
computer programs

1320 http://dx.doi.org/10.1107/S1600576716008165 J. Appl. Cryst. (2016). 49, 1320–1335

Received 25 January 2016

Accepted 19 May 2016

Edited by F. R. N. C. Maia, Uppsala University,

Sweden

1This article will form part of a virtual special

issue of the journal on free-electron laser

software.

Keywords: single-particle imaging; X-ray free-

electron lasers; XFELs; expand–maximize–

compress reconstruction algorithm.

Supporting information: this article has

supporting information at journals.iucr.org/j

Dragonfly: an implementation of the expand–
maximize–compress algorithm for single-particle
imaging1

Kartik Ayyer,a Ti-Yen Lan,b Veit Elserb and N. Duane Lohc,d,e*

aCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg,

Germany, bLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA, cCentre for Bio-

imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore, dDepartment of Physics,

National University of Singapore, 2 Science Drive 3, 117551, Singapore, and eDepartment of Biological Sciences,

National University of Singapore, 14 Science Drive 4, 117557, Singapore. *Correspondence e-mail:

duaneloh@nus.edu.sg

Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to

change fundamentally how biomacromolecules are imaged. The structure would

be derived from millions of diffraction patterns, each from a different copy of

the macromolecule before it is torn apart by radiation damage. The challenges

posed by the resultant data stream are staggering: millions of incomplete, noisy

and un-oriented patterns have to be computationally assembled into a three-

dimensional intensity map and then phase reconstructed. In this paper, the

Dragonfly software package is described, based on a parallel implementation of

the expand–maximize–compress reconstruction algorithm that is well suited for

this task. Auxiliary modules to simulate SPI data streams are also included to

assess the feasibility of proposed SPI experiments at the Linac Coherent Light

Source, Stanford, California, USA.

1. Introduction

The Single-Particle Imaging Initiative (Aquila et al., 2015) at

the Linac Coherent Light Source (LCLS; Stanford, California,

USA) is working towards single-particle imaging (SPI) of

large biomolecules to 3 Å resolution. To prepare for a future

where SPI is routine, we are making available a software

package that will make this new imaging modality accessible

to a broad user base.

The defining characteristics of an SPI experiment are now

well known (Neutze et al., 2000): the aim is to collect indivi-

dual noisy diffraction patterns from very many reasonably

identical copies of a particle, injected with unknown orienta-

tions into a pulsed X-ray beam. The expand–maximize–

compress (EMC) algorithm (Loh & Elser, 2009) was devel-

oped specifically for processing SPI data sets. It was designed

to take advantage of all the available information in these

experiments, while also scaling well computationally. To

obtain a better sense of the information-processing advan-

tages of EMC, we briefly contrast it with two alternative

methods that have been proposed.

Manifold embedding methods (Fung et al., 2008; Schwander

et al., 2012) try to find a consistent set of particle orientations

by identifying pairs of similar diffraction patterns that estab-

lish an adjacency network for embedding into the space of

orientations. Nowhere does this method impose consistency

between the many more pairs of diffraction patterns that are

not similar. By contrast, EMC imposes consistency between

each diffraction pattern and a three-dimensional intensity
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model built from a tentative orientation reconstruction of all

the patterns.

Intensity cross-correlation methods offer another approach

for deriving structure from un-oriented particle ensembles

(Kam, 1977; Saldin et al., 2010; Donatelli et al., 2015). These

methods work best when the X-ray flux passes through the

fewest number of particles. However, in the single-particle

limit these methods work at an enormous information deficit

relative to EMC. This is because EMC uses the correlated

arrangement of all 100–1000 photons in a typical diffraction

pattern, rather than just the correlations between pairs.

While EMC is just beginning to be used for SPI of bio-

particles, it has been field-tested in a number of proof-of-

principle experiments (Loh et al., 2010; Philipp et al., 2012;

Ayyer et al., 2014; Ayyer, Philipp et al., 2015; Ekeberg et al.,

2015; Wierman et al., 2016). The most significant feature of

these experiments is the demonstration that EMC’s prob-

abilistic modeling of the detector photon counts continues to

be valid even when the counts per scattering pattern are

extremely sparse. Recording highly sparse data, with the hope

that they reveal structure, will require a leap of faith on the

part of structural biologists. Our EMC-based software

package comes with tools to make that leap less blind for new

users.

2. Purpose and structure of Dragonfly

This software package was named Dragonfly, since the

compound eyes of a dragonfly allow it a wide field of view and

reputedly good vision for catching prey. It uses the EMC

algorithm to reconstruct a three-dimensional diffraction

volume from noisy randomly oriented SPI diffraction patterns.

These patterns could be from simulations or actual SPI

experiments. Although this package includes a data-stream

generator that feeds simulated data into the EMC recon-

struction algorithm, the algorithm can also take data from

physical experiments, as long as the input/output formats

specified here are used.

2.1. Key parameters in single-particle imaging

The key parameters of an SPI experiment are illustrated in

Fig. 1. They include the photon wavelength � and the

maximum scattering angle ’max. These parameters determine

the half-period resolution a of the reconstructed electron-

density map. Together with the beam fluence, these para-

meters can help one decide if a candidate scatterer can yield

enough diffraction signal to the desired resolution. These

parameters are revisited in x2.5.1.

Throughout this document, we adopt the crystallographers’

convention for the spatial frequency:

bqq ¼
2 sinð’max=2Þ

�
: ð1Þ

A corrective factor is applied to compensate for different solid

angles subtended by different pixels on the detector

(Appendix B).

2.2. Reconstruction workflows in Dragonfly

Whether the diffraction patterns are derived from simula-

tions (Fig. 2) or experiments (Fig. 3), the minimum inputs to

Dragonfly are a configuration file, a file containing detector

coordinates plus pixel status, and a sparse representation of

the photon data from diffraction patterns.

Modules and utilities within the Dragonfly package can be

replaced by alternatives with compatible input and output

data formats with other modules. In this package, binary files

have extensions *.bin or *.emc; plain text files terminate with

*.log, *.dat or *.ini.

2.3. Implementing the EMC algorithm

The EMC algorithm (Loh & Elser, 2009) is an iterative

reconstruction algorithm. It is implemented here with hybrid

MPI+OpenMP (message passing interface + open multi-

processing), and hence is suitable for both shared and

distributed memory systems. In this section, we describe this

implementation and an extension to deal with high-signal

data.

computer programs

J. Appl. Cryst. (2016). 49, 1320–1335 Kartik Ayyer et al. � Dragonfly 1321

Figure 1
(a) The experimental geometry of single-particle imaging adopted in the
data-stream simulator. (b) This simulator implements a planar square
detector comprising d � d square pixels, each of area l2D. The detector is
positioned at zD from the X-ray interaction region, where (c) the scatterer
(depicted here as a sphere of radius Rp) is typically an electron-density
map sampled from a Protein Data Bank file. From these, one can compute
the maximum scattering angle captured by the detector, subtended by
grey triangles in part (a) to either the edge or corner of the detector.
Here, we take this maximum angle ’max as the latter. Combined with the
incident photon wavelength �, this allows us to determine the half-period
resolution, a, from the detector’s edge, which is equivalent to the length of
the voxel (red) in the reconstructed electron-density map.



