
Draining our Glass: An Energy and Heat
Characterization of Google Glass
Technical Report 2014-3-23, Rice University

Robert LiKamWa†, Zhen Wang†, Aaron Carroll†‡, Felix Xiaozhu Lin†, and Lin Zhong†
†Rice University, Houston, TX ‡UNSW, Australia

ABSTRACT
The Google Glass is a mobile device designed to be worn

as eyeglasses. This form factor enables new usage possibil-
ities, such as hands-free video chats and instant web search.
However, its shape also hampers its potential: (1) battery
size, and therefore lifetime, is limited by a need for the de-
vice to be lightweight, and (2) high-power processing leads
to significant heat, which should be limited, due to the Glass’
compact form factor and close proximity to the user’s skin.
We use the Glass in a case study of the power and thermal
characteristics of optical head-mounted display devices. We
share insights and implications to limit power consumption
to increase the safety and utility of head-mounted devices.

1. INTRODUCTION
Optical Head Mounted Display (OHMD) devices, includ-

ing [4, 24], provide users with a hands-free display, with
rich user-centric experiences and immediate access to com-
puting resources. Recently, interest has drawn to Google’s
spectacle-shaped device, called Glass, marking a commer-
cial advancement in wearables, shown in Fig. 1.

In this article, we share results from characterizing Glass’
power draw. Others have documented other aspects, e.g.,
technical specifications [20] and privacy, security, and social
concerns [9, 21]. In contrast, we study Glass as an OHMD
system, especially the power draw of its components and the
form factor’s implication on app usage and system design.

While it is tempting to treat the Glass architecture as a
smartphone or tablet in a different form factor with new use
cases, OHMD physical limitations magnify the value of ef-
ficiency, as compactness limits battery capacity. Moreover,
contact with a user’s skin will make heat generation from
power draw uncomfortable and potentially dangerous.

Thus, as low-power constraints pose the greatest techni-
cal challenge to OHMDs, we perform component-driven and
usage-driven power analysis. We find that many scenarios,
including mobile vision and long-term video chats, are not
possible under the system’s power draw. Following our anal-
ysis, we discuss hardware and software insights regarding
heat constraints, display efficiency, and processor power that
motivate study into efficient OHMD system design.

2. GLASS SYSTEM OVERVIEW
Google’s Glass system resembles smartphone architectures

with a few notable differences: there is no cellular modem;

the display is much smaller; the touchpad is distinct from the
display; and a bone-conduction speaker provides audio out-
put. Many other components can be found on smartphones.

The design centers around an OMAP4430 system-on-chip
(SoC), which includes a dual-core ARM Cortex-A9 as the
main CPU, a dual-core ARM Cortex-M3, an SGX540 GPU,
a Display Subsystem (DSS), an Image and Video Accelera-
tor (IVA) and a DSP [22]. The OMAP4430 is also used in
the Motorola Droid RAZR, the LG Optimus 3D Max, the
Samsung Galaxy Tab 2, and many other mobile devices.

Because of the OHMD form factor, the OLED or LCD
smartphone display is absent, replaced with a Liquid-Crystal-
on-Silicon (LCOS) projection display, shown in Fig. 2. As
an LED is filtered to shine red, green, or blue light onto the
LCOS, the display shows the respective color component
contribution. The image is projected on a semi-reflective
mirror directly in front of the user’s right eye. This allows
content to be seen not only by the user, but also from the
front of Glass. As red, green, and blue images are flashed
rapidly, the user perceives a full-color image. According to
[1], component images must cycle at 540 Hz for color video.

Glass employs a unique bone-conduction speaker to allow
the user to hear clearly while minimizing the sound to peo-
ple not using the device. A Synaptics touchpad component
provides touch functionality on the side of the Glass.

A 3.7 volt LiPo battery with a capacity of 2.1 Wh pro-
vides power to the Glass. The battery sits behind the ear,
counterbalancing the rest of the device over the user’s ear.

Glass runs Android OS, v. 4.04 “Ice Cream Sandwich”.

3. USE CASES
As a hands-free device with display, camera, and radios,

Glass creates new usage potential. While not an exhaustive
list, we discuss potentially useful OHMD apps. Most are
advertised by Google and are marked with * [6].

