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Abstract—Virtualization is a promising technology that has
facilitated cloud computing to become the next wave of the Inter-
net revolution. Adopted by data centers, millions of applications
that powered by various virtual machines improve the quality of
services. Although virtual machines are well-isolated among each
other, they suffer from redundant boot volumes and slow pro-
visioning time. To address the limitations, containers were born
to deploy and run distributed applications without launching
entire virtual machines. As a dominant player, Docker is an open-
source implementation of container technology. When managing
a cluster of Docker containers, the management tool, Swarmkit,
does not take the heterogeneities in both physical nodes and
virtualized containers into consideration. The heterogeneity lies
in the fact that different nodes in the cluster may have various
configurations, concerning resource types and availabilities, etc.,
and the demands generated by services are varied, such as CPU-
intensive (e.g. Clustering services) as well as memory-intensive
(e.g. Web services). In this paper, we target on investigating the
Docker container cluster and developed, DRAPS, a resource-
aware placement scheme to boost the system performance in a
heterogeneous cluster.

I. INTRODUCTION

In the past few decades, we have witnessed a spectacular in-

formation explosion over the Internet. Hundreds of thousands

of users are consuming the Internet through various services,

such as websites, mobile applications, and online games. The

service providers, at the back-end side, are supported by state-

of-the-art infrastructures on the cloud, such as Amazon Web

Service [1] and Microsoft Azure [2]. Focusing on providing

the services at scale, virtualization is one of the emerging

technologies used in data centers and cloud environments to

improve both hardware and development efficiency.

At the system level, the virtual machine is a widely-adopted

virtualization method [3], which isolates CPU, memory, block

I/O, network resources, etc [4]. In a large-scale system, how-

ever, providing services through virtual machines would mean

that the users are probably running many duplicate instances of

the same OS and many redundant boot volumes [5]. Recent

research shows that virtual machines suffer from noticeable

performance overhead, large storage requirement, and limited

scalability [6].

To address the limitations, containers are designed for de-

ploying and running distributed applications without launching

entire virtual machines. Instead, multiple isolated service units

of the application, called containers, share the host operating

system and physical resources. The concept of container

virtualization is yesterday’s news; Unix-like operating systems

leveraged the technology for over a decade. However, new

containerization platforms, such as Docker, make it into the

mainstream of application development. Based on previously

available open-source technologies (e.g. cgroup), Docker in-

troduces a way of simplifying the tooling required to create

and manage containers. On a physical machine, containers

are essentially just regular processes; in the system view, that

enjoy a virtualized resource environment, not only just CPU

and memory, but also bandwidth, ports, disk i/o, etc.

We use “Docker run image” command to start a Docker con-

tainer on physical machines. In addition to the disk image that

we would like to initiate, users can specify a few options, such

as “-m” and “-c”, to limit a container’s access to resources.

While options set a maximum amount, resource contention

still happens among containers on every host machine. Upon

receiving “Docker run” commands from clients, the cluster, as

the first step, should select a physical machine to host those

containers. The default container placement scheme, named

Spread, uses a bin-pack strategy and tries to assign a container

on the node with the fewest running containers. While Spread

aims to equally distribute tasks among all nodes, it omits two

major characteristics of the system. First of all, the nodes in a

cluster do not necessary have to be identical with each other.

It is a common setting to have multiple node types, in terms of

total resource, in the cluster. For example, a cutting edge server

can easily run more processes concurrently than a off-the-

shelf desktop. Secondly, the resource demands from containers

are different. Starting with various images, services provided

by containers are varied, which leads to a diverse resource

demands. For instance, a clustering service, e.g. Kmeans, may

need more computational power and a logging service, e.g.

Logstash, may request more bandwidth.