In the current version, the code assumes a Poisson prob-

ability model for the number of photons in a pixel. Gaussian

noise models have been used in situations with bright but

noisy data (Loh et al., 2010; Ekeberg et al., 2015), but if single

photons can be accurately counted, the noise model will be

Poissonian.

We consider the Poisson noise model for a set of three-

dimensional intensities W. Let the number of photons at pixel

number t in a two-dimensional data frame (interchangeably

termed photon/diffraction pattern) d be Kdt, and for a given

orientation r the predicted mean intensity at the same pixel be

Wrt. Since an independent Poisson process occurs at each

pixel, the probability of that pattern being generated by a

tomogram Wr is

Rdr ¼
Y

t

W
Kdt
rt exp �Wrtð Þ

Kdt!
: ð2Þ

But, since the particle must have some orientation, the

probability of frame d having orientation r is obtained by

normalizing over all orientations:

Pdr ¼
RdrP
r

Rdr

: ð3Þ

With these probabilities, one can define the model log-like-

lihood as the expectation of the total log-likelihood of the data

being generated by a new model W 0
rt:

QðW 0;WÞ ¼
X

d

X

r

X

t

Pdr Kdt log W 0
rtð Þ �W 0

rt

� �
; ð4Þ

neglecting a model-independent constant. Maximizing Q with

respect to the new model intensities W 0
rt gives us the update

rule

Wrt ! W 0
rt ¼

P
d

PdrKdt

P
d

Pdr

: ð5Þ

The most time-consuming step of each iteration is the calcu-

lation of equation (2). This involves comparing all the tomo-

grams with all the patterns for each pixel which has at least

one photon. The code is parallelized over orientations, so each

MPI and OpenMP rank performs the calculation for a subset

of orientations. At the start of the iterations, each MPI rank

gets a copy of the current three-dimensional intensity model

W. Each MPI and OpenMP rank then calculates the relevant

tomograms, Wrt, as needed and then computes Rdr for that

orientation using equation (2). Subsequently, these Rdr are

reduced synchronously across all ranks for the normalization

operation of equation (3). The resultant normalized Pdr array

is used to calculate updated tomograms for each r, and then

merged to obtain an updated three-dimensional model for

each MPI rank. These models are finally reduced to obtain an

updated model W0.

In many experimental situations, the incident fluence varies

between X-ray pulses. Thus, the tomograms would be scaled

differently for each pattern (Loh et al., 2010; Ekeberg et al.,

2015). One can enable the recovery of these scale factors using

the update rule described in Appendix C.

We also find that, if the signal on each pattern is too strong,

and when the rotation group sampling is too fine or the data

are too few, reconstructions can get stuck in a local maximum

in which all frames are assigned to far too few orientations in

reciprocal space. This effect is similar to what is observed if the
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Figure 3
Dragonfly flowchart to process experimental data in sparse format.
Information about the experimental parameters is placed in the
configuration file config.ini and the detector geometry is in
detector.dat. The formats of all three input files are described in x2.5.
Notice that the difference between this workflow and that shown in Fig. 2
is in how the data are generated.

Figure 2
Dragonfly flowchart to simulate a data set and perform a reconstruction
starting from a sample PDB file and a configuration file, config.ini, with
information about the experimental setup. Input and output are shown as
text, and modules as blue boxes. The large white rectangle defines the
data-stream simulator.



background is too high (Ayyer, Geloni et al., 2015). However,

such reconstructions are empirically stable around the true

solution, W true, and only get trapped when one starts from

random initial guesses. This problem can be avoided by using

the deterministic annealing variant of expectation maximiza-

tion (Ueda & Nakano, 1998). In the EMC case, this is

implemented by raising Rdr calculated in equation (2) to a

small power � and then normalizing as in equation (3): Pdr =

R
�
dr=

P
r R

�
dr. Doing this has the effect of broadening the

orientation distribution and results in a rotationally blurred

but stable reconstruction. Once the intensities of a metastable

model have been resolved, the power � can then be raised

gradually in a manner similar to simulated annealing, to guide

the reconstruction slowly to the true global maximum around

W true. An example of this is shown in x3.2.2 and elaborated in

Appendix F.

2.4. Software modules and convenience utilities

The modules and utilities here are written in the program-

ming languages C or Python (files with *.py extensions). For

the system requirements to run the code, see x5.

2.4.1. Simulation modules of data-stream generator. Here

we list the essential modules for simulating a data stream from

an SPI experiment. By default, these modules use parameters

listed in a single config.ini configuration file (detailed in

x2.5.1), although different modules can use different config-

uration files as well. These modules can be either executed by

the user or invoked by the convenience utilities described in

x2.4.3. Users attempting the former are encouraged to study

how these convenience utilities call the underlying modules.

(i) make_detector.py. Creates a detector file using the

experimental parameters specified in the configuration file.

The format of this file is specified in x2.5.2.

(ii) make_densities.py. Creates an electron-density map

from an atomic model in the Protein Data Bank (PDB)

format, given the resolution and field of view calculated from

the configuration file. A low-pass filter is applied to this

electron-density map to effect the intensity fall-off of atomic

form factors.

(ii) make_intensities.py. Creates a set of three-dimen-

sional diffraction intensities from an electron-density map and

the experimental parameters found in the configuration file.

(iv) make_data. Simulates a sparse photon diffraction

pattern using a three-dimensional diffraction volume (e.g. the

one generated by make_intensities.py) and the configura-

tion file. By default these photon data are saved as a binary

file, photons.emc, detailed in x2.5.3. One can include a

pattern-wise Gaussian spread in the incident fluence on the

particle, as well as a uniform background.

2.4.2. The EMC executable. This executable reconstructs a

three-dimensional diffraction volume from SPI data and is at

the heart of the Dragonfly package. From Figs. 2 and 3, we see

that data from either simulation or experiment workflows all

converge into this EMC executable.

Internally, EMC creates a list of quasi-uniform rotation-

group samples based on a refinement scheme of the 600 cell,

detailed in Appendix C of Loh & Elser (2009). This level of

refinement is defined by the num_div parameter in

config.ini.

This EMC executable is implemented in the programming

language C, using both the MPI and OpenMP parallelization

frameworks. This hybrid implementation means that the user

could choose to activate either or both types of parallelization.

