airfoil surface. 
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The unsteadiness in the flow requires the specification of initial 

conditions in j . Following McCroskey and Philippe [30],this was taken 

care of by starting the computations at a time when f(3 d| was a minimum 

and suppressing the (dg/Bi") term in Equation (71). In almost all of 

the cases considered half a cycle of oscillation was sufficient to damp 

out the small error that was introduced by the above approximation. 

The error damped out slightly faster when the above procedure was used 

as compared to the situation in which the computations were started at 

an arbitrary value of T-

Detailed Considerations 

The remainder of this chapter contains details about the flow in 

the vicinity of the stagnation point, computations in the laminar flow 

region, transition point determination, the construction of the profile 

at the first turbulent station, and computations in the turbulent flow 

region. 

Stagnation Point Profiles 

In the vicinity of the stagnation point, £ = 0, the potential 

flow velocity can be represented [45] by 

U = AE (74) 
e 

where A is independent of |. Near £ = 0 the pressure gradient parame­

ters then become 

(0 •1 •• (0 • \ fr £)r 
o o e £>-• o 

Once the stagnation point has been located, A in Equation (74) can be 
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, dU 
evaluated by a simple difference formula, since f—rr~J = A. 

In the neighborhood of the point %, == 0 Equations (70) and (71) 

then reduce to 

t - »o -2* 
o 

= 0 (76) 

o ol| 

where j£ has been taken equal to unity since the flow is laminar and h, 

Equation (72b), is now 

I 

2 

- * •&) ' * + ?k 
The finite difference scheme described earlier is used to solve the 

above two differential equations. The constant r , Equation (73), is 

taken to be equal to unity (which implies equal spacing in the T] direc­

tion). The resulting tridiagonal matrix form for Equation (77) and the 

difference representation of (76) are given in Appendix B. 

Note that the unknowns g and h have to be obtained by a simulta­

neous solution of Equations (76) and (77). This requires an iterative 

procedure. The momentum equation (77) is solved first, for g, with the 

steady flow Hiemenz stagnation profiles [45] as inputs. Next, h is 

computed from Equation (76) using the calculated g. The g and h thus 

determined are substituted back into Equation (77) and the same proce­

dure is carried out several times. It was found that five such itera­

tions were sufficient for satisfactory convergence — the difference 

between the skin friction values from the first and fifth iterations 
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being less than one percent of the latter value and, the corresponding 

percentage difference between the fifth and tenth iterations being 

0.002. 

Petails-Laminar Region 

The Crank-Nicolson [25] method of differencing was employed to 

solve the laminar boundary layer equations. The resulting set of dif­

ference equations which is in the tridiagonal form is given in Appendix 

A. 

The constant rs Equation (73), was taken to be equal to unity, 

which implies equal spacing in the T] direction. For all the cases 

considered, the analysis of the laminar region was carried out with 65 

points in the vertical, T|, direction and with a constant step size, AT], 

of 0.1. 

The number of time steps per cycle of oscillation and the number 

of points in the streamwise direction depend on whether the boundary 

layer becomes turbulent or not. For the cases where transition does 

take place the relevant details are given in the section about the 

turbulent flow analysis. When the boundary layer remains laminar the 

computations were carried out with 20 equal time steps per cycle of os­

cillation and for a total (upper and lower surfaces) of 45 streamwise 

points. Non-uniform streamwise step sizes were used, the spacing near 

the stagnation point being closer as compared to the spacing for points 

farther downstream. 

At any one time step the calculations are terminated at the stream-

wise location where the wall shear vanishes. Due to the unsteadiness 

in the flow this location keeps shifting. Consider the situation 
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where, for increasing time, the point of zero wall shear tends to move 

downstream. At time T-, let the location of this point be l* . At a 

time (T-. + AT) let the corresponding location be §„ . The case being 

considered is when §_ is downstream of I* (this could happen if the 

airfoil angle of attack is decreasing with increasing time). To com­

pute the unknown flow quantities at time (T, + AT) the finite diffe­

rence scheme requires conditions at: time T., , which are not available 

for locations that are downstream of £ . In order to proceed with the 

calculations the computer program is so constructed that, at time 

(r. + AT), for all '̂s downstream of ^1 the scheme uses the values of 

flow variables that are available at a previous time, say (T, - AT) , in­

stead of the values at time T-. • 

Transition Point Location 

For two-dimensional incompressible flows there are several, mostly 

empirical, methods [27], [42], [46], [47] available for predicting 

transition due to the growth of laminar instabilities. However, none 

of the methods take into account unsteady effects. To the author's 

knowledge there does not exist a method that claims to be able to pre­

dict the transition point for time-dependent flows. 

Michel's method [27], [46], [47] is employed in the present work 

both because of it's success in predicting the transition location for 

profile drag calculations [48] and it's ease to use. The method is 

applied to the present unsteady situation by using instantaneous values 

for the relevant parameters. This implies that the determination of the 

transition point is based on a quasi-steady assumption. The method 

assumes that the variation of the transition momentum thickness Reynolds 
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number, R , with the Reynolds number based on the distance along the 
9tr 

airfoil, R , is a "universal" curve. This empirical transition curve is 

described in reference [46] as 

RQ = 1.174[l + (22,400/R )jR °'46 /o.lxl06<;R £40xl06J (78) 

where 

v = ivjR e ; vw R e 

tr ^ 
and the non-dimensional momentum thickness is defined by 

• • J > ( l - f ) * 
o e e 

Transition can also occur by the mechanism of a laminar separation 

bubble in which the laminar boundary layer separates followed then by 

transition and subsequent reattachment of the flow in the turbulent 

state. For an NACA 0012 airfoil, static calculations [30] show that for 

angles of attack > 6.5 transition by the growth of laminar instabilities 

is preceded by laminar separation; a bubble analysis is then required. 

There exist several bubble analyses (listed in reference [30]) that 

attempt to predict the bubble characteristics. However, as pointed out 

in reference [30], even for the case of a static NACA 0012 airfoil the 

results from the various analyses vary considerably when the same situa­

tion is considered for all the methods. Apart from the basic complex­

ity of the phenomena involved, the introduction of unsteadiness in the 

flow would further complicate the situation. It was, therefore, deci­

ded to exclude from the present work transition by the mechanism of a 

separation bubble. 
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Profile at the First Turbulent Station 

At the transition point an initial turbulent profile is required 

in order to proceed with the computations. Scruggs et al. [43] obtain 

the initial conditions based on the assumption of steady flow over a 

flat plate. Following Dwyer et al. [24], McCroskey and Philippe [30] 

approximate the velocity profile by matching up a power law profile with 

a linear viscous sublayer. Such a procedure requires the specification 

of three parameters: the boundary layer thickness, 6; the local skin 

friction coefficient, Cf; and the power law exponent, n. In both 

references [24] and [30] it is admitted that the selection of the para­

meters may be quite difficult in certain cases. Dwyer et al. [24] 

suggest using flat plate data, in terms of the Reynolds number based on 

the distance along the airfoil, to determine the three parameters. 

McCroskey and Philippe [30] consider transition by the laminar separa­

tion bubble and choose the parameters on an empirical basis while 

reflecting, at the same time, the local reattachment conditions. They 

mention an error reducing iterative process that is carried out on the 

initial g and h profiles but do not give any details. 

Dwyer et al. [24] consider only steady flow situations. However, 

in references [43] and [30] the respective procedures are applied to 

time-dependent cases, which means that the quasi-steady assumption is 

implicit in their selection of the initial profile. This is not sur­

prising considering the high complexity of the problem which involves 

unsteady transition near a suction peak. Obviously, a considerable 

amount of both theoretical and experimental analysis is needed in order 

to provide a reliable and accurate method for the determination of the 
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initial profile. 

In the present work, following Dwyer et al. [24], the profile is 

represented by a power law and a linear viscous sublayer. The proce­

dure by which the three parameters, 6, C , and n, are obtained in the 

present case is described below. 

For a flat plate it is known that at the transition point the 

laminar and turbulent momentum thicknesses are approximately equal to 

each other, that is, the momentum thickness is continuous along the 

plate. Further, at transition the shape factor, H, (defined as the ratio 

of the displacement thickness, 6 , to the momentum thickness, 9) drops 

from a laminar value of 2.6 to 1.4 in the turbulent regime. Details 

about these experimental observations are given in references [49] and 

[45] respectively. 

For the general computation of turbulent boundary layers it is 

usually assumed, even when the pressure gradient is non-zero, that the 

momentum thickness is continuous at the transition point [45],[49], [50], 

In light of the preceding remarks and due to the severe lack of 

data about this complex phenomenon the present work assumes the follo­

wing: 1) the momentum thickness, 9, is continuous at the transition 

point; 2) the shape factor, H, in the turbulent regime at transition 

has a value of 1.4; and, 3) the skin friction coefficient, C , is given 

by the flat plate relation 

= 0^0256 
Cf 0.25 (79) 

R « 

where R = [ 9U JRe, and 9 is fixed by the first assumption. 

Describing the profile by a linear viscous sublayer and a power 
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law 

f- = (yuT)Re (y * y t ) 
T 

JL = (T\n 
U " V6. 

y > yt) (80b) 

where u is the non-dimensional friction velocity defined by 
T 

T 

5 is the dimensionless (with respect to b) boundary layer thickness, 

n is the power law exponent and y is the ordinate where the linear and 

power law profiles match. 

For arbitrary pressure distributions the assumption of a power 

law profile results in [49] 

(H+DH6 
6 " (H-l) 

which, for the assumed value of 1.4 for H gives 6 = 8.4 9. This fixes 

the parameter 6. The skin friction coefficient, C , is determined by 

Equation (79), thus fixing the friction velocity, u . 

Only the power law exponent, n, remains to be found. Note that 

the choice of n has to be consistent with the continuity requirement 

on 0. This provides a way of determining n. Selecting 6 and Cf in the 

manner described above and with a trial value of n the corresponding 

momentum thickness is found from Equations (80). If this thickness is 

not close enough to the laminar 9 a new value of n is chosen. This 

process is continued until the turbulent 0 from Equations (80) is very 
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nearly equal to the laminar Q. 