In this project, we propose a new container placement

scheme, DRAPS, a Dynamic and Resource-Aware Place-

ment Scheme. Different from the default Spread scheme,

DRAPS assigns containers based on current available re-

sources in a heterogeneous cluster and dynamic demands from

containers of various services. First, DRAPS identifies the

dominant resource type of a service by monitoring containers

that offer this service. It, then, places the containers with

complementary needs to the same machine in order to re-

duce the balance resource usages on the nodes. If one type

of resource, finally, becomes a bottleneck in the system, it
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migrates the resource-intensive containers to other nodes. Our

main contributions are as follows:

• First, we introduce the concept of dominant resource

type that considers the dynamic demands from different

services.

• We propose a complete container placement scheme,

DRAPS, which assigns the tasks to appropriate nodes and

balance resource usages in a heterogeneous cluster.

• We implement DRAPS into the popular container or-

chestration tool, Swarmkit, and conduct the experiment

with 18 services in 4 types. The evaluation of the cloud

demonstrates that DRAPS outperforms the default Spread

and reduces usage as much as 42.6% on one specific

node.

II. RELATED WORK

Virtualization serves as one of the fundamental technologies

in cloud computing systems. As a popular application, virtual

machines (VMs) have been studied for decades. However, in

the reality, VMs suffer from noticeable performance over-

head, large storage requirement, and limited scalability [6].

More recently, containerization, a lightweight virtualization

technique, is drawing increasing popularity in both industry

and academic.

The benefits and challenges of containerized systems have

been studied in many aspects. A comprehensive performance

study is presented in [7], where it explores the traditional

virtual machine deployments, and contrast them with the use

of Linux containers. The evaluation focuses on overheads and

experiments that show containers’ resulting performance to be

equal or superior to VMs performances. Although containers

outperform VMs, the research [8] shows that the startup

latency is considerably larger than expected. This is due to a

layered and distributed image architecture, in which copying

package data accounts for most of container startup time.

The authors propose Slacker which can significantly reduce

the startup latency. While Slacker reduces the amount of

copying and transferring packages, if the image is locally

available, the startup could be even faster. CoMICon [9]

addresses the problem by sharing the image in a cooperative

manner. From different aspect, SCoPe [10] tries to manage

the provisioning time for large scale containers. It presents

a statistical model, used to guide provisioning strategy, to

characterize the provisioning time in terms of system features.

Besides the investigations on standalone containers, the

cluster of containers is another important aspect in this field.

Docker Swarmkit [11] and Google Kubernetes [12] are dom-

inant cluster management tools in the market. The authors

of [13], first, conduct a comparison study of scalabilities

under both of them. Then, firmament is proposed to achieve

low latency in large-scale clusters by using multiple min-cost

max-flow algorithms. On the other hand, focusing on workload

scheduling, the paper [14] describes an Ant Colony Optimiza-

tion algorithm for a cluster of Docker containers. However,

the algorithm does not distinguish various containers, which

usually have a divese requirements.

In this paper, we investigate the container orchestration in

the prospective of resource awareness. While users can set

limits on resources, containers are still competing for resources

in a physical machine. Starting from different images, the

containers target various services, which results in different

requirements on resources. Through analyzing the dynamic

resource demands, our work studies a node placement scheme

that balance the resource usages in a heterogeneous cluster.

III. BACKGROUND AND MOTIVATION

A. Docker Containers

A Docker worker machine runs a local Docker daemon.

New containers may be created on a worker by sending

commands to its local daemon, such as “docker run -it ubuntu

bash”. A Docker container image is a lightweight, stand-

alone, executable package of a piece of software that includes

everything needed to run it: code, run-time, system tools,

system libraries, and settings. In general, each container targets

a specific service of an application. If the application needs to

scale up this particular service, it initiates duplicated containers

by using the same image. One physical machine can host

multiple applications with different services in a standalone

mode.

Fig 1 illustrates the structure of a physical machine that

is hosting four Docker containers for two applications. As the

figure shows, the AppA includes two services that are provided

by AppA1 and AppA2 and AppB contains one service which

is provided by two Docker containers, AppB1 and AppB1′.