For example, one could run five iterations of a single-threaded

single-process reconstruction using the command

./emc -t 1 5; omitting the -t 1 option uses the maximum

available number of threads under OpenMP, typically speci-

fied by the shell variable OMP_NUM_THREADS. For a pure MPI

version with 16 processes on the same node, the command is

mpirun -np 16 ./emc -t 1 5. Finally, to run a hybrid version

with the maximum available number of threads on six nodes,

the command is mpirun -np 6 -H <hostnames> ./emc 5,

where <hostnames> is a comma-separated list of node names

on which the MPI process would run. Note that with

OpenMPI 1.7+ one should use the --bind-to none option to

make sure all cores in a thread are used. Different bindings

may be available on different architectures.

2.4.3. Convenience utilities. Several convenience utilities

are included to help prepare the data for or to view the results

from the EMC reconstruction algorithm. The functions of

these utilities, which are non-essential for the reconstruction

and can be easily substituted, are briefly described here.

(i) init_new_recon.py. This Python utility compiles the C

executables in the package, and makes them and the rest of

the utilities available in a newly initialized reconstruction

subdirectory. This utility calls the included Makefile that

users can modify to customize this compilation.

(ii) sim_setup.py. This Python utility simulates an SPI data

stream and calls modules listed in x2.4.1 – make_

densities.py, make_intensities.py and make_data.py –

subject to the configuration file parameters listed in x2.5.1.

(iii) make_powder.py. Makes a virtual powder pattern from

all the diffraction patterns stored in the sparse photon format

described in x2.5.3.

(iv) run_emc.py. Starts the EMC reconstruction by calling

the EMC executable (see x2.4.2). Includes a few convenience

operations, like increasing the sampling of the rotation group

and/or continuing from a previous reconstruction.

(v) autoplot.py. Renders the results of the EMC recon-

struction, including the diagnostics it generates, with the

option of automatically updating the plots when newer

intensities become available.

(vi) frameviewer.py. Viewer utility that plots the indivi-

dual sparse photon files stored in the EMC format as they

were measured on a planar detector (see x2.5.3).

2.5. Input and output to Dragonfly

Here we specify only the input and output for the experi-

mental workflow outlined in Fig. 3. The formats for the data-

stream generator workflow in Fig. 2 are auxiliary to the

reconstruction algorithm and are only detailed in the distrib-

uted software package.
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2.5.1. Configuration file. The plain-text configuration file

contains parameters and file names to be used by the EMC

reconstruction as well as by the various modules/utilities. The

file has the standard key = value format, with the parameters

for different modules grouped by module names in square

brackets. There is a global [parameters] section containing

information about the experimental setup. A typical config-

uration file is shown in Fig. 4, which corresponds to the first

simulation case in Table 1. This default file also shows the use

of special keywords used to point to other configuration-file

parameters (e.g. in_photons_file). The [parameters]

section is described below. For other sections, refer to the

appropriate module in x2.4.

The basic parameters of the experiment are as follows. Note

that the fields with asterisks are only used in the data-stream

simulator.

(i) detd: detector distance in mm.

(ii) lambda: wavelength in Å.

(iii) detsize*: detector size (assuming a square detector) in

pixels.

(iv) pixsize: pixel size in mm.

(v) stoprad*: radius of the beamstop in pixels.

(vi) polarization: polarization direction of the X-ray

pulses (can be x, y or none).

2.5.2. Detector file. The detector file is an ASCII (human

readable) file which describes various properties of the

detector. This file can be generated by make_detector.py as

described in x2.4.1, or manually elsewhere.

The first line of this detector file specifies the number of

pixels. Subsequently, individual pixels are described by five

columns of numbers, with one pixel per line. The first three

columns give the three-dimensional coordinates of the

detector pixel in voxel units, where the voxels refer to the

three-dimensional grid containing the intensity model. The

mapping of detector pixels to spatial frequencies is described

in AppendixD, and the pixel’s absolute size is specified by the

pixsize field in the configuration file. The fourth column gives

the product of the polarization (see polarization field in the

configuration file) and solid-angle corrections for that pixel

(Appendix B). The last column is an eight-byte unsigned

integer whose value is used by the EMC code and by other

utilities to categorize the pixel. Currently, three pixel cate-

gories are implemented:

[0]: good pixels, used to determine the orientation of a

given pattern and updated into the new intensity model.

[1]: these pixels will not be used to determine the orien-

tation, but will still be merged into the three-dimensional grid

using the orientations calculated from category 0 pixels. These

are usually pixels in the corners of the detector.

[2]: bad pixels, which are either dead pixels or pixels within

the beamstop. Their values will be used neither to determine

the orientation nor to calculate the merged three-dimensional

intensities.

Multiplying a data frame by these pixel categories removes

good pixels, thus ‘masking them out’. Pixel categorization

computer programs
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Table 1
Parameters for EMC reconstructions of simulated single-particle imaging.

AMO (low) CXI AMO (high)

Photon energy (keV) 2.0 7.0 2.0
�, photon wavelength (Å) 6.2 1.77 6.2
zD, detector distance (mm) 300 350 290
d, detector size (pixel) 150 150 150
lD, pixel side length (mm) 0.512 0.751 0.512
L, full field of view (nm) 363 82.4 351
Beamstop radius (pixels) 10.0 8.0 10.0
Fluence (photons mm�2) 1 � 1010† 1 � 1012 3.1 ��� 1012

a, half-period resolution‡ (nm) 2.45 0.56 2.5
Particle KLH1§ TMV} KLH1§
Mass (MDa) 7.3 1.3 7.3
Rp, particle radius (nm) 18.9 9.3 18.9
eRR††, dimensionless radius 7.7 16.6 7.6
�, speckle sampling‡‡ 9.6 4.45 9.2
N, mean photons per frame 90 90 2.8 ��� 104

No. of data frames 3 � 105 5 � 105 1 � 105

Max. quaternion sampling§§ 9 16 9

† Estimated from Fig. 4 in the paper by Loh et al. (2013). ‡ Resolution defined from
the detector edge. § Keyhole limpet haemocyanin 1. } Four-layer tobacco mosaic
virus. †† Dimensionless radius, Rp/a. ‡‡ Defined as eRR ¼ L =ð2RpÞ. See Appendix
A. §§ The sampling and criterion are defined in Appendix C and Section VII of Loh &
Elser (2009), respectively.

Figure 4
A typical configuration file, describing various parameters used to
perform a basic simulation and reconstruction using the KLH1
(4BED.pdb) molecule on the AMO beamline. These parameters are to
be compared with the numbers in Table 1.



provides flexibility to users. For example, the beamstop(s) or

gaps in the planar detector could be entirely omitted in a

detector file that only contains the locations of good pixels.

Alternatively, beamstop/gap pixels could be labeled ‘bad’

(category 2) if one uses a packed rectilinear set of pixel

positions. This second approach allows the user readily to

revise the pixel categories in an existing detector file.

Although the pixels from the data-stream simulation

included here correspond to a dense planar detector (Fig. 1),

these pixel locations can be arbitrary. However, a rule of

thumb for SPI is that the locations of these pixels, though

arbitrary, should evenly populate a contiguous range of scalar

spatial frequencies up to the desired resolution. This way,

sufficiently many patterns that are oriented uniformly in

orientation space and measured on these pixels should densely

fill the desired three-dimensional diffraction volume.