Real-time Hands-free Notifications*: Users can field
phone calls, text messages, e-mails, etc., without reaching
into a pocket or bag. This mitigates user disruptions, e.g., a
user can ride a bike while addressing a text message.

Hands-free visual and audio instructions*: OHMDs
can access instructions and materials related to a user’s activ-
ity. This is useful for a cook following a recipe, an artist con-
sulting reference material, or a tourist asking for language
translation. OHMDs could even assist surgeons using CT or
X-ray images during surgery [12].

1



Figure 1: Google Glass user interface hardware Figure 2: Google Glass display projection path

400 600 800
0

500

1,000

1,500

2,000

Processor Frequency (MHz)

Po
w

er
C

on
su

m
pt

io
n

(m
W

)

2 core, Screen on
1 core, Screen on
2 core, Screen off
1 core, Screen off

Figure 3: Power consumption vs. core use, with one core and two cores
at 100% CPU Utilization, with screen on and screen off

Instant Connectivity Access*: Users can instantly ac-
cess network-based information, including email inboxes,
web searches, local news, stock market tickers, home secu-
rity camera feeds, or social networks.

Instant Photography/Videography*: OHMD cameras
allow users to take pictures and video clips without pointing
a smartphone. This is useful for journaling momentary ex-
periences or recording a user’s perspective of a scene. Video
can also be streamed in real-time for engaging video chats.

Augmented Reality*: In augmented reality (AR), virtual
objects are displayed as part of the physical environment.
AR can overlay path directions, assist in interior design, or
enable other immersive visualization apps. The Glass Devel-
oper documentation lists ideas for simple AR games which
use voice and inertial motion sensors for interaction [5].

Continuous Mobile Vision: A technology that many ex-
pect out of OHMDs is the ability to observe and understand
a scene through computer vision. Face detection and recog-
nition are feasible, while discouraged by Google. Vision can
be used for many other tasks, including text recognition, ge-
ometric scene understanding, and contextual life logging.

These scenarios would provide a rich experience to the
OHMD user. We benchmark representative workloads in
Section 4. These potential use cases dictate device require-
ments and thus influence the system architectural design.

4. POWER MEASUREMENT
We benchmark the power draw and CPU usage. To mea-

sure power consumption, we use a Monsoon Power Moni-
tor [16] in place of the Glass battery. The monitor provides
4 V and records power draw. For CPU utilization, we use the
command top, which has a 5–7% CPU utilization overhead.

4.1 Power by component
We first explore how a component’s use contributes to

overall system power. We configure and utilize each com-
ponent while keeping the rest of the system constant. Our
measurements thus reveal the rise in system power consump-
tion while a component is used.

OMAP4430 SoC: The OMAP is a major contributor to
Glass’ power consumption. We check the status of its mod-
ules by using the omapconf [23] diagnostic tool. By default,
many modules are disabled even when the screen is on, in-
cluding the Cortex-M3, GPU, IVA and DSP. This leaves the
Cortex-A9 as the major active computational component.

Unlike smartphones, the Glass uses the DSS instead of the
GPU to perform surface composition and to stream frames to
the display. Thus, the DSS is on while the screen is on, and
the GPU is disabled by default. The GPU may be invoked
by software, e.g., for OpenGL applications. The IVA is acti-
vated for encoding/decoding video recording and playback.

The main CPU (the Cortex-A9) can be set to four frequen-
cies: 300 MHz, 600 MHz, 800 MHz, and 1 GHz. Raised
frequencies increase performance, but draw more power. At
high temperatures, Glass firmware limits the frequency to
600 MHz or 300 MHz to cool down by reducing power.
We run shell scripts on one Cortex-A9 core and both cores
at 100% CPU utilization with the screen on and off. We
then measure the power draw of the Glass system, shown
in Fig. 3. While we can briefly set the Glass to 1 GHz, the
system rigorously decreases the frequency to reduce heat,
prohibiting us from taking robust 1 GHz measurements.

Screen: Glass sets the screen brightness on a 25–255
scale depending on the sensed ambient brightness. We set
the brightness by writing to a device file while using a static
app with static screen content. As shown in Fig. 4, the bright-
ness affects the Glass’ power consumption. The screen con-
tent, including its colors, does not affect the power draw.
This is similar to LCDs but in contrast to OLED displays.

