
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19519  | https://doi.org/10.1038/s41598-021-98024-6

www.nature.com/scientificreports

Dramatic transcriptomic 
differences in Macaca mulatta 
and Macaca fascicularis 
with Plasmodium knowlesi 
infections
Anuj Gupta1, Mark P. Styczynski2,6, Mary R. Galinski3,4,6, Eberhard O. Voit1,6* & 
Luis L. Fonseca1,5,6

Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic 
malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. 
However, little is known about the host-parasite interactions and molecular mechanisms in play 
during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium 
species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca 

fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts 
are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without 
treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This 
comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the 
form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, 
while most immune responses are initially similar during the acute stage of the blood infection, 
significant differences arise subsequently. The observed differences point to prolonged inflammation 
and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional 
makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest 
that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while 
initiating the replenishment of key cell populations, helps contain the infection. Overall, this study 
points to specific genes and pathways that could be investigated as a basis for new drug targets that 
support recovery from acute malaria.

Malaria has plagued humanity since the dawn of civilization and is one of the world’s deadliest infectious diseases, 
with an estimated 229 million cases and 409,000 deaths reported in  20191,2. Malaria has been studied scienti�cally 
since the late 1800’s, when the disease was blamed on “bad air” (Italian: mal’ aria), and great progress has been 
made toward understanding and treating the disease since the identi�cation of the infecting agent as mosquito-
borne Plasmodium  parasites3–5. Yet, malaria still persists throughout the world, including with zoonotic pathogens 
and increased resistance to anti-malarial  drugs6,7. Fundamental studies of the basic mechanisms of Plasmodium 
infections in the liver, and subsequently in the blood, and their e�ects on the host continue to be direly needed.

Numerous cross-sectional blood sample examinations from individuals with varying levels of malarial disease 
have been carried out around the world for decades to diagnose individuals and conduct  research8, however, 
the current investigative repertoire for studying the temporal changes associated with disease progression in 
humans is relatively  scarce9–11. �e main reason is of an ethical nature, typically mandating the treatment of 
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patients as soon as they are diagnosed. Consequently, the main source of blood samples for research on natural 
infections has been from active case detection and symptomatic individuals seeking treatment. It is evident that 
knowledge of malaria and its progression concurrently with immune responses developing within a host is a 
prerequisite for rationally developing new measures for preventing the disease, treating patients, and improv-
ing patient outcomes. While immunity and vaccine research is advancing in the context of controlled human 
malaria infection studies initiated with  sporozoites12–20, performing these longitudinal molecular studies with 
human volunteers has its logistical and ethical  challenges21, and immediate treatment of blood-stage infections 
has been a standard requirement.

Rodent malaria models have been widely used to expand our understanding of Plasmodium  infections22–24. 
While they o�er a spectrum of advantages, the di�erences in human and mouse or rat physiology present some 
drawbacks. Nonhuman primate (NHP) macaque models are much closer to humans, and the clinical presenta-
tion of malaria and immune responses are more similar between humans and  macaques25–29. As a consequence, 
macaques have become important alternatives to rodent models for explaining di�erent host–pathogen interac-
tions, not only for malaria, but also for various diseases including those caused by HIV/SIV and  COVID30,31. 
Indeed, infection of macaques are widely accepted as robust in vivo models for human malaria, with comparable 
liver- and blood-stage  cycles32,33.

Between 2012 and 2019, under the auspices of research contracts from the U.S. National Institute of Allergy 
and Infectious Diseases (NIAID) and the U.S. Defense Advanced Research Projects Agency (DARPA), we col-
lected and deposited in NIAID-supported Bioinformatics Resource Centers (BRCs) large clinical, parasitological, 
immunological and multi-omic datasets from longitudinal infections of macaque species infected with Plasmo-
dium coatneyi, Plasmodium cynomolgi or Plasmodium knowlesi34,35. Our investigations yielded a large collection 
of datasets and analyses from over 30 macaque infections and controls, including frequent samplings of blood 
and bone  marrow34,36–43. �e �rst two simian malaria parasite species are excellent models of corresponding 
human infections by the parasites P. falciparum and P. vivax,  respectively28,44, while P. knowlesi re�ects aspects of 
both, depending on the  question29,45. Plasmodium cynomolgi and P. knowlesi infect both humans and NHPs and 
constitute zoonotic public health concerns in Southeast Asia, where humans and macaque species  coexist7,46–49. 
Comparative longitudinal macaque infection studies of the type performed by our consortium can help focus 
analyses on signi�cant molecular features that play crucial roles in determining the course of the disease. Fur-
thermore, because host–pathogen interactions in macaques can closely mimic those in humans, �ndings from 
macaques have great potential for establishing a rational basis for new therapeutic targets and interventions, 
including host-directed therapies.

For the analyses described here, we used peripheral blood transcriptomics data from cohorts of Macaca 
mulatta (Mm) and Macaca fascicularis (Mf), which were infected with sporozoites of the Malayan strain of P. 
knowlesi50. Here we study host responses prior to and from the time of parasite inoculation through the develop-
ment of liver-stage schizonts containing invasive merozoites followed by the release of these merozoites from 
infected hepatocytes into the bloodstream. Cyclical merozoite invasion and multiplication within red blood cells 
(RBCs) caused the progression of malarial illness and disease manifestations, as presented  elsewhere51.

While Mm and Mf are closely related NHP species (Figure S1) with reported interbreeding and shared geo-
graphical  locations52, an important di�erence must be noted. Namely, Mf co-evolved with P. knowlesi within a 
large geographical area of Southeast Asia, whereas the distribution of Mm overlaps with P. knowlesi only slightly 
(Figure S2). Arguably as a consequence, Mf shows signs of the disease but survives with a low-level infection that 
can become chronic, whereas Mm becomes severely ill with escalating life-threatening parasitemia and succumbs 
unless  treated32,33,53,54. �e molecular and physiological basis of this stark di�erence is unknown. We found that 
the peripheral blood transcriptional responses have many similarities between the two species, but subtle di�er-
ences are signi�cant with regard to the observed outcomes. In particular, our analysis suggests that Mf initiates 
its transcriptomic response earlier than Mm and with some favorable adjustments around the time of the acute 
blood-stage infection that could contribute to the control of parasitemia and help enable the recovery of Mf.

Results
�e results of our analysis are based on longitudinal transcriptomics data from whole blood samples taken at �ve 
time points (TPs) from cohorts of four Mm and seven Mf. �e subjects were infected sequentially at di�erent 
times by inoculation with the same batch of cryopreserved P. knowlesi sporozoites (Fig. 1). All data generated 
from these infections are available in public databases and details of the experimental design and data deposition 
are discussed in the Methods section. �e overall goal here is to compare and characterize the temporal whole 
blood transcriptional programs launched by the two macaque species in response to the infection. Analyses of 
other datasets and their integration in the context of this experiment will be discussed elsewhere (manuscripts 
in preparation).