Finally, we emphasize that the ‘spatial frequency lookup

table’ format of this detector file is convenient for compound

detectors with gaps or missing tiles, or comprising tiles placed

at different distances from the sample. In these cases, a special

geometry consideration becomes unnecessary once the pixels

on these non-contiguous detectors have been mapped onto

the Ewald sphere in the detector file. Mapping to spatial

frequencies in detector.dat is straightforward if a pixel

location lookup table similar to that used by Barty et al. (2014)

is available.

2.5.3. Photon file (EMC format). Since the photon data in

many high-resolution SPI experiments expect few photons per

pattern, a sparse binary format is used to store the data.

Hence, for each pattern we only store information about pixels

that receive photons. Additionally, since most of the non-zero

counts are ones, only their pixel locations are stored. For

pixels receiving two or more photons, we store both their pixel

location and their photon count.

The data in the photon file are arranged in six blocks (Fig. 5).

The file’s header resides in the first block, which is 1024 bytes

long. This begins with two four-byte chunks: a 32-bit integer

describing the number of patterns (num_data) contained in

the file, followed by another 32-bit integer for the number of

pixels in each pattern. These pixels include all three pixel

categories stated in x2.5.2. The next 1016 bytes are currently

unused and are filled with zeros.

The second block contains num_data 32-bit integers giving

the number of one-photon events in each pattern (ones). The

third block contains num_data integers giving the number of

multi-photon events (multi). The total number of single-

photon events in all the patterns is the sum of all the numbers

in the ones array (So). Similarly, let Sm be the total number of

multiple-photon events. The fourth block contains So 32-bit

integers giving the locations of the single-photon pixels. The

fifth block has Sm integers with the locations of the multiple-

photon pixels. Finally, the sixth block has Sm 32-bit integers

giving the number of photons in each of those multiple-photon

pixels.

To become familiar with this EMC photon format, the

reader is encouraged to examine the frameviewer.py utility

in this package (listed in x2.4.3) and its output.

2.5.4. Output intensities. The output three-dimensional

intensities from the EMC executable in the workflows of Figs. 2

and 3 are saved as dense row-major order binary native-

endian files (64-bit floating point), numbered according to the

iteration number in the reconstruction. When one restarts a

previous EMC reconstruction, the EMC executable will

assume that the last iteration was the largest numbering

suffixed on the file names of these intensities.

3. Example reconstructions of simulated experiments

The use of the Dragonfly package is exemplified in three

simulated SPI reconstructions using the specifications of the

atomic, molecular and optical science (AMO) (Ferguson et al.,

2015) and coherent X-ray imaging (CXI) (Liang et al., 2015)

endstations at the LCLS (Emma et al., 2010). We chose to

simulate SPI of the keyhole limpet haemocyanin 1 (KLH1)

didecamer (Gatsogiannis & Markl, 2009) and four-layer

tobacco mosaic virus (TMV) (Bhyravbhatla et al., 1998) on the

AMO and CXI beamlines, respectively. It is notable that the

choices in Table 1 yield an average of about 100 photons per

single-particle diffraction pattern (pixel categories 0 and 1).
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Figure 5
Six blocks in the sparse binary data format for 50 patterns. The data are
stored contiguously but shown here in row-major format (i.e. to be read
from left to right, then down the rows). Each square represents a 32-bit
integer. The two integers in the header block are the number of patterns,
followed by the number of pixels in the detector. The colors in blocks
three to six connect listings of the same pattern. Details given in x2.5.3.
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Figure 6
Convergence of diffraction speckle features in a simulated AMO single-particle experiment (parameters listed in Table 1). In each row we render central
slices of the three-dimensional diffraction intensities recovered from KLH1 during an EMC reconstruction, after one, ten, 20 and 50 iterations in
ascending row order. (Bottom row) Additional diagnostics on the reconstructed three-dimensional diffraction model. (Left) The r.m.s. change in the
three-dimensional model. (Middle) Mutual information and log-likelihood of the model. (Right) The most likely orientations of all the patterns.



Pattern-to-pattern intensity scaling was turned off in both data

simulations and reconstructions.

The simulation parameters are shown in Table 1. The

detectors here have 150 � 150 pixels, with the pixel sizes

chosen to emulate a 1024 � 1024 pixel pnCCD (Strüder et al.,

2010) and CSPAD (Philipp et al., 2011; Hart et al., 2012). We

decreased the beam fluence to obtain mean photon countsN’

90 (the sum of pixel categories 0 and 1) for the first two

simulations, mimicking realistic losses from imperfect beam

transmission, optics and cleanup apertures (Loh et al., 2013).

The third simulation of Table 1 was designed to demonstrate

how deterministic annealing can deal with the convergence

issues caused by a very high signal (see end of x2.3 and

Appendix F2). In this case, most of the parameters were

identical to the low-fluence AMO case, except the fluence was

up-adjusted to receive 1 mJ X-ray pulses, which is within an

order of magnitude of the design specifications (Emma et al.,

2010).

For data sufficiency we use the signal-to-noise ratio para-

meter defined in equation (37) of Loh & Elser (2009),

S ¼
NMdata

Mrot

� �1=2

; ð6Þ

to estimate the required number of data frames Mdata for S ’

50, where Mrot is the number of quasi-uniform rotation

samples and N is the mean photon count per pattern.

Assuming the diffraction patterns are uniformly distributed in

orientation space, S2 can be interpreted as the average number

of photons per orientation.

3.1. Diagnostics on simulated reconstructions

In this section, we describe useful diagnostics for moni-

toring the progress of each three-dimensional reconstruction.

Figs. 6, 7 and 8 show orthogonal slices through the recon-

structed intensities for the three parameter sets in Table 1.

Below each figure is a set of plots generated by the

autoplot.py utility, which helps to visualize these diagnostics.

We discuss these diagnostics starting with the AMO

reconstruction in Fig. 6, which consistently converges from

random restarts. With each new reconstruction attempt,

diffraction speckles converge readily, although each time at a

different overall orientation.

3.1.1. R.m.s. change in the three-dimensional model. The

root mean-squared (r.m.s.) change per voxel between the

three-dimensional intensity models from successive iterations

in Fig. 6 is a straightforward indicator of convergence. Model

changes decrease as the algorithm converges. Note that a

converged model might not always be the solution (see

Appendix F1).