AppA1 AppA2 AppB1 AppB1’

Bins / Libs Bins / Libs

Docker Container Engine

Host Operating System

Infrastructure

Fig. 1: Docker Containers

Internal Distributed State Store

Manager Manager Manager

Raft Consensus Group

Worker Worker Worker Worker Worker

Fig. 2: Docker Swarmkit

B. Container Orchestration

When deploying applications into a production environment,

it’s difficult to achieve resilience and scalability on a single

container host. Typically, a multi-node cluster is used to

provide the infrastructures for running containers at scale.

Introduced by Docker, SwarmKit is an open source toolkit

for container orchestration in the cluster environment.

There are two types of nodes in a cluster that are running

SwarmKit, worker nodes, and manager nodes. Worker nodes

are responsible for running tasks; on the other hand, manager

nodes accept specifications from the user and are responsible

for reconciling the desired state with the actual cluster state.

Fig. 2 shows the decentralized architecture of a SwarmKit

cluster. A manager node is in charge of several worker nodes

and there is a overlap between manager nodes to tolerate

failures. Worker and manager nodes are equal in the system

since a worker node can be promoted to a manager and a

manager node can be demoted to a worker. Manager nodes
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are formed into a Raft consensus group to maintain global

cluster’s states. The Raft consensus algorithm is used to ensure

that all the manager nodes that are in charge of managing and

scheduling tasks in the cluster are storing the same consistent

states.

A Docker container can be initiated with specific require-

ments (e.g. memory and CPU) and user-defined labels. The

scheduler that runs on a manager combines the user-input

information with states of each node to make various schedul-

ing decisions, such as choosing the best node to perform a

task. Specifically, it utilizes filters and scheduling strategies

to assign tasks. There are four filters available. ReadyFilter:

checks that the node is ready to schedule tasks; ResourceFilter:

checks that the node has enough resources available to run;

PluginFilter: checks that the node has a specific volume plu-

gin installed. ConstraintFilter: selects only nodes that match

certain labels.

If there are multiple nodes that pass the filtering process,

SwarmKit supports three scheduling strategies: spread (cur-

rently available), binpack, and random (under development

based on Swarm Mode). Spread strategy: places a container

on the node with the fewest running containers. Binpack

strategy: places a container onto the most packed node in the

cluster. Random strategy: randomly places the container into

the cluster.
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Fig. 3: Starting Dockers on a single machine

The default spread strategy, which attempts to schedule a

service task based on the number of active containers on

each node, can roughly assess the resources on the nodes.

However this assessment fails to reflect various nodes in a

heterogeneous cluster setting. Considering the heterogeneity,

the nodes in such a cluster have different configurations in

terms of memory, CPU, and network. Therefore, running the

same amount of containers on these nodes results in different

experiences. Fig 3 plots the average starting delay of and

overall makespan of the set of Tomcat Docker containers.

We conduct the experiments on two machines, M1 with 8GB

memory, 4-core CPU and M2 has 16GB memory and 8-core

CPU. On each particular machine, M1 or M2, we can see that

the more containers it hosts, the larger the starting delay and

makespan. However, M1 costs 23.67s on average to start 30

Tomcat containers and M2 costs 18.32s to start 40 containers.

Additionally, when trying to initiate 80 Tomcat containers, M1

fails to complete the job and M2 finishes it.

IV. DRAPS SYSTEM

A. Framework of Manager and Worker Nodes

As described in the previous section, there are multiple

managers and workers in the system. A manager has six

hierarchical modules. Client API, accepts the commands from

clients and creates service objects; Orchestrator, handles

the lifecycle of service objects and manages mechanics for

service discovery and load balancing; Allocator, provides

network model specific allocation functionality and allocates

IP addresses to tasks; Scheduler, assigns tasks to worker

nodes; Dispatcher, communicates with worker nodes, checks

their states, and collects the heartbeats from them;

A worker node, on the other hand, manages the Dockers

containers and sends back their states to managers through

periodical heartbeat messages. An executor is used to run the

tasks that are assigned to the containers in this worker.