Plasmodium knowlesi infection causes different gene expression patterns in Macaca mulatta 
(Mm) and Macaca fascicularis (Mf). As expected, gene expression repertoires and levels changed in both 
monkey species during the course of experimentally introduced P. knowlesi sporozoite infections, both as the P. 
knowlesi parasites multiplied within hepatocytes and following their cyclical replication in host RBCs and para-
sitemia patency (Fig. 1A, 6 days post inoculation “dpi” onwards). To characterize these changes, we compared 
RNA-seq data generated from samples acquired from both macaque species at baseline and at speci�c infection 
time points (TPs). Principal component analysis (PCA) of the whole-blood gene expression patterns (Fig. 2A) 
shows a clear separation of the two species, as well as between samples taken before infection (TP1 and TP2) 
and during the fast rise and approach of peaking parasitemia (TP4 and TP5, respectively 8 and 10 dpi). Samples 
taken shortly a�er the inoculation of sporozoites, during the pre-patent period (TP3, 3 dpi), cluster mostly with 
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pre-infection samples. Most of the variance (PC1 = 51.9%) shown is due to the host species, while the second 
major axis of variance (PC2 = 14.11%) separates pre-infection (TP1, TP2) from acute-parasitemia samples (TP4, 
TP5). Analysis of pre-infection TP1 and TP2 samples with pre-patent TP3 samples (Figure S3) demonstrates 
dominance of inter-individual variability over short-term transcriptomic changes during the initial phase of the 
infection.

It is worth noting that the same PC2 axis crisply separates pre-infection (TP1, TP2) and acute infection (TP4, 
TP5) samples for both host species even though the disease progression is di�erent, suggesting fundamentally 
similar transcriptional responses. To gain deeper insights into the details of PC2, we identi�ed enriched Gene 
Ontology (GO) gene sets along this axis (Fig. 2B). �e most enriched gene sets are associated with defense and 
innate immune responses (p ≈  10−70) and with a response to cytokine and biotic stimuli (Figure S4).

To characterize key features in response to the P. knowlesi infection in each host species, we identi�ed signi�-
cant intra-species and inter-species transcriptional changes. For intra-species analyses, we identi�ed di�erentially 
expressed genes (DEGs) for each infection time point (TP3, TP4 and TP5) compared to the pre-infection baseline 
samples (TP1 and TP2). For inter-species analyses, we identi�ed genes that responded di�erentially to infec-
tion, as explained further in our supplementary data (Figure S5). �ese di�erentially responding genes (DRGs) 
provided contrasting di�erences in infection responses between the species at each time point.

As early as TP3, when the infection was still con�ned to the liver, some changes in blood transcriptome were 
identi�ed in each host species. �ese are statistically signi�cant, although they are quantitatively much smaller 
than the changes that occur when parasitemia is rising and peaking (TP4 and TP5, respectively). While many 
DEGs are shared between the two species at TP4, there is greater divergence in the transcriptional pro�les at 
TP5, as indicated by fewer shared DEGs (Fig. 2C). �is divergence is supported by the results of our inter-species 
analyses, where we observe only a few DRGs up to TP4, but a substantial increase in DRGs at TP5 (Fig. 2D).

Evolutionary distance of homologous genes does not account for the differential responses 
observed in the Macaca mulatta (Mm) and Macaca fascicularis (Mf) host species. We hypoth-
esized that there might be a relationship between the evolutionary divergence of homologous Mm and Mf genes 
and their expression pro�les in the two hosts, since such divergence could be explained by evolutionary pres-
sure and possibly underpin the di�erences in the control of parasitemia and in the di�erent outcomes observed 

Figure 1.  Timeline of Mm and Mf infection with P. knowlesi, along with parasitemia levels and RBC counts. 
�e x-axis depicts the time points (TPs) and days post inoculation (dpi). �e red star represents the day of 
sporozoite inoculation (i.e., dpi 0). Data at TP1 were collected more than a month before TP2. (A) Parasitemia: 
�e y-axis shows average parasitemia levels throughout the P. knowlesi infection on a log10 scale. Parasitemia 
levels were measured as parasites/μL. (B) Normalized RBC counts: �e y-axis shows the ratio of mean RBC 
counts with respect to pre-infection levels. 
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between the species. To test this hypothesis, we estimated the evolutionary distance between homologous genes 
in the two species (Table S9) and compared the similarity scores of DRGs at each time point.

�e evolutionary hypothesis was ultimately rejected given a gene similarity score of all genes that was not 
signi�cantly di�erent (Kolmogorov–Smirnov p-value > 0.1) from that of the three sets of DRGs (Fig. 3). However, 
it is interesting to note that genes involved in regulation of immune system processes were overrepresented in 
the outliers at each time point, with a hypergeometric p-value of 3.9 ×  10−18 and 3.29-fold over-enrichment in the 

Figure 2.  Transcriptomics patterns of whole-blood gene expression of all samples at time points TP1–TP5 
from Mm and Mf. (A) Principal component analysis (PCA) of all samples from Mm and Mf. PC1 captures 
inter-species variance in expression pro�les, while PC2 captures temporal variance in expression pro�les. 
Pre-infection samples TP1 and TP2 (before infection) form species-speci�c clusters that are separate from 
the samples at TP4 and TP5, re�ecting peaking parasitemia. TP3 (3 days a�er inoculation of sporozoites, and 
prior to blood-stage parasitemia, i.e., the pre-patent period) samples cluster with the pre-infection samples TP1 
and TP2. (B) Top GO gene sets over-represented in PC2. (C) Di�erentially expressed genes (DEGs) and (D) 
Di�erentially responding genes (DRGs) in TP3-TP5. �e numbers of DEGs change signi�cantly between TP3 
(~ 50) and TP4 (~ 1000–1140) for both Mm (purple) and Mf (green), and then remain similar between TP4 and 
TP5 (~ 1000–1100) for each species. However, the number of common DEGs between Mm and Mf decreases 
substantially from TP4 (611) to TP5 (254). Concomitantly, the DRGs between TP4 and TP5 (gold) increase 
substantially.
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outliers compared to expectation in all immune system genes. Of particular interest are immune system related 
genes (FCER1G and ELANE), cytokines and growth factors (CCL22, CTSG, PF4 and PPBP), transcription factors 
(STAT3, TRIM38 and HLX) and various cell di�erentiation markers (BST2, CD276, CD300A, CD68, CLEC10A, 
F11R, FCGR2A, FCGR2B, PDCD1, PVR, SIRPB1 and TLR2).