3.1.2. Mutual information between model tomograms and

data. An additional diagnostic is the ‘sharpness’ of the prob-

computer programs
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Figure 7
Rotation-group refinement for a simulated reconstruction of TMV on the CXI endstation (see Table 1). Shown here are the central sections of the
reconstructed three-dimensional diffraction volume of TMVafter 55 iterations. With 90 Intel Xeon X7542 (2.67 GHz) cores, this full reconstruction took
less than 6 h, taking 15 min for each of the slowest refinement iterations using 204 960 rotation-group samples. Red dashed lines in the r.m.s. model
change mark when the refinement level of the rotation group was increased by one. In the bottom right-hand plot, rows are colored by each photon
pattern’s most likely orientation number, which stabilizes after 20 iterations and thereafter quickly re-stabilizes when we increase the rotation-group
refinement. The rows (pattern indices) are sorted according to the most likely orientation indices of the last iteration in each rotation-sampling block,
which produces a smooth color spectrum along this final column. Since the number of quaternions (quat) increases with rotation refinement, blocks of
higher refinement show a wider color spectrum. See x3.2.1 for details.



ability distribution over orientations Pdr calculated in equa-

tion (3), which one expects to increase as a reconstructed

model converges. This sharpness can be monitored from the

mutual information of the joint distribution of the data and

the orientations, P(K, �) = P(�)P(K | �) = PrPdr. Here, Pr is

the prior probability of orientations r (assumed here to be

uniform). The mutual information between the data and the

tomogram of orientation � given the current model W is

evaluated as

IðK;� j WÞ ¼
P
r

Pdr log Pdr=Prð Þ

� �

d

; ð7Þ

where h� � �id is the average over data frames. Equation (7)

approaches the entropy of the rotation-group sampling when

each pattern fits only one orientation, while it vanishes for a

uniform distribution.

The fact that this mutual information rises asymptotically in

Fig. 6 (center of bottom panel, top plot) is consistent with

model convergence. Below it is a plot of the model log-like-

lihood defined in equation (4). This quantity should increase

monotonically as the three-dimensional model eventually

converges, although transiently high values may be consistent

with EMC over-fitting patterns to low-likelihood early models

(see Figs. 6 and 7).

3.1.3. Average log-likelihood of patterns given a model.

The previous two diagnostics largely indicate if a model’s

reconstruction has converged and offer less information about

whether the model is ‘likely’. Here we introduce a third

diagnostic, the log-likelihood of all the data patterns given the

current three-dimensional model, as computed in equation

(4). This likelihood quantifies how an iterative reconstruction

approaches a global likelihood maximum. This diagnostic is

plotted in the bottom panel of the middle columns in Figs. 6, 7

and 8. Again, note that a likely model might not always be the

true solution (see Appendix F1).

3.1.4. Most likely orientations of each pattern. We describe

the most detail-rich and possibly revealing diagnostic for

monitoring convergence. Consider the matrix plot in the

bottom rightmost panel of Fig. 6: its vertical axis labels the

pattern number while the horizontal axis labels the iteration

number. The color rendered represents the orientation

number of the most likely orientation (maximum Pdr) for each

pattern. In Fig. 6 we sorted the patterns by the most likely

quaternion in the final iteration of each block having the same

rotation-group sampling. As a result, the colors at the right-

hand end form a smooth spectrum and the pattern numbers

differ between rotation-sampling blocks. The variation in

color along a row indicates how the most likely orientation has

changed for that pattern. The patterns settle into their most

likely orientations when these colors become constant with

iteration, which is a good indicator of convergence.

This diagnostic is also useful for cases when the rotation-

group sampling is increased steadily (i.e. Fig. 7). For each

iteration block where the rotation-group sampling is fixed, we

sort the patterns (rows in this orientation plot) such that the

last iteration in the block has ascending orientation numbers.
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Figure 8
Deterministic annealing in a simulated reconstruction on the AMO endstation with high photon fluence (see Table 1). This reconstruction was
performed by doubling the � parameter (x3.2.2) every ten iterations, starting from � = 0.001. Doublings occur at the dashed black lines in the diagnostic
plots in the bottom row, where the ten-iteration interval was chosen to allow the intermediate reconstructions to stabilize. This stabilization can be
judged by the asymptotic saturation of the average mutual information in every � block. After 80 iterations (� = 0.256), this increase was stopped as there
did not seem to be much further improvement in the average mutual information. After this, the rotational sampling rate was increased from six to the
target of nine. As in the CXI reconstruction (Fig. 7), this was done in order to save computational time by doing fewer iterations at the highest sampling.



However, whereas the pattern index is constant within each

block, they differ between rotation-group sampling blocks

because each block is sorted separately.

3.2. Strategies for reconstruction

3.2.1. Gradually increasing rotation-group sampling. For

the CXI reconstruction (Fig. 7), owing to the size of the

problem, the quaternion sampling number was increased in

steps. If one chooses too coarse a rotation-group sampling,

low-resolution speckles are reconstructed but higher-resolu-

tion features remain blurry. These higher-resolution speckles

sharpen quickly when we increase the rotation-group

sampling for reconstructions starting from this blurry model.

Since the computation time scales as the number of rotation-

group samples, it is faster to increase rotation-group sampling

gradually such that only a few iterations are performed with

the most time consuming but finest sampling. Red dashed lines

in the bottom plots of Fig. 7 indicate iterations where the

rotation-group refinement level was increased gradually from

ten to 16 (details in Table 1). Note that the mutual information

does not increase much in the last rotation-group refinement,

indicating that further refinement would not substantially

improve the model likelihood. The Python utility run_emc.py

listed in x2.4.3 has a -R option for increasing the level of

rotation-group sampling of a reconstruction by one. In

general, we found good results when manually increasing this

sampling, once the changes in speckle features have visibly

converged.

3.2.2. Regularization via deterministic annealing. The high-

fluence AMO reconstruction (Fig. 8) assembles patterns of

very high signal-to-noise ratio. Hence, starting the algorithm

from random initial models can cause the iterative recon-

struction to behave erratically (see Appendix F). This can be

avoided by starting with a low �, as described in x2.3, which

reduces the propensity for erratic updates between EMC

iterations. In this particular case, � was 0.001 for the first ten

iterations. Once this intermediate reconstruction converged,

we gradually doubled � every ten iterations to restore the

speckles to the highest contrast allowable by the data and

likelihood model. The black dashed lines in Fig. 8 represent

the iterations when � was doubled. After 80 iterations, the

rotation-group refinement level was increased from six to nine,

and continued for another ten iterations (see x3.2.1 for rota-

tion-group refinement). It is evident in Fig. 8 that the speckle

features in the reconstructed intensities sharpen when � rises

back near unity.

In the software package, one can either increase �manually

after a few iterations and restart the reconstruction, or use the

hidden option beta_schedule in config.ini. This second

option takes two whitespace-separated numbers, beta_jump

and beta_period; � is multiplied by a factor of beta_jump

every beta_period iterations.

4. Conclusions and future work

Future work can be divided broadly into the two main use

cases, namely simulations and experimental data. For simu-

lations, we plan to include support for non-uniform back-

ground distributions, both for data generation and to be used

as a priori knowledge during the reconstruction. We also plan

to include realistic distributions for incident fluence fluctua-

tions. One significant challenge in single-molecule imaging is

the heterogeneity of the particles between patterns. For

particles with a few conformation classes, one can reconstruct

multiple three-dimensional model intensities simultaneously

by solving for both the orientation and the class index (Loh,

2012). We plan to implement this for both the data-generation

pipeline and the EMC code.