The aforementioned procedure completely determines the g profile 

at the first turbulent station. The h profile is still unknown. The 

continuity equation and certain flat plate relations are employed to 

determine h. Actually, v is determined first and then h is evaluated 

from Equation (72b). From the untransformed continuity equation 

v = " I a? dy 

o ^ 

The u profile is given by Equations (80), but the integral requires 

ou d6 hCf d6 dCf 

~~ which is in terms of rT and ~r~r~ (actually, ~~ and -7— under the pre­

sent quasi-steady assumption for the profile at the first turbulent 

station). These derivatives are evaluated using, again, flat plate 

relations for the respective quantities and the profile of Equations 

(80). Since the relations employed are well known [45] and the deriva­

tion is straightforward the final expressions for v are not presented 

here. 

Details-Turbulent Region 

This section contains a description of the turbulence model em­

ployed and details about the numerical procedure. 

Turbulence Model. The Cebeci-Smith eddy viscosity formulation 

[26] is used in the present work to model the turbulent boundary layer. 

This formulation has been thoroughly explored for a wide variety of 

steady cases and has worked quite well for two-dimensional and incom­

pressible flows. A description of the Cebeci-Smith formulation follows 

The boundary layer is regarded as a composite layer consisting of inner 
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and outer regions [26]. In the inner region the eddy viscosity is 

given by an expression based on Prandtl's mixing length, taking into 

account the presence of the wall and non-zero pressure gradients. A 

constant eddy viscosity expression modified by an intermittency factor 

is used for the outer region. The two regions are matched by requiring 

the eddy viscosity to be continuous. 

Unsteady flow calculations based on this model have been performed 

by several investigators [51], [42], [30], [52], In all of these com­

putations the extension of the model to time"dependent flows has been 

accomplished by a straightforward generalization of the relevant quan­

tities. This involves using the instantaneous values of the potential 

flow velocity, the displacement and the boundary layer thicknesses, 

aue 
and incorporating the unsteady term, — — , into the pressure gradient 

ot 

modification for the inner region. The various empirical constants pre­

sent in the eddy viscosity expressions are not, however, modified to 

account for unsteady effects. As noted by McCroskey and Philippe [30], 

the physics of the local turbulent field is thus effectively assumed 

to be quasi-steady. Nevertheless, they conclude from their results that 

the eddy viscosity model is apparently valid for the frequency range 

of the airfoil cases considered by them. 

In terms of the transformed variables the final eddy viscosity 

expressions for the inner and outer regions are, respectively (see 

Equation (72d)) 

^.(^[..^(i-^J (n̂ J 
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where 

* - fa-sO* & [® -*<'t
 +

 **)f 
' wall 

Oi > \ ) 

where 6 is the transformed boundary layer thickness, defined by 

- I ReUe V 
5 " ( if ) 6 

Numerical Procedure. As mentioned earlier, the turbulent boun­

dary layer is analyzed by an implicit scheme, the details and resulting 

set of difference equations which is in tridiagonal form are given in 

Appendix A. The remainder of this section contains the following: 

a) a description of the iterative process necessary at each turbulent 

£j station; b) some remarks concerning the movement of the transition 

point; and, c) details about the mesh sizes, number of time steps, etc. 

a) Let the £ station index at which the quantities are unknown 

be (i+1). Since the eddy viscosity expressions contain terms that 

have to be evaluated at station (i+1), following Dwyer et al. [24], an 

iterative scheme is used to update these transport properties. The 

transport properties are calculated based on information at the station 

i, and then the boundary layer is solved at the station (i+1). The 

transport properties are then updated and the iterative process conti­

nued until satisfactory convergence is obtained. It was found, typi-

and 

^ -

O 
2Regy 

u 

1 0.0168U J (l-g)dTl 

[ i*"°(8)b J 
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cally, that the change in the total drag was less than 0.1% when the 

number of iterations was increased from three to six. All turbulent 

flow calculations were performed with four iterations at each | station. 

b) The unsteadiness in the flow causes the location of the tran­

sition point to change. Therefore, a particular £ location which had 

laminar conditions at a time (T - AT) may, at time T, be in the turbu­

lent regime and vice versa. The step sizes in the Tj direction for the 

laminar and turbulent boundary layers are quite different from each 

other, with the turbulent layer having a greater number of points near 

the wall and, further, in order to proceed ahead in time the numerical 

scheme requires information at the previous time value. To handle this 

difference in step sizes a linear interpolation scheme is employed to 

calculate the corresponding values at the new vertical locations. 

c) All computations were performed with the constant r, Equation 

(73), equal to 1.025, thus ensuring small steps near the wall and larger 

ones away from the wall. The first step away from the wall (i.e. ATL > 

if j = 1 represents the wall) had a value of 0.005. With this combi­

nation of r and AT] a total of 210 points in the T] direction were re-
2 

quired to reach the boundary layer edge for the cases considered. Note 

that the wall shear is quite sensitive to changes in r and T̂)„. The 

above values were chosen based on a comparison with the well known [45] 

skin friction variation for a flat plate and the necessity of minimi­

zing the total computer memory requirements. 

The computations were carried out with 40 equal time steps per 

cycle of oscillation unlike the completely laminar case where only 20 

steps were sufficient. The smaller time step for the turbulent case is 
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necessary if the transition point movement per time step (and hence the 

change in drag per time step) is to be kept reasonably small and thus 

avoid large jumps in the drag versus time curve. In almost all the 

cases considered it was necessary to compute for only 62 time steps 

(slightly more than \\ cycles) to establish periodicity for the drag 

(i.e. to damp out the errors to a very negligible value). 

The number of streamwise locations around the airfoil was kept at 

105 (for the completely laminar case there were only 45 such locations). 

The much greater number of locations is necessary in order to locate 

the transition point accurately and concurrently, to avoid large jumps 

in the drag curve. As in the laminar case the locations were spaced at 

unequal intervals. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The previous chapters of this thesis contained an unsteady poten­

tial flow development for an oscillating airfoil in a fluctuating free 

stream and an appropriate unsteady boundary layer analysis. In this 

chapter numerical results obtained from these analyses are presented 

together with a discussion of their significance. 

Potential Flow 

By setting a = 0 in the expressions of the linearized, small per­

turbation potential flow analysis of Chapter IV the case of an oscilla­

ting airfoil subjected to a constant free stream can be recovered. For 

the case of a non-zero <j there do not exist, to the author's knowledge, 

explicit expressions for the pressure and velocity over the oscillating 

airfoil; however, the lift and moment relations have been given by 

Greenberg [18]. 

The first part of this section contains a comparison of the con­

stant free stream C distribution from Chapter II with the experimental 
P 

results of Windsor [53]. This comparison is made solely to verify the 

correctness of the potential flow part of the final computer program. 

The remainder of this section contains the following: 1) comments 

regarding the extension of the present approach to the case when the 

airfoil and the free stream frequencies are not the same and, 2) a 

detailed comparison of the present work with that of Greenberg [18]. 
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Comparison (g=0) with Windsor's Results 

Windsor [53] has made pressure measurements on a two-dimensional 

NACA 0012 airfoil oscillating (about the quarter chord point) sinusoi-

dally in pitch. Figure 2 shows the calculated and measured C *s at 

cut = ^radians for k = 0.2695, a=-0.20° + 4.12°Sin (cut) . The experi-

mental Reynolds number, based on the chord, was 0.93x10 . 

Extension of Present Approach to the Case of Different Airfoil and 

Free Stream Frequencies 

In the analysis for the oscillating flat plate it has been assu­

med that the free stream fluctuations and the airfoil oscillations have 

the same frequency -(20), (21). If this was not the case then the sur­

face boundary condition (9) would give rise to terms with frequencies 

that are additive combinations of the individual airfoil and free 

stream frequencies; these terms would then replace the left hand side 

of (22a). Note that the approximate solutions for this case could also 

be obtained by using the procedure given earlier for the situation when 

the individual frequencies are the same. The constants, k , in (24) 

/i<u. 
would have to be taken as equal to f——J where cu 's are the frequencies 

o 
t ha t would be present on the l e f t s ide of (22a) . Equation (24) would 

k a V cu 
be valid only if —: , <j — in this case, is sufficiently small, where 

!<u cu 
cu is the free stream frequency. 

Comparison with Greenberg's [2] Analysis 

As noted in Chapter I explicit relations for the lift and mo­

ment on an oscillating airfoil in a fluctuating stream have been given 

earlier by Greenberg [18]. He extends the constant free stream analy-
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sis (based on the technique of conformal transformation) of Theodorsen 

[19] to take into account variations in the free stream. The Kutta 

condition is satisfied by requiring the induced velocity at the trailing 

to be finite. Greenberg considers the problem in which the airfoil and 

stream frequencies are different. He neglects the effect on the wake 

of the fluctuations in the free stream relative to the mean velocity, 

V (this has been noted earlier by Ashley et al.. [54]). The following 

remarks which are directly applicable to the case when the airfoil and 

stream frequencies are the same remain valid for the situation where 

the frequencies are different. 

The present analysis shows that the approximate wake given by 

2 
(27) neglects terms of order a and higher and consequently, the zero 

pressure discontinuity condition in the wake, (23a), is not satisfied 

2 
exactly (error ~ o* ) . Also, such a wake along with the bound vorticity 

Y given by (26) can be made to satisfy exactly both the trailing edge 

condition, (23b), and the surface boundary condition, (22a). Greenberg 

neglects the direct effect of a on the wake, which is equivalent to 

- . k I ( t ) , k V t . , . _ , J i 

replacing e n by e n o in the expression for y (see development 

leading to equation (24)). Hence, the wake given by (2 7) is a better 

approximation since it takes into account terms that are of order a. 

Surprisingly, even though Greenberg has neglected the direct ef­

fect of a on the wake he does not place any restriction on a, instead, 

an attempt is made to justify the assumed wake by taking & -* oo (i.e. 

— -* o), whereas, it is evident from (24) that the accuracy of the approxi-
03 / kn C TV /1\ 
mation depends on (-? ) and not just (-). Note that the quantity 

k n C T V o\ 
— : ), which i s assumed t o be s m a l l , r e d u c e s t o (nu) n = 1 ,2 , and 

icu / 



60 

hence the restriction on a (when the airfoil and stream frequencies are 

not equal it would reduce to a ( — ) - see previous comment). In fact 

this restriction on a can be shown to be true even from equations given 

in his paper. From a physical viewpoint a restriction on a seems more 

plausible than the requirement of having au -» <x>. This is so because as 

CT becomes larger and larger (although it still must be less than unity 

to avoid reverse flow) one would definitely expect <j to have an increa­

singly direct effect on the wake. Moreover, the condition cu ~* °° would 

make the assumption of simple harmonic variaton, e , questionable 

since the limit of e as ou ~* °° is not defined. 