2



0 100 200

1,000

1,100

1,200

Screen Brightness

Sy
st

em
Po

w
er

(m
W

)

0 50 100

100

200

300

400

Speaker Volume

Sp
ea

ke
rP

ow
er

(m
W

)

Figure 4: (Left) System power draw vs. screen brightness. (Right)
Speaker power draw vs. speaker volume.

We measure that Glass draws 1028 mW when the screen is
at a brightness of 25. Glass draws 1204 mW at a brightness
of 255. By contrast, with the screen off, but the system ac-
tive, the Glass draws 334 mW. Thus, when using the screen,
the system draws a static power of 674 mW and dynamically
draws another 196 mW depending on the brightness level.

Pscreen = 674 mW + 196 mW × (brightness/255)

The high static power draw of 674 mW is likely due to the
activation of the DSS display subsystem, its rendering of the
screen content, and the transmission to the LCOS.

As the display is close to the eye, we expected the dy-
namic power to be orders of magnitude lower than that of a
smartphone. Display power is typically proportional to D2

where D is the distance from the screen to the eyes, if all
other factors remain the same [25]. Since D for the Glass is
over 10× smaller than that for a phone, we expected a dis-
play draw of < 5 mW, as the iPhone 4 LCD consumes ∼420
mW [10] at full brightness. The actual projection consumes
up to 196 mW, much higher than expected. This is likely due
to luminance drops in the display path. First, the color filter
reduces the luminance of the LED projection. Luminance is
further reduced by ∼40% in reflection off of typical LCOS
devices [8]. Finally, the semi-reflective mirror in front of the
user’s eye incurs a >50% drop in the reflective optics. These
drops necessitate high-power projection at the source.

We perform the rest of our measurements with the screen
brightness fixed to 25, suitable for our office environment.

Bone-Conduction Speaker: Using the bone-conduction
speaker consumes ∼410 mW when the volume is at or above
35%. The sound production is not louder above 35%. Be-
low 35%, power consumption decreases, down to 100 mW
at 5%. When playing audio through a USB Earpiece, Glass
draws 18–30 mW. For comparison, we measure that a Galaxy
Nexus draws ∼200 mW when using its speakers.

Inertial Motion Unit: The Android API can sample the
accelerometer and gyroscope at either 100 Hz or 200 Hz.
Sampling consumes ∼29 mW, regardless of sampling speed.

Audio Recording: Using the microphone on the Glass
to record audio consumes an additional 96 mW.

WiFi/Bluetooth: We measure the Glass before activating
WiFi/Bluetooth and during a file download. While down-
loading at 538 kbps over Bluetooth, Glass draws an addi-
tional 743 mW. On WiFi, at 734 kbps, Glass draws 653 mW.

Table 1: Glass power draw in different usage scenarios

Usage Case Power Consumption Battery Life
Idle 22 mW 95 hours
System active, screen off 334 mW 377 min.
Static timeline card 1030 mW 122 min.
Timeline swiping 1315 mW 96 min.
"Ok Glass" card 1204 mW 105 min.
Main menu card 2361 mW 53 min.
Internet page load 2009 mW (3 sec.) 1260 page loads
Web page viewing 1171 mW 107 min.
Web page scrolling 1505 mW 84 min.
Phone calls 1257 mW 100 min.
Text message 1387 mW (1.3 sec.) 4200 messages
Image capture 2927 mW (3.3 sec.) 782 images
Video capture 2963 mW 43 min.
Video chat 2960 mW 43 min.
Static application 1023 mW 123 min.
Camera preview callback 2366 mW 53 min.
OpenCV face detection 3318 mW 38 min.

4.2 Power by Usage Scenario
We next collect average power measurements as we place

the Glass under various app workloads, as shown in Table 1.
Idle Power: Glass exhibits an efficient idle mode, using

background processing to sense wake-up events, such as no-
tifications or accelerometer gestures. Processors, radios, and
the display are held in an inactive low-power mode. The idle
Glass consumes 22.3 mW for a lifetime of over 90 hours.

When the system wakes up, the CPU briefly rises to 1 GHz
to quickly wake the system up, and subsequently returns to
300 MHz, waiting for user interaction. This wake-up process
takes 1.9 seconds and consumes 1398 mW on average.

Menu Navigation: After waking up, Glass opens a heads-
up menu. Primary interaction is through the touchpad: the
user swipes to highlight items, and taps to activate one. This
lets the user access instant connectivity, address notifica-
tions, or initiate hands-free visual and audio interactions.