B. DRAPS modules

To simplify the implementation, we integrate the

DRAPS components into the current framework. As

shown on Fig 4, it mainly consists of three parts: a container

monitor that resides in the worker nodes, a worker monitor,

and a DRAPS scheduler that implement in manager nodes.

Container Monitor: a container monitor collects the run-

time resources usage statistics of Docker containers on worker

nodes. At each application level, the monitored resources

contain memory, CPU percentage, block I/O, and network

I/O. The average usage report in a given time window of

top users will be injected into the DRAP-Heartbeat messages

and sent back to managers. At the host system level, the

tracking information includes I/O wait, reminder percentage

of available memory, CPU, and bandwidth. The information is

used by worker nodes to conduct a self-examination to identify

its own bottleneck. If a bottleneck is found, a DRAP-Alert

message will be produced and sent back to managers.

Work Monitor: a worker monitor processes the messages

from worker nodes. It maintains a table for each worker and

the corresponding containers. Through analyzing the data, it

will generate tasks, such as migrating a resource-intensive

container to another host.

DRAP-Scheduler: the DRAP-Scheduler assigns a task to

a specific node based on the current available resources.

For a duplicated Docker container, DRAP-Scheduler checks

its characteristics on resource consumption, such as memory

intensity, through the records of the previous containers in the

same services.

V. PROBLEM FORMULATION

The DRAPS scheduler aims to optimize the container place-

ment such that the available resources on each worker node are

maximized. In this paper, we assume that a container requires

multiple resources such as memory, CPU, bandwidth, and I/O

for running its services. Since the services and their workloads

in a container change over time, the resource requirements

in a container also exhibit temporal dynamics. Therefore,

we formulate the resource requirements of a container as a



4

Client API

Orchestrator

Allocator

Dispatcher

DRAP-Scheduler

Container 1

Container 2

………

Container n

Executor

Container

Monitor

w

O

R

K

E

R

Worker Monitor

DRAP

Heartbeat

DRAP

Alert

M

A

N

A

G

E

R

Fig. 4: Docker Framework with DRAPS Implemention

function of time. Denote rki (t) as the kth resource requirement

of the ith container at time t. Let xi,j = {0, 1} be the container

placement indicator. If xi,j = 1, the ith container is placed in

the jth work node. Denote W k
j as the total amount of the kth

resource in the jth work node. Let C, N , K be the set of

containers, work nodes, and the resources, respectively. The

utilization ratio of the k resource in the jth work node can be

expressed as

uk
j (t) =

∑
i∈C xi,jr

k
i (t)

W k
j

(1)

We assume that the utilization ratio of the jth work node is

defined by its highest utilized resource. Then, the utilization

ratio of the jth work node is maxk∈K uk
j (t). The highest

resource utilization among all the work nodes can be identified

as

ν = max
j∈N

max
k∈K

uk
j (t). (2)

Since our objective when designing the DRAPS scheduler is

to maximize the available resources in each worker node, the

DRAPS scheduling problem can be formulated as

max
xi,j

ν (3)

s.t.
∑

j

xi,j = 1; ∀i ∈ C; (4)

uk
j (t) ≤ 1, ∀k ∈ K, ∀j ∈ N . (5)

The constraint in E.q. (4) requires that each container should

be placed in one worker node. The constrain in E.q. (5)

enforces that the utilization ratio of any resource in a worker

is less than one.

Lemma 1. The DRAPS scheduling problem is an NP-hard

problem.

Proof: In proving the Lemma, we consider a simple case

of the DRAPS scheduling problem in which the resource

requirements of each container are constant over time. The

simplified DRAPS scheduling problem equals to the mul-

tidimensional bin packing problem which is NP-hard [15]–

[17]. Hence, the lemma can be proved by reducing any

instance of the multidimensional bin packing to the simplified

DRAPS scheduling problem. For the sake of simplicity, we

omit the detail proof in the paper.