As far as the e terms are concerned, Greenberg's expressions 

for the lift and pitching moment for the oscillating flat plate are the 

same as those that would be derived from the present analysis. This is 

to be expected since these terms do not depend on a and represent the 

constant free stream contribution. The differences between the two 

wakes are in the e ^ terms. Specifically, Greenberg's wake does not 

contain the term corresponding to a e • e ai in (27) (the non-exis­

tence of the term being a consequence of the approximation e n ^ 

k V t 
e n o ) and, the manner in which the wake constants (similar to A. and 

A.) are determined is equivalent in the present procedure to neglecting 

the <j e ^ term in the trailing edge condition for v > (23b). These 
w 

differences preclude any effect in the wake of the e term on the 

e w term. Finally, in the equations for the lift and moment Green-

2 
berg has certain terms that have a a dependency; these are generated 

due to the specific way in which the problem has been formulated and 

not because the wake model takes into account the direct effect of cr. 



61 

Greenberg's paper, reference [18], should be consulted for further details 

2 
on the problem formulation. The effect of the o terms on the accuracy 

of the final results is not clear. 

For the case of a flat plate pitching about the quarter chord 

point with a. = 3.5 + 2 Cos (cut),k = 0.20, and a = 0.10, the computed 

lifts and moments from the present analysis and that of Greenberg are 

given in Table 1. As mentioned earlier, Greenberg's expressions contain 

2 
terms with o~ dependency: the coefficients C„ , CA , C and C in the 

V V m5 m6 
table reflect this dependency. The present analysis, accurate up to 

order a, does not contain these coefficients. The identical moment 

coefficients obtained from the analyses is due to the fact that the flat 

plate is pitching about the quarter-chord point. If the airfoil were to 

pitch about some other point the moment coefficients also would be dif­

ferent . 

Skin Friction Comparisons 

Before computing the unsteady skin friction for the general case 

of an oscillating airfoil in a fluctuating free stream certain simpler 

calculations were carried out. This was done to verify the correctness 

of the computer program. 

Figures 3-5 contain several comparisons for both laminar and tur­

bulent flow. Figure 3 shows the presently calculated and experimentally 

determined [55] steady state skin friction for a NACA 0012 airfoil at 

zero incidence in a flow with a chordal Reynolds number of 2.675x10 . 

The location marked T denotes the experimental transition point. The tur­

bulent computations were initiated at this point, with the initial pro­

file determined by the procedure described in the previous chapter. The 



Table 1. Li f t and Moment Comparisons 

F la t p l a t e a i r f o i l p i t ch ing about the quar te r chord point 

o> = 3 .5° + 2°Cosajt; k = 0 .20; V = V (1 + 0 .1 Cos (out)) 

C + C sirtyt + C Cos^t + C sin2out + C Cos2U)t + C sin3o)t + C Cos3cut 
lQ Hx &2 JL3 £ 4 Z5 &e 

C + C s i n ^ t + C Cosgut + C sin2ojt + C Cos2ujt + C sin3cut + C Cos3r»t 
m m., nu m„ m. m,. m, 

o i 2 J 4 5 6 

L i f t C^o Ch % % % % % 

P r e s e n t 0 .3838 - 0 . 0 0 9 1 0 .2320 0.0002 0 .0328 See t e x t 

Greenberg 0 .3838 - 0 . 0 0 9 1 0 .2320 0 .0009 0 .0333 0 .0004 0 .0014 

Moment CmQ ^ C m 2
 C m 3

 C m 4
 C m 5 °me 

Present 0.0 0.0119 0.0008 0.0016 0.0 See t e x t 

Greenberg 0.0 0.0119 0.0008 0.0016 0.0 0.0 0.0 
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curve labeled I is the experiire ntal Cf obtained by differentiating the 

measured velocity profiles. The curve II, also from [55], represents 

the theoretical turbulent Cf calculated by an integral technique. As 

expected, for the laminar region the agreement between the calculated 

and experimental curves is very good. For the turbulent region, how­

ever, the agreement is not good between the present curve and the expe­

rimental curve, I; however, the agreement between the present curve and 

curve II is much better. Note that there exists a lack of agreement 

between curves I and II. Reference [55] notes the difficulty present 

in determining an experimental distribution that involves the differen­

tiation of an experimental curve. The total computed skin friction 

drag coefficient, C,, is 0.005 7 and the experimental value is 0.0052. 

Figure 4 presents the turbulent skin friction for a flat plate 

at zero incidence. The solid curve represents the computed Cf and the 

broken curve was obtained from the well known flat plate formula [45] 

0 2 
C = 0.0592/(Re^) ' . The fully developed flat plate velocity profile 

was taken as the starting profile for the computations. As expected, 

the agreement is very good between the curves for this zero pressure 

gradient situation. 

Figure 5 compares the computed turbulent Cf with the experimental 

data of Newman [56] for the case of a 20% thick symmetrical airfoil kept 

at an angle of attack of 10.5°; the chordal Reynolds number was 3.3 xlO6. 

The experimental transition point is denoted by T, and the turbulent 

computations were started from this location. Due to the high incidence, 

transition takes place by the mechanism of a laminar separation bubble. 

For this reason, in this case, the first turbulent profile was obtained 
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by a procedure slightly different from that described in the previous 

chapter. The flat plate relations based on the distance from the stag­

nation point (instead of the laminar momentum thickness) were employed 

to fix Cf and 6 for the initial profile. The power law exponent, n, was 

chosen by computing the skin friction for several choices of n and then 

selecting the value that provided the best agreement with the experimen­

tal data. The experimental potential flow velocity was utilized in the 

computations to avoid errors that might have resulted by the application 

of the small disturbance potential flow analysis for this case of high 

incidence. Considering the uncertainty in determining the initial turbu­

lent profile, the agreement between the calculations and the experimen­

tal data is satisfactory. 

McCroskey and Philippe [30] have performed unsteady laminar and 

turbulent calculations for the case of a flat plate at zero incidence 

in a fluctuating free stream, where U = 1 + 0..125 Sin(ojt). Since the 

present computational method is bascially the same as their scheme the 

above case is convenient for verifying the correctness of the formula­

tion. The skin friction amplitude and phase (with respect to U ) dis­

tributions from [30] were compared with the present results. Complete 

agreement was obtained for the laminar case. The agreement in the tur­

bulent situation, Re = 5 x 1 0 , was excellent; the difference between 

the amplitude distributions being less than 5% and the phases differing 

by approximately 10%. As noted previously in Chapter III, McCroskey 

and Philippe mention an error reducing iterative process carried out 

on the g and h profiles at the first turbulent station, but do not give 

any details. The present approach does not involve such a procedure. 
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Presumably, the above discrepancies are due to this difference between 

the two approaches. 

Least Squares Fit for Drag 

Once the skin friction distribution is known from the boundary 

layer analysis the drag at any instant is obtained by integrating the 

skin friction around the airfoil and then taking the component of the 

integral in the free stream direction. 

It may be recalled that for the potential flow analysis the air­

foil oscillations and the free stream fluctuations were assumed to be 

simple harmonic in time with the same frequency. The resulting pressure 

(and velocity) was periodic in time with a period of 2TT radians and, 

for the constant incidence case was harmonic with only a out dependency. 

Introducing oscillations in the airfoil incidence brought in an addi­

tional ((2cot)) dependency. The shape of the drag curve for such a com­

plex potential flow is not known in advance until the drag computations 

are completed. However, it is possible to obtain a rough estimate of 

the drag variation from a simple argument, which is as follows. Let the 

free stream be of the form V (1 + crCosfat)). A crude attempt to account 
o 

for the free stream variations would be to assume a constant drag coef­

ficient, say (C.) , and express the drag as 

c 

D = (Cd) ' pb[VQ(l + o-Cos(a)t))]
2 (81) 

c 

It can be seen that the above drag is periodic, with a period of 2TT rad­

ians, and, for small values of o", D is very nearly simple harmonic and 

in phase with the free stream. 



69 

Consider now a least squares fit for the drag obtained from the 

unsteady boundary layer analysis. Let the computed drag coefficient at 

a time T(= cut) = T be C, , m = 1,2 M. Further, let the least squares 
m d 

m 
c u r v e be of t h e form 

C , ( T ) = A + A C o s ( T + cp) (82) 
d o c n 

The constant A represents the steady component, A the oscillatory 

amplitude and, cp is the phase difference between C, (T) and the free 

stream. The constants A , A and cp will be obtained in the usual least 
o c Y 

squares manner [37] by minimizing 

M 

E = I [ca " W 
m 

m=l 

The d e r i v a t i v e s BE/BA , dE/^A and £E/cfcp a r e each s e t e q u a l t o z e r o and 
o c T 

the three constants found by a simultaneous solution of the three result 

ing equations. 

A quantitative measure of the difference between the computed 

drag curve and the fitted curve (82) would be useful in judging the 

closeness of the "fit." An appropriate quantity would be 

M 

£t Cd " Cd <Tn> 
rn^l ~ m 100 

d = v — (83) 
M c 

Basically, d is the average departure, expressed as a percentage of the 

oscillatory amplitude A , of the least squares curve from the computed 

curve. 

For all the cases considered it was .found that the computed drag 
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was periodic with a period of 2TT radians and the departure d was always 

less than 2.0. 

Throughout the following, unless stated otherwise, all computed 

drag curves will be fitted by Equation (82), and the constants A , A 

and cp determined in the manner described earlier. This is done in order 

to facilitate the interpretation of the raw results. 

As an example, Figure 6 shows the computed drag coefficient for 

completely laminar flow around an NACA 0012 airfoil with a = 2 +2 Cos 

(cut), (V/V ) = 1 + 0.lCos(u)t), k = 0.2, and Re = 105. The departure d, 

for this case, was equal to 1.2. The constants A , A and cp were equal 

to 0.00519, 0.00064 and 18.7°, respectively. Also shown in the figure 

is the least squares fitted curve using these constants. 

Note that the drag coefficient in the figure is shown for a 

total time greater than 2n radians. As mentioned in the previous chap­

ter, the computations were usually carried out for a total of approxi­

mately 1— cycles to allow the transients to damp out. The locations 

marked S and E (cut = 3TT) on the abscissa are the points at which the 

calculations were initiated and terminated respectively. The transient 

behavior can be observed by comparing the drag coefficients at S and at 

cut = TT; the value at S is slightly greater than the value at cot = TT. 