To deal with experimental data, we will add utilities to

convert current experimental data to the sparse emc format.

Similar utilities will be provided to generate detector files from

a variety of formats currently employed to describe the

experimental geometry. The ability to deal with a known

structured background, mentioned above, would also be

valuable for experimental data: the user would be able to

provide a measured ‘background file’ to the reconstruction

code. There are also plans to incorporate single-particle

reconstruction while learning and rejecting an initially

unknown background (Loh, 2014).

5. Access to EMC

The source code for this software package can be downloaded

from http://duaneloh.github.io/Dragonfly/ and is distributed

under the terms of the GNU General Public License (GPL,

Version 3; http://www.gnu.org/licenses/gpl). Instructions to run

a basic simulation are available in the README file available

with the repository. In addition, one can find detailed up-to-

date documentation in the repository wiki accessible at http://

github.com/duaneloh/Dragonfly/wiki. This wiki includes

descriptions of all the options available for each of the

modules and utilities supplied in the package.

The modules and utilities are written in C and Python 2.7.

The C files require the following libraries to compile: mpi,

openmp and the GNU Scientific Library (http://www.gnu.org/

software/gsl). The Python files need Python version 2.7.x to

run, and the non-standard libraries NumPy and SciPy (http://

www.scipy.org).

APPENDIX A
Computing speckle sampling on the detector

We use a spherical approximation to estimate the size of

diffraction speckles from a scatterer. A sphere of radius Rp

produces diffraction intensities

IðeqqÞ ¼ sinðeqqÞ �eqq cosðeqqÞ
eqq3

����
����
2

; ð8Þ

with dimensionless spatial resolution eqq ¼ 2�bqqRp, where we

definebqq = 2sin(’/2)/� as the spatial frequency commonly used

in structural biology. Here, ’ and � are the scattering angle

and photon wavelength, respectively (see Fig. 1). The width of
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a diffraction speckle of this spherical approximation is the

separation in �bqq between the zeros of equation (8). These

zeros occur when

tanðeqqÞ ¼eqq; ð9Þ

which approacheseqq ! (2n + 1)�/2, where n 2 Z, for largeeqq.
As a result, for large eqq the separation between the zeros of

equation (8) �eqq ! �, which results in a speckle width

�bqq ! 1=ð2RpÞ: ð10Þ

Referring to Fig. 1, the coarsest spacings between the spatial

frequency samples occur at small scattering angles and are

inversely proportional to the field of view L, or �bqqmin ’ 1/L.

The sampling ratio of the diffraction speckle is defined as

�bqq
�bqqmin

’
L

2Rp

¼
�

4Rp sin arctan lD=zDð Þ=2
� � ; ð11Þ

where lD is the width of the detector pixel and zD is the

separation between the detector and the interaction region

(see Figs. 1 or 9). While the ideal sampling ratio of the

diffraction speckles should exceed two, the time and memory

required for intensity reconstruction rises rapidly when this

ratio becomes excessively large (e.g. �bqq=�bqqmin � 5).

APPENDIX B
Solid-angle and polarization correction for square
pixels on planar detectors

B1. Solid-angle correction

In this section we compute the solid angle�� subtended by

a square pixel of area lD� lD about the point where a scatterer

sits (see Fig. 9). To a first approximation, the solid angle��’

cos(�)�’��. We use the following relations to estimate �’

and ��. On a detector zD from the interaction point, the

spherical coordinate representation of a pixel at Cartesian

coodinate {x, y, zD} is

sinð’Þ ¼ y=�; cosð’Þ ¼ zD=�; ð12Þ

where � = (y2 + z2D)
1/2. Differentiating sin(’) with respect to ’

gives

cosð’Þ�’ ’
�y

�
1�

y

�

� �2
" #

: ð13Þ

Repeating this for �, where

sinð�Þ ¼ x=R; cosð�Þ ¼ �=R; ð14Þ

with R = (x2 + y2 + z2D)
1/2, leads to

cosð�Þ�� ¼
�x

�
1�

x

R

	 
2
� �

: ð15Þ

Combining the two and simplifying, we obtain the solid angle

subtended by the square pixel as

�� ¼ cosð�Þ�’�� ¼
l2DzD

R3
¼

l2DzD

x2 þ y2 þ z2D
 �3=2 : ð16Þ

B2. Polarization correction

Consider the case where the incident beam is polarized

along the x̂x = {1, 0, 0} direction in Fig. 9. This polarization

reduces the scattered intensity by a factor P = 1 �

|x̂x � v̂v(x, y, zD)|
2, where v̂vðx; y; zDÞ is the unit-norm vector from

the scatterer (placed at {0, 0, 0}) to the pixel located at

{x, y, zD}. Notice that we can also write P = cos2�, or entirely in

the terms of the pixel’s coordinates

Px ¼ 1�
x2

x2 þ y2 þ z2D
: ð17Þ

Similarly, when this polarization is along the ŷy direction, the

intensity reduction due to polarization becomes

Py ¼ 1�
y2

x2 þ y2 þ z2D
: ð18Þ

APPENDIX C
Pattern-wise intensity scale factor updates

In many real-world applications, the incident fluence on each

particle will be different. The original implementation of EMC

in the paper by Loh & Elser (2009) assumes uniform incident

fluence. Here, we derive the likelihood maximizing update

rule employed in this package when the need_scaling option

is turned on. The approach used is similar to that employed by

Loh et al. (2010), except here we use a Poisson rather than a

Gaussian probability model. Let ’d be a scale factor which is

proportional to the fluence incident on the particle in pattern

d. Thus, equations (3) and (2) become

Pdr ¼
RdrP
r

Rdr

ð19Þ

and

Rdr ¼
Y

t

ðWrt’dÞ
Kdt exp �Wrt’dð Þ

Kdt!
: ð20Þ
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Figure 9
Setup for solid-angle correction. We compute the solid angle subtended
by the square pixel (red) on the detector plane (grey). The scatterer (blue
sphere) is set at the origin of this figure.



In expectation maximization, one updates the intensity

tomograms, W0, and fluence, ’0, by maximizing the model log-

likelihood:

QðW 0; ’0;W; ’Þ ¼
X

d

X

r

X

t

Pdr Kdt log W 0
rt’

0
dð Þ �W 0

rt’
0
d

� �
:

ð21Þ

Here, Pdr are the probabilities calculated using the current

models W and ’. Unfortunately, an analytical update rule that

simultaneously updates both these quantities is not available.

Instead, we use the strategy of updating one while keeping the

other constant. Setting partial derivatives with respect to W0

and ’0 equal to zero, we obtain

W 0
rt ¼

P
d PdrKdtP
d Pdr’d

; ð22Þ

’0
d ¼

P
t KdtP

rt PdrWrt

: ð23Þ

This modification to the update rule in equation (5) is used

when the user expects variable incident fluence on the particle.