Gene set enrichment analysis indicates distinctive gene expression profiles between the spe-
cies by TP5. To identify well-de�ned, signi�cantly enriched gene sets with respect to P. knowlesi infection, 
we performed gene set enrichment analysis (GSEA) using signi�cant DEGs (adjusted p < 0.01, log2 (absolute 
fold change) > 1) at each time point. We used Hallmark gene sets from the Molecular Signature  database55 for an 
overview analysis (Table S1) followed by a detailed analysis using GO annotated biological pathways. Intrigu-
ingly, by TP3 a few DEGs were identi�ed that only showed signi�cant enrichment in the Mf. Although the 
number of DEGs is similar in both species, Mf has several Hallmark gene sets signi�cantly enriched (Table S1). 
Importantly, these results suggest that by 3 dpi, when parasites solely reside in the liver, Mf is already mounting 
interferon (IFN)-mediated immune responses (IFNα and IFNγ) against the parasite. Relevant genes involved in 
the response include IRF7, CCL22, CXCL12 and PML. In-depth GO analysis (Figure S6) indicates that the IFN 
responses are characterized by pathways known to regulate viral genome replication and the cytoplasmic pat-
tern recognition receptor (PRR) signaling pathway, known to indicate the presence of foreign genetic material. 
Di�erences between the two species are less evident by TP4, when parasitemia is rising. �en, both species show 
pronounced enrichment for IFNα and IFNγ immune responses and several signaling pathways, including NFκB 
and IL6-JAK-STAT3 (Figure S7, Table S1).

In-depth GO analysis shows that while many aspects of the response at TP4 are similar for the two species, 
including the typical response to viruses, Type-1 IFN production, and urea catabolism, some notable di�erences 
exist (Figure S8). For instance, Mm exhibits prominent regulation of calcium ion transport along with changes in 
certain metabolic pathways including amino acid metabolism, protein catabolism and cytokine metabolism. In 
Mf, by contrast, cellular amide metabolic processes (urea catabolism) and additional immune response pathways 
triggered by foreign organisms dominate the response. Interestingly, Mf also shows enrichment of an adaptive 
immune pathway.

At TP5, which is only 2 days later than TP4 (Fig. 1A), the di�erences between the species in their most sig-
ni�cantly enriched pathways become much more profound (Figs. 4, S7, S9; Table S1). Mm continues to express 
mainly immune response genes related to cytokine secretion, leukocyte activation and responses to the presence 
of foreign organisms, while the Mf gene expression pro�le shi�s dramatically.

Figure 3.  (A) Density plot showing the distribution of genes across similarity score of ~ 15,000 homologous 
genes. (B) Box plot comparing the gene similarity score of DRGs at TP3, TP4 and TP5. Although the mean 
similarity score across DRGs at TP4 and TP5 is not di�erent as compared to all genes, GO annotation of the 
outlier genes (Red points) suggests numerous genes being involved with immune regulation.
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Figure 4.  Changes in enriched pathways from TP4 to TP5 in Mm and Mf. (A, B): Venn diagrams of top 10 
enriched pathways at TP 4 and TP5 for Mm and Mf, respectively. In Mm, 9 out of the top 10 are common 
between the two TPs. In Mf, only 3 out of the top 10 are common. (C, D): Ranking, from top to bottom, 
of most enriched pathways in Mm and Mf, respectively, at TP4 and TP5 (le� to right). For each host, the 
changes in ranks of the top pathways between TP4 to TP5 are shown. Each list contains the union of the most 
signi�cantly changed gene sets, ordered by their enrichment score. �e top ranked gene set is the most enriched. 
Connectors show changes in rank for each gene set between the two TPs. Red shading indicates increases in 
rank and hence decreased enrichment from le� (TP4) to right (TP5). Blue shading indicates decreases in rank 
and thus increased enrichment from TP4 to TP5. Color shades are proportional to relative changes in rank 
considering all gene sets (not just the ones shown). For instance, the darker shade of red for p53 pathway in 
panel D represents a sharp decrease in rank. (E): Violin plots of rank di�erences, representing the importance 
of gene sets, between TP4 and TP5 in the two host species. �e vertical axis represents the distribution of rank 
di�erences between TP4 and TP5 for GO gene sets in Mm and Mf. Each data point in the two distributions 
represents one GO gene set (see Methods for details). �e transition from TP4 to TP5 in Mm is characterized by 
a distribution (shown in purple) with 0 mean and a broad, rather than narrow distribution, which corresponds 
to relatively small changes in the importance of most gene sets. By contrast, the distribution of ranks in Mf 
(shown in green) has a much narrower distribution at the mean, with heavy tails, indicating many more changes 
in rank, overall. Both red and blue domains represent pathways that are important in Mm during both TP4 
and TP5. In Mf, the red domain represents pathways that were not important at TP4 (higher ranked/lower 
enrichment) but become more important at TP5 (lower ranked/higher enrichment), while the blue domain 
represents pathways that were important at TP4 but become less important at TP5. �e striking di�erence 
between these distributions demonstrates that Mf alters and refocuses its gene expression pro�le between TP4 
and TP5 towards cell proliferation, etc. In contrast, Mm’s gene expression remains almost unchanged, still 
emphasizing the immune response.
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Interestingly, some of the adaptive immune pathways previously only identi�ed in Mf at TP4 (Figures S8) are 
evident in Mm at TP5 (Figure S9). Beyond these di�erences, the two hosts have some pathways in common at 
TP5, mostly associated with immune responses to in�ammation and metabolic pathways regulating cell cycle 
and protein modi�cation.

Upon further analysis of the di�erences between TP4 and TP5 (Fig. 4), a dramatic contrast emerges: the 
response of Mm at TP4 and TP5 is very similar, whereas Mf shi�s into a di�erent phase of its response a�er TP4, 
characterized by what seems like an e�ort towards rehabilitation and recovery. �e immune responses in Mf are 
still evident at TP5, but gene expression in this species notably shi�s toward cell proliferation and cell division 
functions, highlighted by DNA replication, chromosome segregation, organelle �ssion and localization pathways. 
One of the noticeable enrichment changes in Mf is in the p53 pathway (Fig. 4D), with the timely enrichment 
of this stress response pathway by TP4, and its ceased enrichment by TP5. �is observation can be regarded 
as a precursor for DNA replication, cell division and cell proliferation  pathways56. Moreover, we were able to 
extract more information about previously identi�ed cell cycle related pathways (Fig. 4E). Myeloid leukocyte 
di�erentiation hints at upregulation of speci�c cell populations in Mf. It is worth noticing that Mf downregulates 
cytokine production while upregulating �1 cell cytokine production, which is a part of the adaptive immune 
response. Enrichment of the JAK-STAT pathway (Figure S7) in Mm along with its cross-regulation with both 
IL10 and IL6 suggests duplicated  e�orts57. Di�erential expression of the SOCS3 gene in both Mm and Mf sug-
gests upregulation of the JAK-STAT pathway but the two-fold regulation could mean impaired functionality in 
Mm. Overall, as discussed further below, the GSEA reveals a prominent di�erence in molecular responses that 
might be responsible for the diverse outcomes of the two macaque hosts.