Note that acceptable periodicity has been established for oot ̂  0. 

Laminar Flow Results 

The response of the laminar boundary layer to small fluctuations 

in the free stream has been considered in several studies, of which the 

analyses of Lighthill [28] and Nickerson [29], and the experiments of 

Hill and Stenning [31] are of interest in the present work. More re-
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cently, Valensi and Rebont [14] and Kunz [15] have attempted to measure 

the unsteady drag of an airfoil at a constant incidence subjected to a 

fluctuating free stream. 

Lighthill's study shows that unsteady effects strongly influence 

the skin friction and it's phase with respect to the free stream. Valid 

for flows where the lift is zero and the Karman-Pohlhausen parameter 

A is approximately constant, his analysis reveals that the skin friction 

fluctuations have a phase advance over the free stream velocity, that is, 

their maxima anticipate the velocity maxima. Lighthill treats the low 

and high-frequency cases separately. For each point on the surface 

there can be identified a crossover or critical frequency, ou > such 

that for CJO < a) (low-frequency) the phase lead is given by tan (OU/OD ) 

and, for au > OD (high-frequency) the lead is 45 . A special case where 

his analysis is directly applicable is that of a flat plate at zero 

incidence. As noted by McCroskey and Philippe [30] at low frequencies, 

the unsteady effects for this case are approximately proportional to 

the local reduced frequency, cod/V (d being the distance from the lead-
o 

ing edge), and the Lighthill analysis gives the phase advance as tan 

(1.7u)d/V ). Their numerically computed phase curve forms a smooth 

bridge between Lighthill's low and high-frequency approximations. As 

noted earlier, the present computations are in complete agreement with 

McCroskey and Philippe's results. Experimentally, for the flat plate 

case, Hill and Stenning [31] show that the amplitude and phase values 

from the Lighthill low-frequency analysis agree well with their measure­

ments in the range 0 < (cyd/V ) < 0.6. For the present airfoil compu­

tations, considering the range of interest of the reduced frequency, k, 
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it is the low-frequency case that is more relevant. 

All airfoil calculations were performed using the NACA 0012 basic 

thickness form. For the oscillating airfoil the quarter chord point 

was specified to be the axis of rotation. Typical computer time per 

run on the CDC 6600 was approximately 1— minutes. 

Comparison with Experimental Data 

Valensi and Rebont [14] have performed experiments designed to 

measure the unsteady drag of an NACA 0012 airfoil at a constant inci­

dence and performing harmonic oscillations parallel to the wind tunnel 

free stream. Figures 7-9 present the calculated and measured drag 

curves. As far as the curve shape and the drag magnitudes are concerned 

the agreement between the two curves is, in all cases, excellent. The 

calculated drag has a small but definite lead in phase over the free 

stream velocity; the direction of this phase shift being in agreement 

with the skin friction phase advance predicted by previous analyses 

[28], [29] and measurements [31], Valensi and Rebont's drag curves 

have, however, a definite phase lag. 

Kunz [15] measured the drag of a stationary NACA 0012 airfoil at 

a non-zero incidence subjected to a fluctuating free stream, where the 

fluctuations were introduced by a set of rotating vanes mounted down­

stream of the wind tunnel test section. He relates the free stream 

fluctuations to an "equivalent in-plane displacement" and then obtains 

"drag derivatives" with respect to the equivalent displacement. It was 

found that his drag derivatives were approximately ten times higher 

than the derivatives obtained through the present computations. 
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Effects due to the Amplitude of Free Stream Fluctuations 

Figures 10-13 show the effect of a on the drag. 

Shown in Figures 10 and 11a are two sets of computed curves for 

the stationary and oscillating airfoil cases. For the constant free 

stream condition, a = 0, the drag for the former case is, as expected, 

a constant. The corresponding curve for the oscillating airfoil appears 

to have a Cos (out + rr - e) type of variation where e « 7" radians. This 

behavior can be explained by a consideration of the movement of the 

zero wall shear location, say S, downstream of which the analysis as­

sumes zero skin friction. 

For simplicity, let the reduced frequency be zero. This corres­

ponds to the quasi-steady approximation in which all time derivatives 

are suppressed and steady state calculations are performed at each 

instant. At positive angles of attack, compared to the symmetrical 

case of zero incidence, the upper surface S moves towards the leading 

edge and, S for the lower surface shifts towards the trailing edge, 

staying close to it throughout most of the cycle. It was found that the 

total chordwise movement of S on the upper surface is approximately 

twice the value for the lower surface. The variation of S on the upper 

surface will, therefore, have a greater influence on the changes in the 

drag. When the angle of attack is maximum this location is nearest to 

the leading edge as compared to the minimum incidence case when it is 

farthest. In the former situation the drag will be close to the lowest 

value for the cycle and in the latter case it would be close to the high­

est value. The preceding observations show that for oscillations of the 

type at = a + a^ Cos (cut), a s a , the drag would be n radians off phase 
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(though not necessarily purely simple harmonic) from the Cos(ujt) 

variation, and of course symmetric about out =: rr. These conclusions 

were confirmed by actual calculations, the results of which are shown 

in Figure lib. Also presented in Figure lib, for comparison, is the 

CT = 0.00 curve of Figure 11a (k = 0.20). As noted earlier, the drag 

at k = 0.20 has a phase lead of (rr - e) radians and the difference, e, 

is therefore due to the non-zero value of the reduced frequency. 

Note that in both Figures 10 and 11a all the curves intersect 

each other twice, at values of out slightly less than TT/2 and 3TT/2. At 

V/V = 1 and out = TT/2 and 3TT/2, the drag takes a value corresponding to 

that of the constant free stream case, regardless of <j. This also ex­

plains why, for the oscillating airfoil, the intersection near cut = 3TT/2 

occurs at a higher value of C, compared to the other intersection. 

That the intersections are not exactly at TT/2 and 3rr/2 is indicative of 

the effect of reduced frequency. For k = 0.00 the curves would be sym­

metrical about yjt = rr and intersect each other at TT/2 and 3TT/2. 

It is evident from Figures 10 and 11a that the amplitude of the 

drag fluctuations increases as o increases. The effect of a on the 

phase with respect to the free stream velocity is, however, not so 

clearly discernible. These effects can be determined more precisely by 

fitting the least squares curve to the drag data and obtaining the con­

stants A , A and cp, Equation (82). Shown in Figures 12 and 13 are the 

phase, cp, and the amplitude ratio, A Ik , versus Q for three cases: 

a = 2°, a = 2° + 2°Cos(u)t), and a = 2° with h'7v = 2°Cos(yjt). The free 

stream was represented by V/V = 1 + crCos(oot) and the computations 

were performed for a = 0.05, 0.10, and 0.20, with Re = 10 and k = 0.20. 
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It was found that the mean drag coefficient, A , was very nearly con­

stant for all the cases, the maximum difference from 0.005226 being 0.87o. 

The ratio A /A for each condition was obtained by using the respective 
c o 

A and not the above value. 
o 

Figure 12 shows that for the stationary airfoil case, a = 2 , 

the phase advance varies very little with a, being approximately 9.5 . 

The Lighthill result for the flat plate at zero incidence, discussed 

earlier, gives the skin friction phase advance to be independent of a 

and a function of only <JD , V and d. The results for the other two cases 

shown in the figure are quite different, with the phase advance decreas­

ing as a increases. Only the a = 2 + 2 Cos(<ut) case will be considered 
.* 

in detail since the interpretation for the a = 2 with — = 2 Cos (out) 
vo 

condition is very similar. For very small a the free stream velocity 

is very nearly constant and the drag curve is almost TT radians off phase 

from the Cos (cut) variation. This is due to the 2 Cos (cut) oscillation 

as is evident from the cr = 0 curves of Figures 10 and 11a. An increase 

in a tends to overcome the effects of the angle of attack oscillation, 

thereby decreasing the phase advance of nearly n radians (180 ) at 

a = 0 to approximately 14 at a = 0.20. Note that compared to the a = 2° 

case the phase for a = 2 + 2 Cos (cut) is higher. The cause for this is 

the almost 180 shift which gives a Cos (cut + 180 ) = - Cos (cut) contrib­

ution. 

Figure 13 shows that for all three cases the amplitude ratio 

increases with a and is linearly dependent on it. The Lighthill analy­

sis, within it's range of applicability, gives the same result. The 

lower A C / A Q for the a = 2° + 2°Cos(cut) is due to the - Cos (cut) contrib-
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ution, discussed above. 

The a = 2 with h /V = 2 Cos (cut) condition is considered now. 
o 

As Figures 12 and 13 show the results for this case are very similar 

to the a = 2 4- 2 Cos (out) condition. From the expression for the down-

wash function, Equation (57a) in Chapter II, it can be seen that the 

downwash due to the translatory motion, h, is analogous to the contrib­

ution from the a term. The only difference between the downwashes due 

to translation and angle of attack oscillation is the a contribution, 

ikor(x-a), which is responsible for the small and almost constant devia­

tion of the respective CD and A /A curves from each other. 

r ^ c o 

Also presented in Figures 12 and 13 are the phase and amplitude 

ratio variations obtained from the linearized form of Equation (81), 

which assumes a constant drag coefficient. This approximation gives the 

phase to be always zero and represents the amplitude ratio by 2<j. 

That the phase is not at all predicted by this representation can be 

seen from Figure 12. As is evident from Figure 13 the amplitude ratio 

from this approximation differs considerably, by at least 25%, from the 

variations for the stationary and oscillating airfoils. 

Reduced Frequency Effects 

The effect of the reduced frequency, a measure of unsteadiness, 

on the drag is shown in Figures 14-16. 

Presented in Figure 14 is a typical set of C, versus time curves 

for three values of k. Since the general trends were found to be simi­

lar for the stationary and the oscillating airfoil cases the drag curves 

are shown for the a = 2 + 2 Cos(ojt) condition only. Note that the 

k = 0.00 curve is symmetrical about (cut) = TT and has zero phase shift 
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with respect to the free stream velocity. If, in addition to keeping 

k = 0.00, a is set equal to zero the curve would maintain it's symmetry 

but would have a 180 phase shift with respect to a Cos (out) variation, 

as explained in the previous section. It can be seen that the amplitude 

and the phase advance of the drag fluctuations increase as the reduced 

frequency increases. 