APPENDIX D
Mapping the detector onto the Ewald sphere

We outline how pixels depicted in Fig. 9 are mapped onto the

Ewald sphere during elastic scattering. Suppose the incident

X-ray beam travels along the f0; 0; ẑzg direction, comprising

photons of wavelength �. This direct unscattered beam has a

reciprocal vector (crystallographers’ convention)

q0 ¼ 0; 0;
1

�

� �
: ð24Þ

Now consider a pixel on the detector whose center is {x, y, zD}

away from the scatterer in the laboratory frame. When a

photon is elastically scattered by the scatterer to this pixel, the

photon has an approximate (because of the finite size of the

pixel) reciprocal vector

qpix ¼
1

�

fx; y; zDg

x2 þ y2 þ z2D
 �1=2 : ð25Þ

Hence, this pixel measures the kinematic diffraction inten-

sities of the scatterer at a spatial frequency

bqqpix ¼ qpix � q0 ¼
1

�

fx; y; zDg

x2 þ y2 þ z2D
 �1=2 � f0; 0; 1g

" #
: ð26Þ

As a consequence of equation (26), pixels on a planar detector

are mapped onto a curved surface known as the Ewald sphere,

and this intersects the scatterer’s zero spatial frequency. The

influence of this Ewald sphere curvature becomes more

prominent as the sample-to-detector distance zD is reduced.

The mapping in equation (26) applies to any arbitrary set of

pixels, each with their own {x, y, zD} values, even if they span

several non-contiguous detector tiles with custom gaps or

missing regions. In general, the EMC algorithm permits such

an arbitrary collection of pixels as long as they are properly

specified in the detector.dat file. Although three-dimen-

sional iterative phase retrieval may suffer from these missing

pixels in the desired spatial frequency range, they do not affect

the intensity assembly via EMC.

Finally, the highlighted pixel in Fig. 9 could be a collection

of pixels binned as an effective ‘super-pixel’. This provision is

useful when working with experimental data collected with

overly redundant speckle oversampling. Here, down-sampling

or binning pixels to create larger ‘super-pixels’ can be

computer- and memory-efficient for EMC. However, the user

should be aware that over-binning can result in a blurred real-

space contrast from phase retrieval.

APPENDIX E
Memory requirements

In this section we estimate the amount of random access

memory (RAM) needed for EMC reconstructions of various

sizes and signal levels. Note that, because of implementation

differences, the requirements of this software package differ

from those originally described by Loh & Elser (2009).

From Table 2, we see that the important size scales in a

reconstruction can be expressed in powers of eRR, the dimen-

sionless resolution of the recovered particle (defined in

Appendix A). Naturally, more memory is needed when

reconstructing to higher dimensionless resolutions. Equiva-

lently, the ‘speckle complexity’ of such reconstructions in

reciprocal space also increases with resolution (compare Figs. 6

and 7).

From Table 2, note that the number of conditional prob-

abilities computed by EMC scales like Mprob ’ eRR5, which

grows the fastest of all the parameter size factors. In the

examples listed in Tables 3 and 4, the memory needed to store

the sparse frames and the three-dimensional modelW is many

megabytes (MB) per MPI process. However, many gigabytes

(GB) to terabytes (TB) of memory are needed to store the

conditional probabilities Pdr computed by EMC. Currently,

this package stores these probabilities in RAM, but future

versions may write them to disk if necessary.
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Table 2
How the sizes of parameters in reconstructions scale with a particle’s
dimensionless resolution eRR.
Parameter Scales as

No. of detector pixels†, Mtomo >ð2�eRRÞ2
No. of rotation-group samples‡, Mrot 10ð5eRR3 þeRRÞ
No. of data frames§, Mdata S2Mrot/N = 10 S2ð5eRR3 þeRRÞ=N
No. of conditional probabilities, Mprob MdataMrot = 100 S2ð5eRR3 þeRRÞ2=N
No. of model voxels per MPI process}, MW >ð2�eRRÞ3
No. of sparse data entries per MPI

process††, Msp

�NMdata

† The speckle sampling, �, is defined in Appendix A. ‡ The sampling and criterion are
defined in Appendix C and Section VII of Loh & Elser (2009), respectively. § Signal-
to-noise ratio, S, defined in equation (6). } Model represented as a dense cubic
array. †† See sparse data format in x2.5.3.



APPENDIX F
Orientation instability at high signal levels

The EMC algorithm is capable of searching for three-dimen-

sional diffraction volumes that maximize the likelihood of

measuring a set of data frames. The performance of this

algorithm is influenced by two considerations. The first is the

‘likelihood landscape’ of this problem: whether there are

locally maximal false solutions that can trap the EMC search,

and whether the family of true solutions are also global

maxima. The second consideration is search dynamics: the

time needed to reach these likelihood maxima, and the meta-

stability of the local maxima. Although we cannot anticipate

how these two considerations will affect all EMC reconstruc-

tions, this section gives a flavor of their importance.

F1. Overfitting from having too few high-signal patterns

Here we consider a case when the global maximum is not

the true solution. Suppose only two high-signal two-dimen-

sional patterns are measured, {At} and {Bt}, where the index t

labels the Mpix detector pixels of each pattern. We further

assume that each pattern is diffracted from separate copies of

the three-dimensional object at exactly the same orientation in

the laboratory frame. However, despite their identical orien-

tations, these two patterns will be quantitatively different

because they are different noisy realizations of the same two-

dimensional pattern. Two types of converged outcome are

possible:

(i) place the two two-dimensional patterns at the same

orientation and average over them, or

(ii) place them at two distinct orientations, such that the

patterns only intersect along a one-dimensional ‘common arc’

in the three-dimensional volume.

To simplify case (i), we assume that both patterns adopt the

same orientation. Hence, the log-likelihood of measuring {Bt},

given that the underlying pattern with Mpix pixels averages

over {At} and {Bt} under a Poissonian noise model, is

L B

����
Aþ B

2

� �
�

XMpix

t

Bt � At

2
� Bt log

Bt

At þ Btð Þ=2

� �� �
;

ð27Þ

where the inequality arises because of Stirling’s approxima-

tion (logn!’ n logn� n, if n� 1, and also logn!� n logn� n)

and approaches equality when At � 1 and Bt � 1 at high

fluence. The complementary likelihood of L½A j ðAþ BÞ=2	

simply switches the A and B labels in equation (27), giving the

combined log-likelihood of both patterns sharing the same

orientation as

Ltogether ¼L A
Aþ B

2

����
� �

þ L B
Aþ B

2

����
� �

�
XMpix

t

�Bt log
Bt

At þ Btð Þ=2

� �
� At log

At

At þ Btð Þ=2

� �� �

�
XMpix

t

� At;Btð Þ; ð28Þ

where �(At, Bt) denotes the expression inside curly brackets

on the previous line. Using Gibbs’ inequality,P
t pt log pt=qt � 0, where equality occurs when pt = qt, and

averaging over all possible values of A and B, we expect

� At;Btð Þ
� �

A=B
� 0: ð29Þ

Hence, the combined likelihood Ltogether in equation (28) must

be negative and scales with the number of pixels Mpix.