When the user is observing a static timeline card, the CPU
utilization is near 0% and the Glass draws ∼1030 mW, giv-
ing the Glass a battery lifetime of 2 hours in this scenario.
When the user is swiping through the cards, a "mediaserver"
process is invoked requiring approximately 8–10% CPU uti-
lization at 600 or 800 MHz, to load the new processes. The
system draws additional power to a total of 1315 mW while
being swiped, but this only lasts as long as the swipe persists.

Voice command is available on the main menu card, where
the Glass displays the time. The system waits for a user
voice input and consumes 1204 mW, which is about 200 mW
more than static timeline cards due to the background voice
recognition process with microphone sampling. When the
keyphrase "OK Glass" is spoken, a submenu of speakable
items appears. A user selects an item for launch by using the
touchpad or reading its title. Glass draws 2361 mW while
the user is navigates the menu by voice. Actively recogniz-
ing voice uses 30% CPU utilization at 300 MHz for the voice
recognition process, and samples the microphone sensor.

3



Internet Browsing: The built-in internet browser appli-
cation does not have an address bar to enter a URL, but a
user can perform a Google voice search and access the web
page result. Once in a webpage, the user places two fingers
on the touchpad and moves their head to pan a website.

Loading a Wikipedia page takes ∼3 seconds, incurs CPU
utilization of 50%, and draws 2009 mW. Viewing the loaded
page draws 1171 mW, while scrolling the page draws 1505
mW. This is comparable to browsing on a Galaxy S III [3].
As with the smartphone, the high power draw is mainly due
to the high static power of using the display.

Telephony: Glass can operate as a headset, routing phone
call audio between the phone and the Glass for hands-free
communication. This uses the microphone, speaker, and the
Bluetooth card. Running the telephony incurs a 35% CPU
utilization and draws 1257 mW, for a battery life of 102 min-
utes. Receiving a text message draws 1387 mW for 1.3 sec-
onds. 4200 messages can be received on a single charge.

This is disproportionately high; a Bluetooth headset con-
sumes an order of magnitude less power. This is likely be-
cause the entire Glass system is awake and using the high-
power Cortex-A9 to perform simple telephony tasks.

Image/Video Capture and Streaming: Glass can in-
stantly capture photos and videos on demand. Unfortunately,
the image capture and processing draw significant power.
Using the built-in camera app to take a picture consumes
a peak of 4629 mW and an average of 2927 mW for 3.3 sec-
onds. Glass takes fewer than 800 pictures on a single charge.

For video recording, our measurements show that the Glass
draws 2963 mW while using the camera app. At that power
draw, the Glass can take a video for 45 minutes on a sin-
gle battery charge. Streaming a video call over WiFi draws
roughly the same amount of power, consuming an average of
2960 mW, allowing a 45 minute video cat on a single charge.

Vision Application Usage: Developers may write appli-
cations using the standard Android SDK and deploy them on
the Google Glass. Running a static application draws simi-
lar power to that of a static timeline card: 1023 mW. In this
scenario, the system uses around 18% CPU utilization.

Glass vision apps can be developed by using the preview
frame callback of the Android camera service. This is a sig-
nificant workload for the Glass; the act of running the cam-
era service and previewing a frame uses 85% CPU utilization
at 600 MHz. Furthermore, the IVA and GPU are activated.
As a result, the system draws a total power of 2366 mW.

To operate on the frame, we use the OpenCV library with
Android bindings. Running a Face Detection app brings the
device to a full 100% CPU Utilization at 600 MHz. This
draws a large 3318 mW, for only 38 minutes of battery life.

5. TEMPERATURE CHARACTERIZATION
As with all electronics, power is linked to temperature, as

nearly all power is dissipated as heat. Because Glass makes
contact with its user’s face, heat is a critical safety issue.

Measurement
To characterize thermal behavior, we use an ST-380 sur-

face thermometer pointed where Glass makes contact with
the user’s temple, the face region behind the eyes. This tends
to be the warmest part of Glass, as it is where the OMAP is
located. The OMAP is the major element that contributes
to the temperature in the measured area; changing screen
brightness or using the speaker did not change the reported
temperature.