Figures 15 and 16 show the variations of the phase advance and 

the amplitude ratio with the reduced frequency. The computations were 

performed for three cases: a = 2 , a = 2 + 2 Cos(ojt), and a = T 

• * # o 
with h /V = 2 Cos (cut). The free stream was specified as V/V = 1 + 

o o 

0.1 Cos (cot) and Re was equal to 10 . Five values of the reduced fre­

quency were investigated: 0.00, 0.05, 0.20, 0.30, and 0.40. It was 

found that A varied very little, the maximum percentage difference 

from 0.005202 being 0.6. As before, for each case the ratio A /A 
° c o 

was obtained by using the respective A . 

Figure 15 shows the increase in the phase advance as k increases. 

The curve for a = 2 is more linear than the non-stationary airfoil 

curves. Recall that the Lighthill low-frequency approximation for the 

flat plate gives the unsteady effects on the skin friction to be approxi­

mately proportional to the local reduced frequency, cud/V . The phase 

advances for the a = 2 + 2 Cos (cut) and <y = 2 with h /V = 2°Cos(a>t) 

conditions are higher than the oi = 2 phase. As explained in the pre­

vious section this increase is due to the - Cos (cut) type of contribution 

from the 2 Cos (out) oscillations. Note that the nonlinearity in the 

curves is such that the slope decreases with increasing reduced frequency 

For large reduced frequencies, then, the phase advance might reach a 
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maximum and level off. Such a behavior would be similar to the phase 

advance limit of 45 in the Lighthill high-frequency solution. 

The increase of the amplitude ratio with reduced frequency can 

be seen in Figure 16. Whereas the slope for the Q> = 2 curve increa­

ses gradually from what appears to be a zero value, the other two 

curves have a constant positive slope — a linear variation. The rea­

son, as before, for the lower A /A in the non-stationary airfoil 
C O 

cases is the - Cos (out) type of contribution due to the 2 Cos (out) oscil­

lations . 

Note that the difference between the curve for <y = 2 and the 

other two curves decreases as the reduced frequency increases. The 

difference is maximum at k = 0.00, reflecting the largest reduction in 

A /A due to the full 180 phase shift (- Cos (cut) contribution). The 
C O 
phase, cp, however, is always zero for values of a that are sufficiently 

large to overcome this effect of the 2 Cos (tut) oscillations. 

For the a = 2 condition when k = 0.00, A /A = 0.150. This 
C ° 3/2 

corresponds to the well known [28] quasi-steady result: C cKV/V ) , 

which, for small fluctuations gives A^/A^ ~ 3cr/2 and cp = 0; for a = 0.1 
c o 

A /A = 0.150. 
c o 

The translating airfoil case, a = 2° with h'Vv = 2°Cos(tot), is 
o 

considered now. The difference between the phase advances of this case 

and that of a = 2 + 2 Cos (cut) increases with the reduced frequency, 

as Figure 15 shows. This behavior is unlike the results of the previous 

section where both the differences between the respective cp's and 

(A /A )'s were almost constant. Recall that the ex term in the downwash, 

which distinguishes translation from angle of attack oscillation, is 
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proportional to the reduced frequency. Hence, the divergence of the 

two phase curves could be due to the increasing contribution of this 

term. However, the A /A versus k variations, Figure 16, have a con­

stant difference between them. This means that for an increasing k, 

the a. term has a greater influence on the phase than on the amplitude 

ratio. 

Effects due to Phase Difference Between Stream. Fluctuations and Airfoil 

Oscillations 

In general, it is possible that the free stream fluctuations and 

the airfoil oscillations are not in phase with each other. Figures 17 

and 18 show the effect of such a phase difference, ijj, on the phase, cp, 

and the amplitude ratio for four values of the reduced frequency. The 

free stream velocity was specified as v/V = 1 +0.1 Cos (out) with an 

angle of attack variation of a = 2 + 2 Cos (cut + \Jf), and Re = 10 . 

Computations were performed for 12 values of \[r: 0, rr/4, n/2, 5rr/8, 

3rr/4, 7TT/8, TT, 5TT/4, 3TT/2 , 13n/8, 7n/4 , and 15TT/8. For each ^ the 

following values of the reduced frequency were investigated: 0.00, 0.15, 

0.20, and 0.30. For the constant A , it was found that the maximum 

percentage difference from 0.005188 was 0..4, the respective A being 

used for obtaining A /A in each case. The results of the preceding 

two sections show that the effects on the drag due to translation and 

angle of attack oscillation are quite similar to each other. Hence, 

only the angle of attack oscillation was investigated. 

Figure 17 shows that the phase of the drag is greatly influenced 

by variations in the phase difference, \Jf. Note that the phase undergoes 

not only large percentage changes in magnitude but also a change in 
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t 

Figure 17. Variation of Phase, cp, with Phase 

Difference, i|/, and Reduced Frequency, k 
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sign, i.e. the drag can either lead or lag the free stream. This 

behavior can be explained by considering the movement of the upper sur­

face zero wall shear location. In the following discussion only a brief 

account is given since the explanation is the same as the one presented 

with regard to the a = 0.00 curve of Figure 11a. Let k and a be equal 

to zero. For \jf = 0 it was shown earlier that the phase shift is 180 , 

Figure lib. By the same reasoning the following can also be demonstra­

ted: when \|f = n/2, TT, and 3TT/2 , cp is equal to - 90 , 0 , and 90 , 

respectively. The computations completely confirmed these conclusions. 

For a sufficiently large a the 180 phase shift (- Cos(ojt) contribution) 

at | = 0 is overcome completely by the quasi-steady + Cos(ujt) variation 

introduced by the free stream, resulting in cp = 0; the drag is in phase 

with the free stream - k = 0.00 curve of Figure 14. Therefore, at 

\|[ = 0, the introduction of a non-zero a diminishes the phase effects 

due to the angle of attack oscillations. This conclusion is valid for 

i|r + 0 also: at \|r = (n/2 , 3TT/2) for a = 0.05, 0.10, and 0.15 the cor­

responding cp's are (- 33°,33°), (- 18°, 18°), and (-12°,12°). At \|r=n, 

CT has no effect on cp since there is no phase shift to start with. 

Hence, it follows that for k = 0.00 an increase in <j reduces the abso­

lute maximum value of cp • This is only a restatement of the above con­

clusion. The effect of a when k > 0 is considered later in this section. 

For all values of \|r an increase in the reduced frequency tends 

to make cp more positive, that is, diminish the phase lag and increase 

the advance. This can be seen from Figure 17 and, for j = 0, from 

Figure 15. It is interesting to note, however., that the magnitude of 

this effect is dependent on \|,, as is evident from Figure 17 where, for 
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n/2 < \|f < 3TT/2 the curves are much closer to each other than at other 

values of \|r. This lack of uniformity is indicative of a nonlinear 

variation of the reduced frequency effect with ty. 

The variation of A /A with Jf, Figure 18, is considered now. 
c o T 

The curve for k = 0.15 has been omitted since the essential features 

can be understood from the other three variations. Note that the phase 

difference, \jj, has a large effect on the amplitude ratio. The k = 0.00 

curve is symmetrical about \|r = TT with a minima and a maxima at \J; = 0 

o o 
and TT respectively. These extremes occur because of the 180 and 0 

phase shifts due to the angle of attack oscillations; the former reduc­

ing the quasi-steady fluctuations introduced by the free stream velo­

city and the latter augmenting the same. An increase in the reduced 

frequency shifts the curves to the right. For a non-zero k, that the 

minima and maxima do not occur at \Jf = 0 and TT respectively can be due 

to a combination of: 1) the phase advance effect of k; and, 2) the 

shift in the drag variation due to the angle of attack oscillations. 

For example, the phase of the a = 0.00 curve of Figure 11a is less than 

180 , the full value being realized only for k = 0.00, Figure lib. 

The increase in A /A with the reduced frequency for \jr = 0 can 

be seen from Figure 16 also. At some other values of ty an increase in 

the reduced frequency brings about a reduction in A /A — for TT/4 < 
c o 

\|f < TT in Figure 18. 
/*J 

The variation of co and A /A with \lr and <j is considered now. 
^ c o T 

Figures 19 and 20 show these effects for four values of \|j and three 

different a's. The reduced frequency and Reynolds number were equal to 

0.20 and 10 , respectively. 
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Figure 19 shows that an increase in o" suppresses the variations 

in cp with respect to ty. For k = 0.00 this has been established earlier — 

see discussion regarding Figure 17. It is to be noted that for k = 0.00 

these decreased variations appear to occur around a "limit" cp of 0 . 

The corresponding "limit" y from Figure 19 (k = 0.20) appears to be 

around 9 . Recall that for the constant incidence, a = 2 , case cp was 

almost unvarying with a, Figure 12, and for k = 0.20 the value was close 

to 9.5 . These observations suggest that, in general for all ijr's, 

increasingly higher values of <j tend to equalize the oscillating airfoil 

and constant incidence phases, at the same reduced frequency. Physi­

cally, this would mean that as the amplitude of the free stream fluc­

tuations increases the tendency is to suppress the phase effects of the 

angle of attack oscillations; only the airfoil at a constant incidence 

is "seen" by the free stream. 

Recall that for \Jr = 0 the amplitude ratio, A /A , varied linearly 

with a , Figure 13. As is evident from Figure 20 this linearity is 

maintained for all values of \[r. 

Superposition of Drag 

Recall that the linearized approach for the potential flow 

analysis allowed the superposition of the individual effects due to the 

oscillations and the constant incidence. Thus, the total lift and 

moment could be obtained by a summation of the individual contributions. 

However, the employment of the pressure distribution from such a linear 

analysis does not ensure, a priori, a corresponding linear behavior for 

the drag, since the boundary layer equations are nonlinear. 

Consider the following three cases: 1) a> = 2 with V/V = 
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1 + a Cos (cut), 2) a = 2° + 2°Cos(cut + i|r) with V/V = 1, and 3) a = 

2° + 2°Cos(cut + \|f) with V/V = 1 + a Cos(ajt). The present computations 

established that the perturbation drag in the last case can be obtained 

very closely by a superposition of results from the other two cases. 

Several conditions were investigated: Re = 10 with, 0.05 <. a 

<> 0.20, 0.00 <. k <. 0.40, and 0 <. ijj ^ 2rr, and it was found that the dif­

ferences between the actual and superposed (A /A )'s and cp's were less 

than 2%. All A 's were within 1% of 0.005224. As an illustrative ex-
o 

ample let V/V = 1 + 0 . 1 Cos (out), k = 0.20, i|r = 0, and Re = 10 , and 

express the drag coefficient as C, = A (1 + D.. Cos (cut) + D-Sin(cut)). 