In sum, Mf detects the pathogen sooner than Mm and is able to balance its immune response and in�amma-
tion in the face of higher parasitemia levels. �is earlier response is consistent with the conclusions of Peterson 
et al.51 from their analysis of clinical, parasitological and immune response data for these infected animals. 
Interestingly, in Mm, a strong enrichment of  Ca2+ ion transport might be playing an important role in pathogen 
survival as it maintains  Ca2+ homeostasis and aids the parasite’s  Ca2+-based signaling, which is critical for parasite 
growth and di�erentiation within infected RBCs, and their egress and invasion of new host RBCs during the 
blood stage of the  disease58. �e transition from TP4 to TP5 highlights key di�erences in immune responses 
between the two species. Gene expression at TP4 has signi�cant similarities between the two species, although 
there are some key di�erences. �en the species’ responses diverge. Figures 4, S7 and S10 demonstrate that 
while Mm does not seem to change its response much, Mf mounts a radical makeover in expression pro�les in 
important pathways between TP4 and TP5, and these changes appear to be among the most crucial di�erences 
observed between the two species. In contrast to Mf ’s response, Mm displays fairly small changes among the 
most enriched gene sets during the transition from TP4 to TP5, exceptions being an increased focus on hypoxia-
related genes and decreased importance of E2F target genes at TP5.

Analysis of transcription factors reveals prominent regulators that distinguish the immune 
response of the two hosts. To characterize these di�erences further, we identi�ed the transcription fac-
tors (TFs) and other regulatory proteins that might orchestrate changes in these coordinated gene programs. 
�ese TFs and the gene networks they control can be found by searching for upstream regulators of DEGs in the 
databases  iRegulon59 and TRRUST  DB60 (see “Methods”). �e most signi�cantly enriched TFs, according to a 
combination of the two databases, are shown in Fig. 4A; an exhaustive list of iRegulon TFs identi�ed is presented 
in Table S3.

Consistent with the results presented above, the transcriptional data from Mf indicate signi�cant enrichment 
for TF activity as early as TP3, and this response is absent in Mm (Figs. 5A,6). In particular, IRF7 and IRF4 are 
enriched in Mf at TP3 along with TRIM25, STAT2 and STAT1. In contrast to Mf, the corresponding Mm data 
only indicate slight enrichment of NFIL3 activity, which might suggest the emergence of precursors of common 
helper innate lymphoid cells; however, the signal is too weak to warrant a de�nitive claim.

Several other pertinent TFs are enriched at TP4, especially for Mm, where the parasitemia continues to rise 
unabated. In Mm, across TP4 and TP5, STAT3 is persistently activated, which is brought about by in�ammatory 
cytokines. At least in humans, and presumably also in NHPs, enrichment of NFκB signaling related TFs—NFκB1, 
REL and RELA points toward the canonical NFκB signaling  pathway61. �e persistent activation of the anti-
apoptotic pro-in�ammatory NFκB pathway along with the opposing p53 pathway suggests that unduly extended 
in�ammation might contribute to Mm’s severe, and indeed life-threatening systemic illness in response to the 
acute P. knowlesi blood-stage infection. Mm continues to show these immune responses at TP5 with additional 
activation of STAT4, a sign of IFN production by dendritic cells (DCs)62. In contrast, and paralleling the obser-
vations in gene sets, the immune response of Mf at TP5 is showing signs of recovery, with enrichment of E2F4, 
TFDP1, FOXM1, E2F1 and TP53, along with other TFs that are involved in balancing quiescence and cell cycle 
activation. �e Mf furthermore enhances cell cycle related pathways by promoting both early stage (E2F1 and 
TFDP1) and late stage (FOXM1) cell cycle processes.

�e intersection of TF sets at TP4 with those at TP3 and TP5 in both species (Table 1) distinguishes phases 
of infection in the two hosts. In Mf, TP4 shares many active TFs with TP3, but not TP5. �is dramatic shi� in 
TF pro�les by TP5 in Mf could predictably allow the host to counteract the expansion phase of P. knowlesi by 
slowing down the in�ammatory response and initiating recovery pathways. Mm, by contrast, essentially lacks an 
immune response at TP3. In Mm, TP3 also does not share any enriched TFs with TP4, whereas the sets of active 
TFs overlap substantially between TP4 and TP5, suggesting that the delayed TF program is sustained until TP5, 
resulting in continued in�ammation and/or the lack of an appropriate immune response.

To highlight the main driving factors that di�erentiate the immune response in the two hosts at TP4, we 
identi�ed the TFs enriched by the DRGs (Fig. 5B). �ese include TFs like RUNX1, SPI1, LEF1, FLI1 and CEBPA, 
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which play important roles in hematopoiesis and lymphocyte di�erentiation. Interestingly, the a�ected genes 
suggest involvement of RUNX1, SPI1 and LEF1 in Mf while FLI1 and CEBBPA play a crucial role in Mm, includ-
ing upregulation of IL10.

Modular transcriptional repertoire analysis provides further insights into gene expression dif-
ferences between the Macaca mulatta (Mm) and Macaca fascicularis (Mf) host species. �e 
analysis of transcriptional modules yielded general agreement with our prior results, along with some surprising 
new insights (Figs. 7, S11–S12; Tables S4–S6). TP3 shows signi�cant enrichment of IFN modules in Mf (M10.1, 
M15.127 and M8.3; Fig. 7). Type-1 IFN module M8.3 suggests induction of anti-pathogen e�ector genes like 
MX1 in addition to IFN modules M15.127 and M10.1, which may indicate immunopathology with host–patho-
gen interactions. M15.127 and M10.1 also point to a pathogen associated molecular pattern (PAMP), speci�-
cally, double-stranded RNA. Mm meanwhile shows a relatively modest enrichment of module M15.113, which 
is related to IL-1-mediated in�ammation (Figure S11).

TP4 shows much similarity between the two hosts with respect to in�ammation, IFN and cytokine-related 
modules (M13.16, M13.1, M10.1, M13.17, M15.127, M15.64, M15.86 and M8.3). However, some modules show 
distinguishing features. Down-regulation of the B-cell module M13.27 suggests possible inhibition of T cells 
with downregulation of CD96 and LY9. Among the erythrocyte modules, the di�erence in M13.30 suggests a 
relative di�erence in hematopoiesis by megakaryocyte erythroid progenitor markers like BLVRB, SLC25A39, 
HBM and HBQ1. �e prostanoids module M8.2 suggests di�erences in platelet activation through enrichment 
of genes like PPBP, GP9, and others. Certain cell cycle related modules also suggest di�erentiating biological 
behaviors between the two hosts. Mm shows downregulation of a mitosis-related module (M13.32), while its 
upregulation in Mf suggests cell division.

Mf exhibits several enriched cell cycle-related modules that become even more signi�cant at TP5 (M12.15, 
M13.32, M15.110, M16.60 and M16.92). At TP5, Mm still expresses enriched IFN modules that are now 

Figure 5.  (A) Most signi�cantly enriched TFs at each TP for the two host species. Mm has a disjointed set of 
TFs between TP3 and TP4 along with substantial overlap between TP4 and TP5. Mf, on the other hand, has 
substantial overlap between TP3 and TP4, which is then disjointed with TP5. (B) TFs enriched by DRGs at 
TP4 along with the corresponding DRGs. �e heatmap shows di�erential expression of these genes at TP4 with 
respect to baseline.
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downregulated in Mf as compared to TP4. �ese enrichments align well with previous results showing that the 
in�ammatory immune response in Mf subsides by TP5.