Unlike our power measurements, we used a Glass that we
did not tamper with. The room was held at 23◦C with ad-
equate ventilation, and the Glass is 31.1◦C while charging.
After disconnecting the charger, we started a video chat. The
thermometer reported a rapid rise, shown in Fig. 5. After 120
seconds, the Glass rose to 39◦C. The rise eventually slowed,
reaching a stable 51.9◦C (124◦F). We repeated the process
with a static idle app, reaching a stable 35.2◦C.

Modeling
We next use Newton’s Cooling Law [2] to relate SoC power

draw to the steady-state temperature difference (∆T ) of the
Glass with its environment. We model ∆T as proportional
to the power dissipation (P ) and inversely proportional to
the surface area (A) and the convection coefficient (h). The
initial device temperature does not affect ∆T .

P = dQ/dt = hA∆T

Newton’s Cooling Law also models how temperature changes
over time to reach the steady-state temperature. For a device
of heat capacity C, the temperature at a given time is:

T (t) = T (0) + (1 − e−(C/(hA))t)∆T

Thus, power consumption of the device dictates the steady-
state temperature difference (∆T ); how fast the temperature
rises is determined by the mechanical and material proper-
ties of the device and its environment, i.e., C, h, and A.

We fit the model to our data in Fig. 5. While the OMAP
consumes 3 watts during video chat, we model that ∆T =
28.9◦C, and C/hA = 0.0040 s−1. For 1 watt draw in static
app usage, we model that ∆T = 11.2◦C, and C/hA =
0.0040 s−1. Thus, we have the following observations for
Glass when used in a similar office environment to ours:

• For every watt drawn by the OMAP, the steady-state
surface temperature will rise by ∆T ≈ 10◦C higher
than its environment.

• The Glass surface temperature will rise by 90% of ∆T
in 10 minutes.

That is, the temperature difference from the environment
is roughly proportional to the SoC’s power draw, while the
rate of heating is dependent only on its environment.

Thus, long-term average power consumption of a process
dictates stable temperature and should be constrained for
heat safety. This may incur energy inefficiency, as the time

4



0 200 400 600 800
30

40

50

Time Running (s)

Te
m

pe
ra

tu
re

(◦
C

)

Video Chat
Static App

Figure 5: Temperature samples vs. time running an application

it takes to run a low-power process may exceed the optimal
point to minimize energy use. However, constraining aver-
age power will keep the device temperature in safe limits.

We collect measurements while the Glass is not worn by
a user. A user may raise the Glass’ temperature due to the
user’s body being warmer than that of the environment. In-
deed, the authors experience that the device feels hot while
performing intensive tasks. The Glass could also experience
an even higher temperature with a harsh environment, e.g.,
in direct sunlight in 38◦C weather.

Health Implications
High temperatures put pressure on the human body to reg-

ulate its temperature to below 37◦C, which it does by di-
lating blood vessels, increasing heart rate, raising skin tem-
perature, and activating sweat glands, as explained in [11].
These reactions lead to reduced comfort and potential car-
diovascular problems. Indeed, blood vessel damage can oc-
cur with continuous contact to surfaces at temperatures as
low as 38–48◦C , leading to permanent skin damage, such
as erythema ab igne [19]. Thus, while the measured surface
temperatures are common for smartphones and tablets, the
device surface temperatures of 50+◦C are not well-suited for
a head-mounted device with large durations of skin contact.

6. INSIGHTS AND RECOMMENDATIONS
Glass consumes an amount of energy close to that of a

smartphone. This, paired with skin contact with the user,
places thermal issues as a first-class design constraint. The
high power draw also limits usage time due to the small bat-
tery size. Among the use cases in Section 3, only hands-free
notifications and instant connectivity are safe and feasible.

Long-term visuals and audio are constrained by the power
draw of using the display and speaker. Photography and
video chats are further limited; camera usage draws ∼3 W,
heating Glass 28◦C above its environment. While the form
factor suggests easy image capture and vision opportunities,
power draw limits the longevity and safety of such apps.

Thus, the Glass design is not suitable for always-on use,
including long-term AR and mobile vision. While off-loading
perception tasks to the cloud is difficult, due to transmis-

sion cost and need for connectivity [7], onloading computa-
tions is impractical due to high power draw. For these tasks,
a smartphone-like system cannot achieve the required effi-
ciency. Instead, we propose the following considerations.