2 2 % ~ 1 
Note that A /A = (D. + D0) and m = - tan (D^/D,). The respective 

c o 1 JL T z 1 

computed (D1,D9) sets for the three case were: (0.154, - 0.025), 

(- 0.037, - 0.014), and (0.117, - 0.039). Obviously, a summation of 

the corresponding constants of the first two sets yields the third set. 

Reynolds Number Dependency 

For laminar flow the governing equations, (70) and (71), and their 

boundary conditions are independent of the Reynolds number and hence, 

the transformed profiles, g, h, do not depend on the Reynolds number. 

The skin friction coefficient, Cf, is of course a function of the Rey­

nolds number. It can be shown from fundamental definitions that Cf and 

-h -h 
therefore, C a Re . This makes A and A a Re and cp independent of 

Re. Note that A /A is not a function of Re. As expected, the computed 

results also showed the above variations with Reynolds number. Three 

5 5 5 
values of Re were investigated: 0.5x10 , 10", and 2 x 10 . Finally, 

it is noted that the zero wall shear location is theoretically indepen­

dent of the Reynolds Number. 
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Turbulent Flow Results 

Of the several analyses that have been performed to determine 

the response of the flat plate turbulent boundary layer to a fluctuating 

free stream the detailed study of McCroskey and Philippe [30] is of 

direct interest here. Relevant to the present study is their conclu­

sion that the turbulent skin friction is approximately quasi-steady 

over a wide frequency range. With increasing frequency the skin fric­

tion phase remains close to that of the free stream velocity and the 

amplitude is almost constant. 

The NACA 0012 basic thickness form was used in the present cal­

culations. For the oscillating airfoil the quarter chord point was 

specified to be the axis of rotation. Typical computer time per run 

on the CDC 6600 was approximately 12 minutes. Note that for the tur­

bulent case the computer central memory requirement is much higher than 

that for the completely laminar condition, thus creating large delays 

in the run turnaround. 

Preliminary Discussion 

For the airfoil incidences that were considered the turbulent 

wall shear was never zero. The patterns of movement of the lower and 

upper surface transition points were found to have a considerable in­

fluence on the drag changes. At a theoretical transition point and 

downstream of it, the turbulent skin friction is of course much higher 

as compared to the corresponding laminar condition, for example see 

Figure 3. Consider two cases, where in the first case the transition 

point is upstream of the transition location in the other case. Consi-
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dering only the effect due to the difference In the two locations the 

first case would then show a higher skin friction drag. 

It was found that for the constant incidence case the transition 

points were stationary throughout the cycle of the free stream fluctua­

tions. For the oscillating airfoil the transition points were not 

stationary, displaying considerable amounts of movement. Figures 21 and 

22 show the drag variations with time for the above cases for two values 

of the reduced frequency: 0.00 and 0.20. As can be seen from Figure 

22, the oi = 3.5 variation is smoother than the one for a = 3.5 + 2 

Cos (cut) . 

Note that for the k = 0.00 condition the amplitude of the drag 

fluctuations for the oscillating airfoil appears to be less than that 

for the constant incidence airfoil, a behavior that is reversed at 

k = 0.20. A consideration of the upper and lower surface transition 

point movements, shown in Figures 23 and 24, is useful in interpreting 

these trends. Consider the k = 0.00 condition where there is no hy­

steresis type of effect present. An increase in Q> tends to move the 

upper transition location upstream, i.e. towards the leading edge. The 

movement is in the opposite direction for the lower location. These 

two movements act in opposition, with the former and latter tending to 

increase and decrease the drag, respectively. The lower amplitude of 

the drag fluctuations for a = 3.5° + 2°Cos(ujt) at k = 0.00 implies, 

therefore, that the lower transition point movement has a greater in­

fluence on the drag changes. Consider now the k = 0.20 condition. As 

Figures 23 and 24 show the transition curves are affected considerably 

by an increase in the reduced frequency from 0.00 to 0.20. The percen-
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tage reduction in the total travel of the lower location is greater 

than that of the upper transition point. The effect of this difference 

would be to diminish the influence of the lower transition point move­

ment. The higher amplitude of the drag fluctuations for the a = 3.5 

+ 2 Cos(u)t) case, Figure 22, then implies that at k = 0.20 it is the 

upper location movement that has a greater influence on the drag changes. 

The opposite effects of the two movements cause a deviation from 

a harmonic drag variation. For k = 0.00 the curves are symmetrical 

about cut = IT, Figure 21, and have a zero phase with respect to the free 

stream velocity. Note that for the a = 3.5 case the transition points 

are stationary and the variation is very nearly harmonic. For a = 3.5 

+ 2 Cos (cot) the hysteresis type of behavior, Figures 23 and 24, intro­

duced by a non-zero reduced frequency causes an asymmetry in the drag 

about cjut = n and increases the deviation from a harmonic variation, 

Figure 22. For the a = 3.5 condition at. k = 0.20 the transition points 

are still stationary and the curve is again very nearly harmonic though 

a phase shift is present due to the non-zero reduced frequency. These 

observations are of course confirmed by the least squares fit results 

presented in succeeding sections. 

Reduced Frequency Effects 

For the oscillating airfoil the increase in the amplitude of the 

drag fluctuations with increasing reduced frequency are apparent in 

Figure 25. The phase shift changes, however, are not so clearly dis­

cernible. 

The phase and amplitude ratio variations with reduced frequency 

are presented in Figures 26 and 27. Note the expanded scales for both 
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cp and k, over those employed for the laminar flow results. Three 

cases were investigated: a = 3 . 5 , a = 3 . 5 + 2 Cos fat), and # = 3.5 

with h/V = 2 Cos(rnt). The free stream was specified as V/V = 1 + 
' o *" o 

0.1 Cos(ujt) and Re was equal to 1.5x10 . The range of investigation 

for the reduced frequency was 0.00 to 0.20. The constant A was found 

to be nearly the same for all the cases, the maximum difference from 

0.005549 being 1.7%. For each condition the ratio A /A was obtained 
° c o 

by using the respective A . 
o 

It can be seen from Figure 26 that the turbulent phase advance 

is quite small and, in general, much less than the laminar phase, 

Figure 15. This is in agreement with McCroskey and Philippe's [30] 

results for the flat plate at zero incidence. For the a = 3.5 case 

the phase increases linearly with the reduced frequency. Recall that 

the transition points are stationary for this condition. Hence, this 

linear increase is purely due to the effect of unsteadiness (k) on the 

combined laminar and turbulent skin frictions. The non-stationary 

airfoil results are considered now. Both cases show a higher phase 

compared to the constant incidence condition. The presumable causes 

for this behavior have been discussed in the previous section: the 

opposite effects and the hysteresis type movement of the two transition 

points. The phase variation is not as definite as in the completely 

laminar condition. There appears to be a leveling off trend in the 

phase. Recall that at k = 0.20 the upper transition point movement 

appeared to have greater influence compared to the lower one. The for­

mer movement brings about changes in the drag that are always in phase 

with the angle of attack variation which, in the present case is of 
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the same type as the free stream variation, Cos (cut). This would lead 

to a reduction in the phase, cp, and might explain the above leveling 

off. 

Figure 27 shows that for the a = 3.5 condition the amplitude 

ratio is almost independent of the reduced frequency. This is in agree­

ment with the flat plate skin friction results of McCroskey and Philippe 

[30]. For the non-stationary airfoil cases the amplitude ratio increa­

ses with the reduced frequency. Note that at k = 0.00, A /A for a = 3.5 

is larger than that for a = 3.5 + 2 Cos(ojt). The reverse is true at 

k = 0.20. Recall that a detailed discussion of these trends was pre­

sented in the previous section. A comparison of Figures 16 and 27 shows 

that the laminar amplitude ratio is less than the turbulent ratio for 

the range of reduced frequency considered. For values of the local re­

duced frequency, u)d?V , less than 0.5, McCroskey and Phillippe's flat 

plate skin friction amplitude ratios also have the same behavior. 

Finally, as Figures 26 and 27 show, the variations for the os­

cillating angle of attack and translating airfoils are very similar to 

each other. Reference should be made to the section on laminar flow 

results for details regarding the difference in the respective down-

washes . 

Effects due to the Amplitude of Free Stream Fluctuations 

Presented in Figure 28 is a set of drag variations with time and 

a for the oscillating angle of attack airfoil. For a = 0.00 the drag 

appears to be almost unvarying with time. This is quite unlike the be­

havior of the a = 0.00 curve in Figure 11a for the laminar case. Recall 

that the rather significant variation in the laminar drag was largely 
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due to the movement of the upper surface zero wall shear location. 

However, as pointed out during the preliminary discussion the turbulent 

wall shear is never zero and both upper and lower transition point 

movements are important, and have opposite effects on the drag changes. 

Presumably, for a = 0.00 they almost cancel each other out. 

All the variations in Figure 28 appear to intersect each other 

twice, very near out = rr/2 and 3TT/2. At these times V/V =1.0 and the 

drag irrespective of a, takes on a value corresponding to that of the 

constant free stream case. This behavior was observed for the com­

pletely laminar condition also. It is evident from the figure that the 

amplitude of the drag fluctuation increases with increasing <j. The 

effect of a on the phase is not so clearly discernible. 

Figures 29 and 30 show the phase and amplitude ratio variations 

with <j for three cases: a = 3.5 , a = 3.5 + 2 Cos(u;t), and a = 3.5 

with h /V = 2 Cos (ait). The free stream velocity was V/V = 1 + n o o u 

Cos (out) and the values of a investigated were: 0.05, 0.10, and 0.20. 

The reduced frequency was equal to 0.20 and the Reynolds number was 

specified as 1.5x10 . For all conditions the constant A was within 
o 

2.2% of 0.005592. The ratio A /A for each case was obtained by using 
c o ° 

the respective A . 
o 

The phase advance for the ex = 3.5 condition is independent of 

a and is approximately equal to 2.2 as can be observed from Figure 29. 