VI. DRAPS IN A HETEROGENEOUS CLUSTER

Previously, we discussed the different modules in

DRAPS and their major responsibilities. We also formulated

the DRAPS scheduling problem and proved that the problem

is NP-hard. In this section, we present the detailed design

of DRAPS with heuristic container placement and migration

algorithms, in a heterogeneous cluster, which aims to increase

resource availability on each worker node and boost the

service performance by approximating the optimal solution

of the DRAPS scheduling problem. To achieve the objec-

tives, DRAPS system consists of three strategies: 1) Identify

dominant resource demands of containers; 2) Initial container

placement; 3) Migrate a container

A. Identify Resource Demands of Containers

Before improving the overall resource efficiency, the system

needs to understand the dynamic resource demand of various

containers. A container is, usually, focused on providing a

specific service, such as web browsing, data sorting, and

database querying. Different algorithms and operations will

be applied to the services, which result in a diverse resource

demand. As an intuitive example, we conduct the experiments

on NSF Cloudlab [18] (M400 node hosted by University of

Utah). The containers are initiated by using the following

four images and the data is collected through “docker stats”

command.

1) MySQL: the relational database management system.

Tested workloads: scan, select, count, join.

2) Tomcat: provides HTTP web services with Java. Tested

workloads: HTTP queries at 10/second and 20/second

of a HelloWorld webpage.

3) YUM: a software package manager that installs, updates,

and removes packages. Tested workload: download and

install “vim” package.

4) PI: a service to calculate PI. Tested workload: top 3,000

digits with single thread, top 7,500 digits with two

threads.

Figs. 5a to 5d plots the dynamic resource demands under

different workloads on the above four Docker containers. The

figures illustrate very diverse usage patterns on four types

of resources: CPU, memory, network I/O, and block I/O.

For example, without workload, container PI consumes very

limited resources. However, when the jobs arrive at 10th and

38th second, the CPU usage jumps to 100% for a single thread

job and 200% for a two-threads job. The usages of the other

three types of resources still remain at very low levels. For

MySQL service container, with tested operations, the CPU

usage shows a burst when clients submit a request. At time

84, a “join” operation that involves 3 tables is submitted, and

we can find CPU usage jumps, as well as memory usage. This

is because the join operation needs a lot of computation and

copies of tables in memory. Different usage trends are found

on YUM and Tomcat services, where YUM uses less CPU and

memory, but more network I/O and block I/O to download and

install packages. On the other hand, Tomcat consumes a very
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Fig. 5: Resource demonds under different workloads on four services, MySQL, Tomcat, YUM, PI.

small amount of network I/O and block I/O due to the size of

a tested HelloWorld page, but more than 200MB memory is

used to maintain the service. To balance the resource usage, it’s

crucial to place the containers with complementary demands

on the same worker. As shown on the graphs, despite multiple

types of resources, there is a dominant resource demand of a

service in a given period.

In DRAPS , we need to identify the dominant resource

demand for each service. A manager, in the system, can

monitor all of the containers’ resource usage and group them

by their associated service ID. Suppose the service si ∈ S
contains m running containers that store in a set, RCsi . The

resources consumed by ci ∈ RCsi is denoted by a vector,

Rci , where each attribute, ri, in the vector represents a type

of resources, such as memory and CPU. If there are q types

of resources in the system, the average resource cost of si is

a vector, Rsi ,

Rsi =
∑

ci∈RCsi

Rci

=<
∑

ci∈RCsi

r1/m,
∑

ci∈RCsi

r2/m, ...,
∑

ci∈RCsi

rq/m >

On the worker nodes, there is a limited amount of re-

sources in each type. The resource limit is a vector that

contains q attributes, < l1, l2, ..., lq >. The limit of a system,

< L1, L2, ..., Lq >, is obtained by sum up the the vectors from

workers. Therefore, Rsi can be represented by a percent of

total resources in the system, for the ith type, the container cost

for si in average is
∑

ci∈RCsi
ri/m ÷ Li. With the analysis,

we define the dominant function,

DOM(si) = max{
∑

ci∈RCsi

ri/m÷ Li}

Function DOM(si) returns the type of a dominant resource

demand of service si within a given time period. Depending

on the running containers for si and the current cost of them,

the value of DOM(si) changes along with system goes.