Display Efficiency
In addition to computational power expense, the system

consumes an additional 675 mW to show screen content, and
up to another 200 mW depending on the brightness. This
prohibits long-term use of the screen. We recommend an
adoption of efficient content generation and projection.

Static Display Subsystem: While Glass should be able to
display active scenes, the DSS consumes too much for slow-
changing content, e.g., displaying a cookbook. One potential
solution could be to use a hybrid DSS with a bistable mode
to provide static content for low-power viewing.

A hybrid DSS would introduce system research challenges
of optimally deciding which mode to use, as well as support-
ing migration between active and static DSS modes.

Efficient Projection: The LCOS projection consumes two
orders of magnitude more power than its proximity requires,
due to luminance drops in the display path. Replacing this
projection with a transparent OLED screen in front of the
eye would reduce power draw by avoiding luminance drops.
Moreover, the see-through nature of OHMDs means that for
many apps, few pixels are active at any time. This is optimal
for OLED, as inactive pixels do not draw power.

Computational Efficiency
Computational power draw is the major contributor to Glass’

high power consumption. This strongly motivates principles
of energy-proportionality and optimizing the common case.

Heterogeneous Computing: OHMDs present conflicting
processor requirements: always-on cases demand high ef-
ficiency at low throughput, medium-term power is limited
by battery life and device heat, and user I/O demands inter-
mittent high throughput to limit visible latency. While the
Cortex-A9 provides high throughput, merely onlining the
CPU consumes ∼330 mW, making it unsuitable for always-
on cases. Core heterogeneity is a known solution to this
problem. We believe this is not merely convenient for longer
battery life, but in fact required for the OHMD form fac-
tor to deliver on its promised functionality. System support
for core heterogeneity is an active area of research [14, 15],
and our results provide a further data point in motivating this
work.

Vision Acceleration: Vision processing on the CPU draws
a high 3.3 watts on the Glass, limiting the use cases for
readily-available camera capture. For these apps to be feasi-
ble, an efficient vision processing unit, such as the Movidius
Myriad [17], will be needed. Existing application-specific
circuity, such as GPUs and video codecs, have well-defined
interfaces (OpenGL, MPEG, etc.). We see a research oppor-
tunity in exposing vision acceleration to user apps, including
issues of resource management, multiplexing, isolation, etc.

5



Responsible Thermal Control
Because of user contact, heat is a paramount concern, as

every watt generates a 10◦C rise. While lowering power
draw is necessary to reduce heat, optimizing heat dissipation
and introducing system policies can alleviate thermal issues.

Improved Heat Dissipation: Heat dissipation can be par-
tially addressed with physical redesign. To increase user
comfort and safety, the Glass form factor should distance
processing elements from skin contact and use heat sinks to
dissipate OMAP heat over a wider surface area.

Thermal Regulation: Thermal regulation is well-studied,
usually through limiting power draw to the thermal design
point (TDP). We have shown that power should be constrained
to a safe user limit much lower than typical TDP. Moreover,
Glass exceeds this limit under typical operation. Thus, the
system should be designed for graceful degradation. For in-
stance, when the thermal limit is reached during video chat,
the resolution, frame rate, encoding quality, bitrate, etc. must
be reduced to avoid physical harm. Typical approaches of
reducing frequency, disabling cores, or killing processes are
not satisfactory, as this situation occurs in everyday usage.

Additionally, thermal limits are not hard, i.e., peak power
need not be strictly limited. As Fig. 5 shows, the heating
time constant is relatively long. Efficient thermal regulation
should control average and not peak power, but it must also
be aware of the time period over which this average must
be maintained. Strategies such as [18] can computationally
sprint to briefly raise peak power while managing heat.

Low Power I/O
The camera, screen, and speaker are designed for high

power, high quality use. Glass should have I/O quality mode
options for power reduction strategies.

Scalable Imaging: Using the camera reduces battery life
to one hour due to the high-power IVA and image sensor, re-
gardless of capture quality. Image sensor energy cost should
be proportional to the frame rate and resolution, using tech-
niques such as [13]. Also, a multi-rate IVA could provide
low-power processing when high resolution is not required.

Notification LED: When a text message arrives, the DSS
is activated, consuming precious energy. Instead, an LED on
the display could notify the user, to avoid display activation.
This is an effective strategy for smartphone notifications, and
should be adopted for OHMD energy efficiency.