Recall that transition points for this case are stationary. The phase 

advances for the other two cases in the figure are greater, and the pre­

sumable reasons for this have been noted in the previous section. The 

non-stationary airfoil phases decrease with increasing a and appear to 
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approach 2.2 . This behavior can be explained by a consideration of 

the transition point curves (similar to Figures 23 and 24). It was 

observed from the computations that an increase in <j causes a general 

reduction in the area enclosed by the transition curves, i.e. the total 

travels decrease. The effect of this "tightening" is to diminish the 

respective differences between the stationary locations for the a = 3.5 

condition and the corresponding points for the other two cases in Figure 

29. Hence, with regard to the phase only, an increase in <j tends to 

suppress the effects of the angle of attack oscillations (and transla­

tions). Recall that the completely laminar case also showed a similar 

behavior, though the basic reason was different. 

As can be seen from Figure 30 the. amplitude ratio is linearly 

dependent on <j. For the non-stationary airfoil cases the ratios are 

higher than the value for the constant incidence condition. This be­

havior has been considered in detail during the preliminary discussion. 

Both Figures 29 and 30 show that the variations for the transla­

ting airfoil are very similar to the ones for the oscillating angle of 

attack airfoil. Reference should be made to the section on laminar flow 

results for details regarding the difference in the respective down-

washes. 

Also presented in Figures 29 and 30 are the phase and amplitude 

ratio variations obtained from the linearized form of Equation (81), 

which assumes a constant drag coefficient. As noted earlier, with re­

gard to Figures 12 and 13, this approximation gives the phase to be al­

ways zero and the amplitude ratio to be 2Q. That the phase is not at 

all predicted by this representation can be seen from Figure 29. The 
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amplitude ratio variation, 2a, differs considerably, by approximately 

15%, from the curve for the stationary airfoil, Figure 30. However, 

for a < 0.10 the variation for the non-stationary airfoil is close to 

the 2cr representation. 

Effects due to Phase Difference Between Stream Fluctuations and Airfoil 

Oscillations 

Figures 31 and 32 show the effect of ty on the phase and amplitude 

ratio for three values of the reduced frequency. The free stream velo­

city was specified as V/V = 1 + 0.1 Cos (tut) with an angle of attack 

variation of a = 3.5 + 2 Cos (̂ t + ty), and Re = 1.5x10 . Computations 

were performed for \[r = 0, rr/2, TT, and 3TT/2 . For each \|r the following 

values of the reduced frequency were investigated: 0.00, 0.12, and 

0.20. For all cases, the constant A was with 2% of 0.00555 7, the res-
o 

pective A being used to obtain A /A in each case. 
o c o 

Figure 31 shows that the turbulent phase is greatly influenced 

by variations in ty. The phase undergoes not only large percentage 

changes in magnitude but also a change in sign, i.e. the drag can either 

lead or lag the free stream velocity. It is important to note that for 

values of \|f = TT and 3n/2, an increase in the reduced frequency can in­

crease the phase lag (or decrease the lead). This is quite unlike the 

behavior for the laminar condition where an increase in the reduced 

frequency makes the phase more positive for all values of ty, Figure 17. 

Note that the k = 0.00 variations of Figures 17 and 31 are simi­

lar to each other, although of course these variations arise due to 

entirely different reasons. For the laminar curve, the interpretation 

was based on a consideration of the movement: of the zero wall shear 
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location. For an interpretation of the turbulent variation one must 

consider the movements of the two transition points, as follows. It 

can be shown that when k = 0.00 and a = 0.00 the contribution of the 

lower transition point location movement is such that, at \|r = 0, rr/2, 

TT, and 3TT/2, <p is equal to 180 , - 90 , 0, and 90 , respectively; the 

upper contribution is 0 , 90 , 180 , and - 90 . The introduction of a 

non-zero <j would impose a quasi-steady variation (zero phase). For a 

sufficiently large a the 180 shifts would be overcome completely re­

sulting in zero phase shifts, and, the magnitudes of the other (90 ) 

shifts would be reduced, the sign being unchanged. Thus, the phase 

lag at \|f = TT/2 and the lead at \|r = 3rr/2 implies that, for all values 

of \|f, at k = 0.00 the lower surface transition point movement is the 

dominant one. Recall that in the preliminary discussion, ty = 0, the 

same conclusion was reached from an argument that is basically the same 

as the above. For some other value of the reduced frequency, say 0.20, 

the upper location movement exerts a greater influence, resulting in a 

phase lead at \[r = TT/2 and a lag at \|f = 3TT/2 , a reversal of the behavior 

at k = 0.00. 

The A /A variation of Figure 32 is considered now. In general, 
C O 

the percentage changes are less compared to the laminar case, Figure 

18. For k = 0.00 the maxima and minima at | •- TT and 0, respectively, 

can be explained by the same considerations as those employed for 

Figure 31. At non-zero reduced frequencies there appears to be a right-

ward shift of the maxima, similar to that: of the laminar case. 

The variations of co and A /A with \lr and a are considered now. 
^ c o Y 

Figures 33 and 34 show these effects for four values of \|f and three 
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different a's. The reduced frequency and Reynolds number were equal to 
c 

0.20 and 1.5x10 , respectively. For all cases, the constant A was 

within 270 of 0.005636, the respective A being used to obtain A Ik . 
r o ° c o 

Figure 33 shows that an increase in <j smoothens out the varia­

tions in cp with respect to \jj. Recall that a "limit" ep was introduced 

in the laminar case. The corresponding turbulent "limit" cp appears to 

be close to 0° for k = 0.20 and would be 0° for k = 0.00. Note that 

in the a = 3.5° case, sp = 2.2° for k = 0.20, Figure 29. Therefore, the 

same conclusion as in the laminar case can be derived from these obser­

vations. Namely, as the amplitude of the free stream fluctuations in­

creases the tendency for all values of i|r, is to suppress the phase 

effects of the angle of attack oscillations, and only the airfoil at a 

constant incidence is "seen" by the free stream. 

Recall that for \jr = 0 the amplitude ratio varied linearly with 

a, Figure 30. The same dependency appears to hold for all values of ty, 

as can be seen from Figure 34. 

Remarks about Drag Superposition 

In an attempt to superpose the drag in a manner similar to that 

for the laminar case the following three cases were considered: 1) 

a = 3.5° with V/V = 1 + a Cos (out), 2) a = 3.5° + 2°Cos fat + to) with o T 

V/VQ = 1, and 3) a = 3.5° + 2°Cosfat + to) with V/V = 1 + a Cos fat). 

Recall that in the laminar case the drag corresponding to the third 

case could be obtained by a superposition of the other two drags. 

It was found that such an approach for the turbulent condition 

results in large errors, especially in the values for the phase. Seve-
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ral conditions were investigated: Re = 1.5x10 , 0.05 <. a ^ 0.20, 

0.00 <, k <. 0.20, and 0 <. ik <. 2-n. The maximum errors in A /A and cp 
T c o T 

were, respectively, 18% and 48%. The fact that the above approach 

was successful under laminar conditions implied some kind of a linear 

behavior for drag. The same cannot be said when the flow is turbulent. 

Reynolds Number Dependency 

f\ f\ fi 

Three values of Re were investigated: 10 , 1.5x10 , and 2x10 , 

with k = 0.20 and V/V = 1 + 0 . 1 Cos(at). Both the constant, a = 3.5°, 
o 

and varying, a = 3.5 + 2 Cos(cot), incidences were considered. The 

results are presented in Table 2. The phase shows a definite dependency 

on the Reynolds number. The amplitude ratio varies slightly with Re 

but a definite trend is absent. Note that for a = 3.5 the phase 

decreases with increasing Reynolds number, a trend that is reverse of 

the one shown for ot = 3.5 + 2 Cos(u)t). The above dependencies are not 

unexpected since the transition points and the eddy viscosity are 

functions of the Reynolds number. Finally, it is noted that McCroskey 

and Philippe's [30] flat plate skin friction phase and amplitude ratio 

distribution also have a Reynolds number dependency. 



T a b l e 2 . Drag Dependency on Reynolds Number 

Re = 10 1 . 5 x 1 0 2 x 1 0 

A /A 
c o 

<P 

0.005715 0.005483 0.005417 

1 0.173 0.174 0.175 

2.6 2.2 2 .0 

a - 3.5° 

k = 0.20 

^ - = 1 + 0 . 1 Cos ( ^ t ) 
o 

A /A 
c o 

9 

I 0.005874 0.005628 0.005465 

1 0,194 0.195 0,188 

6.2 6.6 8.0 

c* = 3 . 5 ° + 2 0 Cos(a , t ) 

k = 0 .20 

~ = 1 + 0 . 1 Cos (yjt) 

N: 
Ln 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

An analytical investigation regarding the unsteady skin friction 

drag of an oscillating airfoil in a fluctuating free stream has been 

performed. First, an approximate unsteady potential flow analysis for 

an airfoil that pitches and/or flaps in a fluctuating free stream was 

developed. The flow was considered to be incompressible and two-dimen­

sional. Further, all oscillations and fluctuations were assumed to be 

small, simple harmonic in time, and to have the same frequency. Next, 

using the resulting pressure distribution the time-dependent boundary 

layer was analyzed with the method of finite differences. The analysis 

allowed for both laminar and turbulent conditions. The skin friction 

thus obtained was then integrated to get the drag. Lastly, several 

parameters associated with the flow problem were varied systematically 

so that their influence on the unsteady drag could be determined. 

Conclusions 

The results of the study indicate that the following conclusions 

can be drawn. 

1. The introduction of fluctuations in the free stream velocity 

alters the skin friction drag considerably by causing significant fluc­

tuations in the drag. Further, 

i) For the range of conditions investigated, the ampli­

tude of the drag fluctuations increases linearly with the amplitude of 
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the free stream fluctuations. 

ii) The phase lead, over the free stream velocity fluc­

tuations, of the drag fluctuations is almost independent of the ampli­

tude of free stream fluctuations for the constant incidence airfoil. 

For the airfoil undergoing oscillations about: a mean angle of attack, 

even the nature of the phase (of the drag fluctuations) variation with 

the amplitude of free stream fluctuations is a strong function of the 

phase difference between the free stream fluctuations and airfoil os­

cillations. An increase in the amplitude of the free stream fluctuations 

suppresses the variations in the phase (of the drag fluctuations) that 

occur due to the changes in the phase difference between the free 

stream fluctuations and airfoil oscillations. The result of such a 

smoothening is, apparently, to reduce the difference between the drag 

phases of the constant incidence airfoil and the one undergoing oscil­

lations about the same constant angle of attack. 