Cell population markers. To complement these results, we analyzed single-cell reference gene markers 
to explore hematopoiesis and identify enriched cell types in blood samples (Table 1). �ese gene marker data 
indicate that non-classical monocytes are enriched in both hosts at TP4. Anti-in�ammatory e�ects of non-
classical monocytes include vascular homeostasis and are the �rst line of defense in terms of pathogen detec-
tion and  clearance63. Mm shows enrichment of progenitor cells for both NK and B cells. By TP5, Mm exhibits 
enrichment of erythrocytes and neutrophils as well. �e Mm may amplify cytokine signaling using NK cells. 
Activation of intermediate monocytes suggests their involvement in dealing with oxidative stress created by the 
infection. Interestingly, enrichment of hematopoietic stem and progenitor cells (HSPCs) in Mf is concentrated 
to the G2-M cell cycle phases suggesting proliferation of immature myeloid progenitors.

Figure 6.  Transcription factors and associated genes of signaling pathways during the immune response. �e 
TFs and genes shown are associated with di�erences in DEGs between early and late responses to infection. 
DEGs and their magnitudes are shown on the right for TP3, TP4, and TP5, with columns for each of Mm 
and Mf. Red dots signify up-regulation and blue dots down-regulation. In addition to DEGs at TP4 and TP5, 
the RIG1/MDA5-mediated PRR signaling pathway is included, as it is signi�cantly di�erent at TP3. IRF7-
regulated genes expressed by ISRE also show signi�cant changes. Finally, NFκB signaling, mediated by REL and 
RELA, plays a crucial role in controlling in�ammation, and the ongoing strongly di�erential expression of the 
corresponding genes (ISRE- and GAS-regulated) at TP5 in Mm suggests a prolonged in�ammatory response.

Table 1.  Gene markers indicate enriched cell populations (and sub-populations) in the two species at di�erent 
TPs during the infection. HSPC: hematopoietic stem and progenitor cell; NK cells: natural killer cells; CLP: 
common lymphoid progenitor.

Mm Mf

TP4

HSPC—Pre-B/NK

Monocyte—Non-classical Monocyte—Non-classical

B cell—Pro-B

NK cell—NKP

TP5

Erythrocyte—ERY1, ERY/GRA2 Monocyte—Pre-Monocyte

Nk cells—Cytokine NK B cell—Cycling Pre-B

Monocyte—Intermediate NK cell—CLP

Neutrophil—Meta-Myelocyte/Mature Neutrophil, Myelocyte HSPC—G2M
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Discussion
Our comparison between a disease-resilient host (Mf) and a highly vulnerable host (Mm), both infected with 
the same parasite species (P. knowlesi), was designed to yield insights into the host transcriptional programs 
associated with biological pathways that play signi�cant roles in such infections. �e identi�cation and charac-
terization of critical molecular and cellular di�erences between resilient and non-resilient hosts is an important 
step toward understanding the mechanisms of host-parasite responses.

�e Mm and Mf species are separated evolutionarily by fewer than three million years and their geographi-
cal distribution areas overlap slightly (Figures S1, S2). We speculated that querying the evolutionary distance of 
homologous genes could potentially o�er insights into the resilience of Mf. However, no correlation emerged 
in the two species between the sequence-level similarity of homologous genes and their di�erential response as 
parasitemia was rising. Interestingly, nevertheless, was the �nding that the immune system-related DRGs are 
overrepresented in the outliers. While we performed a detailed analysis and interpretation of DRGs, a compre-
hensive evolutionary analysis might help identify key immune regulation checkpoints that should be queried 
in future work as they point to fundamental evolutionary di�erences in the immune responses of the two hosts.

Our analyses revealed that the immune system of Mf (but not Mm) senses the presence of foreign organisms 
as early as 3 dpi. Furthermore, prominent TFs generally associated with immune responses are solely activated in 
Mf by 3 dpi (Table 1). It is not surprising that Mf shares many common TFs with Mm at TP4, but it is interesting 
to note that prominent TFs generally associated with immune responses are solely activated in Mf as early as TP3 
(Table 1). �e �rst line of response in Mf is detection of infected hepatocytes via cytoplasmic PRR (cytokine) 
signaling via MDA5 and RIG1, which activates the TFs IRF3 and  IRF764,65. �ese signaling pathways activate the 
innate immune response, led by IFNα, which starts almost simultaneously with the pro-in�ammatory response 
that is led by IFNγ66,67. In the context of responses to viruses, this type of detection is known to cause IFNα-
mediated downregulation of viral genome  replication68. Taken together, this early cytokine signaling along with 
IFN responses appears to be a crucial response signature in Mf that is missing or delayed in Mm, potentially 
rendering Mm more vulnerable to the infection (cf. Fig. 6).

Upregulation of cytoplasmic PRRs and the MDA5 signaling pathway in Mf at TP3 also marks the onset of 
a pro-in�ammatory innate immune response led by IFNγ signaling. �is response, along with regulation by 
certain transcription factors, including IRF7, STAT1, STAT2, and IRF4, leads to elevated cytokine production. 
IRF7 e�ciently activates both IFN-α and IFN-β  genes69,70 via the Interferon Sensitive Response Element (ISRE), 
which is clearly shown by corresponding gene expression that is activated in Mf at TP3 (Fig. 6). Interestingly, 
IRF7 has a short half-life (∼0.5–1 h)71 due to its susceptibility to ubiquitin-dependent  degradation72. �e labile 
nature of IRF7 may represent a mechanism critical to rendering the entire IFN gene-induction process transient, 
preventing overexpression of IFNs and harm to the host. Activation of the lymphoid-speci�c enhancer Spi-B 
transcription factor (SPIB) in the blood could either indicate the production of Type-1 IFN by plasmacytoid 
dendritic cells (pDCs) or IgM by mature B  cells73, both of which have signi�cant roles in the immune response.

�e P. knowlesi infection transitions from hepatocytes to RBCs a�er about 5 days of parasite multiplication 
in the  liver32,33. �e following period of parasite multiplication in RBCs and the rising parasitemia are charac-
terized by the most signi�cant responses in terms of the number of DEGs in both species compared to baseline 

Figure 7.  Heat map of most enriched transcription modules at each TP for both hosts. �e heat map represents 
the enrichment score (ES) for each of the modules. Relevant information related to each module, for example 
pertaining to functional associations and literature annotations, is presented on the right; further details and the 
entire list of modules with enrichment is presented in the Supplements, including Table S6. �e heatmap was 
created in the freely available programming language R.
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expression. All transcriptomic immune response signatures are consistent with the presence of pathogens in the 
blood, and judging by the small number of DRGs at TP4, both species launch a similar response. Against this 
background of similarity in transcriptomic responses, subtle di�erences are apparently very important.