B. Initial Container Placement

To use a SwarmKit cluster, clients need to execute a “docker

run” command to start a new container. Therefore, the first

task for the cluster is to choose a worker node to host the

container. As discussed in section III, the default container

placement strategy fails to take dynamic resource contention

into consideration. This is because the managers in SwarmKit

do not have a mechanism to monitor the current available

resource. DRAPS , on the other hand, addresses the problem

by introducing DRAPS -Heartbeat. DRAPS -Heartbeat is an

enhanced heartbeat message that not only the states of worker

node, but also the containers’ resource usage over a given

time window, the usage includes memory, CPU, bandwidth,

and block I/O. On the manager side, the data will be organized

into a table that keep tracking the current available resource on

each worker and its corresponding containers’ resource usages.

Running on managers, Algorithm 1 assigns a container

initialization task to a specific worker. Firstly, each manager

maintains a known service set that records dockers’ charac-

teristics, such as the usage of memory, CPU, bandwidth, and

block i/o (line 1). The initial candidate worker are all running

workers (line 2). When a starting new container task arrives,

the algorithm applies all filters that user specified to shrink the

candidate work set, Wcand (line 3-6). Then, it checks whether

the container belongs to a known service (line 7). If it is, the

Sdom parameter will be used to store the container’s dominant

resource attribute (line 8). In DRAPS, we consider four types,

memory, CPU, bandwidth, and block i/o. The Wcand set will

be sorted according to the dominant resource attribute and

return the Wid with highest available resource in Sdom type

(line 9-10). If the service cannot be found in {KS}, Wid with

the highest available resource in average will be chosen (line

11-13).

Algorithm 1 Container Placement on Managers

1: Maintains a known characteristics service set {KS}
2: {Wcand} = All running Wid;

3: Function ContainerPlacement(SID)

4: for wid ∈ {Wcand} do

5: if !Filters(wid) then

6: Remove wid from {Wcand}
7: if SID ∈ {KS} then

8: SDOM = DOM(SID)
9: Sort Wcand according to rSDOM

10: Return wid with highest rSDOM

11: else

12: Sort
∑i=q

i=0
ri/m for wid ∈ Wcand

13: Return wid with highest average available resource

C. Migrating a Container

In a Swarmkit cluster, resource contention happens on every

worker. The Container Monitor, a module of DRAPS , that runs

on each worker node records resource usages of all hosting
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containers. In addition, the worker keeps tracking available

resources on itself. Whenever it finds one type of resources

is draining and becomes a bottleneck, it sends to managers

a DRAPS Alert message that contains the bottleneck type

and the most costly container of this type. Upon receiving the

DRAPS Alert message, the manager needs to migrate this

container to an appropriate worker and kill it on the worker

to release the resources.

Algorithm 2 presents the procedure to process an alert

message from wi. It first builds a candidate set Wcand, which

includes all running workers expect wi that sends the alert

(line 1). Then, the manager extracts the resource type, ri that

causes the bottleneck and finds the corresponding Sid for the

Cid (lines 2-4). With Wcand and Sid, the algorithm can decide

whether this Sid is a global service (line 5). If Sid is a global

service and it is in the known service set, {KS}, the algorithm

returns wid that is included the Wcand, with highest available

rSDOM
. On the other hand, it returns wid with highest available

ri if Sid is not in {KS} and SDOM is unknown (lines 6-12).

When Sid is not a global service, we want to increase the

reliability of Sid by placing its containers to different workers

as much as possible. In this situation, we have a similar process

expect a different Wcand, where Wcand is all running workers

that do not hosting any containers for Sid (lines 13 - 23).