Case (ii) has a similar calculation, except that the pixels are

separated into two categories: those that lie on the common

line between the two oriented patterns, Mcom, and those that

do not, denotedMsep =Mpix �Mcom. Ignoring corrections due

to interpolating these patterns into the three-dimensional

volume, it is straightforward to show that the log-likelihood of

measuring patterns {At} and {Bt} when they are placed in

different orientations is

Lapart ’
XMcom

t

� At;Btð Þ: ð30Þ

From equations (28), (29) and (30) it is clear that, on average

Ltogether

� �
< Lapart

� �
ð31Þ

and

Lapart

� �
� Ltogether

� �
/ Msep f jAj; jBjð Þ; ð32Þ
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Table 3
Memory requirements for modest-fidelity reconstruction: S = 10, N = 100
and � = 5.

The different variables are explained in Table 2.

eRR Mdata Mrot Msp (MB) MW (MB) Mprob (GB)

5 6300 6300 4.81 0.953 0.296
10 50100 50100 38.2 7.63 18.7
15 168900 168900 129 25.7 213
20 400200 400200 305 61.0 1193
25 781500 781500 596 119 4550
30 1.35 � 106 1.35 � 106 1030 206 13584
35 2.14 � 106 2.14 � 106 1635 327 34251
40 3.20 � 106 3.20 � 106 2441 488 76313
45 4.56 � 106 4.56 � 106 3476 695 154700

Table 4
Memory requirements for high-fidelity reconstruction: S= 50,N= 100 and
� = 5.

The different variables are explained in Table 2.

eRR Mdata Mrot Msp (MB) MW (MB) Mprob (GB)

5 157500 6300 120 0.953 7.39
10 1.25 � 106 50100 956 7.63 468
15 4.22 � 106 168900 3220 25.7 5310
20 1.00 � 107 400200 7630 61.0 29800
25 1.95 � 107 781500 14900 119 114000
30 3.38 � 107 1.35 � 106 25800 205 340000
35 5.36 � 107 2.14 � 106 40900 327 856000
40 8.00 � 107 3.20 � 106 61000 488 1.91 � 106

45 1.14 � 108 4.56 � 106 86900 695 3.87 � 106
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Figure 10
Low-intensity wedge-like volumes appear in the EMC-reconstructed volume with very high signal data frames (most frames contain more than 104

photons). The simulation parameters are listed in Table 1 as AMO (high). We reconstructed with rotation-group refinement n = 5 and with � = 1
(annealing turned off). In descending order down the rows, the panels show the central sections of the updated model after one, five, ten and 100
iterations, and the lower panels show the diagnostics for 100 iterations (plots described in the caption to Fig. 6).



where f increases monotonically with the average photon

count on the pixels |A| and |B|. Evidently, the incorrect ‘apart’

solution maximizes the likelihood here and belongs to the

family of three-dimensional models that over-fit limited

measured data. (Any well separated pair of orientations could

be a maximum likelihood result as are, trivially, global rota-

tions of these.)

F2. Erratic EMC updates with many high-signal patterns

In this section, we describe why the iterative orientation

discovery in EMC can be erratic when the signal levels from

patterns are very high. This erratic behavior explains, in part,

why the regularization routine in x3.2.2 was invoked.

The log-likelihood that a set of pixels on a pattern K was

measured given a tomogram intensity W(�) can be decom-

posed into sums over zero and nonzero photon pixels:

L½K j Wð�Þ	 � �
XwhereKt¼0

t

Wð�Þi

þ
XwhereKt>0

t

Kt 1�
Wð�Þt
Kt

þ log
Wð�Þt
Kt

� �

¼�0 þ�1: ð33Þ

This log-likelihood is never greater than zero. This is because

1 � x + logx � 0, Kt � 0 and W(�)t � 0, since photon counts

and the tomograms updated by equation (5) are each always

positive.

For a pattern with a very high signal, the conditional

probability distribution has a very narrow peak around the

most likely orientation �best. From equation (33), the log-

likelihood of K against a well matched orientation tomogram

in the model,W(�), will yield modestly negative values for �0

and �1. This is because their photon and intensity values, {Kt}

and {W(�)t}, respectively, are also closely matched. However,

when the signal levels on the data frames are high, a

mismatched high-signal K and W(�) pair will give very

negative log-likelihoods. As a result, the most likely K +

W(�best) pair will be deemed very much more likely than

pairings of K with any other W(�).

While a narrow orientation distribution for data frames is

generally desired, the difficulty starts when the entire three-

dimensional model W is far away from the true three-dimen-

sional model. This scenario usually occurs during the first few

iterations of an EMC reconstruction starting from a random

initial W. Despite the erroneousness of W, the conditional

probability of each data frame over the orientations will still

have a narrow peak, for reasons similar to those presented

above. Hence, the re-orientation of data frames within W by

an EMC iteration happens resolutely and, in its wake, causes

low-intensity wedge-like volumes to appear in the updatedW0

(see Fig. 10), purely due to random fluctuations.

These low-intensity wedges form convergence traps for the

algorithm. When W is far from the solution, its tomograms

W(�) will be composed of randomly rotated and averaged

subsets of the data frames. This results in very negative values

of �0 in L½K j Wð�Þ	 for many frames K. Comparatively, any

low-intensity wedges in the three-dimensional model contain

sets of W(�dark) that yield much more positive �0 and will

cause the K frames to be resolutely re-assigned to these �dark

orientations at the end of the EMC iteration. This resolute

movement may in turn open up new low-intensity wedges in

W. Further low-intensity wedges that do not resemble any K

will ‘attract’ and result in yet another set of randomly rotated

and averaged subsets of the data frames, paving the way for

the next round of orientation re-assignment. This behavior

results in erratic updates between EMC iterations, where low-

intensity wedges will suddenly appear then disappear within a

few iterations.

Incidentally, this erratic behavior should not occur when W

is near the true solution, because data frames K then have no

incentive to move away from their correctly determined

orientations or create low-intensity wedges in W. Also, when

the signal is lower, the orientation distributions are broader in

the first few iterations, avoiding these wedges.

While enough random erratic updates may eventually yield

the solution intensities, this iterative search can be relaxed

using the � parameter in x3.2.2, which ‘spreads out’ these

narrow peaks in the likelihood distributions. This way, low-

intensity wedge-like volumes are less likely to appear in W0.

Empirically, we note that this regularization can greatly

improve the stability of the iterations towards the true

intensities, even when the data frames have very high signal

levels. Once W iteratively converges to the neighborhood of

the true solution, then � can be raised back to 1.
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