In both species the rise in parasitemia at TP4 is marked by an elevated immune response via IFNα and IFNγ. 
�e IFNγ-inducible genes are carefully orchestrated by the transcription factors STAT1, STAT2, and IRF9 to 
respond appropriately to the speci�c needs of the cell. �is immune response is complemented by the IL-6 
regulated JAK-STAT3 signaling pathway, which controls cytokines like erythropoietin, thrombopoietin and 
G-CSF and thereby may be involved in dealing with pathological conditions like anemia, thrombocytopenia, 
and neutropenia or, alternatively, the generation of antibodies through B-cell and plasma cell di�erentiation.

�e innate immune system in the host spearheads the immune response not only by developing protective 
immunity but also by aiding the host in dealing with  pathogenesis74, and the initial pro-in�ammatory response 
attempts to clear the infection. However, when elevated and prolonged, in�ammation leads to physiological 
deterioration and increasing severity of various pathological conditions. �e fact that pro-in�ammatory genes 
of the IFNγ pathway are more strongly elevated at TP4 in Mm than Mf suggests prolonged in�ammation only 
in Mm, despite similar levels of parasitemia in both species at that time point. IL-10 is a chief anti-in�ammatory 
receptor and a�ects various pathways to inhibit in�ammatory cytokines like IL-6, IL-1 and TNFα. Substantial 
upregulation of IL-10 combined with enriched B-cell subpopulations (Pro B and Pre B) at this phase of infection 
is again suggestive of Mm’s attempt to stem the in�ammation and �ght the infection. In contrast, the presence 
of signi�cantly enriched non-classical monocytes along with di�erentially expressed TNFα, IL1β and CCL3L3 
is indicative of a direct response to the pathogen via the MyD88-MEK  pathway75. Non-classical monocytes are 
known to produce more TNFα and less IL10, and timing of their enrichment might be crucial for the outcome.

Time point 5, representing the �nal days of high parasitemia, reveals the most dramatic di�erences between 
the species. Mm continues with its prolonged immune response with proin�ammatory signatures, while Mf 
initiates a program of cell proliferation with the transcription of multiple genes involved in DNA replication 
and repair, mitosis, and cell cycle progression; all these suggest the onset of a recovery phase in the Mf. Enrich-
ment of HSPCs in their G2M phase could support replenishment of lost cells and reinforcement of the immune 
response. Notably in Mf, the p53 pathway is signi�cantly downregulated at TP5 in comparison to TP4, consist-
ent with the goal of preventing p53 targets from hindering these cell proliferation  pathways76. �e gene TP53 is 
known to be activated in response to DNA damage and oxidative stress. It assists in apoptosis of damaged RBCs 
and maintains adult stem cell niches. In patients with malaria, TP53 has been shown to modulate in�ammatory 
responses to  infection77. Hypoxia activates this p53 signaling, and, indeed, hypoxia levels were higher in Mm 
than Mf, suggesting that higher hypoxia levels, sustained for a prolonged time, may contribute to the extended 
stress response of the p53 pathway. If so, the p53 pathway might be an important yardstick for in�ammation. 
Sustained in�ammation and delay in upregulation of cell development pathways in Mm is in fact revealing with 
regards to the mechanistic explanation for Mm’s deterioration, compared to Mf ’s resilience and recovery, with 
the added major concern that infected Mm are rapidly running out of healthy, uninfected RBCs.

Unlike GSEA, which uses curated gene sets to de�ne a function or process, the ‘modular transcriptional rep-
ertoire’ is derived from multiple (large-scale data) samples that display perturbed responses caused by various 
diseases or pathogens and pertain to a particular tissue (in our case white blood cells (WBCs))78. Analysis of 
whole modules rather than individual genes can increase our ability to detect interesting changes by decreasing 
the impact of multiple hypothesis testing and considering the inter-dependence of di�erent transcript pro-
�les. Interestingly, pre-patent phase modules in Mf are known to be associated with the detection of viruses 
(Table S6), especially in�uenza, which has frequently been confused with malarial infection due to early infec-
tion  symptoms79. In line with duplicated e�orts of IL10 and IL6 with respect to JAK-STAT signaling pathway, 
di�erential response of ERK1/2 MAPK signaling pathway related in�ammatory modules suggests possible role 
of SOCS3 or STAT3 in extension of  in�ammation80,81.

�e transcription di�erences between two closely related species, infected with the same parasite, o�er hints 
to why one species faces severe life-threatening disease and requires aggressive treatment when infected with P. 
knowlesi, whereas the other becomes sick but rebounds without the provision of antimalarial drugs, as further 
detailed in Peterson et al.51. A noteworthy component of the di�erence appears to be the delayed detection of 
the parasites in Mm and the consequently delayed initial immune response in Mm, which comes too late for 
this species to recover.

Our analysis has identi�ed interesting changes in molecular pro�les between Mm and Mf. Not surprisingly, 
it also has shortcomings, which are by and large due to the infrequency of sampling in our longitudinal study, 
which in turn was dictated by regulatory blood draw limitations. Since most of the di�erentiating factors between 
the two macaque species point to the critical timing of pathogen detection and the timely switch of Mf ’s tran-
scriptomics program toward recovery, an iterative longitudinal study with denser sampling around these times 
would most likely allow more re�ned and de�nitive claims. Such experiments are warranted, particularly since 
our study results highlight promising prospects that one might use for the development of future anti-malarial 
treatments and vaccines. Many potential adjuvants for anti-malarial vaccines are under investigation, which 
mostly seek to target PRR signaling via TLR  agonists82. Our analysis provides further mechanistic support for 
the application of such vaccines. During the later phases of the infection, IL10- and p53-related pathways could 
provide interesting drug targets. While it might be challenging to control IL10 due to its numerous roles, targeting 
p53 has already been demonstrated to attenuate malarial in�ammation and protect from  fever77.

Other comparative studies investigating P. coatneyi infections in the two macaque species, Mm and Mf, have 
shed light on di�erences in the pathology caused by this parasite  species83,84. Unlike the current sporozoite-
initiated infection study, however, these studies were based on the inoculation of blood-stage parasites. Raja et al. 
speci�cally indicate that cryopreserved P. coatneyi infected RBCs were obtained from the Centers for Disease 
Control and Prevention (CDC) and passaged once in intact (non-splenectomized)  animals83. �e P. coatneyi 



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19519  | https://doi.org/10.1038/s41598-021-98024-6

www.nature.com/scientificreports/

isolate (Hackeri strain) used in our published reports was con�rmed by the CDC to have been passaged only 
in intact animals, where it caused disease including severe  infections40,85, as documented  previously32,33,86. �e 
di�erence is important, because passage of P. coatneyi in splenectomized animals results in the circulation of 
 schizonts26 that, according to electron microscopy, lack knob protrusions (unpublished data), suggesting the 
possibility of reduced SICAvar gene  expression87, cytoadhesion, tissue sequestration, and virulence. Future com-
parative studies of P. coatneyi—an excellent model for P. falciparum—or P. cynomolgi—a model for P. vivax—that 
begin with sporozoites in the two macaque species would be of high interest.