Algorithm 2 Process DRAPS Alert Message from wi

1: {Wcand} = All running workers expect wi;

2: Function ReceiveAlertMsg(Cid)

3: Extract the bottleneck type ri
4: Find corresponding Sid for Cid

5: if ∀wid ∈ Wcand → Sid ∈ wid then

6: if Sid ∈ {KS} then

7: SDOM = DOM(Sid)
8: Sort Wcand according to rSDOM

9: Return wid with highest rSDOM

10: else

11: Sort Wcand according to ri
12: Return wid with highest ri
13: else

14: for wid ∈ Wcand do

15: if Sid ∈ wid then

16: Remove wid from Wcand

17: if Sid ∈ {KS} then

18: SDOM = DOM(Sid)
19: Sort Wcand according to rSDOM

20: Return wid with highest rSDOM

21: else

22: Sort Wcand according to ri
23: Return wid with highest ri

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DRAPS and

compare it with Swarmkit management tool from Docker.

A. System Implementation and Testbed Setup

We implement our new container placement scheme,

DRAPS, on Docker Community Editions (CE) v17. As de-

scribed in section IV, the major modules in DRAPS are

integrated into the existing Docker Swarmkit framework.

To evaluate DRAPS, we build a heterogeneous cluster on Al-

ibaba Cloud [19], which supports multiple types of computing

nodes. Specifically, we use three different types of instances,

small (1 CPU core and 4G memory), medium (4 CPU cores

and 8G memory) and large (8 CPU cores and 16G memory). In

the small-scale testing, we setup a cluster with 3 nodes, one of

each type, and configure it with 1 manager and 3 worker (one

of the three physical node hosts both manager and worker).

In experiments of scalability testing, we configure the cluster

with 1 manger and 9 workers, 3 instances of every type.

B. Workloads

The main objective of DRAPS is to understand the resource

demands of services and place them on the appropriate worker

nodes. As we discussed in section VI-A, the characteristics of

services are varied. Therefore, workloads for the cluster is im-

ages that target on various services. In the evaluation, we select

18 different images in 4 types from Docker Hub [20] to build

our image pool. Database Services: MongoDB, MySQL,

Postgres, Cassandra, RethinkDB; Storage/Caching Services:

Registry, Memcached; Web Services: Tomcat, Httpd, Redis,

HAProxy, Jetty, Nginx, GlassFish; Message Services: Rab-

bitMQ, Apache ZooKeeper, ActiveMQ, Ghost;

C. Evaluation

1) Idle containers: In this subsection, we present the result

of a cluster with idle containers. If a container is in a running

state but does not serving any clients, we call it a idle

container. Idle container is an important concept since every

node, right after initialization will act as an idle container.

Understanding the resource demands of an idle container will

help us select In these experiments, we first randomly choose

14 images form the pool, and each image will be used to

initiate 10 containers. Therefore, there are 140 containers in

the cluster. Those containers are started one by one with

5 seconds interval. This is because previous containers will

result in different available resources on worker nodes, which

we can utilize to test DRAPS.

Fig 6 illustrates a comparison of memory and CPU usages

between Spread, a Swarmkit default placement scheme, with

DRAPS. As we can see from the subfigures, most of the CPU

usage happens during 0 to 500s. This is caused by submission

pattern that used to initiate containers. The percentage grows

continuously from 0 to 500 since we have 100 containers and

the submission interval is 5 seconds. While in both systems,

the usage of CPU stays in a low level in average. However,

the memory usage keeps increasing along with the number of

containers on each worker. Due to the idle container setting,

the utilization of memory is stable after 500s (all the containers

have successfully initiated). There are some jitters on the curve

of CPU, which is because that some supporting programs, such
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Fig. 6: Memory and CPU resources usage comparison between Spread and DRAPS placement scheme (100 containers)

as Docker engine and service daemon, are running on the

same worker and, of course, they are consuming resources.