Moving Coil Speaker: The bone-conduction speaker is
energy expensive for continuous use, such as for music or
video playback or for game audio. A supplementary moving
coil speaker would allow a choice for lower-power audio.

7. CONCLUSION
We use Google Glass as a platform for studying system

aspects of wearable devices that are constrained by form fac-
tor and battery life. While it has suboptimal power draw and
heat dissipation, it provides an exciting public introduction
to wearable devices and a base for future OHMD design.

The Glass device motivates deep investigation into wear-
able systems. We find that the high performance, significant
power draw, and thermal concerns present several OHMD
research opportunities towards improved efficiency.

8. REFERENCES
[1] M. S. Brennesholtz and E. H. Stupp. Projection Displays. Wiley

Series in Display Technology. Wiley, 2008.
[2] Louis C. Burmeister. Convective Heat Transfer. A Wiley-Interscience

publication. Wiley, 1993.
[3] A. Carroll and G. Heiser. The systems hacker’s guide to the galaxy

energy usage in a modern smartphone. In Proc. Asia-Pacific
Workshop on Systems (APSys), 2013.

[4] Epson. Moverio Smart Glasses.
http://epson.com/cgi-bin/Store/jsp/Moverio/Home.do.

[5] Google. Glass Developers - Mini Games. https:
//developers.google.com/glass/samples/mini-games.

[6] Google. How it Feels.
http://google.com/glass/start/how-it-feels/.

[7] S. Han and M. Philipose. The case for onloading continuous
high-datarate perception to the phone. In HotOS, 2013.

[8] HoloEye. HoloEye Microdisplay Technology Brochure.
http://holoeye.com/wp-content/uploads/2011/07/
LCOS_Microdisplays.pdf.

[9] J. Hong. Considering privacy issues in the context of google glass.
Commun. ACM, 56(11):10–11, November 2013.

[10] Khronos Group. DisplayMate iPhone 4 ShootOut.
http://displaymate.com/iPhone_4_ShootOut.htm.

[11] K. H. E. Kroemer, H.B. Kroemer, and K.E. Kroemer-Elbert.
Ergonomics: how to design for ease and efficiency. Prentice-Hall
int’l series in industrial and systems engineering. Prentice Hall, 1994.

[12] L. Kim. Google Glass Delivers New Insight During Surgery. http:
//ucsf.edu/news/2013/10/109526/surgeon-improves-
safety-efficiency-operating-room-google-glass.

[13] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl.
Energy characterization and optimization of image sensing toward
continuous mobile vision. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), 2013.

[14] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: using
low-power processors in smartphones without knowing them. In
Proc. ACM Int. Conf. Architectural Support for Programming
Languages & Operating Systems (ASPLOS), pages 13–24, 2012.

[15] F. X. Lin, Z. Wang, and L. Zhong. K2: A mobile operating system
for heterogeneous coherence domains. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages & Operating
Systems (ASPLOS), 2014.

[16] Monsoon. Monsoon power monitor.
http://msoon.com/LabEquipment/PowerMonitor.

[17] Movidius. Movidius Myriad 1.
http://movidius.com/technology/myriad1/.

[18] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. Pipe,
T. Wenisch, and M. Martin. Computational sprinting on a
hardware/software testbed. In Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating Systems
(ASPLOS), 2013.

[19] R. R. Riahi and P. R. Cohen. Laptop-induced erythema ab igne:
report and review of literature. Dermatology online journal, 18(6),
2012.

[20] S. Torborg and S. Simpson. Google Glass Teardown.
http://catwig.com/google-glass-teardown/.

[21] T. Stevens. Google Glass review (Explorer Edition).
http://engadget.com/2013/04/30/google-glass-review/.

[22] Texas Instruments. OMAP4430.
http://ti.com/product/OMAP4430.

[23] Texas Instruments. OMAPCONF: Texas Instruments OMAP
Processors Diagnostic Tool.
https://github.com/omapconf/omapconf.

[24] Vuzix. http://vuzix.com/.
[25] L. Zhong and N.K. Jha. Energy efficiency of handheld computer

interfaces: limits, characterization and practice. In Proc. ACM Int.
Conf. on Mobile systems, applications, and services (MobiSys), 2005.

6