Considering how closely related the two macaque species in our analysis are, one might have envisioned some 
simple switch in the expression of a few genes to result in the two disparate fates following P. knowlesi infection. 
Instead, our comparative analysis demonstrates that the di�erences in responses are rather subtle but widely 
distributed within a macaque species. In fact, the main and dramatic host species-speci�c di�erence we detected 
lies in the timing of responses, with Mf moving faster to identify the infection and trigger immune responses 
that can suppress the infection and support their recovery. �is insight, if independently validated, is important 
for the development of potential new interventions as it suggests the need to search for means permitting the 
host to have enough time early on to generate a strong and e�ective immune response.

Materials and methods
Experimental setup and data collection. For this analysis, four male Mm and seven male Mf were 
infected with sporozoites of the Malayan strain of P. knowlesi50. �e animals were observed daily during baseline 
periods, when inoculated with sporozoites, and throughout the infection. Female monkeys were excluded to 
avoid confounding e�ects of menstruation. Blood samples were collected at pre-de�ned TPs between 1 p.m. 
and 3 p.m. for both hosts, when the P. knowlesi cycle presents predominantly—if not exclusively—ring forms in 
circulation (Fig. 1). �e Mf experiment underwent an initial unsuccessful sporozoite inoculation, and a new pre-
infection baseline (TP2B) was established. �e sporozoite re-inoculation was conducted approximately 80 days 
a�er the failed inoculation, and as shown in Figure S13, the failed inoculation did not have any apparent e�ect on 
the subjects and the observed transcriptomes. All pre-infection samples were used to establish baseline expres-
sion. �e present study describes a secondary data analysis, while experimental details are described in Peterson 
et al.51. Nonetheless, all experiments involving NHPs were performed at the Yerkes National Primate Research 
Center (YNPRC), an AAALAC International-accredited facility. All methods were carried out in accordance 
with relevant guidelines and regulations. Speci�cally, all procedures followed ARRIVE guidelines and were 
approved by Emory’s IACUC and the Animal Care and Use Review O�ce (ACURO) of the US Department 
of Defense and followed accordingly. �e Emory’s IACUC approval number was PROTO201700484—YER-
2003344-ENTRPR-A.

A�er infection with sporozoites at Day 0, parasitemia in both species became patent 6 days post inoculation 
(dpi) (Fig. 1). Mf self-controlled the infection, while parasites in Mm kept rising as expected, with no evidence 
of the animals controlling the  infection51. In the Mm species, untreated parasitemia could escalate rapidly such 
that the majority of all RBCs become infected, which would result in certain death of the animal. In our study, 
the monkeys were monitored carefully with blood smear readings taken twice daily during the acute stage of the 
infection and �nally at 10 or 11 dpi when the animals had approximately 1% parasitemia and were euthanized 
for pathological  measurements51. Red blood cell numbers and parasitemia levels are presented in Fig. 1 with 
details in Peterson et al.51. Other details of the experiments have been reported in publicly available databases: 
Mm (referenced as Experiment 06) at https:// plasm odb. org/ plasmo/ app/ static- conte nt/ Plasm oDB/ mahpic. html 
and https:// www. ncbi. nlm. nih. gov/ biopr oject/ 524357, and Mf (referenced as Experiment 07) at https:// plasm odb. 
org/ plasmo/ app/ static- conte nt/ Plasm oDB/ mahpic. html and https:// www. ncbi. nlm. nih. gov/ biopr oject/ 526495. 
Additionally, a clinical and histopathological analysis of these cohorts can be found  elsewhere51. �e transcrip-
tomics data for both hosts can be found in the Gene Expression Omnibus (GEO accession numbers: GSE127079, 
GSE128115). PlasmoDB and NCBI-Bioproject are public databases that are freely accessible to anyone without 
speci�c permission.

Orthology analysis and gene similarity scores. �e reference Mm genome, corresponding transcripts 
and annotations were obtained from Zimin et al.88. �e data can be downloaded from the reference  site89. �e 
corresponding reference genome �les for Mf were obtained from NCBI annotation release  10190 and can be 
downloaded from the NCBI �p  server91.

Nucleotide sequences from the corresponding transcripts (fasta) �le were used to detect reciprocal best 
hits. �is correspondence was achieved with a reciprocal BLAST protocol described in  reference92 and used to 
identify orthologous transcripts. Unfortunately, the reciprocal-best-hits method does not guarantee orthology 
and is prone to shortcomings like its handling of gene duplications. �us, to estimate the similarity between 
two orthologous sequences, transcripts di�ering in length by more than 50 bp were removed to avoid manual 
curation. Additionally, transcripts with less than 85 percent identity were removed. Finally, to calculate the evo-
lutionary distance between homologous genes, a robust and widely accepted metric of sequence similarity was 
 used93. �e similarity score for the transcripts was calculated using BLAST alignment scores. �ese scores are cal-
culated by assigning a value to each pair of nucleotides and then summing these  values94. �ese scores were then 
normalized by the lengths of the transcripts to obtain the similarity scores for each pair of homologous genes.

Read mapping and gene expression analysis. Samples were sequenced using Illumina Hi-seq 3000. 
For each host, the reads were mapped using STAR (version 2.5.2b)95 against corresponding references (cf. sources 
in Orthology analysis above). For each species, a composite reference genome was assembled using STAR index, 
and further raw RNA-seq reads were mapped to the combined reference using STAR.

https://plasmodb.org/plasmo/app/static-content/PlasmoDB/mahpic.html
https://www.ncbi.nlm.nih.gov/bioproject/524357
https://plasmodb.org/plasmo/app/static-content/PlasmoDB/mahpic.html
https://plasmodb.org/plasmo/app/static-content/PlasmoDB/mahpic.html
https://www.ncbi.nlm.nih.gov/bioproject/526495
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Raw reads were normalized for library size, sequencing depth and composition using the  DESeq296 standard 
library size normalization method (estimateSizeFactors function). Custom R scripts were used to implement 
the DESeq2 normalizations and create PCA plots using variance stabilized transformation (vst function) of the 
normalized data. �e major genes contributing to each PC were extracted using the largest absolute values of 
components for the eigenvectors for each PC. �e enrichment p-value for each gene set was calculated using the 
top 200 genes in a hypergeometric test.

Differential expression and differential response. Di�erential expression of genes was calculated 
using  DESeq296. First, we �ltered low-abundance genes by removing genes which had low read counts in more 
than 20% of the samples, as is standard procedure. For di�erential expression analysis, the samples were modeled 
using species as the major factor and infection-TPs as a secondary factor for a subset of samples for each host. 
For di�erential responses, a species:infection-TPs interaction term was added to all the samples.