2. In general, a variation in the reduced frequency causes a 

greater percentage change in the phase of the drag fluctuations than 

in their amplitude. Further, for the range of conditions investigated: 

i) For the constant incidence airfoil under laminar 

conditions, Reynolds number ~ 10 , the amplitude of the drag fluctua­

tions increases with the reduced frequency. However, the amplitude of 

the drag fluctuations decreases slightly with an increase in the re­

duced frequency when the constant incidence airfoil is under laminar-

turbulent conditions, Reynolds number ~ 10 . For the airfoil undergoing 

oscillations about a mean angle of attack, even the nature of the am­

plitude (of the drag fluctuations) variation with the reduced frequency 
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is a strong function of the phase difference between the free stream 

fluctuations and airfoil oscillations. 

ii) Under laminar conditions, an increase in the reduced 

frequency tends to make the phase of the drag fluctuations more positive. 

It increases the phase lead over the free stream or diminishes the 

phase lag, if there is a lag to start with. For the laminar-turbulent 

condition, the phase lead of the drag fluctuations increases with the 

reduced frequency when the airfoil incidence is constant. Also in the 

high Reynolds number case, for an airfoil undergoing oscillations about 

a mean angle of attack, even the nature of the phase (of the drag fluc­

tuations) variation with the reduced frequency is a strong function of 

the phase difference between the free stream fluctuations and airfoil 

oscillations. 

3. For the range of conditions investigated, there is a signifi­

cant difference in the phase and amplitude of the drag fluctuations for 

the constant incidence airfoil and the one undergoing oscillations about 

the same constant angle of attack. 

4. For the airfoil undergoing oscillations about a mean inci­

dence, both phase and amplitude of the drag fluctuations are a strong 

function of the phase difference between the free stream fluctuations 

and airfoil oscillations. Depending on the values of this phase dif­

ference, reduced frequency, and amplitude of free stream fluctuations, 

the drag can either lead or lag the free stream velocity. 

5. For the range of conditions investigated, in general, the 

magnitude of the phase of drag fluctuations under laminar conditions, 

Reynolds number ~ 10 , is considerably higher than the value under 
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o 

laminar-turbulent conditions, Reynolds number ~ 10 . The reverse is 

true for the amplitude of the drag fluctuations, the laminar values 

being lower than those under laminar-turbulent conditions. 

6. Consider the following three cases: i) o> - 2 with (~) = 

1 + a Cos (out), ii) <* - 2° + 2°Cos(ojt + ^) with [— J = 1, and iii) a = 

f v \ ° 
2 + 2 Cos(o)t + \|j) with (~J = 1 + a Cos(yjt). Under laminar conditions, 

5 ° 
Reynolds number ~ 10 , for the range of conditions investigated, a 

superposition of the perturbation skin friction drag of the first two 

cases gives the perturbation drag of the third case to within two per­

cent . 

7. Consider the following three cases: i) <y = 3.5 with ( 

1 + a Cos(ajt), ii) a = 3.5° + 2°Cos (ajt + ty) with (—) = 1, and iii) 

/ V \ ° 
a = 3.5° + 2°Cos(yjt + §) with f—] = 1 + o Cos (cut). Under laminar-

° 6 
turbulent conditions, Reynolds number ~ 10 , for the range of conditions 

investigated, the skin friction drag in the third case cannot be obtained 

by a superposition of the other two cases without incurring large errors, 

approximately 207o. 

f. 

8. For the laminar-turbulent condition, Reynolds number ~ 10 , 

both phase and amplitude ratio of the drag fluctuations show a depen­

dency on the Reynolds number. This is unlike the behavior for the la­

minar case, Reynolds number ~ 10 , where the phase and amplitude ratio 

of the drag fluctuations are independent of the Reynolds number. 

9. For all practical purposes, the mean drag coefficient is a 

function of only the Reynolds number. 

10. In general, the effects on the drag of angle of attack 

oscillations and vertical translations are very similar to each other 
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when the mean incidences and the equivalent oscillatory variations are 

the same for both types of motion. 

11. The amplitude ratio of the drag fluctuations obtained from 

the linearized form of Equation (81) differs considerably, by at least 

257o, from the actual value under laminar conditions, Reynolds number 

~ 10 . For the laminar-turbulent condition, Reynolds number ~ 10 , 

the agreement is better. For the constant incidence airfoil the dif­

ference is approximately 15%. However, for the airfoil undergoing os­

cillations about a mean angle of attack, in the higher Reynolds number 

case the two variations are close to each other for a < 0.10. In any 

case, the phase of the drag fluctuations is not at all predicted by the 

linearized form of Equation (81). 

Recommendat ions 

1. Most importantly, the results of the present study should 

be employed in an existing rotor blade stability analysis to determine 

the effect of unsteady drag on the stability of in-plane oscillations. 

2. Probably one of the greatest needs is a comprehensive experi 

mental program to investigate airfoil drag under time-dependent condi­

tions. Such a program would serve to corroborate the results of the 

present analytical study. 



APPENDIX A 

FINITE DIFFERENCE REPRESENTATIONS AND 

DIFFERENCE EQUATIONS 

This appendix contains the difference representations and the 

final difference equations corresponding to the momentum and continuity 

equations. The Crank-Nicolson method is employed for the laminar case 

and a fully implicit scheme is used for the turbulent case. In both 

cases the resulting set of difference equations have a tridiagonal 

matrix form. 

Difference Representations 

Let i,j and m be the indices for |,. T] and T, respectively. In 

the following relations the constants c and d are such that, for the 

laminar case c = d = \ and for the turbulent case c = 1, d = 0. 

m m 
= C 8i +l,j

 + d ^ , j 

m m 
?&. = Vgi+l,i " S:U.i 
3 S ^ 

2s. = 
dT] (1+: . 

i r ^ m m ^ , J ^ m m M 
^ )AH. L e( g i+ i , J + i " 8 i+ i , j - i J + d l 8 t , j+ i • s i , j - i i J 



3JSL = _ 2 

911 

m ,.. . m m 
2 r ( l+r)(AT).)^ L C V 8 i+ l , j+ l ' ^ + r ; g i + l , j r g i + l , j - 1 

+ d(g - a - * > 8 l ) j + r g ^ . ^ 

3T AT L \ s i + l , j 
m 

m - 1 \ , , / m m - 1 

• s i + i J + < V i , j - g i , j / j 

where 

& ? ± = ? i+ i - ?i 

tflj - H - V l 

ATI 

r = 
1+1 

ATI. 
(=1 for the laminar case) 

AT = 
m m m - 1 

Difference Equations 

In both cases the nonlinear terms are linearized by the use of 

previous £ values. For the laminar case this is found to be adequate, 

whereas, an iterative process is required for updating the turbulent 

transport properties. In the laminar case (Crank-Nicolson scheme) the 

independent variable £ i-s evaluated at station (i + —) . For the turbu­

lent case this evaluation is done at station (i + 1). With the prece­

ding difference representations the momentum equation (71) then takes 

the following tridiagonal form 
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m . „ m 
* J < + l , J + l + B

J 8 i + l , j
+ C

j 8 i + l , j - l = D J ( J ^ t o N - 1 ) 

where j=l and j=N are the indices for the wall and the boundary layer 

edge, respectively. For the laminar case the coefficients A., B., C. 

and D. are given by 
J 

A = ^ A m _ _L_\ 

J 4AT] V i,j A V 

'.•(^ft'i^l^Kri^^ 

"AS,- / m i -

c. - — i fh
m . +i) 

J 4AT) \ i,j AV 

/kg \ hh ( m-1 m-l\ . ̂?1 / , m L 1\» 
Dj • l ^ y s ~ l*i+i , j + s i , j ) + 4Al r h i , j + SiX.j+i 

kS J_ - + _i_ \ m 
Ue ATm

 + Bt + f ̂ i . J 

+ A?1 
^fc^k.j-i^5-^^)^ 

+ A ^ ̂ t + E 

where U , 8 and R are evaluated at F = E. and T = T • 
e Hx Ht ^ i m 
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For turbulent flow the coefficients are given by 

ASi 
Aj d+r)ATl . L i , j rAT]. 2(14r)ATlj \ * i+ l , j+ l * i + l , j - l J J 

AS, A5t 

vG? ^ I - . ^ ' W ^ ^ (A\) 
2 *i+l,j 

m 

c =^!t rh» + f i±Li ._ i__ (.» . ^ y 
j d+r)AT|. L i,j A^ 2(l+r)AT)A*i+l,j+l ^i+l.j-l/J 

», • ( 9 5 «&I.J+ «J2+*^t
+o 

wh ere U , B and 6 are evaluated at F = E. and T = T < 
e x Kt * *i m 

Continuity Equation 

A straightforward central difference (at station j) representa­

tion for (z~z) in Equation (70) would give h at odd or even points (in 

the j direction) but not both. This problem is taken care of by apply­

ing the central difference formula at station (j + ~) instead. Repre­

senting Equation (70) in finite difference form at station (i + — ) , 

(j + j) gives 

, m /, m , m , m \ h-_Li ._LI = h- ,i . " h. ,. M + h. . + B ATI. ,-, 
i+l,j+1 V i+l,J i,j+l i,j/ pt * 'j+1 
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- 4 ( P K + ') A V l (S i+l, j+ l + 8 l + l , j
+ 8 i , j + 1

+ 8 l , J 

/ m rn m m 

" § A^ " ^ 8 i + l , j + l ~ 8 i , j + l + 8 i + l , j ~ 8 i , j 

where F, B and 8 are evaluated at stat ion (i + ~) and T = T . 
^ x t 2 m 
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APPENDIX B 

STAGNATION POINT FINITE DIFFERENCE EQUATIONS 

This appendix contains the difference equations corresponding to 

Equations (77) and (76). The finite difference formulae used are given 

in Appendix A. 

The following tridiagonal form is obtained for Equation (77) 

Aj S3+l + Bj 8J + Cj Vl = °j (J=2 t0 N_1) 

where j=l and j=N are the indices for the wall and the boundary layer 

edge,respectively. The coefficients A., B., C. and D. are given by 

A3 2AT1 (
hj " ATI 

B. - ~ - + (O + 8? + j AATm \"Uo *j ( }2 

i ^ . » + n Cj = " 2AT1 lhj ' A V 

D. .JE- g1""1 + f a ) + 1 

j AArm
 s2 v p

t ; o 

where A and (& ) are defined by Equations (74) and (75), respectively. 
o 

The continuity equation (76) with central difference at station 
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(J + J) gives 

h - h . + A11 KO 
m i 

MJ 
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