Comparing the memory usage rates after 500s, DRAPS signif-

icantly reduces rate on worker 1, from 80.5% to 46.7%. On

worker 2, Spread and DRAPS achieve similar performance on

memory, 39.1% verse 40.6%. On worker 3, Spread results in

23.6% and DRAPS consumes 33.3%. The DRAPS outperforms

Spread by considering the heterogeneity in the cluster and

various resource demands of services. When a task arrives at

the system, it selects a worker based on the service demands

and current available resources. Fig 7 shows the number of

containers on workers. For Swarmkit with Spread, it uses a

bin-pack strategy and tries to equally distribute the containers

to every worker, which results in 34, 33, 33 containers for

worker 1, 2, 3. While in DRAPS, worker 3 has more powerful

than others and hosts more containers than worker 1, which

has limited resource.
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Fig. 8: Network consumption

comparison on worker 3

While DRAPS achieves better performance, it introduces

more data transfers between managers and workers through

heartbeat messages. Fig 8 plots the network consumption

of Swarmkit and DRAPS on worker 3, which hosts both

a manager and a worker. As expected, DRAPS consumes

more bandwidth than Swarmkit due to the enhanced heartbeat

messages includes more statistical information resource usages

of containers. Considering the distributed architecture, the

system can have multiple managers and each of them in charge

of controllable number of workers, the increase of bandwidth

consumption that brought by DRAPS is reasonable.

Next, we conduct the same experiments with 40% more

containers to test the scalability of DRAPS. Fig 9 plots the

system performance with 140 Docker containers. Comparing

the figures, the first impression is that on Fig 9a, the usages

suddenly drop from 95.2% to 11.1% for memory and 100%

to 0 for CPU. The reason lies in the fact that, at time 726,

the memory becomes the bottleneck on work 1 with Spread

scheme. However, the manager does not award this situation

on worker 1, and assign a new container to it. Worker 1 fails to

start the new container, and drains the memory, which results

in the death of all containers on it. The the Docker engine

decides to kill them all when it can not communicate with

them. On the other hand, DRAPS considers dynamic resources

usages on workers, and it stops assigning task to a worker if

it has already overwhelming. It is shown on Fig 9d that the

usages of memory and CPU remains at 46.3% and 18.8% for

worker 1 with DRAPS. While worker 2 with Spread still runs

smoothly at the end of the testing, its memory usage is at

a high level, 76.6%, comparing to work 2 with DRAPS the

same value is 54.1%.

2) Loaded containers: Besides idle containers, we set up a

mix environment that includes both idle and loaded containers.

If clients are generating workloads to the services on the

running containers, we call it loaded containers. Evidenced

by Fig. 5, we know that loaded containers consume more

resources than idle ones. In addition, the usage pattern of a

loaded container changes along with the workload. Fig 10 plots

the memory usage and number of containers on worker-1. For

the experiments running with Spread, it drains the memory at

time 825s that the memory usage drops from 98.5% to 11.9%.

Simultaneously, the number of running containers on worker-

1 drops from 44 to 9 and then, to 0 at time 825s and 837s.

This is because the docker engine kills all containers when the
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Fig. 9: Memory and CPU resources usage comparison between Spread and DRAPS placement scheme (140 containers)

memory is not enough for maintaining the system itself. Due

to less containers on worker-1 with DRAPS (44 v.s 24), it runs

normally throughout the entire experiments. Fig 11 shows the

value of IO wait in percentage, which measures the percent

of time the CPU is idle, but waiting for an I/O to complete.

It shows a similar trend that at time 849s the value drops

to 0 for Spread, at the same time, DRAPS maintains stable

performance.
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Fig. 10: Memory usage and

container number on worker1
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VIII. CONCLUSION

This paper studies the container placement strategy in a

heterogeneous cluster. We target on distributing containers to

the worker nodes with the best available resources. In this

paper, we develop DRAPS, which considers various resource

demands from containers and current available resources on

each node. We have implemented DRAPS on Docker Swarmkit

platform and conducted extensive experiments with 18 dif-

ferent images in 4 types. The results show a significant

improvement on the system stability and scalability when

comparing with the default Spread strategy.
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