Since DESeq2 models the expression data as a negative binomial distribution, dispersion was estimated using 
the ‘estimateDispersions’ function, and di�erential expression was calculated using Wald’s test (nbinomWaldTest). 
DESeq2 functions adjust the p-value using the Benjamini–Hochberg method. For di�erential expression analysis, 
data were contrasted on the TP infection state with respect to baseline. For di�erential responses, the samples 
were contrasted on the interaction term. Representative examples of di�erentially expressed and di�erentially 
responding genes are highlighted in Figure S5. �e DESeq2 package in R was  used97.

Gene set enrichment analysis. Di�erentially expressed genes were analyzed for the enrichment of 
gene sets using the GSEA toolkit (version 3.0)98 by the Broad Institute. �e gene sets used for the analysis were 
 Hallmark55 and Gene Ontology (GO)99,100. �e pre-ranked GSEA module of the toolkit was used for the analy-
ses, where genes were ranked by an adjusted p-value and the sign of the fold-change.

We performed the ranked analysis in two ways. First, to retain only robust signals, we selected genes that 
were signi�cant (adjusted p < 0.01 and log2(fold-change) > 1) and used their ranked list. Second, for compari-
sons between infection TPs between species, we selected all genes and used their ranked list. �is step reduced 
biases in enrichment of gene sets as the same genes would be present in each set and the enrichment score (ES) 
would be calculated by their ranks. �e toolkit calculates an ES for each of the gene sets that demonstrates 
overrepresentation of the gene set at the top/bottom of the ranked gene list. GSEA uses a weighted standard 
Kolmogorov–Smirnov statistic to calculate the ES. To account for di�erent sizes of gene sets and correlations 
between gene sets and expression data, a normalized ES was calculated by considering 1000 permutations of 
ES, calculated by randomly assigning phenotypes to samples. Finally, false positives were restricted by applying 
a false discovery rate (FDR)  correction101 and using the threshold FDR < 0.25.

To elucidate the transition between TP4 and TP5 further, ranked gene set analysis was performed (Fig. 4). 
All gene sets identi�ed as Hallmark and GO Biological Processes were ranked based on their normalized enrich-
ment scores (NES) for each species at both TP4 and TP5. For Hallmark sets (Figs. 4C,D), a rank �ow plot was 
created to visualize changes in ranks between TP4 to TP5 for each species. For GO sets (Fig. 4E), we re�ned the 
approach to identify which among the important gene sets undergo a transition between TP4 and TP5 for Mf 
but remain essentially unchanged in Mm. We achieved this by �rst calculating the rank di�erence for each gene 
set from TP4 to TP5 as shown by a violin plot. Each data point in the distribution represents a GO gene set and 
the quantitative value (y-axis) is the rank change (Rank @TP4—Rank @ TP5). We narrowed our analysis to the 
most signi�cant gene sets (rank < 200 for at least one species/TP). We then analyzed the gene sets which remain 
almost unchanged in Mm (absolute rank di�erence < 100) but are signi�cantly changed in Mf (absolute rank 
di�erence > 1000). �is �ltering resulted in lists of gene sets that were then summarized by removing redundant 
GO terms using  REVIGO102. �e results are summarized in blue and red boxes in Fig. 4E.

GO-Net103 and  REVIGO102 were also used in Figs. 4E, S6, S8 and S9 to summarize GO results and use their 
hierarchical structure for inference. Custom R scripts were created to plot heatmaps and bar plots for GSEA 
results; the scripts are available in the github package binf.gsea.visualizations at (https:// github. com/ LBSA- VoitL 
ab/ packa ges). To analyze the hierarchical structure of GO annotations, we used the Cytoscape (v 3.4) plugin 
Bingo (v 3.0.3)104 and the treemaps were formed using  REVIGO102.

Upstream targets and motifs. Transcription factors and upstream regulators were analyzed with 
 iRegulon59 and TRRUST  db60. While iRegulon predicts TF-targets using ChIP-seq data, the TRRUST database is 
built on highly curated TF-target associations acquired from the literature. Cumulative results of both applica-
tions were used. In some cases, the results were quite diverse, thereby leading to a larger list of TFs (e.g., for Mf 
at TP3).

�e iRegulon (v1.3) plugin for Cytoscape (v3.4) was used to predict TFs and gene set motifs. iRegulon 
implements a genome-wide ranking and recovery approach to detect enriched TFs and motifs. It looks for cis-
regulatory sequences among co-expressed genes. For this particular analysis, we used the 10 K PWMs (position 
weight matrices) database with NES > 3 and FDR < 0.001 on motif similarity.

TRRUST uses a sentence-based text mining approach and is very well curated. Customized R scripts and 
packages were created to analyze and merge the results and then create a regulatory network; the scripts are 
available in the binf.trrust github package at https:// github. com/ LBSA- VoitL ab/ packa ges.

Modular transcriptome repertoire. �e third generation of the modular transcriptional framework was 
used as described in Altman et al.105. Module-level details such as transcripts and annotations were obtained 
from the corresponding supplementary material of Altman et al.105. We identi�ed 382 uniquely annotated mod-
ules, but in some cases more than one module had a similar functional annotation. A ranked list using di�eren-

https://github.com/LBSA-VoitLab/packages
https://github.com/LBSA-VoitLab/packages
https://github.com/LBSA-VoitLab/packages
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tial expression for each host species followed by enrichment analysis of each of these modules was established 
using the method explained above for  GSEA101. �e modules that were considered for this analysis had p < 0.01 
(adjusted) and FDR < 0.25. �e scripts are available in the binf.modular github package at https:// github. com/ 
LBSA- VoitL ab/ packa ges.

Cell population markers. To gauge the changes of various cell populations, we performed enrichment 
analysis of these populations and subpopulations. �e Marker Gene database from the Atlas of Human Blood 
 Cells106 was used to compile cell markers for various cell populations. �is database consists of 43 transcriptional 
cell clusters that are pro�led from single-cell deep sequencing. Ranked lists of DEGs were used for enrichment, 
which was calculated using the method explained above for GSEA. �e database was downloaded from the 
source and custom scripts were created to analyze and obtain enrichment scores, as detailed in Subramanian 
et al.98. A cuto� adjusted p-value of 0.05 was chosen to select enriched cell populations.

Data availability
Details of the experiments have been reported in publicly available databases: Mm at https:// plasm odb. org/ 
plasmo/ app/ static- conte nt/ Plasm oDB/ mahpic. html and https:// www. ncbi. nlm. nih. gov/ biopr oject/ 524357; Mf 
at https:// plasm odb. org/ plasmo/ app/ static- conte nt/ Plasm oDB/ mahpic. html and https:// www. ncbi. nlm. nih. gov/ 
biopr oject/ 526495. �e transcriptomics data for both hosts can be found in the Gene Expression Omnibus 
(GEO accession numbers: GSE127079, GSE128115). Supplementary tables and R packages for data processing 
and visualizations can be found at https:// github. com/ LBSA- VoitL ab/ Mm_ Mf_ analy sis and https:// github. com/ 
LBSA- VoitL ab/ packa ges.
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